1
|
Palo A, Patel SA, Shubhanjali S, Dixit M. Dynamic interplay of Sp1, YY1, and DUX4 in regulating FRG1 transcription with intricate balance. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167636. [PMID: 39708975 DOI: 10.1016/j.bbadis.2024.167636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Maintaining precise levels of FRG1 is vital. It's over-expression is tied to muscular dystrophy, while reduced levels are linked to tumorigenesis. Despite extensive efforts to characterize FRG1 expression and downstream molecular signaling, a comprehensive understanding of its regulation has remained elusive. This study focused on unravelling the cis -regulatory elements within the FRG1 gene and their interplay. Employing a dual luciferase reporter assay on fragments of the FRG1 promoter upstream of the transcription start site, we observed variations in FRG1 transcription induction. Our in-silico analysis unveiled binding sequences for Sp1 and DUX4 within FRG1 promoter region showing an enhanced luciferase signal. Conversely, we identified a YY1 binding sequence in the FRG1 promoter fragment showing decreased luciferase signal. Confirming these binding sites through site-directed mutagenesis, chromatin immunoprecipitation, and EMSA provided concrete evidence of Sp1, YY1, and DUX4's interaction within the FRG1 promoter. Additionally, interaction between Sp1, YY1, and DUX4 was elucidated using sequential chromatin immunoprecipitation (ChIP re-ChIP) and co-immunoprecipitation assays. Furthermore, alterations in the expression levels of Sp1, YY1, and DUX4 resulted in parallel changes in FRG1 gene expression. Notably, YY1 exhibited the ability to suppress SP1 or DUX4-mediated FRG1 transcription activation, while Sp1 and DUX4 together could counteract YY1-mediated transcription suppression. Our cell proliferation and colony formation assay underscored the tumorigenic properties of these three transcription factors through the modulation of FRG1 expression levels. The in vitro results were verified in vivo using mouse xenograft model. Leveraging RNA sequencing data from various tissues in the GTEx portal, we established a correlation between FRG1, Sp1, and YY1. In essence, this study revealed the vital cis-regulatory components residing in the FRG1 promoter. The combined influence of Sp1, YY1, and DUX4 plays a central role in controlling FRG1 expression.
Collapse
Affiliation(s)
- Ananya Palo
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saket A Patel
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - S Shubhanjali
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Manjusha Dixit
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Arnold L, Gomez JP, Barry M, Yap M, Jackson L, Ly T, Standing D, Padhye SB, Biersack B, Anant S, Thomas SM. Acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone targeting cellular JUN proto-oncogene, AP-1 transcription factor subunit inhibits head and neck squamous cell carcinoma progression. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1104-1121. [PMID: 38023989 PMCID: PMC10651473 DOI: 10.37349/etat.2023.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a survival rate below fifty percent. Addressing meager therapeutic options, a series of small molecule inhibitors were screened for antitumor efficacy. The most potent analog, acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone (DiFiD; A-DiFiD), demonstrated strong cellular JUN proto-oncogene, activator protein 1 (AP-1) transcription factor subunit (JUN, c-Jun) antagonism. c-Jun, an oncogenic transcription factor, promotes cancer progression, invasion, and adhesion; high (JUN) mRNA expression correlates with poorer HNSCC survival. Methods Four new small molecules were generated for cytotoxicity screening in HNSCC cell lines. A-DiFiD-treated HNSCC cells were assessed for cytotoxicity, colony formation, invasion, migration, and adhesion. Dot blot array was used to identify targets. Phospho-c-Jun (p-c-Jun) expression was analyzed using immunoblotting. The Cancer Genome Atlas (TCGA) head and neck cancer datasets were utilized to determine overall patient survival. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets interfaced with University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) were analyzed to determine protein levels of c-Jun in HNSCC patients and correlate levels with patient. Results Of the small molecules tested, A-DiFiD was the most potent in HNSCC lines, while demonstrating low half-maximal drug inhibitory concentration (IC50) in non-malignant Het-1A cells. Additionally, A-DiFiD abrogated cell invasion, migration, and colony formation. Phospho-kinase in vitro array demonstrated A-DiFiD reduced p-c-Jun. Likewise, a time dependent reduction in p-c-Jun was observed starting at 3 min post A-DiFiD treatment. TCGA Firehose Legacy vs. recurrent and metastatic head and neck cancer reveal a nearly 3% DNA amplification in recurrent/metastatic tumor compared to below 1% in primary tumors that had no lymph node metastasis. CPTAC analysis show higher tumor c-Jun levels compared to normal. Patients with high JUN expression had significantly reduced 3-year survival. Conclusions A-DiFiD targets c-Jun, a clinical HNSCC driver, with potent anti-tumor effects.
Collapse
Affiliation(s)
- Levi Arnold
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Juan Pineda Gomez
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael Barry
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Marrion Yap
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Laura Jackson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Subhash B. Padhye
- Interdisciplinary Science and Technology Research Academy, University of Pune, Pune 411007, Maharashtra, India
| | - Bernhard Biersack
- Department of Biology, Chemistry, Earth Sciences, University of Bayreuth, 95440 Bayreuth, Germany
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
3
|
Wu CY, Peng PW, Renn TY, Lee CJ, Chang TM, Wei AIC, Liu JF. CX3CL1 induces cell migration and invasion through ICAM-1 expression in oral squamous cell carcinoma cells. J Cell Mol Med 2023. [PMID: 37082943 DOI: 10.1111/jcmm.17750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.
Collapse
Affiliation(s)
- Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Pei-Wen Peng
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ting-Yi Renn
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei City, Taiwan
| | - Tsung-Ming Chang
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| |
Collapse
|
4
|
Gehrke N, Wörns MA, Mann A, Hövelmeyer N, Waisman A, Straub BK, Galle PR, Schattenberg JM. Hepatocyte Bcl-3 protects from death-receptor mediated apoptosis and subsequent acute liver failure. Cell Death Dis 2022; 13:510. [PMID: 35641486 PMCID: PMC9156769 DOI: 10.1038/s41419-022-04946-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Acute liver failure (ALF) is a rare entity but exhibits a high mortality. The mechanisms underlying ALF are not completely understood. The present study explored the role of the hepatic B cell leukemia-3 (Bcl-3), a transcriptional regulator of nuclear factor-kappa B (NF-κB), in two independent models of ALF. We employed a recently developed transgenic mouse model in a C57BL6/J background comparing wild-type (WT) and transgenic littermates with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) in the ALF model of d-galactosamine (d-GalN) and lipopolysaccharide (LPS). Additionally, the apoptosis-inducing CD95 (FAS/APO-1)-ligand was explored. Bcl-3Hep mice exhibited a significant protection from ALF with decreased serum transaminases, decreased activation of the apoptotic caspases 8, 9, and 3, lower rates of oxidative stress, B-cell lymphoma 2 like 1 (BCL2L1/BCL-XL) degradation and accompanying mitochondrial cytochrome c release, and ultimately a decreased mortality rate from d-GalN/LPS compared to WT mice. d-GalN/LPS treatment resulted in a marked inflammatory cytokine release and stimulated the activation of signal transducer and activator of transcription (STAT) 3, c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinase (ERK) signaling comparably in the hepatic compartment of Bcl-3Hep and WT mice. However, in contrast to the WT, Bcl-3Hep mice showed a diminished rate of IkappaB kinase-beta (IKK-β) degradation, persistent receptor interacting protein kinase (RIPK) 1 function and thus prolonged cytoprotective nuclear factor-kappa B (NF-κB) p65 signaling through increased p65 stability and enhanced transcription. Likewise, Bcl-3 overexpression in hepatocytes protected from ALF with massive hepatocyte apoptosis induced by the anti-FAS antibody Jo2. The protection was also linked to IKK-β stabilization. Overall, our study showed that Bcl-3 rendered hepatocytes more resistant to hepatotoxicity induced by d-GalN/LPS and FAS-ligand. Therefore, Bcl-3 appears to be a critical regulator of the dynamics in ALF through IKK-β.
