1
|
Abstract
The unfolded protein response (UPR) responds to the build-up of misfolded proteins in the endoplasmic reticulum. The UPR has wide-ranging functions from fungal pathogenesis to applications in biotechnology. The UPR is regulated through the splicing of an unconventional intron in the HAC1 gene. This intron has been described in many fungal species and is of variable length. Until now it was believed that some members of the CTG-Ser1 clade such as C. parapsilosis did not contain an intron in HAC1, suggesting that the UPR was regulated in a different manner. Here we demonstrate that HAC1 plays an important role in regulating the UPR in C. parapsilosis. We also identified an unusually long intron (626 bp) in C. parapsilosisHAC1. Further analysis showed that HAC1 orthologs in several species in the CTG-Ser1 clade contain long introns. The unfolded protein response (UPR) in the endoplasmic reticulum (ER) is well conserved in eukaryotes from metazoa to yeast. The transcription factor HAC1 is a major regulator of the UPR in many eukaryotes. Deleting HAC1 in the yeast Candida parapsilosis rendered cells more sensitive to DTT, a known inducer of the UPR. The deletion strain was also sensitive to Congo red, calcofluor white, and the antifungal drug ketoconazole, indicating that HAC1 has a role in cell wall maintenance. Transcriptomic analysis revealed that treatment of the wild type with DTT resulted in the increased expression of 368 genes. Comparison with mutant cells treated with DTT reveals that expression of 137 of these genes requires HAC1. Enriched GO term analysis includes response to ER stress, cell wall biogenesis and glycosylation. Orthologs of many of these are associated with UPR in Saccharomyces cerevisiae and Candida albicans. Unconventional splicing of an intron from HAC1 mRNA is required to produce a functional transcription factor. The spliced intron varies in length from 19 bases in C. albicans to 379 bases in Candida glabrata, but has not been previously identified in Candida parapsilosis and related species. We used RNA-seq data and in silico analysis to identify the HAC1 intron in 12 species in the CTG-Ser1 clade. We show that the intron has undergone major contractions and expansions in this clade, reaching up to 848 bases. Exposure to DTT induced splicing of the long intron in C. parapsilosisHAC1, inducing the UPR. IMPORTANCE The unfolded protein response (UPR) responds to the build-up of misfolded proteins in the endoplasmic reticulum. The UPR has wide-ranging functions from fungal pathogenesis to applications in biotechnology. The UPR is regulated through the splicing of an unconventional intron in the HAC1 gene. This intron has been described in many fungal species and is of variable length. Until now it was believed that some members of the CTG-Ser1 clade such as C. parapsilosis did not contain an intron in HAC1, suggesting that the UPR was regulated in a different manner. Here we demonstrate that HAC1 plays an important role in regulating the UPR in C. parapsilosis. We also identified an unusually long intron (626 bp) in C. parapsilosisHAC1. Further analysis showed that HAC1 orthologs in several species in the CTG-Ser1 clade contain long introns.
Collapse
|
2
|
Rubenstein EM, Kreft SG, Greenblatt W, Swanson R, Hochstrasser M. Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. ACTA ACUST UNITED AC 2012; 197:761-73. [PMID: 22689655 PMCID: PMC3373407 DOI: 10.1083/jcb.201203061] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hrd1 ubiquitin ligase plays a role in quality control of two substrates associated with the Sec61 translocon. Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.
Collapse
Affiliation(s)
- Eric M Rubenstein
- Deptartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
3
|
Haataja L, Gurlo T, Huang CJ, Butler PC. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 2008; 29:303-16. [PMID: 18314421 PMCID: PMC2528855 DOI: 10.1210/er.2007-0037] [Citation(s) in RCA: 468] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2DM) is characterized by insulin resistance, defective insulin secretion, loss of beta-cell mass with increased beta-cell apoptosis and islet amyloid. The islet amyloid is derived from islet amyloid polypeptide (IAPP, amylin), a protein coexpressed and cosecreted with insulin by pancreatic beta-cells. In common with other amyloidogenic proteins, IAPP has the propensity to form membrane permeant toxic oligomers. Accumulating evidence suggests that these toxic oligomers, rather than the extracellular amyloid form of these proteins, are responsible for loss of neurons in neurodegenerative diseases. In this review we discuss emerging evidence to suggest that formation of intracellular IAPP oligomers may contribute to beta-cell loss in T2DM. The accumulated evidence permits the amyloid hypothesis originally developed for neurodegenerative diseases to be reformulated as the toxic oligomer hypothesis. However, as in neurodegenerative diseases, it remains unclear exactly why amyloidogenic proteins form oligomers in vivo, what their exact structure is, and to what extent these oligomers play a primary or secondary role in the cytotoxicity in what are now often called unfolded protein diseases.
