1
|
3-MCPD (3-monochloro-1,2-propanediol) inhibit myogenic differentiation in murine skeletal myoblasts. Chem Biol Interact 2020; 336:109311. [PMID: 33171136 DOI: 10.1016/j.cbi.2020.109311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
3-Monochloro-1,2-propanediol (3-MCPD) is a chemical compound that is unintentionally produced during food processing such as acid hydrolysis. There has been reports regarding the role of this chemical compound in reproductive toxicity, as well as genotoxicity, neurotoxicity, and kidney toxicity. In this study, the in vitro muscle toxicity of 3-MCPD was assessed using C2C12 myoblast cells. The reduction in muscle regulatory factors (MRFs), which is related to muscle differentiation, was identified as significant with the increase concentration of 3-MCPD. Also, significantly decreased protein expression in mTOR and p70S6 kinase, which are the downstream targets of the pathway associated with muscle synthesis, was also confirmed. Therefore, the inhibitory effect of 3-MCPD on muscle differentiation is considered to be the cause of suppressing mTOR and p70S6 kinase expression. In conclusion, it was confirmed that 3-MCPD inhibits muscle differentiation in C2C12 myoblasts through suppressing the expression of several genetic factors involving muscle differentiation.
Collapse
|
2
|
Maharjan BD, Ono R, Nosaka T. Eya2 is critical for the E2A‑HLF‑mediated immortalization of mouse hematopoietic stem/progenitor cells. Int J Oncol 2019; 54:981-990. [PMID: 30628662 DOI: 10.3892/ijo.2019.4673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/09/2018] [Indexed: 11/05/2022] Open
Abstract
The immunoglobulin enhancer‑binding factor/hepatic leukemia factor (E2A‑HLF) oncogenic fusion gene, generated by t(17;19)(q22;p13) translocation in childhood B‑cell acute lymphoblastic leukemia with a very poor prognosis, encodes a chimeric transcription factor in which the transactivation domains of E2A are fused to the DNA‑binding and dimerization domain of HLF. E2A‑HLF has been demonstrated to have an anti‑apoptotic effect. However, the molecular mechanism underlying E2A‑HLF‑mediated leukemogenesis remains unclear. The present study identified EYA transcriptional coactivator and phosphatase 2 (Eya2), the forced expression of which is known to immortalize mouse hematopoietic stem/progenitor cells (HSPCs), as a direct target molecule downstream of E2A‑HLF. E2A‑HLF‑immortalized mouse HSPCs expressed Eya2 at a high level in the aberrant self‑renewal program. Chromatin immunoprecipitation‑quantitative polymerase chain reaction and a reporter assay revealed that E2A‑HLF enhanced the Eya2 expression by binding to the promoter region containing the E2A‑HLF‑binding consensus sequence. Eya2 knockdown in E2A‑HLF‑immortalized cells resulted in reduced colony‑forming efficiency. These results suggest a critical role of Eya2 in E2A‑HLF‑mediated leukemogenesis.
Collapse
Affiliation(s)
- Bishnu Devi Maharjan
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu 514‑8507, Japan
| | - Ryoichi Ono
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu 514‑8507, Japan
| | - Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu 514‑8507, Japan
| |
Collapse
|
3
|
Kachroo P, Szymczak S, Heinsen FA, Forster M, Bethune J, Hemmrich-Stanisak G, Baker L, Schrappe M, Stanulla M, Franke A. NGS-based methylation profiling differentiates TCF3-HLF and TCF3-PBX1 positive B-cell acute lymphoblastic leukemia. Epigenomics 2018; 10:133-147. [DOI: 10.2217/epi-2017-0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To determine whether methylation differences between mostly fatal TCF3-HLF and curable TCF3-PBX1 pediatric acute lymphoblastic leukemia subtypes can be associated with differential gene expression and remission. Materials & methods: Five (extremely rare) TCF3-HLF versus five (very similar) TCF3-PBX1 patients were sampled before and after remission and analyzed using reduced representation bisulfite sequencing and RNA-sequencing. Results: We identified 7000 differentially methylated CpG sites between subtypes, of which 78% had lower methylation levels in TCF3-HLF. Gene expression was negatively correlated with CpG sites in 23 genes. KBTBD11 clearly differed in methylation and expression between subtypes and before and after remission in TCF3-HLF samples. Conclusion: KBTBD11 hypomethylation may be a promising potential target for further experimental validation especially for the TCF3-HLF subtype.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
- Channing Laboratory, Department of Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Silke Szymczak
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
- Institute of Medical Informatics & Statistics, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Jörn Bethune
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Lewis Baker
- Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Martin Stanulla
- Pediatric Hematology & Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| |
Collapse
|
4
|