Collapse
Affiliation(s)
- Nadine Gehrke
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marcus A Wörns
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Gastroenterology, Hematology, Oncology and Endocrinology, Klinikum Dortmund, Dortmund, Germany
| | - Amrit Mann
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jörn M Schattenberg
- Department of Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Liu H, Zeng L, Yang Y, Guo C, Wang H. Bcl-3: A Double-Edged Sword in Immune Cells and Inflammation. Front Immunol 2022; 13:847699. [PMID: 35355979 PMCID: PMC8959985 DOI: 10.3389/fimmu.2022.847699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yang Yang
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunlei Guo
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
6
|
Wong TY, Menaga S, Huang CYF, Ho SHA, Gan SC, Lim YM. 2-Methoxy-1,4-naphthoquinone (MNQ) regulates cancer key genes of MAPK, PI3K, and NF-κB pathways in Raji cells. Genomics Inform 2022; 20:e7. [PMID: 35399006 PMCID: PMC9001993 DOI: 10.5808/gi.21041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor кB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.
Collapse
Affiliation(s)
- Teck Yew Wong
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Subramaniam Menaga
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Siong Hock Anthony Ho
- School of Biosciences, Taylor's University, Lakeside Campus 1, 47500 Subang Jaya, Malaysia
| | - Seng Chiew Gan
- Department of Pre-Clinical Sciences Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia.,Department of Pre-Clinical Sciences Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| |
Collapse
|
7
|
Chang S, Wang LHC, Chen BS. Investigating Core Signaling Pathways of Hepatitis B Virus Pathogenesis for Biomarkers Identification and Drug Discovery via Systems Biology and Deep Learning Method. Biomedicines 2020; 8:biomedicines8090320. [PMID: 32878239 PMCID: PMC7555687 DOI: 10.3390/biomedicines8090320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B Virus (HBV) infection is a major cause of morbidity and mortality worldwide. However, poor understanding of its pathogenesis often gives rise to intractable immune escape and prognosis recurrence. Thus, a valid systematic approach based on big data mining and genome-wide RNA-seq data is imperative to further investigate the pathogenetic mechanism and identify biomarkers for drug design. In this study, systems biology method was applied to trim false positives from the host/pathogen genetic and epigenetic interaction network (HPI-GEN) under HBV infection by two-side RNA-seq data. Then, via the principal network projection (PNP) approach and the annotation of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, significant biomarkers related to cellular dysfunctions were identified from the core cross-talk signaling pathways as drug targets. Further, based on the pre-trained deep learning-based drug-target interaction (DTI) model and the validated pharmacological properties from databases, i.e., drug regulation ability, toxicity, and sensitivity, a combination of promising multi-target drugs was designed as a multiple-molecule drug to create more possibility for the treatment of HBV infection. Therefore, with the proposed systems medicine discovery and repositioning procedure, we not only shed light on the etiologic mechanism during HBV infection but also efficiently provided a potential drug combination for therapeutic treatment of Hepatitis B.
Collapse
Affiliation(s)
- Shen Chang
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence:
| |
Collapse
|
8
|
Chen X, Wang C, Jiang Y, Wang Q, Tao Y, Zhang H, Zhao Y, Hu Y, Li C, Ye D, Liu D, Jiang W, Chin EY, Chen S, Liu Y, Wang M, Liu S, Zhang X. Bcl-3 promotes Wnt signaling by maintaining the acetylation of β-catenin at lysine 49 in colorectal cancer. Signal Transduct Target Ther 2020; 5:52. [PMID: 32355204 PMCID: PMC7193563 DOI: 10.1038/s41392-020-0138-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling plays a critical role in colorectal cancer (CRC) tumorigenesis and the homeostasis of colorectal cancer stem cells (CSCs), but its molecular mechanism remains unclear. B-cell lymphoma 3 (Bcl-3), a member of the IκB family, is overexpressed in CRC and promotes tumorigenicity. Here, we report a novel function of Bcl-3 in maintaining colorectal CSC homeostasis by activating Wnt/β-catenin signaling. Silencing Bcl-3 suppresses the self-renewal capacity of colorectal CSCs and sensitizes CRC cells to chemotherapeutic drugs through a decrease in Wnt/β-catenin signaling. Moreover, our data show that Bcl-3 is a crucial component of Wnt/β-catenin signaling and is essential for β-catenin transcriptional activity in CRC cells. Interestingly, Wnt3a increases the level and nuclear translocation of Bcl-3, which binds directly to β-catenin and enhances the acetylation of β-catenin at lysine 49 (Ac-K49-β-catenin) and transcriptional activity. Bcl-3 depletion decreases the Ac-K49-β-catenin level by increasing the level of histone deacetylase 1 to remove acetyl groups from β-catenin, thus interrupting Wnt/β-catenin activity. In CRC clinical specimens, Bcl-3 expression negatively correlates with the overall survival of CRC patients. A significantly positive correlation was found between the expression of Bcl-3 and Ac-K49-β-catenin. Collectively, our data reveal that Bcl-3 plays a crucial role in CRC chemoresistance and colorectal CSC maintenance via its modulation of the Ac-K49-β-catenin, which serves as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Xi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Chen Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yuhang Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Qi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yu Tao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Haohao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Yongxu Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Yiming Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Cuifeng Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Deji Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Dandan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Wenxia Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Eugene Y Chin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China
| | - Sheng Chen
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sanhong Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiaoren Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200025, China.
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
| |
Collapse
|
9
|
Cui L, Bu W, Song J, Feng L, Xu T, Liu D, Ding W, Wang J, Li C, Ma B, Luo Y, Jiang Z, Wang C, Chen J, Hou J, Yan H, Yang L, Jia X. Apoptosis induction by alantolactone in breast cancer MDA-MB-231 cells through reactive oxygen species-mediated mitochondrion-dependent pathway. Arch Pharm Res 2017; 41:299-313. [DOI: 10.1007/s12272-017-0990-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/19/2017] [Indexed: 12/26/2022]
|
10
|
Xu H, Jin X, Yuan Y, Deng P, Jiang L, Zeng X, Li XS, Wang ZY, Chen QM. Prognostic value from integrative analysis of transcription factors c-Jun and Fra-1 in oral squamous cell carcinoma: a multicenter cohort study. Sci Rep 2017; 7:7522. [PMID: 28790303 PMCID: PMC5548725 DOI: 10.1038/s41598-017-05106-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
Transcription factors c-Jun and Fra-1 have been reported to play a role during the initiation and progression in oral squamous cell carcinoma (OSCC). However, cohort studies are rarely reported. Here is an integrative analysis of their prognostic value in OSCC through a multicenter cohort study.313 OSCC patients were included in this study and received regular follow-up. The survival rate and hazard ratios(HR) were generated by survival analysis. The concordance probability and receiver operating characteristic curve area were chosen to measure the model discrimination. High expressions of c-Jun or Fra-1 were associated with poor prognosis, meanwhile the high expression of Fra-1 meant worse prognosis of patients than the high expression of c-Jun. Besides, the interaction effect of c-Jun and Fra-1 was antagonism, when the expression of c-Jun and Fra-1 was both high, the HR was lower than the hazard ratio when only the Fra-1 was at high expression. c-Jun and Fra-1 were both proved to be high risky predictors of death in OSCC, the antagonistic effect suggested that these biomarkers’ activities could be influenced by each other. It may provide a new sight for the studies of OSCC prognosis and treatment.
Collapse
Affiliation(s)
- Hao Xu
- Department of epidemiology and health statistics, West China School of Public Health, Sichuan University, Chengdu, 610041, China.,Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.,School of Mathematics, Sichuan University, Chengdu, 610041, China
| | - Xin Jin
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
| | - Yao Yuan
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peng Deng
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lu Jiang
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xin Zeng
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiao-Song Li
- Department of epidemiology and health statistics, West China School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Zhi-Yong Wang
- Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qian-Ming Chen
- Department of epidemiology and health statistics, West China School of Public Health, Sichuan University, Chengdu, 610041, China. .,Department of Oral Biology and Medicine, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats. J Nutr Biochem 2017; 44:71-79. [DOI: 10.1016/j.jnutbio.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
|
12
|
Long TY, Jing R, Kuang F, Huang L, Qian ZX, Yang TL. CIRBP protects H9C2 cells against myocardial ischemia through inhibition of NF-κB pathway. ACTA ACUST UNITED AC 2017; 50:e5861. [PMID: 28355355 PMCID: PMC5423751 DOI: 10.1590/1414-431x20175861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia is a major cause of death and remains a disease with extremely deficient clinical therapies and a major problem worldwide. Cold inducible RNA-binding protein (CIRBP) is reported to be involved in multiple pathological processes, including myocardial ischemia. However, the molecular mechanisms of myocardial ischemia remain elusive. Here, we first overexpressed CIRBP by transfection of pc-CIRBP (pcDNA3.1 containing coding sequenced for CIRBP) and silenced CIRBP by transfection of small interfering RNA targeting CIRBP (siCIRBP). pcDNA3.1 and the negative control of siCIRBP (siNC) were transfected into H9C2 cells to act as controls. We then constructed a cell model of myocardial ischemia through culturing cells in serum-free medium with hypoxia in H9C2 cells. Subsequently, AlamarBlue assay, flow cytometry and western blot analysis were used, respectively, to assess cell viability, reactive oxygen species (ROS) level and apoptosis, and expression levels of IκBα, p65 and Bcl-3. We demonstrated that CIRBP overexpression promoted cell proliferation (P<0.001), inhibited cell apoptosis (P<0.05), reduced ROS level (P<0.001), down-regulated phosphorylated levels of IκBα and p65 (P<0.01 or P<0.001), and up-regulated expression of Bcl-3 (P<0.001) in H9C2 cells with myocardial ischemia. The influence of CIRBP knockdown yielded opposite results. Our study revealed that CIRBP could protect H9C2 cells against myocardial ischemia through inhibition of NF-κB pathway.
