1
|
Kar S, Bordiya Y, Rodriguez N, Kim J, Gardner EC, Gollihar JD, Sung S, Ellington AD. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. PLANT METHODS 2022; 18:42. [PMID: 35351174 PMCID: PMC8966344 DOI: 10.1186/s13007-022-00867-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. RESULTS A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. CONCLUSIONS The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.
Collapse
Affiliation(s)
- Shaunak Kar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| | - Yogendra Bordiya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, TX, USA
| | - Nestor Rodriguez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Junghyun Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Sibum Sung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Mulero MC, Wang VYF, Huxford T, Ghosh G. Genome reading by the NF-κB transcription factors. Nucleic Acids Res 2019; 47:9967-9989. [PMID: 31501881 PMCID: PMC6821244 DOI: 10.1093/nar/gkz739] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5'-GGGRNNNYCC-3' (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
|
4
|
Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol 2017; 7:635-674. [PMID: 28333384 DOI: 10.1002/cphy.c160022] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
5
|
Saxena P, Bojar D, Fussenegger M. Design of Synthetic Promoters for Gene Circuits in Mammalian Cells. Methods Mol Biol 2017; 1651:263-273. [PMID: 28801913 DOI: 10.1007/978-1-4939-7223-4_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic biology, the synthesis of engineering and biology, has rapidly matured and has dramatically increased the complexity of artificial gene circuits in recent years. The deployment of intricate synthetic gene circuits in mammalian cells requires the establishment of very precise and orthogonal control of transgene expression. In this chapter, we describe methods of modulating the expression of transgenes at the transcriptional level. Using cAMP-response element-binding protein (CREB)-dependent promoters as examples, a tool for the precise tuning of gene expression by using different core promoters and by varying the binding affinity of transcription factor operator sites is described.
Collapse
Affiliation(s)
- Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Daniel Bojar
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland. .,Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland.
| |
Collapse
|
6
|
In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites. Adv Bioinformatics 2016; 2016:1286510. [PMID: 27698666 PMCID: PMC5028829 DOI: 10.1155/2016/1286510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/17/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022] Open
Abstract
Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.
Collapse
|
7
|
Zhang G, Lin Y, Qi X, Li L, Wang Q, Ma Y. TALENs-Assisted Multiplex Editing for Accelerated Genome Evolution To Improve Yeast Phenotypes. ACS Synth Biol 2015; 4:1101-11. [PMID: 26011297 DOI: 10.1021/acssynbio.5b00074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genome editing is an important tool for building novel genotypes with a desired phenotype. However, the fundamental challenge is to rapidly generate desired alterations on a genome-wide scale. Here, we report TALENs (transcription activator-like effector nucleases)-assisted multiplex editing (TAME), based on the interaction of designed TALENs with the DNA sequences between the critical TATA and GC boxes, for generating multiple targeted genomic modifications. Through iterative cycles of TAME to induce abundant semirational indels coupled with efficient screening using a reporter, the targeted fluorescent trait can be continuously and rapidly improved by accumulating multiplex beneficial genetic modifications in the evolving yeast genome. To further evaluate its efficiency, we also demonstrate the application of TAME for significantly improving ethanol tolerance of yeast in a short amount of time. Therefore, TAME is a broadly generalizable platform for accelerated genome evolution to rapidly improve yeast phenotypes.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Key
Laboratory of Systems Microbial Biotechnology, Tianjin Institute of
Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Lin
- Key
Laboratory of Systems Microbial Biotechnology, Tianjin Institute of
Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xianni Qi
- Key
Laboratory of Systems Microbial Biotechnology, Tianjin Institute of
Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lin Li
- Key
Laboratory of Systems Microbial Biotechnology, Tianjin Institute of
Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qinhong Wang
- Key
Laboratory of Systems Microbial Biotechnology, Tianjin Institute of
Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanhe Ma
- Key
Laboratory of Systems Microbial Biotechnology, Tianjin Institute of
Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
8
|
Cong P, Li A, Ji Q, Chen Y, Mo D. Molecular analysis of porcine TDRD10 gene: a novel member of the TDRD family. Gene 2014; 548:190-7. [PMID: 25017056 DOI: 10.1016/j.gene.2014.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/03/2014] [Accepted: 07/09/2014] [Indexed: 12/01/2022]
Abstract
Tudor domain-containing proteins (TDRDs) are characterized by various numbers of Tudor domains, which are known to recognize and bind to symmetric methylated arginine residues. These proteins affect a wide variety of processes, including differentiation, genome stability and gametogenesis. In mammals, there are 12 members (TDRD1-TDRD12) in the TDRD protein family. Among them, the information about TDRD10 is less known. Here, we analyzed the sequence and structure properties of porcine TDRD10 gene, and examined its expression profile and subcellular distribution. Our data show that porcine TDRD10 has an opening reading frame (ORF) of 1068 bp, which encodes 355 amino acids. It localizes to chromosome 4. The gene product of porcine TDRD10 contains a Tudor domain and a RNA recognition motif (RRM). Serial deletion shows that the 5'-flanking sequence of porcine TDRD10 contains several negative and positive regulatory elements and identifies a 670-bp TATA-less region as an optimal promoter. Site-directed mutagenesis reveals that the nucleotides from -451 to -445 relative to the transcriptional start site forms one of the very important positive regulatory elements. Real time PCR detects the highest expression level of porcine TDRD10 gene in heart among 12 tissues. In PK15 cells, it mainly distributed in the cell nucleus, but also exhibited localization to the cytoplasm. These results increase our knowledge of TDRD10 gene, and provide basis for further investigation of its function.