The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes. Biochim Biophys Acta Gen Subj 2016; 1860:2725-34. [PMID: 26801878 DOI: 10.1016/j.bbagen.2016.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/26/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Oncogenes are a type of genes that have the potential to cause cancer. Most normal cells undergo programmed cell death, namely apoptosis, but activated oncogenes can help cells avoid apoptosis and survive. Thus, studying oncogenes is helpful for obtaining a good understanding of the formation and development of various types of cancers. METHODS In this study, we proposed a computational method, called OPM, for investigating oncogenes from the view of Gene Ontology (GO) and biological pathways. All investigated genes, including validated oncogenes retrieved from some public databases and other genes that have not been reported to be oncogenes thus far, were encoded into numeric vectors according to the enrichment theory of GO terms and KEGG pathways. Some popular feature selection methods, minimum redundancy maximum relevance and incremental feature selection, and an advanced machine learning algorithm, random forest, were adopted to analyze the numeric vectors to extract key GO terms and KEGG pathways. RESULTS Along with the oncogenes, GO terms and KEGG pathways were discussed in terms of their relevance in this study. Some important GO terms and KEGG pathways were extracted using feature selection methods and were confirmed to be highly related to oncogenes. Additionally, the importance of these terms and pathways in predicting oncogenes was further demonstrated by finding new putative oncogenes based on them. CONCLUSIONS This study investigated oncogenes based on GO terms and KEGG pathways. Some important GO terms and KEGG pathways were confirmed to be highly related to oncogenes. We hope that these GO terms and KEGG pathways can provide new insight for the study of oncogenes, particularly for building more effective prediction models to identify novel oncogenes. The program is available upon request. GENERAL SIGNIFICANCE We hope that the new findings listed in this study may provide a new insight for the investigation of oncogenes. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
|
5
|
Duque-Afonso J, Smith KS, Cleary ML. Conditional Expression of E2A-HLF Induces B-Cell Precursor Death and Myeloproliferative-Like Disease in Knock-In Mice. PLoS One 2015; 10:e0143216. [PMID: 26588248 PMCID: PMC4654581 DOI: 10.1371/journal.pone.0143216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations are driver mutations of human cancers, particularly leukemias. They define disease subtypes and are used as prognostic markers, for minimal residual disease monitoring and therapeutic targets. Due to their low incidence, several translocations and their biological consequences remain poorly characterized. To address this, we engineered mouse strains that conditionally express E2A-HLF, a fusion oncogene from the translocation t(17;19) associated with 1% of pediatric B-cell precursor ALL. Conditional oncogene activation and expression were directed to the B-cell compartment by the Cre driver promoters CD19 or Mb1 (Igα, CD79a), or to the hematopoietic stem cell compartment by the Mx1 promoter. E2A-HLF expression in B-cell progenitors induced hyposplenia and lymphopenia, whereas expression in hematopoietic stem/progenitor cells was embryonic lethal. Increased cell death was detected in E2A-HLF expressing cells, suggesting the need for cooperating genetic events that suppress cell death for B-cell oncogenic transformation. E2A-HLF/Mb1.Cre aged mice developed a fatal myeloproliferative-like disorder with low frequency characterized by leukocytosis, anemia, hepatosplenomegaly and organ-infiltration by mature myelocytes. In conclusion, we have developed conditional E2A-HLF knock-in mice, which provide an experimental platform to study cooperating genetic events and further elucidate translational biology in cross-species comparative studies.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/metabolism
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Cell Death/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Gene Expression
- Gene Knock-In Techniques
- Genetic Engineering
- Hepatomegaly/genetics
- Hepatomegaly/metabolism
- Hepatomegaly/pathology
- Humans
- Integrases/genetics
- Integrases/metabolism
- Mice
- Mice, Transgenic
- Myxovirus Resistance Proteins/genetics
- Myxovirus Resistance Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cells, B-Lymphoid/metabolism
- Precursor Cells, B-Lymphoid/pathology
- Promoter Regions, Genetic
- Splenomegaly/genetics
- Splenomegaly/metabolism
- Splenomegaly/pathology
- Translocation, Genetic
Collapse
Affiliation(s)
- Jesús Duque-Afonso
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kevin S. Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael L. Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Hauer J, Borkhardt A, Sánchez-García I, Cobaleda C. Genetically engineered mouse models of human B-cell precursor leukemias. Cell Cycle 2015; 13:2836-46. [PMID: 25486471 PMCID: PMC4613455 DOI: 10.4161/15384101.2014.949137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
B-cell precursor acute lymphoblastic leukemias (pB-ALLs) are the most frequent type of malignancies of the childhood, and also affect an important proportion of adult patients. In spite of their apparent homogeneity, pB-ALL comprises a group of diseases very different both clinically and pathologically, and with very diverse outcomes as a consequence of their biology, and underlying molecular alterations. Their understanding (as a prerequisite for their cure) will require a sustained multidisciplinary effort from professionals coming from many different fields. Among all the available tools for pB-ALL research, the use of animal models stands, as of today, as the most powerful approach, not only for the understanding of the origin and evolution of the disease, but also for the development of new therapies. In this review we go over the most relevant (historically, technically or biologically) genetically engineered mouse models (GEMMs) of human pB-ALLs that have been generated over the last 20 years. Our final aim is to outline the most relevant guidelines that should be followed to generate an “ideal” animal model that could become a standard for the study of human pB-ALL leukemia, and which could be shared among research groups and drug development companies in order to unify criteria for studies like drug testing, analysis of the influence of environmental risk factors, or studying the role of both low-penetrance mutations and cancer susceptibility alterations.