Collapse
Affiliation(s)
- T Y Long
- Cardiovascular Department, The Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - R Jing
- Cardiovascular Department, The Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - F Kuang
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - L Huang
- Department of Cardiac Surgery, Shenzhen Hospital of Peking University, Shenzhen City, Guangdong Province, China
| | - Z X Qian
- Department of Emergency, The Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - T L Yang
- Cardiovascular Department, The Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
13
|
Ren X, Zhao W, Du Y, Zhang T, You L, Zhao Y. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim. Oncol Lett 2016; 12:4732-4738. [PMID: 28105181 DOI: 10.3892/ol.2016.5294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.
Collapse
Affiliation(s)
- Xiaoxia Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenjing Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yongxing Du
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
14
|
Regulation of the Adaptive Immune Response by the IκB Family Protein Bcl-3. Cells 2016; 5:cells5020014. [PMID: 27023613 PMCID: PMC4931663 DOI: 10.3390/cells5020014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 01/14/2023] Open
Abstract
Bcl-3 is a member of the IκB family of proteins and an important regulator of Nuclear Factor (NF)-κB activity. The ability of Bcl-3 to bind and regulate specific NF-κB dimers has been studied in great depth, but its physiological roles in vivo are still not fully understood. It is, however, becoming clear that Bcl-3 is essential for the proper development, survival and activity of adaptive immune cells. Bcl-3 dysregulation can be observed in a number of autoimmune pathologies, and Bcl3-deficient animals are more susceptible to bacterial and parasitic infection. This review will describe our current understanding of the roles played by Bcl-3 in the development and regulation of the adaptive immune response, including lymphoid organogenesis, immune tolerance, lymphocyte function and dendritic cell biology.
Collapse
|
15
|
Atypical IκB proteins in immune cell differentiation and function. Immunol Lett 2016; 171:26-35. [DOI: 10.1016/j.imlet.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
|
16
|
Ye N, Ding Y, Wild C, Shen Q, Zhou J. Small molecule inhibitors targeting activator protein 1 (AP-1). J Med Chem 2014; 57:6930-48. [PMID: 24831826 PMCID: PMC4148154 DOI: 10.1021/jm5004733] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Activator
protein 1 (AP-1) is a pivotal transcription factor that
regulates a wide range of cellular processes including proliferation,
apoptosis, differentiation, survival, cell migration, and transformation.
Accumulating evidence supports that AP-1 plays an important role in
several severe disorders including cancer, fibrosis, and organ injury,
as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid
arthritis. AP-1 has emerged as an actively pursued drug discovery
target over the past decade. Excitingly, a selective AP-1 inhibitor
T-5224 (51) has been investigated in phase II human clinical
trials. Nevertheless, no effective AP-1 inhibitors have yet been approved
for clinical use. Despite significant advances achieved in understanding
AP-1 biology and function, as well as the identification of small
molecules modulating AP-1 associated signaling pathways, medicinal
chemistry efforts remain an urgent need to yield selective and efficacious
AP-1 inhibitors as a viable therapeutic strategy for human diseases.
Collapse
Affiliation(s)
- Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | |
Collapse
|
17
|
Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. ACTA ACUST UNITED AC 2013; 210:2951-65. [PMID: 24249111 PMCID: PMC3865473 DOI: 10.1084/jem.20130071] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IL-9 acts as an autocrine amplifier of type 2 innate lymphoid cell function to promote tissue repair in the recovery phase of helminth-induced lung infection. IL-9 fate reporter mice established type 2 innate lymphoid cells (ILC2s) as major producers of this cytokine in vivo. Here we focus on the role of IL-9 and ILC2s during the lung stage of infection with Nippostrongylus brasiliensis, which results in substantial tissue damage. IL-9 receptor (IL-9R)–deficient mice displayed reduced numbers of ILC2s in the lung after infection, resulting in impaired IL-5, IL-13, and amphiregulin levels, despite undiminished numbers of Th2 cells. As a consequence, the restoration of tissue integrity and lung function was strongly impaired in the absence of IL-9 signaling. ILC2s, in contrast to Th2 cells, expressed high levels of the IL-9R, and IL-9 signaling was crucial for the survival of activated ILC2s in vitro. Furthermore, ILC2s in the lungs of infected mice required the IL-9R to up-regulate the antiapoptotic protein BCL-3 in vivo. This highlights a unique role for IL-9 as an autocrine amplifier of ILC2 function, promoting tissue repair in the recovery phase after helminth-induced lung inflammation.
Collapse
Affiliation(s)
- Jan-Eric Turner
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rhomboid domain containing 1 inhibits cell apoptosis by upregulating AP‐1 activity and its downstream target Bcl‐3. FEBS Lett 2013; 587:1793-8. [DOI: 10.1016/j.febslet.2013.04.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
|
19
|
Atypical IκB proteins - nuclear modulators of NF-κB signaling. Cell Commun Signal 2013; 11:23. [PMID: 23578005 PMCID: PMC3639191 DOI: 10.1186/1478-811x-11-23] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/28/2013] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor κB (NF-κB) controls a multitude of physiological processes such as cell differentiation, cytokine expression, survival and proliferation. Since NF-κB governs embryogenesis, tissue homeostasis and the functions of innate and adaptive immune cells it represents one of the most important and versatile signaling networks known. Its activity is regulated via the inhibitors of NF-κB signaling, the IκB proteins. Classical IκBs, like the prototypical protein IκBα, sequester NF-κB transcription factors in the cytoplasm by masking of their nuclear localization signals (NLS). Thus, binding of NF-κB to the DNA is inhibited. The accessibility of the NLS is controlled via the degradation of IκBα. Phosphorylation of the conserved serine residues 32 and 36 leads to polyubiquitination and subsequent proteasomal degradation. This process marks the central event of canonical NF-κB activation. Once their NLS is accessible, NF-κB transcription factors translocate into the nucleus, bind to the DNA and regulate the transcription of their respective target genes. Several studies described a distinct group of atypical IκB proteins, referred to as the BCL-3 subfamily. Those atypical IκBs show entirely different sub-cellular localizations, activation kinetics and an unexpected functional diversity. First of all, their interaction with NF-κB transcription factors takes place in the nucleus in contrast to classical IκBs, whose binding to NF-κB predominantly occurs in the cytoplasm. Secondly, atypical IκBs are strongly induced after NF-κB activation, for example by LPS and IL-1β stimulation or triggering of B cell and T cell antigen receptors, but are not degraded in the first place like their conventional relatives. Finally, the interaction of atypical IκBs with DNA-associated NF-κB transcription factors can further enhance or diminish their transcriptional activity. Thus, they do not exclusively act as inhibitors of NF-κB activity. The capacity to modulate NF-κB transcription either positively or negatively, represents their most important and unique mechanistic difference to classical IκBs. Several reports revealed the importance of atypical IκB proteins for immune homeostasis and the severe consequences following their loss of function. This review summarizes insights into the physiological processes regulated by this protein class and the relevance of atypical IκB functioning.