Collapse
Affiliation(s)
- Leena Haataja
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, 900 Weyburn Place #A, Los Angeles, California 90024-2852, USA
| | | | | | | |
Collapse
|
4
|
Famá MC, Raden D, Zacchi N, Lemos DR, Robinson AS, Silberstein S. The Saccharomyces cerevisiae YFR041C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:232-42. [PMID: 17157937 PMCID: PMC1847348 DOI: 10.1016/j.bbamcr.2006.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022]
Abstract
YFR041C/ERJ5 was identified in Saccharomyces cerevisiae as a gene regulated by the unfolded protein response pathway (UPR). The open reading frame of the gene has a J domain characteristic of the DnaJ chaperone family of proteins that regulate the activity of Hsp70 chaperones. We determined the expression and topology of Erj5p, a type I membrane protein with a J domain in the lumen of the endoplasmic reticulum (ER) that colocalizes with Kar2p, the major Hsp70 in the yeast ER. We identified synthetic interactions of Deltaerj5 with mutations in genes involved in protein folding in the ER (kar2-159, Deltascj1Deltajem1) and in the induction of the unfolded protein response (Deltaire1). Loss of Erj5p in yeast cells with impaired ER protein folding capacity increased sensitivity to agents that cause ER stress. We identified the ERJ5 mRNA and confirmed that agents that promote accumulation of misfolded proteins in the ER regulate its abundance. We found that loss of the non-essential ERJ5 gene leads to a constitutively induced UPR, indicating that ERJ5 is required for maintenance of an optimal folding environment in the yeast ER.
Collapse
Affiliation(s)
- M. Carla Famá
- IBYF-CONICET, Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - David Raden
- 259 Colburn Laboratory, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Nicolás Zacchi
- IBYF-CONICET, Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Darío R. Lemos
- IBYF-CONICET, Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Anne S. Robinson
- 259 Colburn Laboratory, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Susana Silberstein
- IBYF-CONICET, Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina
- * Corresponding author. Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, (C1428EHA), Buenos Aires, Argentina. Fax: 54-11-4576-3321. E-mail address:
| |
Collapse
|
5
|
Al-Fageeh M, Smales C. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 2006; 397:247-59. [PMID: 16792527 PMCID: PMC1513281 DOI: 10.1042/bj20060166] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/27/2006] [Accepted: 04/12/2006] [Indexed: 12/28/2022]
Abstract
Although the cold-shock response has now been studied in a number of different organisms for several decades, it is only in the last few years that we have begun to understand the molecular mechanisms that govern adaptation to cold stress. Notably, all organisms from prokaryotes to plants and higher eukaryotes respond to cold shock in a comparatively similar manner. The general response of cells to cold stress is the elite and rapid overexpression of a small group of proteins, the so-called CSPs (cold-shock proteins). The most well characterized CSP is CspA, the major CSP expressed in Escherichia coli upon temperature downshift. More recently, a number of reports have shown that exposing yeast or mammalian cells to sub-physiological temperatures (<30 or <37 degrees C respectively) invokes a co-ordinated cellular response involving modulation of transcription, translation, metabolism, the cell cycle and the cell cytoskeleton. In the present review, we summarize the regulation and role of cold-shock genes and proteins in the adaptive response upon decreased temperature with particular reference to yeast and in vitro cultured mammalian cells. Finally, we present an integrated model for the co-ordinated responses required to maintain the viability and integrity of mammalian cells upon mild hypothermic cold shock.