Collapse
Affiliation(s)
- Julia Hauer
- a Department of Pediatric Oncology ; Hematology and Clinical Immunology ; Heinrich-Heine University Dusseldorf ; Medical Faculty ; Dusseldorf , Germany
| | | | | | | |
Collapse
|
7
|
Fischer U, Forster M, Rinaldi A, Risch T, Sungalee S, Warnatz HJ, Bornhauser B, Gombert M, Kratsch C, Stütz AM, Sultan M, Tchinda J, Worth CL, Amstislavskiy V, Badarinarayan N, Baruchel A, Bartram T, Basso G, Canpolat C, Cario G, Cavé H, Dakaj D, Delorenzi M, Dobay MP, Eckert C, Ellinghaus E, Eugster S, Frismantas V, Ginzel S, Haas OA, Heidenreich O, Hemmrich-Stanisak G, Hezaveh K, Höll JI, Hornhardt S, Husemann P, Kachroo P, Kratz CP, Te Kronnie G, Marovca B, Niggli F, McHardy AC, Moorman AV, Panzer-Grümayer R, Petersen BS, Raeder B, Ralser M, Rosenstiel P, Schäfer D, Schrappe M, Schreiber S, Schütte M, Stade B, Thiele R, von der Weid N, Vora A, Zaliova M, Zhang L, Zichner T, Zimmermann M, Lehrach H, Borkhardt A, Bourquin JP, Franke A, Korbel JO, Stanulla M, Yaspo ML. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 2015. [PMID: 26214592 PMCID: PMC4603357 DOI: 10.1038/ng.3362] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TCF3-HLF-fusion positive acute lymphoblastic leukemia (ALL) is currently incurable. Employing an integrated approach, we uncovered distinct mutation, gene expression, and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. Recurrent intragenic deletions of PAX5 or VPREB1 were identified in constellation with TCF3-HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin towards a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics, but sensitivity towards glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.
Collapse
Affiliation(s)
- Ute Fischer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Rinaldi
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Risch
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stéphanie Sungalee
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Beat Bornhauser
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michael Gombert
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Kratsch
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Marc Sultan
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joelle Tchinda
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Catherine L Worth
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Nandini Badarinarayan
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - André Baruchel
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Thies Bartram
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giuseppe Basso
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Cengiz Canpolat
- Department of Pediatrics, Acıbadem University Medical School, Ataşehir, Istanbul, Turkey
| | - Gunnar Cario
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hélène Cavé
- Department of Genetics, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Dardane Dakaj
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Cornelia Eckert
- Pediatric Hematology and Oncology, Charité University Hospital, Berlin, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sabrina Eugster
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Viktoras Frismantas
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sebastian Ginzel
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Oskar A Haas
- Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Heidenreich
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kebria Hezaveh
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jessica I Höll
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sabine Hornhardt
- Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Peter Husemann
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Geertruy Te Kronnie
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Blerim Marovca
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Felix Niggli
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthony V Moorman
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Britt S Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Meryem Ralser
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniel Schäfer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralf Thiele
- Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | | | - Ajay Vora
- Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Marketa Zaliova
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.,Childhood Leukaemia Investigation Prague (CLIP), Department of Pediatric Hematology/Oncology, Second Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Langhui Zhang
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Thomas Zichner
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany.,Dahlem Centre for Genome Reseach and Medical Systems Biology, Berlin, Germany
| | - Arndt Borkhardt
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jean-Pierre Bourquin
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
8
|
Jacoby E, Chien CD, Fry TJ. Murine models of acute leukemia: important tools in current pediatric leukemia research. Front Oncol 2014; 4:95. [PMID: 24847444 PMCID: PMC4019869 DOI: 10.3389/fonc.2014.00095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/18/2014] [Indexed: 01/09/2023] Open
Abstract
Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies.
Collapse
Affiliation(s)
- Elad Jacoby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Christopher D Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Terry J Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
9
|
DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells. Proc Natl Acad Sci U S A 2014; 111:2620-5. [PMID: 24497509 DOI: 10.1073/pnas.1400150111] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gene encoding DNA methyltransferase 3A (DNMT3A) is mutated in ∼20% of acute myeloid leukemia cases, with Arg882 (R882) as the hotspot. Here, we addressed the transformation ability of the DNMT3A-Arg882His (R882H) mutant by using a retroviral transduction and bone marrow transplantation (BMT) approach and found that the mutant gene can induce aberrant proliferation of hematopoietic stem/progenitor cells. At 12 mo post-BMT, all mice developed chronic myelomonocytic leukemia with thrombocytosis. RNA microarray analysis revealed abnormal expressions of some hematopoiesis-related genes, and the DNA methylation assay identified corresponding changes in methylation patterns in gene body regions. Moreover, DNMT3A-R882H increased the CDK1 protein level and enhanced cell-cycle activity, thereby contributing to leukemogenesis.
Collapse
|
10
|
Malumbres R, Fresquet V, Roman-Gomez J, Bobadilla M, Robles EF, Altobelli GG, Calasanz MJ, Smeland EB, Aznar MA, Agirre X, Martin-Palanco V, Prosper F, Lossos IS, Martinez-Climent JA. LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome. Haematologica 2011; 96:980-6. [PMID: 21459790 DOI: 10.3324/haematol.2011.040568] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. DESIGN AND METHODS We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. RESULTS B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%-87.1%) vs. 25.8% (10.9%-40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%-94.2%) vs. 63.0% (46.1%-79.9%) (P= 0.043). CONCLUSIONS Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance.