Collapse
|
20
|
Yan Y, Zhang GX, Williams MS, Carey GB, Li H, Yang J, Rostami A, Xu H. TCR stimulation upregulates MS4a4B expression through induction of AP-1 transcription factor during T cell activation. Mol Immunol 2012; 52:71-8. [PMID: 22595231 DOI: 10.1016/j.molimm.2012.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/16/2012] [Accepted: 04/21/2012] [Indexed: 11/17/2022]
Abstract
MS4a4B is a novel member of the membrane-spanning 4-domain family, subfamily A (MS4A) specifically expressed in mouse T cells. We have shown previously that expression of MS4a4B in T cells is upregulated upon T cell activation, suggesting that MS4a4B may play a functional role in regulation of T cell responses. However, little is known about the mechanisms that regulate MS4a4B gene expression. In this study, we explored the potential mechanism underlying TCR-stimulation-induced expression of MS4a4B by promoter analysis. We cloned 2495bp of 5'-flanking region upstream of the MS4a4B start code and inserted the DNA fragment into pGL4.20 reporter plasmid. To analyze promoter activity of the cloned DNA fragment, we transiently transfected EL4 thymoma cells and the T32 cell line with reporter plasmids. Expression of reporter gene was determined by dual-luciferase assay. Potential activator- and repressor-binding sites were analyzed by serial length of 5'-deletion. We have identified at least two potential activator binding regions and two potential repressor binding regions. The activator binding sites have been localized to two fragments, which are a 442-base pair region (region A) positioned from -1176 to -735, and a 119-base pair region (region B) positioned -188 to -70 respectively. MatInspector analysis showed that region A contains the consensus binding motif of the AP-1 family of transcription factors. Machinery analysis showed that nuclear proteins extracted from anti-CD3/anti-CD28-activated primary T cells specifically bind to the AP-1 binding element. In contrast, blockade by AP-1 inhibitor in culture decreased MS4a4B expression in T cells. Our data demonstrate that TCR-stimulation induces transactivation of AP-1 transcription factor, which subsequently binds to the MS4a4B promoter and upregulates expression of MS4a4B in activated T cells.
Collapse
Affiliation(s)
- Yaping Yan
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, JHN 300, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ahlqvist K, Saamarthy K, Syed Khaja AS, Bjartell A, Massoumi R. Expression of Id proteins is regulated by the Bcl-3 proto-oncogene in prostate cancer. Oncogene 2012; 32:1601-8. [PMID: 22580608 DOI: 10.1038/onc.2012.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B-cell leukemia 3 (Bcl-3) is a member of the inhibitor of κB family, which regulates a wide range of biological processes by functioning as a transcriptional activator or as a repressor of target genes. As high levels of Bcl-3 expression and activation have been detected in different types of human cancer, Bcl-3 has been labeled a proto-oncogene. Our study uncovered a markedly upregulated Bcl-3 expression in human prostate cancer (PCa), where inflammatory cell infiltration was observed. Elevated Bcl-3 expression in PCa was dependent on the proinflammatory cytokine interleukin-6-mediated STAT3 activation. Microarray analyses, using Bcl-3 knockdown in PCa cells, identified the inhibitor of DNA-binding (Id) family of helix-loop-helix proteins as potential Bcl-3-regulated genes. Bcl-3 knockdown reduced the abundance of Id-1 and Id-2 proteins and boosted PCa cells to be more receptive to undergoing apoptosis following treatment with anticancer drug. Our data imply that inactivation of Bcl-3 may lead to sensitization of cancer cells to chemotherapeutic drug-induced apoptosis, thus suggesting a potential therapeutic strategy in PCa treatment.
Collapse
Affiliation(s)
- K Ahlqvist
- Center for Molecular Tumor Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | |
Collapse
|
22
|
Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26:203-34. [PMID: 22302935 DOI: 10.1101/gad.183434.111] [Citation(s) in RCA: 1348] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to sense and adjust to the environment is crucial to life. For multicellular organisms, the ability to respond to external changes is essential not only for survival but also for normal development and physiology. Although signaling events can directly modify cellular function, typically signaling acts to alter transcriptional responses to generate both transient and sustained changes. Rapid, but transient, changes in gene expression are mediated by inducible transcription factors such as NF-κB. For the past 25 years, NF-κB has served as a paradigm for inducible transcription factors and has provided numerous insights into how signaling events influence gene expression and physiology. Since its discovery as a regulator of expression of the κ light chain gene in B cells, research on NF-κB continues to yield new insights into fundamental cellular processes. Advances in understanding the mechanisms that regulate NF-κB have been accompanied by progress in elucidating the biological significance of this transcription factor in various physiological processes. NF-κB likely plays the most prominent role in the development and function of the immune system and, not surprisingly, when dysregulated, contributes to the pathophysiology of inflammatory disease. As our appreciation of the fundamental role of inflammation in disease pathogenesis has increased, so too has the importance of NF-κB as a key regulatory molecule gained progressively greater significance. However, despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood. In this review, we highlight both the progress that has been made and the fundamental questions that remain unanswered after 25 years of study.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
23
|
Maldonado V, Melendez-Zajgla J. Role of Bcl-3 in solid tumors. Mol Cancer 2011; 10:152. [PMID: 22195643 PMCID: PMC3258214 DOI: 10.1186/1476-4598-10-152] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022] Open
Abstract
Bcl-3 is an established oncogene in hematologic malignancies, such as B-cell chronic lymphocytic leukemias. Nevertheless, recent research has shown that it also participates in progression of diverse solid tumors. The present review summarizes the current knowledge of Bcl3 role in solid tumors progression, including some new insights in its possible molecular mechanisms of action.
Collapse
|
24
|
Human lactoferrin upregulates BCL-3 in the K562 erythroleukemia cell. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
|
26
|
Wang H, Song W, Hu T, Zhang N, Miao S, Zong S, Wang L. Fank1 interacts with Jab1 and regulates cell apoptosis via the AP-1 pathway. Cell Mol Life Sci 2011; 68:2129-39. [PMID: 20978819 PMCID: PMC11114715 DOI: 10.1007/s00018-010-0559-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/15/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
Abstract
Regulation of apoptosis at various stages of differentiation plays an important role in spermatogenesis. Therefore, the identification and characterisation of highly expressed genes in the testis that are involved in apoptosis is of great value to delineate the mechanism of spermatogenesis. Here, we reported that Fank1, a novel gene highly expressed in testis, functioned as an anti-apoptotic protein that activated the activator protein 1 (AP-1) pathway. We found that Jab1 (Jun activation domain-binding protein 1), a co-activator of AP-1, specifically interacted with Fank1. Reporter analyses showed that Fank1 activated AP-1 pathway in a Jab1-dependent manner. Fank1 overexpression also increased the expression and activation of endogenous c-Jun. Further study showed that Fank1 inhibited cell apoptosis by upregulating and activating endogenous c-Jun and its downstream target, Bcl-3. This process was shown to be Jab1 dependent. Taken together, our results indicated that by interacting with Jab1, Fank1 could suppress cell apoptosis by activating the AP-1-induced anti-apoptotic pathway.
Collapse
Affiliation(s)
- Hailong Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, 5 Dong Dan San Tiao, Beijing, 100005 China
- Academy of Basic Medicine, Shanxi Medical University, 56 Xin Jian Nan Lu, Taiyuan, 030001 China
| | - Wei Song
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Tinghui Hu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Ning Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Shiying Miao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, 5 Dong Dan San Tiao, Beijing, 100005 China
| | - Shudong Zong
- National Research Institute for Family Planning Beijing, WHO Collaboration Center of Human Reproduction, 12 Da Hui Si, Hai Dian, Beijing, 100081 China
| | - Linfang Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, 5 Dong Dan San Tiao, Beijing, 100005 China
| |
Collapse
|
27
|
Guan Y, Yao H, Zheng Z, Qiu G, Sun K. MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer 2011; 128:2274-83. [PMID: 20658525 DOI: 10.1002/ijc.25575] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Micro-RNAs (miRNAs) important for post-transcriptional gene expression as negative regulators are endogenous 21- to 23-nucleotide noncoding RNAs. Many miRNAs are expressed in ovarian cancer (OC). In this study, we reported that miR-125b was underexpressed in human OC specimens. Ectopic expression of miR-125b in OC cells induced cell cycle arrest and led to reduction in proliferation and clonal formation. This inhibitory effect on OC cell growth was mediated by miR-125b inhibition of the translation of an mRNA encoding a proto-oncogene, BCL3. Furthermore, expression of miR-125b suppressed the tumor formation generated by injecting OC cells in nude mice. Our results suggest that aberrantly expressed miR-125b may contribute to OC development.
