1
|
González SA, Affranchino JL. The life cycle of feline immunodeficiency virus. Virology 2025; 601:110304. [PMID: 39561619 DOI: 10.1016/j.virol.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus of worldwide distribution that can cause an acquired immunodeficiency disease in domestic cats. FIV and the primate lentiviruses, human and simian immunodeficiency viruses (HIV and SIV, respectively) share structural and biological features but also exhibit important differences, which reflect both their evolutionary relationship and divergence. Given that FIV is not only an important cat pathogen but also a useful model for certain aspects of HIV-1 infections in humans, the study of FIV biology is highly relevant. In this review we provide an updated description of the molecular mechanisms involved in each stage of the FIV life cycle.
Collapse
Affiliation(s)
- Silvia A González
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - José L Affranchino
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| |
Collapse
|
2
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
3
|
Wang XF, Bai B, Lin Y, Qi T, Du C, Song M, Wang X. High-Efficiency Rescue of Equine Infectious Anemia Virus from a CMV-Driven Infectious Clone. Virol Sin 2019; 34:725-728. [PMID: 31376080 DOI: 10.1007/s12250-019-00153-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Xue-Feng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Bowen Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Ting Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
4
|
Wang P, Qu X, Zhou X, Shen Y, Ji H, Fu Z, Deng J, Lu P, Yu W, Lu H, Zhu H. Two cellular microRNAs, miR-196b and miR-1290, contribute to HIV-1 latency. Virology 2015; 486:228-38. [PMID: 26469550 DOI: 10.1016/j.virol.2015.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/19/2015] [Accepted: 09/24/2015] [Indexed: 12/15/2022]
Abstract
Understanding the mechanism of HIV-1 latency is crucial to the viral reservoir eradication. Human cellular miRNAs can modulate HIV-1 expression by targeting of viral RNAs or host gene transcripts. To identify miRNAs modulating HIV-1 latency, we determined the miRNA expression profiles of HIV-1 latently infected and productively infected cells by microarray and qRT-PCR. Among the differentially expressed miRNAs, miR-196b and miR-1290 targeted the 3' untranslated region of HIV-1 and affected its expression. Ectopic expression of these two miRNAs efficiently suppressed HIV-1 production and infectivity. Specific inhibitors of these miRNAs substantially counteracted their effects on HIV-1, as measured either as viral production and infectivity in HEK-293T cells or as HIV-1 RNA expression or viral production in cells isolated from HIV-1-infected individuals. Our study emphasizes the role of cellular miRNAs in HIV-1 latency regulation, and it suggests that inhibitors of miR-196b and miR-1290 could be used to activate latent HIV-1.
Collapse
Affiliation(s)
- Pengfei Wang
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiying Qu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haiyan Ji
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheng Fu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Junxiao Deng
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Du C, Ma J, Liu Q, Li YF, He XJ, Lin YZ, Wang XF, Meng QW, Wang X, Zhou JH. Mice transgenic for equine cyclin T1 and ELR1 are susceptible to equine infectious anemia virus infection. Retrovirology 2015; 12:36. [PMID: 25928027 PMCID: PMC4422544 DOI: 10.1186/s12977-015-0163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/02/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND As a member of the tumor necrosis factor receptor (TNFR) protein superfamily, equine lentivirus receptor 1 (ELR1) has been shown to be expressed in various equine cells that are permissive for equine infectious anemia virus (EIAV) replication. The EIAV Tat protein (eTat) activates transcription initiated at the viral long terminal repeat (LTR) promoter through a unique mechanism that requires the recruitment of the equine cyclin T1 (eCT1) cofactor into the viral TAR RNA target element. In vitro studies have demonstrated that mouse fibroblast cell lines (e.g., NIH 3T3 cells) that express the EIAV receptor ELR1 and eCT1 support the productive replication of EIAV. Therefore, we constructed transgenic eCT1- and ELR1-expressing mice to examine whether they support in vivo EIAV replication. FINDINGS For the first time, we constructed mice transgenic for ELR1 and eCT1. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis confirmed that ELR1 and eCT1 were expressed in the transgenic mouse tissues, particularly in the intestines, spleen and lymph nodes. Consistent with the results of EIAV infection in NIH 3T3 cells expressing ELR1 and eCT1, mouse embryonic fibroblasts (MEFs) from the transgenic mice could support EIAV replication. More importantly, this virus could infect and replicate in mouse blood monocyte-derived macrophages (mMDMs). Macrophages are the principle target cell of EIAV in its natural hosts. Furthermore, after the transgenic mice were inoculated with EIAV, the virus could be detected not only in the plasma of the circulating blood but also in multiple organs, among which, the spleen and lymph nodes were the predominant sites of EIAV replication. Finally, we found that consistent with high viral replication levels, the relevant pathological changes occurred in the spleen and lymph nodes. CONCLUSIONS Our results show that mice transgenic for ELR1 and eCT1 are susceptible to EIAV infection and replication. Further, EIAV infection can cause lesions on the spleen and lymph nodes, similar to those frequently observed in horses, the natural hosts. Therefore, ELR1 and eCT1 are essential in vivo for EIAV invasion and replication.
Collapse
Affiliation(s)
- Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China. .,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150001, China.
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Yun-Fei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Qing-Wen Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| |
Collapse
|
6
|
Yamamoto M, Onogi H, Kii I, Yoshida S, Iida K, Sakai H, Abe M, Tsubota T, Ito N, Hosoya T, Hagiwara M. CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses. J Clin Invest 2014; 124:3479-88. [PMID: 25003190 DOI: 10.1172/jci73805] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/23/2014] [Indexed: 01/09/2023] Open
Abstract
A wide range of antiviral drugs is currently available; however, drug-resistant viruses have begun to emerge and represent a potential public health risk. Here, we explored the use of compounds that inhibit or interfere with the action of essential host factors to prevent virus replication. In particular, we focused on the cyclin-dependent kinase 9 (CDK9) inhibitor, FIT-039, which suppressed replication of a broad spectrum of DNA viruses through inhibition of mRNA transcription. Specifically, FIT-039 inhibited replication of herpes simplex virus 1 (HSV-1), HSV-2, human adenovirus, and human cytomegalovirus in cultured cells, and topical application of FIT-039 ointment suppressed skin legion formation in a murine HSV-1 infection model. FIT-039 did not affect cell cycle progression or cellular proliferation in host cells. Compared with the general CDK inhibitor flavopiridol, transcriptome analyses of FIT-039-treated cells revealed that FIT-039 specifically inhibited CDK9. Given at concentrations above the inhibitory concentration, FIT-039 did not have a cytotoxic effect on mammalian cells. Importantly, administration of FIT-039 ameliorated the severity of skin lesion formation in mice infected with an acyclovir-resistant HSV-1, without noticeable adverse effects. Together, these data indicate that FIT-039 has potential as an antiviral agent for clinical therapeutics.