Collapse
Affiliation(s)
- Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qianqian Ji
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Farzadfard F, Perli SD, Lu TK. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol 2013; 2:604-13. [PMID: 23977949 PMCID: PMC3805333 DOI: 10.1021/sb400081r] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Transcriptional regulation is central
to the complex behavior of
natural biological systems and synthetic gene circuits. Platforms
for the scalable, tunable, and simple modulation of transcription
would enable new abilities to study natural systems and implement
artificial capabilities in living cells. Previous approaches to synthetic
transcriptional regulation have relied on engineering DNA-binding
proteins, which necessitate multistep processes for construction and
optimization of function. Here, we show that the CRISPR/Cas system
of Streptococcus pyogenes can be programmed
to direct both activation and repression to natural and artificial
eukaryotic promoters through the simple engineering of guide RNAs
with base-pairing complementarity to target DNA sites. We demonstrate
that the activity of CRISPR-based transcription factors (crisprTFs)
can be tuned by directing multiple crisprTFs to different positions
in natural promoters and by arraying multiple crisprTF-binding sites
in the context of synthetic promoters in yeast and human cells. Furthermore,
externally controllable regulatory modules can be engineered by layering
gRNAs with small molecule-responsive proteins. Additionally, single
nucleotide substitutions within promoters are sufficient to render
them orthogonal with respect to the same gRNA-guided crisprTF. We
envision that CRISPR-based eukaryotic gene regulation will enable
the facile construction of scalable synthetic gene circuits and open
up new approaches for mapping natural gene networks and their effects
on complex cellular phenotypes.
Collapse
Affiliation(s)
- Fahim Farzadfard
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, Massachusetts 02139, United States
- MIT Microbiology
Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samuel D. Perli
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Timothy K. Lu
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, Massachusetts 02139, United States
- MIT Microbiology
Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Biophysics Program, Harvard University, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Controlling a master switch of adipocyte development and insulin sensitivity: covalent modifications of PPARγ. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1090-5. [PMID: 22504298 DOI: 10.1016/j.bbadis.2012.03.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/14/2022]
Abstract
Adipocytes are highly specialized cells that play a central role in lipid homeostasis and the maintenance of energy balance. Obesity, an excessive accumulation of adipose tissue, is a major risk factor for the development of Type 2 diabetes mellitus (T2DM), cardiovascular disease, and hypertension. A variety of studies suggest that obesity and T2DM can be linked to a breakdown in the regulatory mechanisms that control the expression and transcriptional activity of PPARγ. PPARγ is a nuclear hormone receptor that functions as a master switch in controlling adipocyte differentiation and development. Also important in controlling glucose homeostasis and insulin sensitivity, PPARγ is a ligand-dependent transcription factor that is the functional receptor for the anti-diabetic thiazolidinediones (TZDs). In the last fifteen years, a variety of covalent modifications of PPARγ activity have been identified and studied. These covalent modifications include phosphorylation, ubiquitylation, O-GlcNAcylation and SUMOylation. Covalent modifications of PPARγ represent key regulatory mechanisms that control both PPARγ protein stability and transcriptional activity. A variety of PPARγ transgenic models, including mice heterozygous for PPARγ, have demonstrated the importance of PPARγ expression in glucose homeostasis and insulin resistance. In the following review, we have highlighted the regulation of PPARγ by covalent modifications, the interplay between these interactions and how these post-translational modifications impact metabolic disease states.
Collapse
|
11
|
Chen W, Chen Y, Qin L, Li A, Zhao X, Wang X, Xiao S, Mo D. Transcription factor Sp1 is essential for the regulation of the porcine caveolin-1 gene. DNA Cell Biol 2011; 30:491-7. [PMID: 21631282 DOI: 10.1089/dna.2010.1202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Caveolin-1 (CAV-1) is a key structural component of caveolae that regulates cholesterol. Employing transgenic techniques to regulate the cholesterol content of pork through CAV-1 is hindered by our lack of knowledge about its regulation. To investigate the regulatory mechanism of porcine CAV-1, a DNA segment containing the 5'-flanking region of CAV-1 was isolated from porcine genomic DNA and sequenced. The luciferase reporter assay detected five cis-acting elements for efficient expression of the CAV-1 gene at the region spanning nucleotides -213 to -20 with serially deleted 5'-flanking sequences and site-directed mutants, -123 to -114 was the core promoter. The electrophoretic mobility shift assay demonstrated potential binding of Sp1 protein to this core promoter. The purpose of this study is to systematically elucidate the transcriptional regulation mechanism of porcine CAV-1 and to contribute to the investigation of the interaction between CAV-1 and cholesterol.
Collapse
Affiliation(s)
- Weiquan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pradhan M, Bembinster LA, Baumgarten SC, Frasor J. Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements. J Biol Chem 2010; 285:31100-6. [PMID: 20705611 DOI: 10.1074/jbc.m110.155309] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Constitutive activation of NFκB in estrogen receptor (ER)-positive breast cancer is associated with tumor recurrence and development of anti-estrogen resistance. Furthermore, a gene expression signature containing common targets for ER and NFκB has been identified and found to be associated with the more aggressive luminal B intrinsic subtype of ER-positive breast tumors. Here, we describe a novel mechanism by which ER and NFκB cooperate to up-regulate expression of one important gene from this signature, ABCG2, which encodes a transporter protein associated with the development of drug-resistant breast cancer. We and others have confirmed that this gene is regulated primarily by estrogen in an ER- and estrogen response element (ERE)-dependent manner. We found that whereas proinflammatory cytokines have little effect on this gene in the absence of 17β-estradiol, they can potentiate ER activity in an NFκB-dependent manner. ER allows the NFκB family member p65 to access a latent NFκB response element located near the ERE in the gene promoter. NFκB recruitment to the gene is, in turn, required to stabilize ER occupancy at the functional ERE. The result of this cooperative binding of ER and p65 at adjacent response elements leads to a major increase in both ABCG2 mRNA and protein expression. These findings indicate that estrogen and inflammatory factors can modify each other's activity through modulation of transcription factor accessibility and/or occupancy at adjacent response elements. This novel transcriptional mechanism could have important implications in breast cancer, where both inflammation and estrogen can promote cancer progression.