Collapse
Affiliation(s)
- Yi Guan
- Department of Medical Genetics, China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
28
|
Li M, Ge Q, Wang W, Wang J, Lu Z. c-Jun binding site identification in K562 cells. J Genet Genomics 2011; 38:235-42. [PMID: 21703547 DOI: 10.1016/j.jgg.2011.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 12/21/2022]
Abstract
Determining the binding sites of the transcription factor is important for understanding of transcriptional regulation. Transcription factor c-Jun plays an important role in cell growth, differentiation and development, but the binding sites and the target genes are not clearly defined in the whole human genome. In this study, we performed a ChIP-Seq experiment to identify c-Jun binding site in the human genome. Forty-eight binding sites were selected to process further evaluation by dsDNA microarray assay. We identified 283 c-Jun binding sites in K562 cells. Data analysis showed that 48.8% binding sites located within 100 kb of the upstream of the annotated genes, 28.6% binding sites comprised consensus TRE/CRE motif (5'-TGAC/GTCA-3', 5'-TGACGTCA-3') and variant sequences. Forty-two out of the selected 48 binding sites were found to bind the c-Jun homodimer in dsDNA microarray analysis. Data analysis also showed that 1569 genes are located in the neighborhood of the 283 binding sites and 191 genes in the neighborhood of the 42 binding sites validated by dsDNA microarray. We consulted 38 c-Jun target genes in previous studies and 16 among these 38 genes were also detected in this study. The identification of c-Jun binding sites and potential target genes in the genome scale may improve our fundamental understanding in the molecular mechanisms underlying the transcription regulation related to c-Jun.
Collapse
Affiliation(s)
- Minli Li
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | | | | | | | | |
Collapse
|
29
|
Bein K, Leight H, Leikauf GD. JUN-CCAAT/enhancer-binding protein complexes inhibit surfactant-associated protein B promoter activity. Am J Respir Cell Mol Biol 2010; 45:436-44. [PMID: 21148742 DOI: 10.1165/rcmb.2010-0260oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The murine surfactant-associated protein B (Sftpb) gene promoter, spanning nucleotides -653 to +42, is composed of functionally distinct proximal and distal regions. Although both regions contain consensus/putative activator protein 1 (AP-1) sites, the distal, but not the proximal, region mediates the inhibition by jun proto-oncogene (JUN) of Sftpb promoter activity. In transient cotransfection assays, JUN inhibited the luciferase reporter activity of plasmid constructs containing Sftpb promoter fragments that lacked the distal putative AP-1 site, indicating that another regulatory motif mediates JUN-dependent inhibition. Electrophoretic mobility shift assays and in silico analyses identified a DNA target sequence (Sftpb nucleotides -339 to -316) and transcription factors that regulate Sftpb promoter activity. The identified sequence contains a CCAAT/enhancer-binding protein (C/EBP) consensus recognition element. Mutation of the site reduced Sftpb promoter activity and sensitivity to inhibition by JUN. Purified recombinant JUN, which did not recognize the -339 to -316 target sequence when added alone, supershifted the mobility of in vitro translated C/EBP-α and C/EBP-β proteins complexed with the identified cis-regulatory element. These findings support the idea that heterodimerization between JUN and C/EBP-α and/or C/EBP-β targets JUN to the Sftpb promoter, thereby mediating its inhibitory regulatory role.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15219-3130, USA.
| | | | | |
Collapse
|
30
|
Ahmed SU, Milner J. Basal cancer cell survival involves JNK2 suppression of a novel JNK1/c-Jun/Bcl-3 apoptotic network. PLoS One 2009; 4:e7305. [PMID: 19806201 PMCID: PMC2752166 DOI: 10.1371/journal.pone.0007305] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/07/2009] [Indexed: 11/23/2022] Open
Abstract
Background The regulation of apoptosis under basal (non-stress) conditions is crucial for normal mammalian development and also for normal cellular turnover in different tissues throughout life. Deficient regulation of basal apoptosis, or its perturbation, can result in impaired development and/or disease states including cancer. In contrast to stress-induced apoptosis the regulation of apoptosis under basal conditions is poorly understood. To address this issue we have compared basal- and stress-induced apoptosis in human epithelial cells of normal and cancerous origins. For this purpose we focussed our study on the opposing pro-apoptotic JNK/anti-apoptotic NFκB pathways. Methodology/Principal Findings Combinatorial RNAi plus gene knockout were employed to access and map basal regulatory pathways of apoptosis. Follow-on, in-depth analyses included exogenous expression of phosphorylation mutants and chromatin immunoprecipitation. We demonstrate that basal apoptosis is constitutively suppressed by JNK2 in a range of human cancer cell lines. This effect was not observed in non-cancer cells. Silencing JNK2 by RNAi resulted in JNK1-dependent apoptosis of cancer cells via up-regulation of the AP-1 factor c-Jun. Unexpectedly we discovered that JNK1 and c-Jun promote basal apoptosis in the absence of “activating phosphorylations” typically induced by stress. Hypo-phosphorylated c-Jun accumulated to high levels following JNK2 silencing, auto-regulated its own expression and suppressed expression of Bcl-3, an unusual IκB protein and regulator of NFκB. Basal apoptosis was mediated by components of the TNFα response pathway but was mechanistically distinct from TNFα-induced apoptosis. Conclusions/Significance Our results demonstrate that mechanistically distinct pathways operate to regulate apoptosis in mammalian cells under basal (physiological) versus stress-induced conditions. We also describe a novel apoptotic network which governs the basal survival of cancer cells. Such information is crucial for understanding normal cellular turnover during mammalian development and subsequently throughout life. This information also opens new avenues for therapeutic intervention in human proliferative disease states including cancer.
Collapse
Affiliation(s)
- Shafiq Uddin Ahmed
- YCR P53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Jo Milner
- YCR P53 Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Koziel J, Maciag-Gudowska A, Mikolajczyk T, Bzowska M, Sturdevant DE, Whitney AR, Shaw LN, DeLeo FR, Potempa J. Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One 2009; 4:e5210. [PMID: 19381294 PMCID: PMC2668171 DOI: 10.1371/journal.pone.0005210] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/18/2009] [Indexed: 12/26/2022] Open
Abstract
It is becoming increasingly apparent that Staphylococcus aureus are able to survive engulfment by macrophages, and that the intracellular environment of these host cells, which is essential to innate host defenses against invading microorganisms, may in fact provide a refuge for staphylococcal survival and dissemination. Based on this, we postulated that S. aureus might induce cytoprotective mechanisms by changing gene expression profiles inside macrophages similar to obligate intracellular pathogens, such as Mycobacterium tuberculosis. To validate our hypothesis we first ascertained whether S. aureus infection could affect programmed cell death in human (hMDMs) and mouse (RAW 264.7) macrophages and, specifically, protect these cells against apoptosis. Our findings indicate that S. aureus-infected macrophages are more resistant to staurosporine-induced cell death than control cells, an effect partly mediated via the inhibition of cytochrome c release from mitochondria. Furthermore, transcriptome analysis of human monocyte-derived macrophages during S. aureus infection revealed a significant increase in the expression of antiapoptotic genes. This was confirmed by quantitative RT-PCR analysis of selected genes involved in mitochondria-dependent cell death, clearly showing overexpression of BCL2 and MCL1. Cumulatively, the results of our experiments argue that S. aureus is able to induce a cytoprotective effect in macrophages derived from different mammal species, which can prevent host cell elimination, and thus allow intracellular bacterial survival. Ultimately, it is our contention that this process may contribute to the systemic dissemination of S. aureus infection.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Goetz CA, Baldwin AS. NF-kappaB pathways in the immune system: control of the germinal center reaction. Immunol Res 2009; 41:233-47. [PMID: 18670738 DOI: 10.1007/s12026-008-8033-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The NF-kappaB signaling pathway plays a critical role in regulating innate and adaptive immunity. This is clearly evident as mouse models deficient for numerous NF-kappaB subunits and upstream activators exhibit defects in the immune system ranging from impaired development of lymphocytes to defective adaptive immune responses. In this review, we focus on the role that NF-kappaB plays in the germinal center (GC) reaction. Specifically, we discuss the major NF-kappaB subunits and the IkappaB homolog, Bcl-3. Recent findings reveal that Bcl-6, an unrelated transcriptional repressor, is functionally similar to Bcl-3 as both factors may suppress p53 activity to allow for efficient GC formation to occur. We discuss potential mechanisms of action for Bcl-3 and Bcl-6 in this highly complex, but important process of B-cell affinity maturation.