Collapse
MESH Headings
- Acyclovir/pharmacology
- Adenoviruses, Human/drug effects
- Adenoviruses, Human/physiology
- Animals
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Antiviral Agents/toxicity
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Cytomegalovirus/drug effects
- Cytomegalovirus/physiology
- DNA Viruses/drug effects
- DNA Viruses/genetics
- DNA Viruses/physiology
- Disease Models, Animal
- Drug Resistance, Viral
- Flavonoids/pharmacology
- HEK293 Cells
- HeLa Cells
- Herpes Simplex/drug therapy
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/physiology
- Host-Pathogen Interactions/drug effects
- Host-Pathogen Interactions/genetics
- Humans
- Mice
- Mice, Inbred ICR
- Piperidines/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/toxicity
- Pyridines/chemistry
- Pyridines/pharmacology
- Pyridines/toxicity
- Rats
- Rats, Wistar
- Transcription, Genetic/drug effects
- Transcriptome/drug effects
- Virus Replication/drug effects
Collapse
|
7
|
Farley DC, Bannister R, Leroux-Carlucci MA, Evans NE, Miskin JE, Mitrophanous KA. Development of an equine-tropic replication-competent lentivirus assay for equine infectious anemia virus-based lentiviral vectors. Hum Gene Ther Methods 2012; 23:309-23. [PMID: 23121195 DOI: 10.1089/hgtb.2012.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The release of lentiviral vectors for clinical use requires the testing of vector material, production cells, and, if applicable, ex vivo-transduced cells for the presence of replication-competent lentivirus (RCL). Vectors derived from the nonprimate lentivirus equine infectious anemia virus (EIAV) have been directly administered to patients in several clinical trials, with no toxicity observed to date. Because EIAV does not replicate in human cells, and because putative RCLs derived from vector components within human vector production cells would most likely be human cell-tropic, we previously developed an RCL assay using amphotropic murine leukemia virus (MLV) as a surrogate positive control and human cells as RCL amplification/indicator cells. Here we report an additional RCL assay that tests for the presence of theoretical "equine-tropic" RCLs. This approach provides further assurance of safety by detecting putative RCLs with an equine cell-specific tropism that might not be efficiently amplified by the human cell-based RCL assay. We tested the ability of accessory gene-deficient EIAV mutant viruses to replicate in a highly permissive equine cell line to direct our choice of a suitable EIAV-derived positive control. In addition, we report for the first time the mathematical rationale for use of the Poisson distribution to calculate minimal infectious dose of positive control virus and for use in monitoring assay positive/spike control failures in accumulating data sets. No RCLs have been detected in Good Manufacturing Practice (GMP)-compliant RCL assays to date, further demonstrating that RCL formation is highly unlikely in contemporary minimal lentiviral vector systems.
Collapse
|
8
|
Ramakrishnan R, Chiang K, Liu H, Budhiraja S, Donahue H, Rice AP. Making a Short Story Long: Regulation of P-TEFb and HIV-1 Transcriptional Elongation in CD4+ T Lymphocytes and Macrophages. BIOLOGY 2012; 1:94-115. [PMID: 24832049 PMCID: PMC4011037 DOI: 10.3390/biology1010094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 12/22/2022]
Abstract
Productive transcription of the integrated HIV-1 provirus is restricted by cellular factors that inhibit RNA polymerase II elongation. The viral Tat protein overcomes this by recruiting a general elongation factor, P-TEFb, to the TAR RNA element that forms at the 5' end of nascent viral transcripts. P-TEFb exists in multiple complexes in cells, and its core consists of a kinase, Cdk9, and a regulatory subunit, either Cyclin T1 or Cyclin T2. Tat binds directly to Cyclin T1 and thereby targets the Cyclin T1/P-TEFb complex that phosphorylates the CTD of RNA polymerase II and the negative factors that inhibit elongation, resulting in efficient transcriptional elongation. P-TEFb is tightly regulated in cells infected by HIV-1-CD4+ T lymphocytes and monocytes/macrophages. A number of mechanisms have been identified that inhibit P-TEFb in resting CD4+ T lymphocytes and monocytes, including miRNAs that repress Cyclin T1 protein expression and dephosphorylation of residue Thr186 in the Cdk9 T-loop. These repressive mechanisms are overcome upon T cell activation and macrophage differentiation when the permissivity for HIV-1 replication is greatly increased. This review will summarize what is currently known about mechanisms that regulate P-TEFb and how this regulation impacts HIV-1 replication and latency.
Collapse
Affiliation(s)
- Rajesh Ramakrishnan
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Karen Chiang
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hongbing Liu
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sona Budhiraja
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hart Donahue
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Andrew P Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
High natural permissivity of primary rabbit cells for HIV-1, with a virion infectivity defect in macrophages as the final replication barrier. J Virol 2010; 84:12300-14. [PMID: 20861260 DOI: 10.1128/jvi.01607-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An immunocompetent, permissive, small-animal model would be valuable for the study of human immunodeficiency virus type 1 (HIV-1) pathogenesis and for the testing of drug and vaccine candidates. However, the development of such a model has been hampered by the inability of primary rodent cells to efficiently support several steps of the HIV-1 replication cycle. Although transgenesis of the HIV receptor complex and human cyclin T1 have been beneficial, additional late-phase blocks prevent robust replication of HIV-1 in rodents and limit the range of in vivo applications. In this study, we explored the HIV-1 susceptibility of rabbit primary T cells and macrophages. Envelope-specific and coreceptor-dependent entry of HIV-1 was achieved by expressing human CD4 and CCR5. A block of HIV-1 DNA synthesis, likely mediated by TRIM5, was overcome by limited changes to the HIV-1 gag gene. Unlike with mice and rats, primary cells from rabbits supported the functions of the regulatory viral proteins Tat and Rev, Gag processing, and the release of HIV-1 particles at levels comparable to those in human cells. While HIV-1 produced by rabbit T cells was highly infectious, a macrophage-specific infectivity defect became manifest by a complex pattern of mutations in the viral genome, only part of which were deamination dependent. These results demonstrate a considerable natural HIV-1 permissivity of the rabbit species and suggest that receptor complex transgenesis combined with modifications in gag and possibly vif of HIV-1 to evade species-specific restriction factors might render lagomorphs fully permissive to infection by this pathogenic human lentivirus.