Collapse
Affiliation(s)
- Madhumita Pradhan
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
13
|
Kim JJ, Sefton EC, Bulun SE. Progesterone receptor action in leiomyoma and endometrial cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:53-85. [PMID: 20374701 DOI: 10.1016/s1877-1173(09)87002-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progesterone is a key hormone in the regulation of uterine function. In the normal physiological context, progesterone is primarily involved in remodeling of the endometrium and maintaining a quiescent myometrium. When pathologies of the uterus develop, specifically, endometrial cancer and uterine leiomyoma, response to progesterone is usually altered. Progesterone acts through mainly two isoforms of the progesterone receptor (PR), PRA and PRB which have been reported to exhibit different transcriptional activities. Studies examining the expression and function of the PRs in the normal endometrium and myometrium as well as in endometrial cancer and uterine leiomyoma are summarized here. The clinical use of progestins and the transcriptional activity of the PR on genes specific to endometrial cancer and leiomyoma are described. An increased understanding of the differential expression of PRs and response to progesterone in these two diseases is critical in order to develop more efficient and targeted therapies.
Collapse
Affiliation(s)
- J Julie Kim
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
14
|
Li D, Qian L, Chen C, Shi M, Yu M, Hu M, Song L, Shen B, Guo N. Down-regulation of MHC class II expression through inhibition of CIITA transcription by lytic transactivator Zta during Epstein-Barr virus reactivation. THE JOURNAL OF IMMUNOLOGY 2009; 182:1799-809. [PMID: 19201831 DOI: 10.4049/jimmunol.0802686] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presentation of peptides to T cells by MHC class II molecules is of critical importance in specific recognition to a pathogen by the immune system. The level of MHC class II directly influences T lymphocyte activation. The aim of this study was to identify the possible mechanisms of the down-regulation of MHC class II expression by Zta during EBV lytic cycle. The data in the present study demonstrated that ectopic expression of Zta can strongly inhibit the constitutive expression of MHC class II and CIITA in Raji cells. The negative effect of Zta on the CIITA promoter activity was also observed. Scrutiny of the DNA sequence of CIITA promoter III revealed the presence of two Zta-response element (ZRE) motifs that have complete homology to ZREs in the DR and left-hand side duplicated sequence promoters of EBV. By chromatin immunoprecipitation assays, the binding of Zta to the ZRE(221) in the CIITA promoter was verified. Site-directed mutagenesis of three conserved nucleotides of the ZRE(221) substantially disrupted Zta-mediated inhibition of the CIITA promoter activity. Oligonucleotide pull-down assay showed that mutation of the ZRE(221) dramatically abolished Zta binding. Analysis of the Zta mutant lacking DNA binding domain revealed that the DNA-binding activity of Zta is required for the trans repression of CIITA. The expression of HLA-DRalpha and CIITA was restored by Zta gene silencing. The data indicate that Zta may act as an inhibitor of the MHC class II pathway, suppressing CIITA transcription and thus interfering with the expression of MHC class II molecules.
Collapse
Affiliation(s)
- Dan Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Noothi SK, Kombrabail M, Kundu TK, Krishnamoorthy G, Rao BJ. Enhanced DNA dynamics due to cationic reagents, topological states of dsDNA and high mobility group box 1 as probed by PicoGreen. FEBS J 2008; 276:541-51. [DOI: 10.1111/j.1742-4658.2008.06802.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Zimmerman J, Maher LJ. Transient HMGB protein interactions with B-DNA duplexes and complexes. Biochem Biophys Res Commun 2008; 371:79-84. [PMID: 18413230 DOI: 10.1016/j.bbrc.2008.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 04/02/2008] [Indexed: 01/13/2023]
Abstract
HMGB proteins are abundant, non-histone proteins in eukaryotic chromatin. HMGB proteins contain one or two conserved "HMG boxes" and can be sequence-specific or nonspecific in their DNA binding. HMGB proteins cause strong DNA bending and bind preferentially to deformed DNAs. We wish to understand how HMGB proteins increase the apparent flexibility of non-distorted B-form DNA. We test the hypothesis that HMGB proteins bind transiently, creating an ensemble of distorted DNAs with rapidly interconverting conformations. We show that binding of B-form DNA by HMGB proteins is both weak and transient under conditions where DNA cyclization is strongly enhanced. We also detect novel complexes in which HMGB proteins simultaneously bind more than one DNA duplex.
Collapse
Affiliation(s)
- Jeff Zimmerman
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
18
|
Tung L, Abdel-Hafiz H, Shen T, Harvell DME, Nitao LK, Richer JK, Sartorius CA, Takimoto GS, Horwitz KB. Progesterone receptors (PR)-B and -A regulate transcription by different mechanisms: AF-3 exerts regulatory control over coactivator binding to PR-B. Mol Endocrinol 2006; 20:2656-70. [PMID: 16762974 DOI: 10.1210/me.2006-0105] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The two, nearly identical, isoforms of human progesterone receptors (PR), PR-B and -A, share activation functions (AF) 1 and 2, yet they possess markedly different transcriptional profiles, with PR-B being much stronger transactivators. Their differences map to a unique AF3 in the B-upstream segment (BUS), at the far N terminus of PR-B, which is missing in PR-A. Combined mutation of two LXXLL motifs plus tryptophan 140 in BUS, to yield PR-BdL140, completely destroys PR-B activity, because strong AF3 synergism with downstream AF1 and AF2 is eliminated. This synergism involves cooperative interactions among receptor multimers bound at tandem hormone response elements and is transferable to AFs of other nuclear receptors. Other PR-B functions-N-/C-terminal interactions, steroid receptor coactivator-1 coactivation, ligand-dependent down-regulation-also require an intact BUS. All three are autonomous in PR-A, and map to N-terminal regions common to both PR. This suggests that the N-terminal structure adopted by the two PR is different, and that for PR-B, this is controlled by BUS. Indeed, gene expression profiling of breast cancer cells stably expressing PR-B, PR-BdL140, or PR-A shows that mutation of AF3 destroys PR-B-dependent gene transcription without converting PR-B into PR-A. In sum, AF3 in BUS plays a critical modulatory role in PR-B, and in doing so, defines a mechanism for PR-B function that is fundamentally distinct from that of PR-A.