Collapse
Affiliation(s)
- Raquel Malumbres
- Division of Oncology, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aberrant induction of LMO2 by the E2A-HLF chimeric transcription factor and its implication in leukemogenesis of B-precursor ALL with t(17;19). Blood 2010; 116:962-70. [PMID: 20519628 DOI: 10.1182/blood-2009-09-244673] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LMO2, a critical transcription regulator of hematopoiesis, is involved in human T-cell leukemia. The binding site of proline and acidic amino acid-rich protein (PAR) transcription factors in the promoter of the LMO2 gene plays a central role in hematopoietic-specific expression. E2A-HLF fusion derived from t(17;19) in B-precursor acute lymphoblastic leukemia (ALL) has the transactivation domain of E2A and the basic region/leucine zipper domain of HLF, which is a PAR transcription factor, raising the possibility that E2A-HLF aberrantly induces LMO2 expression. We here demonstrate that cell lines and a primary sample of t(17;19)-ALL expressed LMO2 at significantly higher levels than other B-precursor ALLs did. Transfection of E2A-HLF into a non-t(17;19) B-precursor ALL cell line induced LMO2 gene expression that was dependent on the DNA-binding and transactivation activities of E2A-HLF. The PAR site in the LMO2 gene promoter was critical for E2A-HLF-induced LMO2 expression. Gene silencing of LMO2 in a t(17;19)-ALL cell line by short hairpin RNA induced apoptotic cell death. These observations indicated that E2A-HLF promotes cell survival of t(17;19)-ALL cells by aberrantly up-regulating LMO2 expression. LMO2 could be a target for a new therapeutic modality for extremely chemo-resistant t(17;19)-ALL.
Collapse
|
12
|
Wang Y, Klumpp S, Amin HM, Liang H, Li J, Estrov Z, Zweidler-McKay P, Brandt SJ, Agulnick A, Nagarajan L. SSBP2 is an in vivo tumor suppressor and regulator of LDB1 stability. Oncogene 2010; 29:3044-53. [PMID: 20348955 PMCID: PMC2878399 DOI: 10.1038/onc.2010.78] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SSBP proteins bind and stabilize transcriptional cofactor Lim Domain Binding protein1 (LDB1) from proteosomal degradation to promote tissue specific transcription through an evolutionarily conserved pathway. The human SSBP2 gene was isolated as a candidate tumor suppressor from a critical region of loss in chromosome 5q14.1. By gene targeting, we demonstrate increased predisposition to B cell lymphomas and carcinomas in Ssbp2−/− mice. Remarkably, loss of Ssbp2 causes increased LDB1 turnover in the thymus, a pathway exploited in Trp53−/−Ssbp2−/− mice to develop highly aggressive, immature thymic lymphomas. Using T cell differentiation as a model, we report a stage specific up regulation of Ssbp2 expression which in turn regulates LDB1 turnover under physiological conditions. Furthermore, transcript levels of pTα, a target of LDB1 containing complex, and a critical regulator T cell differentiation is reduced in Ssbp2−/− immature thymocytes. Our findings suggest disruption of the SSBP2 regulated pathways may be an infrequent but critical step in malignant transformation of multiple tissues.
Collapse
Affiliation(s)
- Y Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Identification of Zfp521/ZNF521 as a cooperative gene for E2A-HLF to develop acute B-lineage leukemia. Oncogene 2010; 29:1963-75. [PMID: 20062079 DOI: 10.1038/onc.2009.475] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
E2A-hepatic leukemia factor (HLF) is a chimeric protein found in B-lineage acute lymphoblastic leukemia (ALL) with t(17;19). To analyze the leukemogenic process and to create model mice for t(17;19)-positive leukemia, we generated inducible knock-in (iKI) mice for E2A-HLF. Despite the induced expression of E2A-HLF in the hematopoietic tissues, no disease was developed during the long observation period, indicating that additional gene alterations are required to develop leukemia. To elucidate this process, E2A-HLF iKI and control littermates were subjected to retroviral insertional mutagenesis. Virus infection induced acute leukemias in E2A-HLF iKI mice with higher morbidity and mortality than in control mice. Inverse PCR detected three common integration sites specific for E2A-HLF iKI leukemic mice, which induced overexpression of zinc-finger transcription factors: growth factor independent 1 (Gfi1), zinc-finger protein subfamily 1A1 isoform a (Zfp1a1, also known as Ikaros) and zinc-finger protein 521 (Zfp521). Interestingly, tumors with Zfp521 integration exclusively showed B-lineage ALL, which corresponds to the phenotype of human t(17;19)-positive leukemia. In addition, ZNF521 (human counterpart of Zfp521) was found to be overexpressed in human leukemic cell lines harboring t(17;19). Moreover, both iKI for E2A-HLF and transgenic for Zfp521 mice frequently developed B-lineage ALL. These results indicate that a set of transcription factors promote leukemic transformation of E2A-HLF-expressing hematopoietic progenitors and suggest that aberrant expression of Zfp521/ZNF521 may be clinically relevant to t(17;19)-positive B-lineage ALL.