Collapse
|
10
|
Abstract
We employed the equine lentivirus equine infectious anemia virus (EIAV) to investigate the cellular restrictions for lentivirus replication in murine NIH 3T3 cells. The results of these studies demonstrate that NIH 3T3 cells expressing the EIAV receptor ELR1 and equine cyclin T1 supported productive replication of EIAV and produced infectious virions at levels similar to those found in a reference permissive equine cell line. The studies presented here demonstrate, for the first time, differential levels of restriction for EIAV and human immunodeficiency virus type 1 (HIV-1) replication in murine cells and suggest that these differences can be exploited to reveal critical virus-cell interactions required for HIV-1 assembly and budding of lentivirus particles.
Collapse
|
11
|
Structural insights into the cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nat Struct Mol Biol 2008; 15:1287-92. [PMID: 19029897 DOI: 10.1038/nsmb.1513] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/14/2008] [Indexed: 11/08/2022]
Abstract
The replication of many retroviruses is mediated by a transcriptional activator protein, Tat, which activates RNA polymerase II at the level of transcription elongation. Tat interacts with Cyclin T1 of the positive transcription-elongation factor P-TEFb to recruit the transactivation-response TAR RNA, which acts as a promoter element in the transcribed 5' end of the viral long terminal repeat. Here we present the structure of the cyclin box domain of Cyclin T1 in complex with the Tat protein from the equine infectious anemia virus and its corresponding TAR RNA. The basic RNA-recognition motif of Tat adopts a helical structure whose flanking regions interact with a cyclin T-specific loop in the first cyclin box repeat. Together, both proteins coordinate the stem-loop structure of TAR. Our findings show that Tat binds to a surface on Cyclin T1 similar to where recognition motifs from substrate and inhibitor peptides were previously found to interact within Cdk-cyclin pairs.
Collapse
|
12
|
Miskin J, Chipchase D, Rohll J, Beard G, Wardell T, Angell D, Roehl H, Jolly D, Kingsman S, Mitrophanous K. A replication competent lentivirus (RCL) assay for equine infectious anaemia virus (EIAV)-based lentiviral vectors. Gene Ther 2005; 13:196-205. [PMID: 16208418 DOI: 10.1038/sj.gt.3302666] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lentiviral vectors are being developed to satisfy a wide range of currently unmet medical needs. Vectors destined for clinical evaluation have been rendered multiply defective by deletion of all viral coding sequences and nonessential cis-acting sequences from the transfer genome. The viral envelope and accessory proteins are excluded from the production system. The vectors are produced from separate expression plasmids that are designed to minimize the potential for homologous recombination. These features ensure that the regeneration of the starting virus is impossible. It is a regulatory requirement to confirm the absence of any replication competent virus, so we describe here the development and validation of a replication competent lentivirus (RCL) assay for equine infectious anaemia virus (EIAV)-based vectors. The assay is based on the guidelines developed for testing retroviral vectors, and uses the F-PERT (fluorescent-product enhanced reverse transcriptase) assay to test for the presence of a transmissible reverse transcriptase. We have empirically modelled the replication kinetics of an EIAV-like entity in human cells and devised an amplification protocol by comparison with a replication competent MLV. The RCL assay has been validated at the 20 litre manufacturing scale, during which no RCL was detected. The assay is theoretically applicable to any lentiviral vector and pseudotype combination.
Collapse
Affiliation(s)
- J Miskin
- Oxford BioMedica (UK) Ltd, Medawar Centre, The Oxford Science Park, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brigati C, Giacca M, Noonan DM, Albini A. HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett 2003; 220:57-65. [PMID: 12644228 DOI: 10.1016/s0378-1097(03)00067-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) (transactivator of transcription (Tat)) protein is a pleiotropic factor that induces a broad range of biological effects in numerous cell types. At the HIV promoter, Tat is a powerful transactivator of gene expression, which acts by both inducing chromatin remodeling and by recruiting elongation-competent transcriptional complexes onto the viral LTR. Besides these transcriptional activities, Tat is released outside the cells and interacts with different cell membrane-associated receptors. Finally, extracellular Tat can be internalized by cells through an active endocytosis process. Here we discuss some of the molecular mechanisms involved in intracellular and extracellular Tat function.
Collapse
MESH Headings
- Acetylation
- Acetyltransferases/metabolism
- Bacteriophage lambda/genetics
- Chromatin/genetics
- Chromatin/metabolism
- Endocytosis
- Extracellular Space/metabolism
- Gene Expression Regulation, Viral
- Gene Products, tat/physiology
- Genes, tat
- HIV Long Terminal Repeat
- HIV-1/genetics
- Histone Acetyltransferases
- Histones/metabolism
- Humans
- Intracellular Fluid/metabolism
- Models, Biological
- Positive Transcriptional Elongation Factor B
- Promoter Regions, Genetic/genetics
- Protein Processing, Post-Translational
- Protein Serine-Threonine Kinases/metabolism
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Viral/metabolism
- Receptors, Virus/physiology
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae Proteins/metabolism
- Transcriptional Activation
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Claudio Brigati
- Molecular Oncology Laboratory, National Cancer Research Institute, c/o Centro di Biotecnologie Avanzante, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | | | | | | |
Collapse
|
14
|
Lund LH, Wahren B, Garcia-Blanco MA. A functional genetic approach suggests a novel interaction between the human immunodeficiency virus type 1 (HIV-1) Tat protein and HIV-1 TAR RNA in vivo. J Gen Virol 2003; 84:603-606. [PMID: 12604811 DOI: 10.1099/vir.0.18645-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat and human Cyclin T1 form a complex and together recognize the viral TAR RNA element with specificity. Using HIV-1/equine infectious anaemia virus TAR chimeras, we show that in addition to the well-characterized interaction with the bulge, Tat recognizes the distal stem and the loop of TAR. These data support previously proposed, but unproven, molecular models.