Collapse
Affiliation(s)
- Christine A Goetz
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 405 West Dr., Room 213, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
33
|
Bcl-3 acts as an innate immune modulator by controlling antimicrobial responses in keratinocytes. J Invest Dermatol 2009; 129:2148-55. [PMID: 19282837 DOI: 10.1038/jid.2009.49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Innate immune responses involve the production of antimicrobial peptides (AMPs), chemokines, and cytokines. We report here the identification of B-cell leukemia (Bcl)-3 as a modulator of innate immune signaling in keratinocytes. In this study, it is shown that Bcl-3 is inducible by the Th2 cytokines IL-4 and IL-13 and is overexpressed in lesional skin of atopic dermatitis (AD) patients. Bcl-3 was shown to be important to cutaneous innate immune responses as silencing of Bcl-3 by small-interfering RNA (siRNA) reversed the downregulatory effect of IL-4 on the HBD3 expression. Bcl-3 silencing enhanced vitamin D3 (1,25D3)-induced gene expression of cathelicidin AMP in keratinocytes, suggesting a negative regulatory function on cathelicidin transcription. Furthermore, 1,25D3 suppressed Bcl-3 expression in vitro and in vivo. This study identified Bcl-3 as an important modulator of cutaneous innate immune responses and its possible therapeutic role in AD.
Collapse
|
34
|
Abstract
The transcription factor, NF-kappaB (nuclear factor-kappaB) and associated regulatory factors make up a multi-component signaling pathway that regulates a wide range of biological processes, including cell survival, proliferation, differentiation, stress response, and death, as well as immunity and inflammation. Aberrant NF-kappaB pathway activity is known to be associated with a host of diseases, including immune deficiencies, inflammatory disorders, and cancer. Recent advances in our understanding of the inner workings of the NF-kappaB pathway have led to the development of new therapeutic strategies for the treatment of these diseases. In this review, we focus on the regulation of the NF-kappaB pathway by Bcl-3 (B cell leukemia-3), a nuclear member of the IkappaB (inhibitor of NF-kappaB) family. Both the regulation and the function of Bcl-3 will be discussed.
Collapse
|
35
|
Frier BC, Noble EG, Locke M. Diabetes-induced atrophy is associated with a muscle-specific alteration in NF-kappaB activation and expression. Cell Stress Chaperones 2008; 13:287-96. [PMID: 18633731 PMCID: PMC2673946 DOI: 10.1007/s12192-008-0062-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/02/2007] [Accepted: 11/11/2007] [Indexed: 02/07/2023] Open
Abstract
NF-kappaB is a transcription factor implicated in pathological responses that develop during diabetes mellitus, including skeletal muscle atrophy. Given that NF-kappaB activation, protein composition, and content within diabetic skeletal muscle remain generally uncharacterized, a streptozotocin (STZ) model was used to assess NF-kappaB activation, composition, and content. Sprague-Dawley rats were injected with STZ (55 mg/kg) and after 30 days the soleus (SOL), plantaris (PL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles were assessed by electrophoresis mobility shift assay and western blotting. NF-kappaB activation was detected in all muscles examined, but was reduced in RG muscles from diabetic animals. Supershifts indicated NF-kappaB was composed primarily of p50 in diabetic and control animals. The content of both p65 and p52 was elevated in SOL and PL muscles, while p52 was decreased in RG. The coactivating protein, Bcl-3, was increased in WG and RG, but decreased in PL. Both p50 and RelB remained unchanged in all tissues examined. All muscles from diabetic animals demonstrated reduced mass when compared to controls, but only the gastrocnemius demonstrated atrophy as reflected by a reduced muscle-to-body mass ratio. In conclusion, diabetic alterations to the contents and activation of the NF-kappaB protein were tissue-specific, but did not appear to alter dimer composition of constitutively bound NF-kappaB. These results indicate that diabetes may alter NF-kappaB activity and expression in a muscle-specific manner.
Collapse
Affiliation(s)
- Bruce C. Frier
- School of Kinesiology, Faculty of Health Sciences, Research Institute, University of Western Ontario, London, ON Canada
| | - Earl G. Noble
- School of Kinesiology, Faculty of Health Sciences, Research Institute, University of Western Ontario, London, ON Canada
- Lawson Health, Research Institute, University of Western Ontario, London, ON Canada
| | - Marius Locke
- Faculty of Physical Education and Health, University of Toronto, 55 Harbord Street, , Toronto, ON M5S 2W6 Canada
| |
Collapse
|
36
|
Nakamura H, Ishii C, Suehiro M, Iguchi A, Kuroda K, Shimizu K, Shimizu N, Imadome KI, Yajima M, Fujiwara S. The latent membrane protein 1 (LMP1) encoded by Epstein-Barr virus induces expression of the putative oncogene Bcl-3 through activation of the nuclear factor-kappaB. Virus Res 2007; 131:170-9. [PMID: 17963943 DOI: 10.1016/j.virusres.2007.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
The Epstein-Barr virus (EBV)-encoded oncoprotein latent membrane protein 1 (LMP1) has an essential role in B-lymphocyte transformation by the virus and is expressed in certain EBV-associated tumors and lymphoproliferative disorders. By using the Flp-In/TREx-inducible expression system, we introduced LMP1 into two human cell lines, Jurkat and HEK-293, and found that in both of them the putative cellular oncogene Bcl-3 is rapidly induced following the expression of LMP1. Bcl-3 was also induced in Ramos cells after in vitro EBV infection and after transfection with an LMP1 expression vector. This LMP1-induced Bcl-3 expression is considered to be mediated by the transcription factor NF-kappaB, because (1) deletion of a critical NF-kappaB-binding site in the Bcl-3 promoter abolished its responsiveness to LMP1, (2) an IkappaB mutant that specifically inhibits NF-kappaB activity suppressed the LMP1-induced activation of the Bcl-3 promoter, and (3) an LMP1 mutant lacking its effector domain CTAR2, required for the activation of NF-kappaB, is severely impaired in its ability to induce Bcl-3. Western blot analyses showed that all EBV-infected and LMP1-expressing lymphoid cell lines express Bcl-3. These results suggest the possibility that Bcl-3 is involved in the pathogenesis of certain EBV-associated malignancies and lymphoproliferative disorders.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Infectious Diseases, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Matthews CP, Birkholz AM, Baker AR, Perella CM, Beck GR, Young MR, Colburn NH. Dominant-negative activator protein 1 (TAM67) targets cyclooxygenase-2 and osteopontin under conditions in which it specifically inhibits tumorigenesis. Cancer Res 2007; 67:2430-8. [PMID: 17363560 DOI: 10.1158/0008-5472.can-06-0522] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of activator protein 1 (AP-1) and nuclear factor kappaB (NFkappaB)-dependent transcription is required for tumor promotion in cell culture models and transgenic mice. Dominant-negative c-Jun (TAM67) blocks AP-1 activation by dimerizing with Jun or Fos family proteins and blocks NFkappaB activation by interacting with NFkappaB p65. Two-stage [7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)] skin carcinogenesis experiments in a model relevant to human cancer risk, transgenic mice expressing human papillomavirus 16 E7 oncogene (K14-HPV16-E7), show E7-enhanced tumor promotion. A cross to K14-TAM67-expressing mice results in dramatic inhibition of tumor promoter-induced AP-1 luciferase reporter activation and papillomagenesis. Epithelial specific TAM67 expression inhibits tumorigenesis without affecting TPA- or E7-induced hyperproliferation of the skin. Thus, the mouse model enriches for TAM67 targets relevant to tumorigenesis rather than to general cell proliferation or hyperplasia, implicating a subset of AP-1- and/or NFkappaB-dependent genes. The aim of the present study was to identify target genes responsible for TAM67 inhibition of DMBA-TPA-induced tumorigenesis. Microarray expression analysis of epidermal tissues revealed small sets of genes in which expression is both up-regulated by tumor promoter and down-regulated by TAM67. Among these, cyclooxygenase-2 (Cox-2/Ptgs2) and osteopontin (Opn/Spp1) are known to be functionally significant in driving carcinogenesis. Results identify both Cox-2 and Opn as transcriptional targets of TAM67 with CRE, but not NFkappaB sites important in the Cox-2 promoter and an AP-1 site important in the Opn promoter.