Collapse
|
14
|
Zhong CH, Prima V, Liang X, Frye C, McGavran L, Meltesen L, Wei Q, Boomer T, Varella-Garcia M, Gump J, Hunger SP. E2A-ZNF384 and NOL1-E2A fusion created by a cryptic t(12;19)(p13.3; p13.3) in acute leukemia. Leukemia 2008; 22:723-9. [PMID: 18185522 DOI: 10.1038/sj.leu.2405084] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A 5-year-old boy who initially presented with ALL and relapsed 4 months later with AML was found to have an add(19) in the leukemia cells. FISH revealed that the add(19) was really a cryptic t(l2;l9)(p13.3;p13.3) interrupting E2A (TCF3). Nucleotide sequences of cloned genomic fragments with the E2A rearrangements revealed that the der(12) contained E2A joined to an intron of the NOLI (p120) gene. Reverse transcriptase (RT)-PCR of patient lymphoblast RNA showed expression of in-frame fusion cDNAs consisting of most of NOL1 fused to the 3' portion of E2A that encoded part of the second transcriptional activation domain and the DNA binding and protein dimerization motifs. The reciprocal der(19) E2A genomic rearrangements included 5' regions of E2A joined to an intron of the ZNF384 (NMP4, CIZ) gene, located approximately 450 kb centromeric to NOL1 on chromosome 12. RT-PCR showed expression of in-frame E2A-ZNF384 fusion cDNAs. To our knowledge, this is the second report of a chromosome translocation in leukemia resulting in two different gene fusions. This is the first report of expression of E2A fusion protein that includes the DNA binding and protein dimerization domains due to a more proximal break in E2A compared to those described previously.
Collapse
Affiliation(s)
- C-h Zhong
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Inukai T, Hirose K, Inaba T, Kurosawa H, Hama A, Inada H, Chin M, Nagatoshi Y, Ohtsuka Y, Oda M, Goto H, Endo M, Morimoto A, Imaizumi M, Kawamura N, Miyajima Y, Ohtake M, Miyaji R, Saito M, Tawa A, Yanai F, Goi K, Nakazawa S, Sugita K. Hypercalcemia in childhood acute lymphoblastic leukemia: frequent implication of parathyroid hormone-related peptide and E2A-HLF from translocation 17;19. Leukemia 2006; 21:288-96. [PMID: 17183364 DOI: 10.1038/sj.leu.2404496] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypercalcemia is relatively rare but clinically important complication in childhood leukemic patients. To clarify the clinical characteristics, mechanisms of hypercalcemia, response to management for hypercalcemia, incidence of t(17;19) and final outcome of childhood acute lymphoblastic leukemia (ALL) accompanied by hypercalcemia, clinical data of 22 cases of childhood ALL accompanied by hypercalcemia (>12 mg/dl) reported in Japan from 1990 to 2005 were retrospectively analyzed. Eleven patients were 10 years and older. Twenty patients had low white blood cell count (<20 x 10(9)/l), 15 showed hemoglobin> or =8 g/dl and 14 showed platelet count > or =100 x 10(9)/l. Parathyroid hormone-related peptide (PTHrP)-mediated hypercalcemia was confirmed in 11 of the 16 patients in whom elevated-serum level or positive immunohistochemistry of PTHrP was observed. Hypercalcemia and accompanying renal insufficiency resolved quickly, particularly in patients treated with bisphosphonate. t(17;19) or add(19)(p13) was detected in five patients among 17 patients in whom karyotypic data were available, and the presence of E2A-HLF was confirmed in these five patients. All five patients with t(17;19)-ALL relapsed very early. Excluding the t(17;19)-ALL patients, the final outcome of ALL accompanied by hypercalcemia was similar to that of all childhood ALL patients, indicating that the development of hypercalcemia itself is not a poor prognostic factor.