Collapse
Affiliation(s)
- Lars H Lund
- Medicine, Duke University Medical Center, Box 3053 (424 CARL), Research Drive, Durham, NC 27710, USA
- Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3053 (424 CARL), Research Drive, Durham, NC 27710, USA
- Microbiology and Tumor Biology Center and Swedish Institute for Infectious Disease Control, Karolinska Institute, Solna 17182, Sweden
| | - Britta Wahren
- Microbiology and Tumor Biology Center and Swedish Institute for Infectious Disease Control, Karolinska Institute, Solna 17182, Sweden
| | - Mariano A Garcia-Blanco
- Medicine, Duke University Medical Center, Box 3053 (424 CARL), Research Drive, Durham, NC 27710, USA
- Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3053 (424 CARL), Research Drive, Durham, NC 27710, USA
| |
Collapse
|
15
|
Shima D, Yugami M, Tatsuno M, Wada T, Yamaguchi Y, Handa H. Mechanism of H-8 inhibition of cyclin-dependent kinase 9: study using inhibitor-immobilized matrices. Genes Cells 2003; 8:215-23. [PMID: 12622719 DOI: 10.1046/j.1365-2443.2003.00627.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Positive transcription elongation factor b (P-TEFb), which phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII), is comprised of the catalytic subunit cyclin-dependent kinase 9 (CDK9) and the regulatory subunit cyclin T. The kinase activity and transcriptional activation potential of P-TEFb is sensitive to various compounds, including H-8, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), and flavopiridol. RESULTS We investigated the molecular mechanism of the H-8 inhibition of CDK9 using matrices to which H-9, an amino derivative of H-8, was immobilized. CDK9 bound specifically to H-9, and this interaction was competitively inhibited by ATP and DRB, but not by flavopiridol. Mutational analyses demonstrated that the central region of CDK9, which encompasses the T-loop region, was important for its binding to H-9. CONCLUSIONS H-9-immobilized latex beads are useful for trapping CDK9 and a subset of kinases from crude cell extracts. The flavopiridol-binding region of CDK9 is most likely different from its H-9-binding region. These biochemical data support previously reported observations which were based on crystallographic data.
Collapse
Affiliation(s)
- Daisuke Shima
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Kurosu T, Mukai T, Komoto S, Ibrahim MS, Li YG, Kobayashi T, Tsuji S, Ikuta K. Human immunodeficiency virus type 1 subtype C exhibits higher transactivation activity of Tat than subtypes B and E. Microbiol Immunol 2003; 46:787-99. [PMID: 12516777 DOI: 10.1111/j.1348-0421.2002.tb02766.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although human immunodeficiency virus type 1 (HIV-1) subtypes C and E are expanding faster and seem to be of greater global significance than HIV-1 subtype B, there is only little information about Tat activity of such non-B subtypes. Here, we showed evidence that subtype C Tat exhibits higher transcriptional activity from the HIV-1 long-terminal repeat (LTR) in a human T-cell line, compared with subtypes B and E. This higher activity of subtype C Tat was not due to the LTR, but to the Tat sequence variability. We examined three candidate regions with sequence for the higher activity of subtype C Tat, such as the cysteine-rich motif, the basic domain, and the 2nd exon. The results showed that the variation in subtype C Tat at two amino acid residues, Ser57 and Glu63 in stead of Arg57 and Gln63 in subtypes B and E, within and close to the basic domain were involved in the higher activity of subtype C Tat. This variation did not affect its nuclear localization activity. Thus, there may be a significant advantage for the high Tat activity on subtype C replication.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bai J, Sui J, Zhu RY, Tallarico ASC, Gennari F, Zhang D, Marasco WA. Inhibition of Tat-mediated transactivation and HIV-1 replication by human anti-hCyclinT1 intrabodies. J Biol Chem 2003; 278:1433-42. [PMID: 12401780 DOI: 10.1074/jbc.m208297200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus, type 1 (HIV-1) replication requires the interaction of Tat protein with the human cyclinT1 (hCyclinT1) subunit of the positive transcription elongation factor (P-TEFb) complex, which then cooperatively binds to transactivation response element (TAR) RNA to transactivate HIV transcription. In this report, a non-immune human single-chain antibody (sFv) phage display library was used to isolate anti-hCyclinT1 sFvs that could disrupt hCyclinT1-Tat interactions. The N-terminal 272 residues of hCyclinT1, including the entire cyclin domains and the Tat.TAR recognition motif (TRM), that fully support Tat transactivation was used for panning, and of the five unique anti-hCyclinT1 sFvs that were obtained, three bound to the cyclin box domains and two bound to TRM. All sFvs could be expressed as intrabodies at high levels in transiently transfected 293T and in stable Jurkat and SupT1 transfectants and could specifically co-immunoprecipitate co-expressed hCyclinT1 in 293T cells with varying efficacy without disrupting hCyclinT1-Cdk9 interactions. In addition, two sFv clones (3R6-1 and 2R6-21) that mapped to the cyclin box domains markedly inhibited Tat-mediated transactivation in several transiently transfected cell lines without inhibiting basal transcription or inducing apoptosis. When HIV-1 challenge studies were performed on stable 3R6-1-expressing Jurkat T cells, near complete inhibition of viral replication was obtained at a low challenge dose, and 74-88% inhibition to HIV-1 replication was achieved at a high infection dose in SupT1 cells. These results provide proof-in-principle that anti-hCyclinT1 intrabodies can be designed to block HIV-1 replication without causing cellular toxicity, and as a result, they may be useful agents for "intracellular immunization"-based gene therapy strategies for HIV-1 infection/AIDS.
Collapse
Affiliation(s)
- Jirong Bai
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Liou LY, Herrmann CH, Rice AP. Transient induction of cyclin T1 during human macrophage differentiation regulates human immunodeficiency virus type 1 Tat transactivation function. J Virol 2002; 76:10579-87. [PMID: 12368300 PMCID: PMC136632 DOI: 10.1128/jvi.76.21.10579-10587.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat protein is essential for viral replication and stimulates transcription of the integrated provirus by recruiting the kinase complex TAK/P-TEFb, composed of cyclin T1 (CycT1) and Cdk9, to the viral TAR RNA element. TAK/P-TEFb phosphorylates the RNA polymerase II complex and stimulates transcriptional elongation. In this report, we investigated the regulation of TAK/P-TEFb in primary human macrophages, a major target cell of HIV infection. While Cdk9 levels remained constant, CycT1 protein expression in freshly isolated monocytes was very low, increased early during macrophage differentiation, and, unexpectedly, decreased to very low levels after about 1 week in culture. The kinase activity of TAK/P-TEFb paralleled the changes in CycT1 protein expression. RNA analysis indicated that the transient induction of CycT1 protein expression involves a posttranscriptional mechanism. In transient transfection assays, the ability of Tat to transactivate the HIV long terminal repeat (LTR) in the late differentiated macrophages was greatly diminished relative to its ability to transactivate the HIV LTR in early differentiated cells, strongly suggesting that CycT1 is limiting for Tat function in late differentiated macrophages. Interestingly, lipopolysaccharide, a component of the cell wall of gram-negative bacteria, reinduced CycT1 expression late in macrophage differentiation. These results raise the possibility that regulation of CycT1 expression may be involved in establishing latent infection in macrophages and that opportunistic infection may reactivate the virus by inducing CycT1 expression.