Collapse
Affiliation(s)
- Lin Tung
- Department of Medicine, RC1 South, 12801 East 17th Avenue, P.O. Box 6511, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Malphettes L, Weber CC, El-Baba MD, Schoenmakers RG, Aubel D, Weber W, Fussenegger M. A novel mammalian expression system derived from components coordinating nicotine degradation in arthrobacter nicotinovorans pAO1. Nucleic Acids Res 2005; 33:e107. [PMID: 16002786 PMCID: PMC1174900 DOI: 10.1093/nar/gni107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe the design and detailed characterization of 6-hydroxy-nicotine (6HNic)-adjustable transgene expression (NICE) systems engineered for lentiviral transduction and in vivo modulation of angiogenic responses. Arthrobacter nicotinovorans pAO1 encodes a unique catabolic machinery on its plasmid pAO1, which enables this Gram-positive soil bacterium to use the tobacco alkaloid nicotine as the exclusive carbon source. The 6HNic-responsive repressor-operator (HdnoR-O(NIC)) interaction, controlling 6HNic oxidase production in A.nicotinovorans pAO1, was engineered for generic 6HNic-adjustable transgene expression in mammalian cells. HdnoR fused to different transactivation domains retained its O(NIC)-binding capacity in mammalian cells and reversibly adjusted transgene transcription from chimeric O(NIC)-containing promoters (P(NIC); O(NIC) fused to a minimal eukaryotic promoter [P(min)]) in a 6HNic-responsive manner. The combination of transactivators containing various transactivation domains with promoters differing in the number of operator modules as well as in their relative inter-O(NIC) and/or O(NIC)-P(min) spacing revealed steric constraints influencing overall NICE regulation performance in mammalian cells. Mice implanted with microencapsulated cells engineered for NICE-controlled expression of the human glycoprotein secreted placental alkaline phosphatase (SEAP) showed high SEAP serum levels in the absence of regulating 6HNic. 6HNic was unable to modulate SEAP expression, suggesting that this nicotine derivative exhibits control-incompatible pharmacokinetics in mice. However, chicken embryos transduced with HIV-1-derived self-inactivating lentiviral particles transgenic for NICE-adjustable expression of the human vascular endothelial growth factor 121 (VEGF121) showed graded 6HNic response following administration of different 6HNic concentrations. Owing to the clinically inert and highly water-soluble compound 6HNic, NICE-adjustable transgene control systems may become a welcome alternative to available drug-responsive homologs in basic research, therapeutic cell engineering and biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Laetitia Malphettes
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | - Marie Daoud El-Baba
- Département Génie Biologique, Institut Universitaire de Technologie, IUTA43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Ronald G. Schoenmakers
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- Integrative Bioscience Institute, Swiss Federal Institute of Technology LausanneCH-1015 Lausanne, Switzerland
| | - Dominique Aubel
- Département Génie Biologique, Institut Universitaire de Technologie, IUTA43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Wilfried Weber
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | - Martin Fussenegger
- Institute for Chemical and Bio-Engineering (ICB), Swiss Federal Institute of Technology, ETH Hoenggerberg, HCI F115Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
- To whom correspondence should be addressed. Tel: +41 44 633 3448; Fax: +41 44 633 1234;
| |
Collapse
|
20
|
Song MJ, Hwang S, Wong W, Round J, Martinez-Guzman D, Turpaz Y, Liang J, Wong B, Johnson RC, Carey M, Sun R. The DNA architectural protein HMGB1 facilitates RTA-mediated viral gene expression in gamma-2 herpesviruses. J Virol 2004; 78:12940-50. [PMID: 15542646 PMCID: PMC524970 DOI: 10.1128/jvi.78.23.12940-12950.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Replication and transcription activator (RTA), an immediate-early gene product of gamma-2 herpesviruses including Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gamma herpesvirus 68 (MHV-68), plays a critical role in controlling the viral life cycle. RTA acts as a strong transcription activator for several downstream genes of KSHV and MHV-68 through direct DNA binding, as well as via indirect mechanisms. HMGB1 (also called HMG-1) protein is a highly conserved nonhistone chromatin protein with the ability to bind and bend DNA. HMGB1 protein promoted RTA binding to different RTA target sites in vitro, with greater enhancement to low-affinity sites than to high-affinity sites. Box A or box B and homologues of HMGB1 also enhanced RTA binding to DNA. Transient transfection of HMGB1 stimulated RTA transactivation of RTA-responsive promoters from KSHV and MHV-68. Furthermore, MHV-68 viral gene expression, as well as viral replication, was significantly reduced in HMGB1-deficient cells than in the wild type. This abated viral gene expression was partially restored by HMGB1 transfection into HMGB1(-/-) cells. These results suggest an important function of the DNA architectural protein, HMGB1, in RTA-mediated gene expression, as well as viral replication in gamma-2 herpesviruses.
Collapse
Affiliation(s)
- Moon Jung Song
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Singh MV, Bland CE, Weil PA. Molecular and genetic characterization of a Taf1p domain essential for yeast TFIID assembly. Mol Cell Biol 2004; 24:4929-42. [PMID: 15143185 PMCID: PMC416396 DOI: 10.1128/mcb.24.11.4929-4942.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast Taf1p is an integral component of the multiprotein transcription factor TFIID. By using coimmunoprecipitation assays, coupled with a comprehensive set of deletion mutants encompassing the entire open reading frame of TAF1, we have discovered an essential role of a small portion of yeast Taf1p. This domain of Taf1p, termed region 4, consisting of amino acids 200 to 303, contributes critically to the assembly and stability of the 15-subunit TFIID holocomplex. Region 4 of Taf1p is mutationally sensitive, can assemble several Tafps into a partial TFIID complex, and interacts directly with Taf4p and Taf6p. Mutations in Taf1p-region 4 induce temperature-conditional growth of yeast cells. At the nonpermissive temperature these mutations have drastic effects on both TFIID integrity and mRNA synthesis. These data are consistent with the hypothesis that Taf1p subserves a critical scaffold function within the TFIID complex. The significance of these data with regard to TFIID structure and function is discussed.