Collapse
Affiliation(s)
- T Inukai
- Department of Pediatrics, University of Yamanashi, School of Medicine, Yamanashi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yokoyama A, Somervaille TCP, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The Menin Tumor Suppressor Protein Is an Essential Oncogenic Cofactor for MLL-Associated Leukemogenesis. Cell 2005; 123:207-18. [PMID: 16239140 DOI: 10.1016/j.cell.2005.09.025] [Citation(s) in RCA: 498] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 08/10/2005] [Accepted: 09/19/2005] [Indexed: 11/21/2022]
Abstract
The Mixed-Lineage Leukemia (MLL) protein is a histone methyltransferase that is mutated in clinically and biologically distinctive subsets of acute leukemia. MLL normally associates with a cohort of highly conserved cofactors to form a macromolecular complex that includes menin, a product of the MEN1 tumor suppressor gene, which is mutated in heritable and sporadic endocrine tumors. We demonstrate here that oncogenic MLL fusion proteins retain an ability to stably associate with menin through a high-affinity, amino-terminal, conserved binding motif and that this interaction is required for the initiation of MLL-mediated leukemogenesis. Furthermore, menin is essential for maintenance of MLL-associated but not other oncogene induced myeloid transformation. Acute genetic ablation of menin reverses aberrant Hox gene expression mediated by MLL-menin promoter-associated complexes, and specifically abrogates the differentiation arrest and oncogenic properties of MLL-transformed leukemic blasts. These results demonstrate that a human oncoprotein is critically dependent on direct physical interaction with a tumor suppressor protein for its oncogenic activity, validate a potential target for molecular therapy, and suggest central roles for menin in altered epigenetic functions underlying the pathogenesis of hematopoietic cancers.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sykes DB, Kamps MP. E2a/Pbx1 induces the rapid proliferation of stem cell factor-dependent murine pro-T cells that cause acute T-lymphoid or myeloid leukemias in mice. Mol Cell Biol 2004; 24:1256-69. [PMID: 14729970 PMCID: PMC321418 DOI: 10.1128/mcb.24.3.1256-1269.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Revised: 05/27/2003] [Accepted: 10/07/2003] [Indexed: 11/20/2022] Open
Abstract
Oncoprotein E2a/Pbx1 is produced by the t(1;19) chromosomal translocation of human pre-B acute lymphoblastic leukemia. E2a/Pbx1 blocks differentiation of primary myeloid progenitors but, paradoxically, induces apoptosis in established pre-B-cell lines, and no transforming function of E2a/Pbx1 has been reported in cultured lymphoid progenitors. Here, we demonstrate that E2a/Pbx1 induces immortal proliferation of stem cell factor (SCF)-dependent pro-T thymocytes by a mechanism dependent upon both its transactivation and DNA-binding functions. E2a-Pbx1 cooperated with cytokines or activated signaling oncoproteins to induce cell division, as inactivation of conditional E2a/Pbx1 in either factor-dependent pro-T cells or pro-T cells made factor independent by expression of Bcr/Abl resulted in pro-T-cell quiescence, while reactivation of E2a/Pbx1 restored cell division. Infusion of E2a/Pbx1 pro-T cells in mice caused T lymphoblastic leukemia and, unexpectedly, acute myeloid leukemia. The acute lymphoblastic leukemia did not evidence further maturation, suggesting that E2a/Pbx1 establishes an early block in pro-T-cell development that cannot be overcome by marrow or thymic microenvironments. In an E2a/Pbx1 pro-T thymocyte clone that induced only pro-T acute lymphoblastic leukemia, coexpression of Bcr/Abl expanded its leukemic phenotype to include acute myeloid leukemia, suggesting that unique functions of cooperating signaling oncoproteins can influence the lymphoid versus myeloid character of E2a/Pbx1 leukemia and may cooperate with E2a/Pbx1 to dictate the pre-B-cell phenotype of human leukemia containing t(1;19).
Collapse
Affiliation(s)
- David B Sykes
- Department of Pathology, University of California-San Diego, La Jolla, California 92093-0612, USA
| | | |
Collapse
|
18
|
Tarantul VZ. Transgenic Mice as an In Vivo Model of Lymphomagenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 236:123-80. [PMID: 15261738 DOI: 10.1016/s0074-7696(04)36004-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review covers multiple data obtained on genetically modified mice that help to elucidate various intricate molecular mechanisms of lymphomagenesis in humans. We are in a "golden age" of mouse genetics. The mouse is by far the most accessible mammalian system physiologically similar to humans. Transgenic mouse models have illuminated how different genes contribute to human lymphomagenesis. Multiple experiments with transgenic mice have not only confirmed the data obtained for human lymphomas but also gave additional evidence for the role of some genes and cooperative participation of their products in the development of human lymphomas. Genes and gene networks detected on transgenic mice can successfully serve as molecular targets for tumor therapy. This review demonstrates the extraordinary possibilities of transgenic technology, which is presently one of the readily available, efficient, and accurate tools to solve the problem of cancer.
Collapse
Affiliation(s)
- V Z Tarantul
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
19
|
Abstract
The spectrum of hematological malignancies differs markedly between children and adults. Moreover, diseases such as acute lymphoblastic leukemia, acute myeloid leukemia, and myelodysplastic syndrome also demonstrate distinct biologic features and responses to treatment between these populations. In this review, we summarize our current understanding of the molecular pathology of acute leukemia and myelodysplastic syndrome, emphasizing areas in which studies in pediatric patients are providing unique insights into the hematopoietic malignancies of adults.
Collapse
Affiliation(s)
- James R Downing
- Department of Pathology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA.