Collapse
Affiliation(s)
- Li-Ying Liou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
19
|
Zhou C, Rana TM. A bimolecular mechanism of HIV-1 Tat protein interaction with RNA polymerase II transcription elongation complexes. J Mol Biol 2002; 320:925-42. [PMID: 12126615 DOI: 10.1016/s0022-2836(02)00556-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional activation of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter element is regulated by the essential viral Tat protein that binds to the viral TAR RNA target and recruits a positive transcription elongation complex (P-TEFb). We have used a stepwise transcription approach and a highly sensitive assay to determine the dynamics of interactions between HIV-1 Tat and the transcription complexes actively engaged in elongation. Our results demonstrate that Tat protein associates with RNA polymerase II complexes during early transcription elongation after the promoter clearance and before the synthesis of full-length TAR RNA transcript. This interaction of Tat with RNA polymerase II elongation complexes is P-TEFb-independent. Our results also show that there are two Tat binding sites on each transcription elongation complex; one is located on TAR RNA and the other one on RNA polymerase II near the exit site for nascent mRNA transcripts. These findings suggest that two Tat molecules are involved in performing various functions during a single round of HIV-1 mRNA synthesis.
Collapse
Affiliation(s)
- Chao Zhou
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
20
|
Rohll JB, Mitrophanous KA, Martin-Rendon E, Ellard FM, Radcliffe PA, Mazarakis ND, Kingsman SM. Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol 2002; 346:466-500. [PMID: 11883086 DOI: 10.1016/s0076-6879(02)46072-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Jonathan B Rohll
- Department of Biochemistry, Oxford BioMedica (UK) Limited, Oxford OX4 4GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Martin-Serrano J, Li K, Bieniasz PD. Cyclin T1 expression is mediated by a complex and constitutively active promoter and does not limit human immunodeficiency virus type 1 Tat function in unstimulated primary lymphocytes. J Virol 2002; 76:208-19. [PMID: 11739686 PMCID: PMC135689 DOI: 10.1128/jvi.76.1.208-219.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin T1 (CycT1), a component of positive-transcription-elongation factor-b (P-TEFb), is an essential cofactor for transcriptional activation by lentivirus Tat proteins. It is thought that low CycT1 expression levels restrict human immunodeficiency virus type 1 (HIV-1) expression levels and replication in resting CD4+ lymphocytes. In this study, we undertook a functional analysis of the cycT1 promoter to determine which, if any, promoter elements might be responsible for cellular activation state-dependent CycT1 expression. The cycT1 gene contains a complex promoter that exhibits an extreme degree of functional redundancy: five nonoverlapping fragments were found to exhibit significant promoter activity in immortalized cell lines, and these elements could interact in a synergistic or redundant manner to mediate cycT1 transcription. Reporter gene expression, mediated by the cycT1 promoter, was detectable in unstimulated transfected primary lymphocytes and multiple sites within the promoter could serve to initiate transcription. While utilization of these start sites was significantly altered by the application of exogenous stimuli to primary lymphocytes and two distinct promoter elements exhibited enhanced activity in the presence of phorbol ester, overall cycT1 transcription was only modestly enhanced in response to cell activation. These observations prompted a reexamination of CycT1 protein expression in primary lymphocytes. In fact, steady-state CycT1 expression is only slightly lower in unstimulated lymphocytes compared to phorbol ester-treated cells or a panel of immortalized cell lines. Importantly, CycT1 is expressed at sufficient levels in unstimulated primary cells to support robust Tat activity. These results strongly suggest that CycT1 expression levels in unstimulated primary lymphocytes do not profoundly limit HIV-1 gene expression or provide an adequate mechanistic explanation for proviral latency in vivo.
Collapse
Affiliation(s)
- Juan Martin-Serrano
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York 10016, USA
| | | | | |
Collapse
|
22
|
Zhou M, Nekhai S, Bharucha DC, Kumar A, Ge H, Price DH, Egly JM, Brady JN. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J Biol Chem 2001; 276:44633-40. [PMID: 11572868 DOI: 10.1074/jbc.m107466200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat stimulates human immunodeficiency virus, type 1 (HIV-1), transcription elongation by recruitment of the human transcription elongation factor P-TEFb, consisting of CDK9 and cyclin T1, to the TAR RNA structure. It has been demonstrated further that CDK9 phosphorylation is required for high affinity binding of Tat/P-TEFb to the TAR RNA structure and that the state of P-TEFb phosphorylation may regulate Tat transactivation. We now demonstrate that CDK9 phosphorylation is uniquely regulated in the HIV-1 preinitiation and elongation complexes. The presence of TFIIH in the HIV-1 preinitiation complex inhibits CDK9 phosphorylation. As TFIIH is released from the elongation complex between +14 and +36, CDK9 phosphorylation is observed. In contrast to the activity in the "soluble" complex, phosphorylation of CDK9 is increased by the presence of Tat in the transcription complexes. Consistent with these observations, we have demonstrated that purified TFIIH directly inhibits CDK9 autophosphorylation. By using recombinant TFIIH subcomplexes, our results suggest that the XPB subunit of TFIIH is responsible for this inhibition of CDK9 phosphorylation. Interestingly, our results further suggest that the phosphorylated form of CDK9 is the active kinase for RNA polymerase II carboxyl-terminal domain phosphorylation.