Collapse
Affiliation(s)
- Madhu V Singh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232-0615, USA
| | | | | |
Collapse
|
22
|
Zhou L, Nazarian AA, Smale ST. Interleukin-10 inhibits interleukin-12 p40 gene transcription by targeting a late event in the activation pathway. Mol Cell Biol 2004; 24:2385-96. [PMID: 14993278 PMCID: PMC355839 DOI: 10.1128/mcb.24.6.2385-2396.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 09/12/2003] [Accepted: 12/16/2003] [Indexed: 11/20/2022] Open
Abstract
Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine that suppresses the induction of proinflammatory cytokine genes, including the IL-12 p40 gene. Despite considerable effort examining the effect of IL-10 on specific transcription factors and signaling molecules, the mechanism by which IL-10 inhibits gene transcription has remained elusive. To provide a different perspective to this problem, we examined the effect of IL-10 on molecular events occurring at the endogenous IL-12 p40 locus in lipopolysaccharide-stimulated peritoneal macrophages. IL-10 abolished recruitment of RNA polymerase II to the p40 promoter. However, it only modestly reduced binding of C/EBPbeta, as monitored by genomic footprinting and chromatin immunoprecipitation. It also had little effect on NF-kappaB complexes that are critical for p40 induction. A substantial reduction in nucleosome remodeling at the p40 promoter was observed, but the magnitude of this reduction appeared insufficient to account for the strong inhibition of transcription. Finally, a lipopolysaccharide-inducible DNase I hypersensitive site identified 10 kb upstream of the start site was unaffected by IL-10. Thus, despite a dramatic reduction in p40 transcription, several events required for activation of the endogenous p40 gene occurred relatively normally. These findings suggest that IL-10 blocks one or more events that occur after p40 locus decondensation and nucleosome remodeling and after, or in parallel with, the binding of a subset of p40 transcriptional activators.
Collapse
Affiliation(s)
- Liang Zhou
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA
| | | | | |
Collapse
|
23
|
Holmstrom S, Van Antwerp ME, Iñiguez-Lluhi JA. Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proc Natl Acad Sci U S A 2003; 100:15758-63. [PMID: 14663148 PMCID: PMC307641 DOI: 10.1073/pnas.2136933100] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functional interactions between factors bound at multiple sites on DNA often lead to a synergistic or more-than-additive transcriptional response. We previously defined a class of peptide sequences termed synergy control motifs (SC motifs) that function in multiple regulators by selectively inhibiting synergistic activity driven from multiple but not single response elements. By studying the prototypic SC motifs of the glucocorticoid receptor, we show that SC motifs inhibit transcription per se both in cis and in trans, and that a requirement for multiple contacts with DNA renders them selective for compound response elements. Notably, SC motifs are sites for SUMOylation, and the degree of modification correlates strongly with the extent of synergy control. Recruiting SUMO to the promoter either independently or as a fusion to the glucocorticoid receptor is sufficient to recapitulate the in trans and in cis inhibition by SC motifs without apparent changes in subcellular localization. Moreover, we find that the core ubiquitin fold domain of SUMO is sufficient for inhibition and that, independently of their potential for polySUMO chain formation, SUMO-2 and SUMO-3 are more effective inhibitors than SUMO-1.
Collapse
Affiliation(s)
- Sam Holmstrom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632, USA
| | | | | |
Collapse
|
24
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) both infect lymphoid and epithelial cells and both are implicated in the development of cancer. The two viruses establish latency in B-lymphoid cells that, once disrupted, leads to a burst of virus replication during the lytic cycle. A basic leucine zipper (bZIP) transcription factor encoded by EBV, Zta (also known as BZLF1 and ZEBRA), is key to the disruption of EBV latency. KSHV encodes a related protein, K-bZIP (also known as RAP and K8alpha). Recent developments in our understanding of the structures and functions of these two viral bZIP proteins have led to the conclusion that they are not homologues. Two important features of Zta are its ability to interact directly with DNA and to induce EBV replication whereas K-bZIP is not known to interact directly with DNA or to induce KSHV replication. Despite these differences, the ability to disrupt cell cycle control is conserved in both Zta and K-bZIP. The interactions of Zta and K-bZIP with cellular genes will be reviewed here.
Collapse
Affiliation(s)
- Alison J Sinclair
- School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, UK
| |
Collapse
|
25
|
Kolb A. The first intron of the murine beta-casein gene contains a functional promoter. Biochem Biophys Res Commun 2003; 306:1099-105. [PMID: 12821156 DOI: 10.1016/s0006-291x(03)01104-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Caseins are the major milk proteins in most mammals. Together with calcium and phosphate they form the casein micelle. The corresponding casein genes are clustered in mammalian genomes and their expression is coordinately regulated with regard to developmental and tissue specificity. Casein gene promoters are responsive to lactogenic hormones, cell-matrix, and cell-cell interactions. Transcriptional enhancer elements are found in the 5(') upstream regions of casein genes but have also been detected in the first intron of the bovine beta-casein gene. We show here that the first intron of the murine beta-casein gene has three discernible functions. First, transcriptional enhancer elements present in the intron increase the basal activity of the beta-casein promoter. In addition, these intronic enhancer elements augment the induction of the beta-casein promoter by lactogenic hormones. Finally, we demonstrate that the first intron of the murine beta-casein gene contains a functional promoter.
Collapse
Affiliation(s)
- Andreas Kolb
- Molecular Recognition Group, Hannah Research Institute, Ayr, Scotland KA6 5HL, UK.
| |
Collapse
|
26
|
Abstract
High mobility group (HMG) proteins are chromatin proteins endowed with 'architectural' capabilities. HMGA proteins are moderately sequence-specific, and help build enhanceosomes by interacting with partner proteins and binding stably to the minor groove of DNA; their acetylation/deacetylation signal enhanceosome assembly or disassembly. HMGBs are much more dynamic proteins: they have no sequence specificity, and help transcription factors and other nuclear proteins bind to their cognate sites by bending the DNA molecule. However, HMGBs are rarely retained within the complex. Similarly, HMGBs interact with nucleosomes and promote their sliding, but remain bound only for fractions of a second. We argue that HMGBs fluidize chromatin - an action that appears opposite to that of histone H1.