Collapse
Affiliation(s)
- Connie P Matthews
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Jang JY, Lee CE. IL-4-induced upregulation of adenine nucleotide translocase 3 and its role in Th cell survival from apoptosis. Cell Immunol 2006; 241:14-25. [PMID: 16930576 DOI: 10.1016/j.cellimm.2006.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 12/20/2022]
Abstract
We have identified mitochondrial adenine nucleotide translocase (ANT)3 as a novel target up-regulated by IL-4 in human T cells. The IL-4-induced ANT3 expression is dependent on tyrosine kinase, NF-kappaB, PI3K/Akt, and Erk pathways. In fact, IL-4 induced specific activation of NF-kappaB, Akt, and Erk in Jurkat T cells and partially rescued these cells from dexamethasone-induced apoptosis. The IL-4-mediated T cell survival was blocked by inhibitors of tyrosine kinase, NF-kappaB, PI3K/Akt, and Erk. During the IL-4-induced T cell rescue, there was a concomitant increase in ANT3, nuclear NF-kappaB, and Bcl-2 and a decrease in ANT1, I-kappaB, and mitochondrial Bax-alpha levels. Importantly, overexpression of ANT3 effectively protected T cells from dexamethasone-induced apoptosis, while forced expression of ANT1 caused apoptosis. In contrast, siRNA knock-out of ANT3 expression induced T cell apoptosis and blocked the IL-4-mediated cell survival. Together these results suggest that ANT3 has a potential role in Th cell survival and immune cell homeostasis.
Collapse
Affiliation(s)
- Ji-Young Jang
- Department of Biological Science and Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | |
Collapse
|
39
|
Santos CR, Blanco S, Sevilla A, Lazo PA. Vaccinia virus B1R kinase interacts with JIP1 and modulates c-Jun-dependent signaling. J Virol 2006; 80:7667-75. [PMID: 16840345 PMCID: PMC1563719 DOI: 10.1128/jvi.00967-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viruses have to adjust to the host cell to guarantee their life cycle and survival. This aspect of the virus-host cell interaction is probably performed by viral proteins, such as serine-threonine kinases, that are present early during infection. Vaccinia virus has an early Ser-Thr kinase, B1R, which, although required for successful viral infection, is poorly characterized regarding its effects on cellular proteins, and thus, its potential contribution to pathogenesis is not known. Signaling by mitogen-activated protein kinase (MAPK) is mediated by the assembly of complexes between these kinases and the JIP scaffold proteins. To understand how vaccinia virus B1R can affect the host, its roles in the cellular signaling by MAPK complexes and c-Jun activation have been studied. Independently of its kinase activity, B1R can interact with the central region of the JIP1 scaffold protein. The B1R-JIP1 complex increases the amount of MAPK bound to JIP1; thus, MKK7 and TAK1 either bind with higher affinity or bind more stably to JIP1, while there is an increase in the phosphorylation state of JNK bound to JIP1. The functional consequence of these more stable interactions is an increase in the activity of transcription factors, such as c-Jun, that respond to these complexes. Furthermore, B1R is also able to directly phosphorylate c-Jun in residues different from those targeted by JNK and, thus, B1R can also cooperate by an independent route in c-Jun activation. Vaccinia virus B1R can thus modulate the signaling of pathways that respond to cellular stress.
Collapse
Affiliation(s)
- Claudio R Santos
- IBMCC-Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | | | |
Collapse
|
40
|
Keutgens A, Robert I, Viatour P, Chariot A. Deregulated NF-kappaB activity in haematological malignancies. Biochem Pharmacol 2006; 72:1069-80. [PMID: 16854381 DOI: 10.1016/j.bcp.2006.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 01/22/2023]
Abstract
The NF-kappaB family of transcription factors plays key roles in the control of cell proliferation and apoptosis. Constitutive NF-kappaB activation is a common feature for most haematological malignancies and is therefore believed to be a crucial event for enhanced proliferation and survival of these malignant cells. In this review, we will describe the molecular mechanisms underlying NF-kappaB deregulation in haematological malignancies and will highlight what is still unclear in this field, 20 years after the discovery of this transcription factor.
Collapse
Affiliation(s)
- Aurore Keutgens
- Laboratory of Medical Chemistry, Center for Cellular and Molecular Therapy, Center for Biomedical Integrative Genoproteomics, University of Liege, Tour de Pathologie, +3 B23, CHU Sart-Tilman, 4000 Liège, Belgium
| | | | | | | |
Collapse
|
41
|
Abstract
Anaplastic large-cell lymphoma, T-/null-cell type (ALCL), is a rare disease that has only been well characterized for two decades. Despite this, the biology of ALCL is better understood than that of many other more common variants of lymphoma. This review focuses on the pathophysiology, clinical presentation, and therapy of ALCL, including stem cell transplantation. In particular, the text emphasizes how novel prognostic features and the evolving understanding of the biology of this disease will influence treatment selection and drug development.
Collapse
Affiliation(s)
- Eric Jacobsen
- Harvard Medical School, Dana-Farber Cancer Institute, Dana 1B30, 44 Binney Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
42
|
Brocke-Heidrich K, Ge B, Cvijic H, Pfeifer G, Löffler D, Henze C, McKeithan TW, Horn F. BCL3 is induced by IL-6 via Stat3 binding to intronic enhancer HS4 and represses its own transcription. Oncogene 2006; 25:7297-304. [PMID: 16732314 DOI: 10.1038/sj.onc.1209711] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BCL3 is a proto-oncogene affected by chromosomal translocations in some patients with chronic lymphocytic leukemia. It is an IkappaB family protein that is involved in transcriptional regulation of a number of NF-kappaB target genes. In this study, interleukin (IL)-6-induced BCL3 expression and its effect on survival of multiple myeloma (MM) cells were examined. We demonstrate the upregulation of BCL3 by IL-6 in INA-6 and other MM cell lines. Sequence analysis of the BCL3 gene locus revealed four potential signal transducer and activator of transcription (Stat) binding sites within two conserved intronic enhancers regions: one located within enhancer HS3 and three within HS4. Chromatin immunoprecipitation experiments showed increased Stat3 binding to both enhancers upon IL-6 stimulation. Silencing Stat3 expression by small interfering RNA (siRNA) abrogated BCL3 expression by IL-6. Using reporter gene assays, we demonstrate that BCL3 transcription depends on HS4. Mutation of the Stat motifs within HS4 abolished IL-6-dependent BCL3 induction. Furthermore, BCL3 transcription was inhibited by its own gene product. This repressive feedback is mediated by NF-kappaB sites within the promoter and HS3. Finally, we show that overexpression of BCL3 increases apoptosis, whereas BCL3-specific siRNA does not affect the viability of INA-6 cells suggesting that BCL3 is not essential for the survival of these cells.
Collapse
Affiliation(s)
- K Brocke-Heidrich
- Institute of Clinical Immunology and Transfusion Medicine, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Soma LA, Gollin SM, Remstein ED, Ketterling RP, Flynn HC, Rajasenan KK, Swerdlow SH. Splenic small B-cell lymphoma with IGH/BCL3 translocation. Hum Pathol 2006; 37:218-30. [PMID: 16426923 DOI: 10.1016/j.humpath.2005.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 09/21/2005] [Indexed: 11/30/2022]
Abstract
Isolated chromosomal translocations are important defining features of many non-Hodgkin lymphomas, especially of B-cell type. In contrast to some other translocations, the significance of IGH/BCL3 translocations is not well defined. Although often considered a feature of the ill-defined entity atypical chronic lymphocytic leukemia, very few cases are reported in which involvement of BCL3 and the precise B-cell neoplasm are both well documented. For this reason, we report a splenic-based CD5(-), CD10(-), CD43(-), CD23(-), CD103(-), FMC7(+), CD25(+) small B-cell lymphoma associated with epithelioid histiocyte clusters and a t(14;19)(q32;q13) representing an IGH/BCL3 translocation based on classical cytogenetic studies, chromosomal painting, and fluorescence in situ hybridization studies. The previously reported neoplasms with t(14;19)(q32;q13) or IGH/BCL3 translocations are also reviewed. The present case did not fall into any of the classic B-cell lymphoma categories and clearly did not represent chronic lymphocytic leukemia/small lymphocytic lymphoma. This case suggests that the IGH/BCL3 translocation may help to define a new clinicopathologic entity.