Collapse
Affiliation(s)
- M Zhou
- Virus Tumor Biology Section, Basic Research Laboratory, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hines R, Maury W. DH82 cells: a macrophage cell line for the replication and study of equine infectious anemia virus. J Virol Methods 2001; 95:47-56. [PMID: 11377712 DOI: 10.1016/s0166-0934(01)00288-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vivo, tissue macrophages have been implicated as an important cell for the replication of equine infectious anemia virus (EIAV). Laboratory investigations of EIAV/macrophage interactions, however, have been hampered by the laborious blood monocyte isolation procedures. In addition, adherent equine macrophage cultures generally have poor long-term viability and are resistant to transfection. This report describes an adherent canine macrophage-like cell line, DH82, that supports the replication of EIAV. This cell line was easily transfectable and supported EIAV Tat transactivation of the LTR. Electrophoretic mobility shift assays were carried out to determine which transcription factor binding sites within the LTR enhancer region were bound by DH82 nuclear extracts. It was found that five different motifs were occupied. The ets motifs that are bound by PU.1 in primary macrophage nuclear extracts specifically interacted with DH82 nuclear extracts. In addition, the PEA-2, Lvb and Oct motifs that are occupied by fibroblast nuclear extracts were also bound by DH82 nuclear extracts. Finally, the methylation-dependent binding protein (MDBP) site that is bound by all nuclear extracts investigated to date demonstrated specific interactions with DH82 nuclear extracts. The observation that both macrophage-specific and fibroblast-specific motifs were utilized by DH82 nuclear extracts suggested that both macrophage-adapted and fibroblast-adapted EIAV could replicate in DH82 cells. Indeed, infectivity studies demonstrated that strains of virus that exclusively replicate in macrophages can replicate in DH82 cells and fibroblast-adapted strains of virus can also replicate in these cells. Finally, these cells could be transfected readily with the EIAV molecular clone, pSPeiav19-2, and virus spread was detected within the culture. In conclusion, this study has identified a useful cell line that should facilitate the study of EIAV expression and replication.
Collapse
Affiliation(s)
- R Hines
- University of South Dakota, Lee Medical Building, 414 E Clark St., Vermillion, SD 57069, USA
| | | |
Collapse
|
24
|
Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 2001; 276:31793-9. [PMID: 11431468 DOI: 10.1074/jbc.m102306200] [Citation(s) in RCA: 509] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flavopiridol (L86-8275, HMR1275) is a cyclin-dependent kinase (Cdk) inhibitor in clinical trials as a cancer therapy that has been recently shown to block human immunodeficiency virus Tat transactivation and viral replication through inhibition of positive transcription elongation factor b (P-TEFb). Flavopiridol is the most potent P-TEFb inhibitor reported and the first Cdk inhibitor that is not competitive with ATP. We examined the ability of flavopiridol to inhibit P-TEFb (Cdk9/cyclin T1) phosphorylation of both RNA polymerase II and the large subunit of the 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor and found that the IC(50) determined was directly related to the concentration of the enzyme. We concluded that the flavonoid associates with P-TEFb with 1:1 stoichiometry even at concentrations of enzyme in the low nanomolar range. These results indicate that the apparent lack of competition with ATP could be caused by a very tight binding of the drug. We developed a novel immobilized P-TEFb assay and demonstrated that the drug remains bound for minutes even in the presence of high salt. Flavopiridol remained bound in the presence of a 1000-fold excess of the commonly used inhibitor DRB, suggesting that the immobilized P-TEFb could be used in a simple screening assay that would allow the discovery or characterization of compounds with binding properties similar to flavopiridol. Finally, we compared the ability of flavopiridol and DRB to inhibit transcription in vivo using nuclear run-on assays and concluded that P-TEFb is required for transcription of most RNA polymerase II molecules in vivo.
Collapse
Affiliation(s)
- S H Chao
- Molecular Biology Program, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
25
|
Yang J, Bogerd H, Le SY, Cullen BR. The human endogenous retrovirus K Rev response element coincides with a predicted RNA folding region. RNA (NEW YORK, N.Y.) 2000; 6:1551-1564. [PMID: 11105755 PMCID: PMC1370025 DOI: 10.1017/s135583820000100x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Human endogenous retrovirus K (HERV-K) is the name given to an approximately 30-million-year-old family of endogenous retroviruses present at >50 copies per haploid human genome. Previously, the HERV-K were shown to encode a nuclear RNA export factor, termed K-Rev, that is the functional equivalent of the H-Rev protein encoded by human immunodeficiency virus type 1. HERV-K was also shown to contain a cis-acting target element, the HERV-K Rev response element (K-RRE), that allowed the nuclear export of linked RNA transcripts in the presence of either K-Rev or H-Rev. Here, we demonstrate that the functionally defined K-RRE coincides with a statistically highly significant unusual RNA folding region and present a potential RNA secondary structure for the approximately 416-nt K-RRE. Both in vitro and in vivo assays of sequence specific RNA binding were used to map two primary binding sites for K-Rev, and one primary binding site for H-Rev, within the K-RRE. Of note, all three binding sites map to discrete predicted RNA stem-loop subdomains within the larger K-RRE structure. Although almost the entire 416-nt K-RRE was required for the activation of nuclear RNA export in cells expressing K-Rev, mutational inactivation of the binding sites for K-Rev resulted in the selective loss of the K-RRE response to K-Rev but not to H-Rev. Together, these data strongly suggest that the K-RRE, like the H-RRE, coincides with an extensive RNA secondary structure and identify specific sites within the K-RRE that can recruit either K-Rev or H-Rev to HERV-K RNA transcripts.
Collapse
Affiliation(s)
- J Yang
- Department of Genetics and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
26
|
Chao SH, Fujinaga K, Marion JE, Taube R, Sausville EA, Senderowicz AM, Peterlin BM, Price DH. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 2000; 275:28345-8. [PMID: 10906320 DOI: 10.1074/jbc.c000446200] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flavopiridol (L86-8275, HMR1275) is a cyclin-dependent kinase (Cdk) inhibitor that is in clinical trials as a cancer treatment because of its antiproliferative properties. We found that the flavonoid potently inhibited transcription by RNA polymerase II in vitro by blocking the transition into productive elongation, a step controlled by P-TEFb. The ability of P-TEFb to phosphorylate the carboxyl-terminal domain of the large subunit of RNA polymerase II was inhibited by flavopiridol with a K(i) of 3 nm. Interestingly, the drug was not competitive with ATP. P-TEFb composed of Cdk9 and cyclin T1 is a required cellular cofactor for the human immunodeficiency virus (HIV-1) transactivator, Tat. Consistent with its ability to inhibit P-TEFb, flavopiridol blocked Tat transactivation of the viral promoter in vitro. Furthermore, flavopiridol blocked HIV-1 replication in both single-round and viral spread assays with an IC(50) of less than 10 nm.