Collapse
Affiliation(s)
- Alessandra Agresti
- DIBIT, Istituto Scientifico San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| | | |
Collapse
|
27
|
Veitia RA. A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biol Rev Camb Philos Soc 2003; 78:149-70. [PMID: 12620064 DOI: 10.1017/s1464793102006036] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A sigmoidal transcriptional response (STR) is thought to act as a molecular switch to control gene expression. This nonlinear behaviour arises as a result of the cooperative recognition of a promoter/enhancer by transcription factors (TFs) and/or their synergy to attract the basal transcriptional machinery (BTM). Although this cooperation between TFs is additive in terms of energy, it leads to an exponential increase in affinity between the BTM and the pre-initiation complexes. This exponential increase in the strength of interactions is the principle that governs synergistic systems. Here, I propose a minimalist quasi-equilibrium model to explore qualitatively the STR taking into account cooperative recognition of the promoter/enhancer and synergy. Although the focus is on the effect of activators, a similar treatment can be applied to inhibitors. One of the main insights obtained from the model is that generation of a sigmoidal threshold is possible even in the absence of cooperative DNA binding provided the TFs synergistically interact with the BTM. On the contrary, when there is cooperative binding, the impact of synergy diminishes. It will also be shown that a sigmoidal response to a morphogenetic gradient can be used to generate a nested gradient of another morphogen. Previously, I had proposed that halving the amounts of TFs involved in sigmoidal transcriptional switches could account for the abnormal dominant phenotypes associated with some of these genes. This phenomenon, called haploinsufficiency (HI), has been recognised as the basis of many human diseases. Although a formal proof linking HI and a sigmoidal response is lacking, it is tempting to explore the model from the perspective of dosage effects.
Collapse
Affiliation(s)
- Reiner A Veitia
- UFR de Biologie et Sciences de la Nature, Université Denis Diderot/Paris VII, France
| |
Collapse
|
28
|
Johnson KM, Wang J, Smallwood A, Arayata C, Carey M. TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev 2002; 16:1852-63. [PMID: 12130544 PMCID: PMC186393 DOI: 10.1101/gad.995702] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Activator-mediated transcription complex assembly on templates lacking chromatin requires the interaction of activators with two major coactivator complexes: TFIID and mediator. Here we employed immobilized template assays to correlate transcriptional activation with mediator and TFIID recruitment. In reactions reconstituted with purified proteins, we found that activator, TFIID, and mediator engage in reciprocal cooperative interactions to form a complex on promoter DNA. Preassembly of the coactivator complex accelerates the rate of transcription in a cell-free system depleted of TFIID and mediator. Our data argue that this coactivator complex is an intermediate in the assembly of an active transcription complex. Furthermore, the reciprocity of the interactions demonstrates that the complex could in principle be nucleated with either TFIID or mediator, implying that alternative pathways could be utilized to generate diversity in the way activators function in vivo.
Collapse
Affiliation(s)
- Kristina M Johnson
- Department of Biological Chemistry, University of California, Los Angeles School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | | | |
Collapse
|
29
|
Mitsouras K, Wong B, Arayata C, Johnson RC, Carey M. The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhanceosome assembly. Mol Cell Biol 2002; 22:4390-401. [PMID: 12024049 PMCID: PMC133865 DOI: 10.1128/mcb.22.12.4390-4401.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HMGB1 (also called HMG-1) is a DNA-bending protein that augments the affinity of diverse regulatory proteins for their DNA sites. Previous studies have argued for a specific interaction between HMGB1 and target proteins, which leads to cooperative binding of the complex to DNA. Here we propose a different model that emerged from studying how HMGB1 stimulates enhanceosome formation by the Epstein-Barr viral activator Rta on a target gene, BHLF-1. HMGB1 stimulates binding of individual Rta dimers to multiple sites in the enhancer. DNase I and hydroxyl radical footprinting, electrophoretic mobility shift assays, and immobilized template assays failed to reveal stable binding of HMGB1 within the complex. Furthermore, mutational analysis failed to identify a specific HMGB1 target sequence. The effect of HMGB1 on Rta could be reproduced by individual HMG domains, yeast HMO1, or bacterial HU. These results, combined with the effects of single-amino-acid substitutions within the DNA-binding surface of HMGB1 domain A, argue for a mechanism whereby DNA-binding and bending by HMGB1 stimulate Rta-DNA complex formation in the absence of direct interaction with Rta or a specific HMGB1 target sequence. The data contrast with our analysis of HMGB1 action on another BHLF-1 regulatory protein called ZEBRA. We discuss the two distinct modes of HMGB1 action on a single regulatory region and propose how HMGB1 can function in diverse contexts.
Collapse
Affiliation(s)
- Katherine Mitsouras
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | | | |
Collapse
|
30
|
Chen CD, Sawyers CL. NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol 2002; 22:2862-70. [PMID: 11909978 PMCID: PMC133743 DOI: 10.1128/mcb.22.8.2862-2870.2002] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor NF-kappa B regulates gene expression involved in cell growth and survival and has been implicated in progression of hormone-independent breast cancer. By expressing a dominant-active form of mitogen-activated protein kinase kinase kinase 1, by exposure to tumor necrosis factor alpha, or by overexpression of p50/p65, we show that NF-kappa B activates a transcription regulatory element of the prostate-specific antigen (PSA)-encoding gene, a marker for prostate cancer development, treatment, and progression. By DNase I footprinting, we identified four NF-kappa B binding sites in the PSA core enhancer. We also demonstrate that androgen-independent prostate cancer xenografts have higher constitutive NF-kappa B binding activity than their androgen-dependent counterparts. These results suggest a role of NF-kappa B in prostate cancer progression.