| | | |
Collapse
|
20
|
Smith KS, Rhee JW, Cleary ML. Transformation of bone marrow B-cell progenitors by E2a-Hlf requires coexpression of Bcl-2. Mol Cell Biol 2002; 22:7678-87. [PMID: 12370314 PMCID: PMC135651 DOI: 10.1128/mcb.22.21.7678-7688.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 05/28/2002] [Accepted: 07/30/2002] [Indexed: 11/20/2022] Open
Abstract
The chimeric transcription factor E2a-Hlf is an oncoprotein associated with a subset of acute lymphoblastic leukemias of early B-lineage derivation. We employed a retroviral transduction-transplantation approach to evaluate the oncogenic effects of E2a-Hlf on murine B-cell progenitors harvested from adult bone marrow. Expression of E2a-Hlf induced short-lived clusters of primary hematopoietic cells but no long-term growth on preformed bone marrow stromal cell layers comprised of the AC6.21 cell line. Coexpression with Bcl-2, however, resulted in the sustained self-renewal of early preB-I cells that required stromal and interleukin-7 (IL-7) support for growth in vitro. Immortalized cells were unable to induce leukemias after transplantation into nonirradiated syngeneic hosts, unlike the leukemic properties and cytokine independence of preB-I cells transformed by p190(Bcr-Abl) under identical in vitro conditions. However, bone marrow cells expressing E2a-Hlf in combination with Bcl-2, but not E2a-Hlf alone, induced leukemias in irradiated recipients with long latencies, demonstrating both a requirement for suppression of apoptosis and the need for further secondary mutations in leukemia pathogenesis. Coexpression of IL-7 substituted for Bcl-2 to induce the in vitro growth of pre-B cells expressing E2a-Hlf, but leukemic conversion required additional abrogation of undefined stromal requirements and was associated with alterations in the Arf/Mdm2/p53 pathway. Thus, E2a-Hlf enhances the self-renewal of bone marrow B-cell progenitors without inciting a p53 tumor surveillance response or abrogating stromal and cytokine requirements for growth, which are nevertheless abrogated during progression to a leukemogenic phenotype.
Collapse
Affiliation(s)
- Kevin S Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
21
|
Abstract
E2A-HLF, the chimeric fusion protein resulting from the leukemogenic translocation t(17;19), appears to employ evolutionarily conserved signaling cascades for its transforming and antiapoptotic functions. These arise from both impairment of normal E2A function and activation of a survival pathway triggered through the HLF bZip DNA binding and dimerization domain. Recent reports identify wild-type E2A as a tumor suppressor in T lymphocytes. Moreover, E2A-HLF has been shown to activate SLUG, a mammalian homologue of the cell death specification protein CES-1 in Caenorhabditis elegans, which appears to regulate an evolutionarily conserved cell survival program. Recently, several key mouse models have been generated, enabling further elucidation of these pathways on a molecular genetic level in vivo. In this review, we discuss the characteristics of both components of the fusion protein with regard to their contribution to the regulation of cell fate and the oncogenic potential of E2A-HLF.
Collapse
Affiliation(s)
- M G Seidel
- Pediatric Oncology Department, Dana-Farber Cancer Institute, 44 Binney Street, M-630, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
22
|
Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ, Burel SA, Lagasse E, Weissman IL, Akashi K, Zhang DE. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci U S A 2001; 98:10398-403. [PMID: 11526243 PMCID: PMC56972 DOI: 10.1073/pnas.171321298] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The t(8;21) is one of the most frequent chromosomal abnormalities associated with acute myeloid leukemia (AML). The translocation, which involves the AML1 gene on chromosome 21 and the ETO gene on chromosome 8, generates an AML1-ETO fusion transcription factor. To examine the effect of the AML1-ETO fusion protein on leukemogenesis, we made transgenic mice in which expression of AML1-ETO is under the control of the human MRP8 promoter (hMRP8-AML1-ETO). AML1-ETO is specifically expressed in myeloid cells, including common myeloid progenitors of hMRP8-AML1-ETO transgenic mice. The transgenic mice were healthy during their life spans, suggesting that AML1-ETO alone is not sufficient for leukemogenesis. However, after treatment of newborn hMRP8-AML1-ETO transgenic mice and their wild-type littermates with a strong DNA-alkylating mutagen, N-ethyl-N-nitrosourea, 55% of transgenic mice developed AML and the other 45% of transgenic mice and all of the wild-type littermates developed acute T lymphoblastic leukemia. Our results provide direct evidence that AML1-ETO is critical for causing myeloid leukemia, but one or more additional mutations are required for leukemogenesis. The hMRP8-AML1-ETO-transgenic mice provide an excellent model that can be used to isolate additional genetic events and to further understand the molecular pathogenesis of AML1-ETO-related leukemia.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/genetics
- Base Sequence
- Calcium-Binding Proteins/genetics
- Calgranulin A
- Carcinogens/toxicity
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Core Binding Factor Alpha 2 Subunit
- DNA Primers/genetics
- Ethylnitrosourea/toxicity
- Gene Expression
- Hematopoiesis/genetics
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Mutation
- Oncogene Proteins, Fusion/genetics
- Promoter Regions, Genetic
- RUNX1 Translocation Partner 1 Protein
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Y Yuan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 2000; 1:138-44. [PMID: 11248806 DOI: 10.1038/77819] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cooperation between the stem cell leukemia (SCL) transcription factor and its nuclear partners LMO1 or LMO2 induces aggressive T cell acute lymphoblastic leukemia when inappropriately expressed in T cells. This study examined the cellular and molecular targets of the SCL-LMO complex at the preleukemic stage. We show that SCL and its partners are coexpressed in the most primitive thymocytes. Maturation to the pre-T cell stage is associated with a down-regulation of SCL and LMO1 and LMO2, and a concomitant up-regulation of E2A and HEB expression. Moreover, enforced expression of SCL-LMO1 inhibits T cell differentiation and recapitulates a loss of HEB function, causing a deregulation of the transition checkpoint from the CD4-CD8- to CD4+CD8+ stages. Finally, we identify the gene encoding pT alpha as a downstream target of HEB that is specifically repressed by the SCL-LMO complex.