Collapse
Affiliation(s)
- S H Chao
- Molecular Biology Program and the Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Suñé C, Goldstrohm AC, Peng J, Price DH, Garcia-Blanco MA. An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation. Virology 2000; 274:356-66. [PMID: 10964778 DOI: 10.1006/viro.2000.0480] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Equine infectious anemia virus (EIAV) activates transcription via a Tat protein, a TAR element, and the equine elongation factor positive transcription elongation factor b (P-TEFb). In human cells, EIAV Tat (eTat) can inhibit the ability of human immunodeficiency virus type 1 (HIV-1) Tat (hTat) to activate transcription from the HIV-1 long terminal repeat, demonstrating that EIAV Tat can interact nonproductively with human P-TEFb. To study the mechanism of EIAV Tat and HIV-1 Tat activation, we developed an in vitro elongation assay that recapitulates EIAV Tat-mediated inhibition of HIV-1 Tat trans-activation. We found that eTat specifically inhibits activation of elongation by HIV-1 Tat while having no effect on basal transcription elongation. The competitive inhibition of hTat activation was reversed by an activity present in HeLa cell nuclear extracts, most likely a form of P-TEFb. Recombinant P-TEFb (cyclin T1 and CDK9) overcame the inhibition of transcription by eTat but in a nonspecific manner. EIAV Tat affinity chromatography was used to purify the activity present in nuclear extract that was capable of reversing eTat inhibition. We characterized the protein components of this activity, which include cyclin T1, CDK9, Tat-SF1, and at least three unidentified proteins. These data suggest that additional factors are involved in the mechanism of Tat activation.
Collapse
MESH Headings
- Binding, Competitive
- Cell Extracts
- Cell-Free System
- Chromatography, Affinity
- Cyclin T
- Cyclin-Dependent Kinase 9
- Cyclin-Dependent Kinases/isolation & purification
- Cyclin-Dependent Kinases/metabolism
- Cyclins/isolation & purification
- Cyclins/metabolism
- Gene Expression Regulation, Viral
- Gene Products, tat/antagonists & inhibitors
- Gene Products, tat/isolation & purification
- Gene Products, tat/metabolism
- HIV Long Terminal Repeat/genetics
- HIV-1/genetics
- HeLa Cells
- Hot Temperature
- Humans
- Infectious Anemia Virus, Equine
- Nuclear Proteins/isolation & purification
- Nuclear Proteins/metabolism
- Positive Transcriptional Elongation Factor B
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Denaturation
- Protein Serine-Threonine Kinases/metabolism
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Substrate Specificity
- Templates, Genetic
- Time Factors
- Trans-Activators/isolation & purification
- Trans-Activators/metabolism
- Transcription, Genetic/genetics
- Transcriptional Activation
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- C Suñé
- Departments of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
28
|
Garber ME, Mayall TP, Suess EM, Meisenhelder J, Thompson NE, Jones KA. CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Mol Cell Biol 2000; 20:6958-69. [PMID: 10958691 PMCID: PMC88771 DOI: 10.1128/mcb.20.18.6958-6969.2000] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat interacts with cyclin T1 (CycT1), a regulatory partner of CDK9 in the positive transcription elongation factor (P-TEFb) complex, and binds cooperatively with CycT1 to TAR RNA to recruit P-TEFb and promote transcription elongation. We show here that Tat also stimulates phosphorylation of affinity-purified core RNA polymerase II and glutathione S-transferase-C-terminal-domain substrates by CycT1-CDK9, but not CycH-CDK7, in vitro. Interestingly, incubation of recombinant Tat-P-TEFb complexes with ATP enhanced binding to TAR RNA dramatically, and the C-terminal half of CycT1 masked binding of Tat to TAR RNA in the absence of ATP. ATP incubation lead to autophosphorylation of CDK9 at multiple C-terminal Ser and Thr residues, and full-length CycT1 (amino acids 728) [CycT1(1-728)], but not truncated CycT1(1-303), was also phosphorylated by CDK9. P-TEFb complexes containing a catalytically inactive CDK9 mutant (D167N) bound TAR RNA weakly and independently of ATP, as did a C-terminal truncated CDK9 mutant that was catalytically active but unable to undergo autophosphorylation. Analysis of different Tat proteins revealed that the 101-amino-acid SF2 HIV-1 Tat was unable to bind TAR with CycT1(1-303) in the absence of phosphorylated CDK9, whereas unphosphorylated CDK9 strongly blocked binding of HIV-2 Tat to TAR RNA in a manner that was reversed upon autophosphorylation. Replacement of CDK9 phosphorylation sites with negatively charged residues restored binding of CycT1(1-303)-D167N-Tat, and rendered D167N a more potent inhibitor of transcription in vitro. Taken together, these results demonstrate that CDK9 phosphorylation is required for high-affinity binding of Tat-P-TEFb to TAR RNA and that the state of P-TEFb phosphorylation may regulate Tat transactivation in vivo.
Collapse
Affiliation(s)
- M E Garber
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
29
|
Barboric M, Taube R, Nekrep N, Fujinaga K, Peterlin BM. Binding of Tat to TAR and recruitment of positive transcription elongation factor b occur independently in bovine immunodeficiency virus. J Virol 2000; 74:6039-44. [PMID: 10846086 PMCID: PMC112101 DOI: 10.1128/jvi.74.13.6039-6044.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional transactivators (Tat) from many lentiviruses interact with their cognate transactivation response RNA structures (TAR) to increase rates of elongation rather than initiation of transcription. For several of them, the complex of Tat and a species-specific cyclin T1 must be formed before the binding to TAR can occur with high affinity and specificity. In sharp contrast, Tat from the bovine immunodeficiency virus (BIV) binds to its TAR without the help of the cyclin T1. This binding depends on the upper stem and 5' bulge, but not the central loop in TAR. Moreover, cyclins T1 from different species can mediate effects of this Tat in cells. Unlike the situation with other lentiviruses, Tat transactivation can be rescued simply by linking a heterologous promoter to TAR in permissive cells. Thus, lentiviruses have evolved different strategies to recruit Tat and the positive transcription elongation factor b to their promoters, and interactions between Tat and TAR are independent from those between Tat and the cyclin T1 in BIV.