Collapse
Affiliation(s)
- Charlie D Chen
- Division of Hematology/Oncology, Department of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1678, USA
| | | |
Collapse
|
31
|
Abstract
The focus of this essay is the phenomenon of haploinsufficiency (HI), a manifestation of genetic dominance that arises when only one allele of a normally diploid locus is present. Specifically, I examine the nature of HI for transcription factor genes. Although the concept of HI applies to many such genes, there is a potentially large variety of mechanisms that underlie it. Even when the phenomenon is linked in all cases to reduced absolute gene expression levels, there are several well-documented cases where the explanation is not reduced expression per se but altered stoichiometry. I will discuss the notion of haploimbalance in general and evaluate the property of transcriptional synergy within the context of HI. This kind of non-linear behaviour can probably explain a large proportion of the cases of HI, as well as the variability in most HI phenotypes and the fact that several factors in the same pathway may be dosage sensitive. For the sake of generality, a theoretical analysis of simple non-linear HI systems is also attempted. This article is certainly another preliminary exploration of the complex matters of HI, which remain an intellectual challenge from many points of view.
Collapse
Affiliation(s)
- Reiner A Veitia
- UFR de Biologie et Sciences de la Nature, Université Denis Diderot, Paris VII Immunogeénétique Humaine, Institut Pasteur, 25 rue du Dr ROUX, 75724 Paris, France.
| |
Collapse
|
32
|
Yeagley D, Guo S, Unterman T, Quinn PG. Gene- and activation-specific mechanisms for insulin inhibition of basal and glucocorticoid-induced insulin-like growth factor binding protein-1 and phosphoenolpyruvate carboxykinase transcription. Roles of forkhead and insulin response sequences. J Biol Chem 2001; 276:33705-10. [PMID: 11445561 DOI: 10.1074/jbc.m101215200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The insulin response sequence (IRS) of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, located within the glucocorticoid response unit, was first characterized by its ability to mediate insulin inhibition when inserted into a thymidine kinase promoter. The IRSs of the PEPCK and insulin-like growth factor binding protein-1 (IGFBP-1) promoters have been proposed to contribute to regulation by glucocorticoids and insulin. Forkhead (FKHR) recognizes IRS sequences, is phosphorylated in response to insulin, and mediates insulin inhibition of basal IGFBP-1 transcription in an IRS-dependent manner. Here, we investigate the contributions of FKHR and IRSs to insulin inhibition of basal and glucocorticoid-induced transcription of PEPCK and IGFBP-1. Expression of T/S/S, in which three putative protein kinase B (PKB) sites in FKHR are mutated, reduced insulin inhibition of basal expression of IGFBP-1 but not PEPCK. Mutation of the IGFBP-1 IRSs abolished insulin inhibition in the presence of T/S/S. Mutation of the PEPCK IRS had no effect on insulin inhibition in the presence of T/S/S, indicating that insulin inhibits PEPCK transcription independently of the IRS or of the putative PKB phosphorylation sites in FKHR. Mutations in the IRS or FKHR had no effect on insulin inhibition of glucocorticoid-induced transcription of either the PEPCK or IGFBP-1 gene. Thus, insulin uses gene- and activation-specific mechanisms to regulate the basal and glucocorticoid-induced activity of these genes.
Collapse
Affiliation(s)
- D Yeagley
- Department of Cellular and Molecular Physiology, The Pennsylvania Sate University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Oxysterol 7 alpha-hydroxylase catalyzes hydroxylation of oxysterols and neurosterols and plays a role in the alternative bile acid synthesis pathway. This gene is widely expressed in many organs and peripheral tissues and may protect tissues from the toxicity of oxysterols. Mutation in CYP7B1 caused neonatal cholestasis. To examine the regulatory mechanisms governing CYP7B1 expression, the 5' flanking sequence of the CYP7B1 was analyzed and revealed a CpG island of about 1.2 kb. Transient transfection assays of deletion mutants of the CYP7B1 promoter-luciferase reporter gene in human liver-derived HepG2, fibroblast NT1088, and human embryonic kidney 293 cell lines revealed that the region from -291 to +189 was critical for gene transcription. Three GC box sequences located between -25 and +10 were essential for basal transcription because mutations of these sequences markedly reduced promoter activity. Sp1 and Sp3 bound to these sequences as demonstrated by DNase I footprinting assays and electrophoretic mobility shift assay. Thus, regulation of CYP7B1 transcription by Sp1 may play a pivotal role in regulating oxysterol levels, which regulate cholesterol metabolism.
Collapse
Affiliation(s)
- Z Wu
- Department of Biochemistry and Molecular Pathology, Northeastern Ohio Universities College of Medicine, P.O. Box 95, Rootstown, OH 44272, USA
| | | |
Collapse
|
34
|
Rodriguez A, Jung EJ, Yin Q, Cayrol C, Flemington EK. Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest. Virology 2001; 284:159-69. [PMID: 11384216 DOI: 10.1006/viro.2001.0923] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Latency-associated Epstein-Barr virus (EBV) gene expression induces cell proliferation. Unlike the latency associated genes, lytic gene expression in EBV, as well as other herpesviruses, elicits cell cycle arrest. Previous studies have shown that the EBV immediate early lytic transactivator, Zta, induces a G(0)/G(1) cell cycle arrest through induction of the cyclin-dependent kinase inhibitors, p21 and p27. Here we show that while EBV latency is intimately linked to activation of the protooncogene, c-myc, Zta represses c-myc expression. We also show that inhibition of c-myc expression is required for Zta-mediated growth arrest and for maximal induction of p21 and p27. Nevertheless, induction of p21 and p27 is also influenced by a c-myc-independent mechanism. A detailed genetic analysis of Zta's basic/DNA binding region identified two distinct subregions that contribute to full induction of p21 and p27. One subdomain influences p21 and p27 expression through the c-myc-dependent mechanism and the other subdomain influences p21 and p27 induction through the c-myc-independent pathway. Together, these studies further our understanding of the complex nature of Zta-induced growth arrest.