Collapse
Key Words
- cellular response
- cold-shock protein
- cold-shock response
- control of gene expression
- sub-physiological temperature
- yeast
- cct, chaperonin containing the t-complex polypeptide-1
- cho, chinese-hamster ovary
- cirp, cold-inducible rna-binding protein
- csp, cold-shock protein
- ef1α, elongation factor 1α
- eif2α, eukaryotic initiation factor 2α
- f-actin, filamentous actin
- gst, glutathione s-transferase
- hnrna, heteronuclear rna
- hog, high-osmolarity glycerol
- hsp, heat-shock protein
- if, initiation factor
- ires, internal ribosome entry segment
- mapk, mitogen-activated protein kinase
- mirna, microrna
- orf, open reading frame
- pka, protein kinase a
- rbm3, rna-binding motif protein 3
- stre, stress-response element
- stop, stable tubule-only polypeptide
- unr, upstream of n-ras
- utr, untranslated region
Collapse
Affiliation(s)
- Mohamed B. Al-Fageeh
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - C. Mark Smales
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| |
Collapse
|
6
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1337] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
7
|
Menguy T, Corre F, Juul B, Bouneau L, Lafitte D, Derrick PJ, Sharma PS, Falson P, Levine BA, Møller JV, le Maire M. Involvement of the cytoplasmic loop L6-7 in the entry mechanism for transport of Ca2+ through the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 2002; 277:13016-28. [PMID: 11801592 DOI: 10.1074/jbc.m108899200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously found that mutants of conserved aspartate residues of sarcoplasmic reticulum Ca(2+)-ATPase in the cytosolic loop, connecting transmembrane segments M6 and M7 (L6-7 loop), exhibit a strongly reduced sensitivity toward Ca(2+) activation of the transport process. In this study, yeast membranes, expressing wild type and mutant Ca(2+)-ATPases, were reacted with Cr small middle dotATP and tested for their ability to occlude (45)Ca(2+) by HPLC analysis, after cation resin and C(12)E(8) treatment. We found that the D813A/D818A mutant that displays markedly low calcium affinity was capable of occluding Ca(2+) to the same extent as wild type ATPase. Using NMR and mass spectrometry we have analyzed the conformational properties of the synthetic L6-7 loop and demonstrated the formation of specific 1:1 cation complexes of the peptide with calcium and lanthanum. All three aspartate Asp(813)/Asp(815)/Asp(818) were required to coordinate the trivalent lanthanide ion. Overall these observations suggest a dual function of the loop: in addition to mediating contact between the intramembranous Ca(2+)-binding sites and the cytosolic phosphorylation site (Zhang, Z., Lewis, D., Sumbilla, C., Inesi G., and Toyoshima, C. (2001) J. Biol. Chem. 276, 15232-15239), the L6-7 loop, in a preceding step, participates in the formation of an entrance port, before subsequent high affinity binding of Ca(2+) inside the membrane.
Collapse
Affiliation(s)
- Thierry Menguy
- Section de Biophysique des Fonctions Membranaires, DBJC, CEA et CNRS URA 2096 and LRA17V Université de Paris XI, CE Saclay, 91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tyson JR, Stirling CJ. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 2000; 19:6440-52. [PMID: 11101517 PMCID: PMC305876 DOI: 10.1093/emboj/19.23.6440] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Revised: 10/16/2000] [Accepted: 10/18/2000] [Indexed: 01/22/2023] Open
Abstract
Lhs1p is an Hsp70-related chaperone localized in the endoplasmic reticulum (ER) lumen. Deltalhs1 mutant cells are viable but are constitutively induced for the unfolded protein response (UPR). Here, we demonstrate a severe growth defect in Deltaire1Deltalhs1 double mutant cells in which the UPR can no longer be induced. In addition, we have identified a UPR- regulated gene, SIL1, whose overexpression is sufficient to suppress the Deltaire1Deltalhs1 growth defect. SIL1 encodes an ER-localized protein that interacts directly with the ATPase domain of Kar2p (BiP), suggesting some role in modulating the activity of this vital chaperone. SIL1 is a non-essential gene but the Deltalhs1Deltasil1 double mutation is lethal and correlates with a complete block of protein translocation into the ER. We conclude that the IRE1-dependent induction of SIL1 is a vital adaptation in Deltalhs1 cells, and that the activities associated with the Lhs1 and Sil1 proteins constitute an essential function required for protein translocation into the ER. The Sil1 protein appears widespread amongst eukaryotes, with homologues in Yarrowia lipolytica (Sls1p), Drosophila and mammals.
Collapse
Affiliation(s)
- J R Tyson
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|