Collapse
Affiliation(s)
- S Herblot
- Clinical Research Institute of Montréal, Montréal, Québec, Canada H2W1R7
| | | | | | | | | |
Collapse
|
24
|
Bayly R, LeBrun DP. Role for homodimerization in growth deregulation by E2a fusion proteins. Mol Cell Biol 2000; 20:5789-96. [PMID: 10913162 PMCID: PMC86056 DOI: 10.1128/mcb.20.16.5789-5796.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 05/22/2000] [Indexed: 11/20/2022] Open
Abstract
The oncogenic transcription factor E2a-Pbx1 is expressed in some cases of acute lymphoblastic leukemia as a result of chromosomal translocation 1;19. The early observation that E2a-Pbx1 incorporates transcriptional activation domains from E2a and a DNA-binding homeodomain from Pbx1 inspired a model in which E2a-Pbx1 promotes leukemogenic transformation of lymphoid progenitor cells through transcriptional induction of target genes defined by the Pbx1 portion of the molecule. However, the subsequent demonstration that the only known DNA-binding module on the molecule, the Pbx1 homeodomain, is dispensable for the induction of lymphoblastic lymphoma in transgenic mice called into question the contribution made by the Pbx1 portion. In this study, we have used a domain swap approach coupled with a fibroblast-based focus formation assay to evaluate further the requirement for PBX1-encoded peptide elements in growth deregulation by E2a-Pbx1. No impairment of focus formation was observed when the entire Pbx1 portion was replaced with DNA-binding/dimerization domains derived from yeast transcription factor GAL4 or GCN4. Furthermore, replacement of Pbx1 with tandem FKBP domains that mediate homodimerization in the presence of a synthetic ligand led to striking growth deregulation exclusively in the presence of the dimerizing agent. N-terminal elements encoded by E2A, including the AD1 transcriptional activation domain, were required for dimerization-induced focus formation. We conclude that transcriptional target genes defined by heterologous C-terminal DNA-binding modules are not required in growth deregulation by E2a fusion proteins. We speculate that interactions between N-terminal E2a elements and undefined proteins that could function as components of a transcriptional coactivator complex may be more important.
Collapse
Affiliation(s)
- R Bayly
- Richardson Laboratory, Department of Pathology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
25
|
Abstract
Abstract
Development of mammalian B-lineage cells is characterized by progression through a series of checkpoints defined primarily by rearrangement and expression of immunoglobulin genes. Progression through these checkpoints is also influenced by stromal cells in the microenvironment of the primary tissues wherein B-cell development occurs, ie, fetal liver and bone marrow and adult bone marrow. This review focuses on the developmental biology of human bone marrow B-lineage cells, including perturbations that contribute to the origin and evolution of B-lineage acute lymphoblastic leukemia and primary immunodeficiency diseases characterized by agammaglobulinemia. Recently described in vitro and in vivo models that support development and expansion of human B-lineage cells through multiple checkpoints provide new tools for identifying the bone marrow stromal cell–derived molecules necessary for survival and proliferation. Mutations in genes encoding subunits of the pre-B cell receptor and molecules involved in pre-B cell receptor signaling culminate in X-linked and non–X-linked agammaglobulinemia. A cardinal feature of these immunodeficiencies is an apparent apoptotic sensitivity of B-lineage cells at the pro-B to pre-B transition. On the other end of the spectrum is the apoptotic resistance that accompanies the development of B-lineage acute lymphoblastic leukemia, potentially a reflection of genetic abnormalities that subvert normal apoptotic programs. The triad of laboratory models that mimic the bone marrow microenvironment, immunodeficiency diseases with specific defects in B-cell development, and B-lineage acute lymphoblastic leukemia can now be integrated to deepen our understanding of human B-cell development.
Collapse
|
26
|
Abstract
Development of mammalian B-lineage cells is characterized by progression through a series of checkpoints defined primarily by rearrangement and expression of immunoglobulin genes. Progression through these checkpoints is also influenced by stromal cells in the microenvironment of the primary tissues wherein B-cell development occurs, ie, fetal liver and bone marrow and adult bone marrow. This review focuses on the developmental biology of human bone marrow B-lineage cells, including perturbations that contribute to the origin and evolution of B-lineage acute lymphoblastic leukemia and primary immunodeficiency diseases characterized by agammaglobulinemia. Recently described in vitro and in vivo models that support development and expansion of human B-lineage cells through multiple checkpoints provide new tools for identifying the bone marrow stromal cell–derived molecules necessary for survival and proliferation. Mutations in genes encoding subunits of the pre-B cell receptor and molecules involved in pre-B cell receptor signaling culminate in X-linked and non–X-linked agammaglobulinemia. A cardinal feature of these immunodeficiencies is an apparent apoptotic sensitivity of B-lineage cells at the pro-B to pre-B transition. On the other end of the spectrum is the apoptotic resistance that accompanies the development of B-lineage acute lymphoblastic leukemia, potentially a reflection of genetic abnormalities that subvert normal apoptotic programs. The triad of laboratory models that mimic the bone marrow microenvironment, immunodeficiency diseases with specific defects in B-cell development, and B-lineage acute lymphoblastic leukemia can now be integrated to deepen our understanding of human B-cell development.
Collapse
|