Collapse
Affiliation(s)
- A Rodriguez
- Department of Pathology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
35
|
Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 2000. [DOI: 10.1182/blood.v96.7.2323.h8002323_2323_2328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenotype of individual hematopoietic cells, like all other differentiated mammalian cells, is determined by selective transcription of a subset of the genes encoded within the genome. This overview summarizes the recent evidence that transcriptional regulation at the level of individual cells is best described in terms of the regulation of the probability of transcription rather than the rate. In this model, heterogeneous gene expression among populations of cells arises by chance, and the degree of heterogeneity is a function of the stability of the mRNA and protein products of individual genes. The probabilistic nature of transcriptional regulation provides one explanation for stochastic phenomena, such as stem cell lineage commitment, and monoallelic expression of inducible genes, such as lymphokines and cytokines.
Collapse
|
36
|
Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 2000. [DOI: 10.1182/blood.v96.7.2323] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe phenotype of individual hematopoietic cells, like all other differentiated mammalian cells, is determined by selective transcription of a subset of the genes encoded within the genome. This overview summarizes the recent evidence that transcriptional regulation at the level of individual cells is best described in terms of the regulation of the probability of transcription rather than the rate. In this model, heterogeneous gene expression among populations of cells arises by chance, and the degree of heterogeneity is a function of the stability of the mRNA and protein products of individual genes. The probabilistic nature of transcriptional regulation provides one explanation for stochastic phenomena, such as stem cell lineage commitment, and monoallelic expression of inducible genes, such as lymphokines and cytokines.
Collapse
|
37
|
Abstract
Several papers published within the last year utilize innovative techniques for characterizing intermediates in RNA polymerase II transcription. Structural studies of polymerase and its associated factors provide a detailed picture of the transcription machinery, and studies of transcription complex assembly both in vitro and in vivo provide insights into the mechanism of gene expression. A high resolution picture of the transcription complex is likely to be available within the foreseeable future. The challenge is to determine the roles of individual proteins within this surprisingly large molecular machine.
Collapse
Affiliation(s)
- S Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Ellwood KB, Yen YM, Johnson RC, Carey M. Mechanism for specificity by HMG-1 in enhanceosome assembly. Mol Cell Biol 2000; 20:4359-70. [PMID: 10825199 PMCID: PMC85803 DOI: 10.1128/mcb.20.12.4359-4370.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of enhanceosomes requires architectural proteins to facilitate the DNA conformational changes accompanying cooperative binding of activators to a regulatory sequence. The architectural protein HMG-1 has been proposed to bind DNA in a sequence-independent manner, yet, paradoxically, it facilitates specific DNA binding reactions in vitro. To investigate the mechanism of specificity we explored the effect of HMG-1 on binding of the Epstein-Barr virus activator ZEBRA to a natural responsive promoter in vitro. DNase I footprinting, mutagenesis, and electrophoretic mobility shift assay reveal that HMG-1 binds cooperatively with ZEBRA to a specific DNA sequence between two adjacent ZEBRA recognition sites. This binding requires a strict alignment between two adjacent ZEBRA sites and both HMG boxes of HMG-1. Our study provides the first demonstration of sequence-dependent binding by a nonspecific HMG-box protein. We hypothesize how a ubiquitous, nonspecific architectural protein can function in a specific context through the use of rudimentary sequence recognition coupled with cooperativity. The observation that an abundant architectural protein can bind DNA cooperatively and specifically has implications towards understanding HMG-1's role in mediating DNA transactions in a variety of enzymological systems.
Collapse
Affiliation(s)
- K B Ellwood
- Department of Biological Chemistry, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | |
Collapse
|
39
|
Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. THE PLANT CELL 2000. [PMID: 10662862 DOI: 10.1105/tpc.12.2.265] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Using reporter assays in tobacco protoplasts and yeast, we investigated the function of the acidic C-terminal activation domains of tomato heat stress transcription factors HsfA1 and HsfA2. Both transcription factors contain short, essential peptide motifs with a characteristic pattern of aromatic and large hydrophobic amino acid residues embedded in an acidic context (AHA motifs). The prototype is the AHA1 motif of HsfA2, which has the sequence DDIWEELL. Our mutational analysis supports the important role of the aromatic and large hydrophobic amino acid residues in the core positions of the AHA motifs. The pattern suggests the formation of an amphipathic, negatively charged helix as the putative contact region with components of the basal transcription complex. In support of this concept, proline or positively charged residues in or adjacent to the AHA motifs markedly reduce or abolish their activity. Both AHA motifs of HsfA1 and HsfA2 contribute to activator potential, and they can substitute for each other; however, there is evidence for sequence and positional specificity.
Collapse
Affiliation(s)
- P Döring
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe University Frankfurt, Marie Curie Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. THE PLANT CELL 2000. [PMID: 10662862 DOI: 10.2307/3870927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Using reporter assays in tobacco protoplasts and yeast, we investigated the function of the acidic C-terminal activation domains of tomato heat stress transcription factors HsfA1 and HsfA2. Both transcription factors contain short, essential peptide motifs with a characteristic pattern of aromatic and large hydrophobic amino acid residues embedded in an acidic context (AHA motifs). The prototype is the AHA1 motif of HsfA2, which has the sequence DDIWEELL. Our mutational analysis supports the important role of the aromatic and large hydrophobic amino acid residues in the core positions of the AHA motifs. The pattern suggests the formation of an amphipathic, negatively charged helix as the putative contact region with components of the basal transcription complex. In support of this concept, proline or positively charged residues in or adjacent to the AHA motifs markedly reduce or abolish their activity. Both AHA motifs of HsfA1 and HsfA2 contribute to activator potential, and they can substitute for each other; however, there is evidence for sequence and positional specificity.
Collapse
Affiliation(s)
- P Döring
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe University Frankfurt, Marie Curie Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Guan Z, Buckman SY, Springer LD, Morrison AR. Both p38alpha(MAPK) and JNK/SAPK pathways are important for induction of nitric-oxide synthase by interleukin-1beta in rat glomerular mesangial cells. J Biol Chem 1999; 274:36200-6. [PMID: 10593906 DOI: 10.1074/jbc.274.51.36200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.
Collapse
Affiliation(s)
- Z Guan
- Department of Medicine and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|