Collapse
Affiliation(s)
- M Barboric
- Departments of Medicine and Microbiology and Immunology, University of California, San Francisco 94143-0703, USA
| | | | | | | | | |
Collapse
|
30
|
Bogerd HP, Wiegand HL, Bieniasz PD, Cullen BR. Functional differences between human and bovine immunodeficiency virus Tat transcription factors. J Virol 2000; 74:4666-71. [PMID: 10775603 PMCID: PMC111987 DOI: 10.1128/jvi.74.10.4666-4671.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional transactivation of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter element by the essential viral Tat protein requires recruitment of positive transcription elongation factor b (P-TEFb) to the viral TAR RNA target. The recruitment of P-TEFb, which has been proposed to be necessary and sufficient for activation of viral gene expression, is mediated by the highly cooperative interaction of Tat and cyclin T1, an essential component of P-TEFb, with the HIV-1 TAR element. Species, such as rodents, that encode cyclin T1 variants that are unable to support TAR binding by the Tat-cyclin T1 heterodimer are also unable to support HIV-1 Tat function. In contrast, we here demonstrate that the bovine immunodeficiency virus (BIV) Tat protein is fully able to bind to BIV TAR both in vivo and in vitro in the absence of any cellular cofactor. Nevertheless, BIV Tat can specifically recruit cyclin T1 to the BIV TAR element, and this recruitment is as essential for BIV Tat function as it is for HIV-1 Tat activity. However, because the cyclin T1 protein does not contribute to TAR binding, BIV Tat is able to function effectively in cells from several species that do not support HIV-1 Tat function. Thus, BIV Tat, while apparently dependent on the same cellular cofactor as the Tat proteins encoded by other lentiviruses, is nevertheless unique in terms of the mechanism used to recruit the BIV Tat-cyclin T1 complex to the viral LTR promoter.
Collapse
Affiliation(s)
- H P Bogerd
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- D H Price
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
32
|
Albrecht TR, Lund LH, Garcia-Blanco MA. Canine cyclin T1 rescues equine infectious anemia virus tat trans-activation in human cells. Virology 2000; 268:7-11. [PMID: 10683321 DOI: 10.1006/viro.1999.0141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus-1 Tat protein and human Cyclin T1 mediate transcriptional activation by enhancing the elongation efficiency of RNA polymerase II. Activation of transcription of the related equine infectious anemia virus (EIAV) requires a similar protein known as eTat, which does not function in human cells. Expression of equine Cyclin T1 in human cells rescues eTat function, suggesting a general mechanism of transcription activation among lentiviruses. Here we present the cloning of Cyclin T1 from canine D17 osteosarcoma cells, which support EIAV transactivation, and show that canine Cyclin T1 confers eTat transactivation to human cells. A two-amino-acid change, from 79-proline-glycine-80 to 79-histidine-arginine-80, confers on the human Cyclin T1 the ability to cooperate with eTat in transcriptional activation. These findings suggested that the regions of Cyclin T1 that interact with lentiviral Tat proteins and TAR RNA elements form an extended domain, which very likely has a conserved fold.
Collapse
Affiliation(s)
- T R Albrecht
- Department of Genetics, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | |
Collapse
|
33
|
Maury W, Bradley S, Wright B, Hines R. Cell specificity of the transcription-factor repertoire used by a lentivirus: motifs important for expression of equine infectious anemia virus in nonmonocytic cells. Virology 2000; 267:267-78. [PMID: 10662622 DOI: 10.1006/viro.1999.0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The equine infectious anemia virus (EIAV) long-terminal repeat (LTR) has been identified as highly variable, both in infected horses and in cell culture. This nucleotide hypervariation is localized to the LTR enhancer region. The EIAV LTR has been implicated in controlling both the cell tropism and virulence of the virus and it is postulated that the enhancer-region hypervariation may be responsible for the LTR effects. Our previous studies have demonstrated that the presence of DNA motifs bound by the ets transcription-factor family member PU.1 are critically important for EIAV expression in equine macrophages. Here we identify and characterize the EIAV LTR enhancer motifs PEA-2, Lvb, Oct, and CRE, that bind to fibroblast nuclear extracts. Three of these four motifs, PEA-2, Oct, and CRE, were determined to be important for expression of the LTR in a fibroblast cell line that supports productive infection of EIAV. These motifs that are important for expression of the LTR in fibroblasts were found to be interdigitated between the PU.1 sites. We hypothesize that the combination of motif interdigitation and cell-specific usage of these motifs may be responsible for the observed EIAV LTR enhancer-region hypervariation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cell Line
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Enhancer Elements, Genetic
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Regulation, Viral
- Horses
- Infectious Anemia Virus, Equine/chemistry
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/metabolism
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/metabolism
- Protein Binding
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Homology, Nucleic Acid
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- W Maury
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | | | |
Collapse
|
34
|
|
35
|
Taube R, Fujinaga K, Irwin D, Wimmer J, Geyer M, Peterlin BM. Interactions between equine cyclin T1, Tat, and TAR are disrupted by a leucine-to-valine substitution found in human cyclin T1. J Virol 2000; 74:892-8. [PMID: 10623752 PMCID: PMC111610 DOI: 10.1128/jvi.74.2.892-898.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional transactivators (Tat) from human immunodeficiency and equine infectious anemia viruses (HIV and EIAV) interact with their transactivation response elements (TAR) to increase the rates of viral transcription. Whereas the human cyclin T1 is required for the binding of Tat to TAR from HIV, it is unknown how Tat from EIAV interacts with its TAR. Furthermore, Tat from EIAV functions in equine and canine cells but not in human cells. In this study, we present sequences of cyclins T1 from horse and dog and demonstrate that their N-terminal 300 residues rescue the transactivation of Tat from EIAV in human cells. Although human and equine cyclins T1 bind to this Tat, only the equine cyclin T1 supports the binding of Tat to TAR from EIAV. Finally, a reciprocal exchange of the valine for the leucine at position 29 in human and equine cyclins T1, respectively, renders the human cyclin T1 active and the equine cyclin T1 inactive for Tat transactivation from EIAV. Thus, the collaboration between a specific cyclin T1 and Tat for their high-affinity interaction with TAR is a common theme of lentiviral transactivation.
Collapse
Affiliation(s)
- R Taube
- Howard Hughes Medical Institute, Departments of Medicine, Microbiology, and Immunology, University of California at San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | | | | | |
Collapse
|
36
|
Taube R, Fujinaga K, Wimmer J, Barboric M, Peterlin BM. Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology 1999; 264:245-53. [PMID: 10562489 DOI: 10.1006/viro.1999.9944] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- R Taube
- Department of Medicine, University of California, San Francisco, San Francisco, California, 94143-0703, USA
| | | | | | | | | |
Collapse
|