Collapse
Affiliation(s)
- Lorinda A Soma
- Division of Hematopathology, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Yeh PY, Kuo SH, Yeh KH, Chuang SE, Hsu CH, Chang WC, Lin HI, Gao M, Cheng AL. A pathway for tumor necrosis factor-alpha-induced Bcl10 nuclear translocation. Bcl10 is up-regulated by NF-kappaB and phosphorylated by Akt1 and then complexes with Bcl3 to enter the nucleus. J Biol Chem 2006; 281:167-175. [PMID: 16280327 DOI: 10.1074/jbc.m511014200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcl10 overexpression and nuclear translocation were originally identified in mucosa-associated lymphoid tissue lymphoma with t(1;14)(p32;q32) chromosome translocation. DNA amplification of Bcl10 was also found in other solid tumors. We have recently shown that nuclear translocation of Bcl10 is a specific molecular determinant of Helicobacter pylori-independent mucosa-associated lymphoid tissue lymphoma (Kuo, S.-H., Chen, L. T., Yeh, K.-H., Wu, M. S., Hsu, H. C., Yeh, P. Y., Mao, T. L., Chen, C. L., Doong, S. L., Lin, J. T., and Cheng, A.-L. (2004) J. Clin. Oncol. 22, 3491-3497). However, the molecular mechanism of Bcl10 nuclear translocation remains unknown. In this study, we observed that tumor necrosis factor-alpha (TNFalpha) up-regulates the expression of Bcl10 and induces a fraction of Bcl10 nuclear translocation in human breast carcinoma MCF7 cells. Chromatin immunoprecipitation assays and electrophoretic mobility shift assays indicated that an NF-kappaB-binding site resides in the Bcl10 5 '-untranslated region. This study also demonstrates that Akt1, activated by TNFalpha, phosphorylates Bcl10 at Ser218 and Ser231 and that phosphorylated Bcl10 subsequently complexes with Bcl3 to enter the nucleus. Either inhibition of Akt1 or depletion of Bcl3 blocks Bcl10 nuclear translocation. In summary, these findings characterize a molecular linkage that directs Bcl10 nuclear translocation in response to TNFalpha treatment.
Collapse
Affiliation(s)
- Pei Yen Yeh
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhao Y, Ramakrishnan A, Kim KE, Rabson AB. Regulation of Bcl-3 through interaction with the Lck tyrosine kinase. Biochem Biophys Res Commun 2005; 335:865-73. [PMID: 16099425 DOI: 10.1016/j.bbrc.2005.07.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 11/20/2022]
Abstract
bcl-3 is a protooncogene which undergoes chromosomal translocation in a subset of chronic B-cell lymphocytic leukemia cells. Bcl-3 is a unique IkappaB family protein that regulates transcription of a number of NF-kappaB target genes through interactions with NF-kappaB dimers. Based on previous studies, suggesting that Bcl-3 interacts with the Fyn tyrosine kinase in platelets, we investigated possible interactions of Bcl-3 with Lck, a related tyrosine kinase important in lymphoid cells. Protein-protein interactions between Bcl-3 and the Lck tyrosine kinase were identified both in vitro and in vivo. Lck enhanced Bcl-3-mediated activation of a p52/Bcl-3-responsive promoter in reporter gene assays independent of its tyrosine kinase activity, but requiring the Lck SH3 protein interaction domain. These studies suggest that Bcl-3 might participate in oncogenic pathways involving Lck.
Collapse
Affiliation(s)
- Yujie Zhao
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
46
|
Mathas S, Jöhrens K, Joos S, Lietz A, Hummel F, Janz M, Jundt F, Anagnostopoulos I, Bommert K, Lichter P, Stein H, Scheidereit C, Dörken B. Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood 2005; 106:4287-93. [PMID: 16123212 DOI: 10.1182/blood-2004-09-3620] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transcription factor nuclear factor kappa B (NF-kappaB) plays a central role in the pathogenesis of classical Hodgkin lymphoma (cHL). In anaplastic large-cell lymphomas (ALCLs), which share molecular lesions with cHL, the NF-kappaB system has not been equivalently investigated. Here we describe constitutive NF-kappaB p50 homodimer [(p50)2] activity in ALCL cells in the absence of constitutive activation of the IkappaB kinase (IKK) complex. Furthermore, (p50)2 contributes to the NF-kappaB activity in Hodgkin/Reed-Sternberg (HRS) cells. Bcl-3, which is an inducer of nuclear (p50)2 and is associated with (p50)2 in ALCL and HRS cell lines, is abundantly expressed in ALCL and HRS cells. Notably, a selective overexpression of Bcl-3 target genes is found in ALCL cells. By immunohistochemical screening of 288 lymphoma cases, a strong Bcl-3 expression in cHL and in peripheral T-cell non-Hodgkin lymphoma (T-NHL) including ALCL was found. In 3 of 6 HRS cell lines and 25% of primary ALCL, a copy number increase of the BCL3 gene locus was identified. Together, these data suggest that elevated Bcl-3 expression has an important function in cHL and peripheral T-NHL, in particular ALCL.
Collapse
Affiliation(s)
- Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, FG Dörken, D-13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schlette E, Rassidakis GZ, Canoz O, Medeiros LJ. Expression of bcl-3 in Chronic Lymphocytic Leukemia Correlates With Trisomy 12 and Abnormalities of Chromosome 19. Am J Clin Pathol 2005. [DOI: 10.1309/6q27q3ndgv8lw1bu] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Lou Z, O'Reilly S, Liang H, Maher VM, Sleight SD, McCormick JJ. Down-Regulation of Overexpressed Sp1 Protein in Human Fibrosarcoma Cell Lines Inhibits Tumor Formation. Cancer Res 2005. [DOI: 10.1158/0008-5472.1007.65.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Sp1 is a transcription factor for many genes, including genes involved in tumorigenesis. We found that human fibroblast cells malignantly transformed in culture by a carcinogen or by stable transfection of an oncogene express Sp1 at 8-fold to 18-fold higher levels than their parental cells. These cell lines form fibrosarcomas in athymic mice with a very short latency, and the cells from the tumors express the same high levels of Sp1. Similar high levels of Sp1 were found in the patient-derived fibrosarcoma cell lines tested, and in the tumors formed in athymic mice by these cell lines. To investigate the role of overexpression of Sp1 in malignant transformation of human fibroblasts, we transfected an Sp1 U1snRNA/Ribozyme into two human cell lines, malignantly transformed in culture by a carcinogen or overexpression of an oncogene, and into a patient-derived fibrosarcoma cell line. The level of expression of Sp1 in these transfected cell lines was reduced to near normal. The cells regained the spindle-shaped morphology and exhibited increased apoptosis and decreased expression of several genes linked to cancer, i.e., epithelial growth factor receptor, urokinase plasminogen activator, urokinase plasminogen activator receptor, and vascular endothelial growth factor. When injected into athymic mice, these cell lines with near normal levels of Sp1 failed to form tumors or did so only at a greatly reduced frequency and with a much longer latency. These data indicate that overexpression of Sp1 plays a causal role in malignant transformation of human fibroblasts and suggest that for cancers in which it is overexpressed, Sp1 constitutes a target for therapy.
Collapse
Affiliation(s)
- Zhenjun Lou
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Sandra O'Reilly
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Hongyan Liang
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Veronica M. Maher
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Stuart D. Sleight
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - J. Justin McCormick
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
49
|
Blasco F, Peñuelas S, Cascalló M, Hernández JL, Alemany C, Masa M, Calbó J, Soler M, Nicolás M, Pérez-Torras S, Gómez A, Tarrasón G, Noé V, Mazo A, Ciudad CJ, Piulats J. Expression profiles of a human pancreatic cancer cell line upon induction of apoptosis search for modulators in cancer therapy. Oncology 2004; 67:277-90. [PMID: 15557790 DOI: 10.1159/000081329] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/11/2004] [Indexed: 01/13/2023]
Abstract
We analyzed the differential gene expression in the pancreatic cancer cell line NP-18 upon induction of apoptosis caused by cyclin-dependent kinase inhibition triggered by either overexpression of the tumor suppressor gene p16(INK4A)using an adenoviral construction or incubation with the chemical inhibitors, roscovitine or olomoucine. Screening was performed using cDNA arrays from Clontech that allowed the determination of the expression of 1,176 genes specifically related with cancer. The analysis was carried out using the Atlas Image 2.01 (Clontech) and GeneSpring 4.2 (Silicon Genetics) softwares. Among the differentially expressed genes, we chose for further validation histone deacetylase 1 (HDAC1), von Hippel Lindau and decorin as upregulated genes, and Sp1, hypoxia-inducible factor-1 alpha and DNA primase as downregulated genes. The changes in the expression of these genes to mRNA were validated by quantitative RT-PCR and the final translation into protein by Western blot analysis. Inhibition of HDAC activity, Sp1 binding and DNA primase expression led to an increase in the level of apoptosis, both in parental cells and in doxorubicin-resistant cells. Therefore, these proteins could constitute possible targets to develop modulators in cancer chemotherapy that would increase or restore apoptosis.
Collapse
Affiliation(s)
- F Blasco
- Biomedical Research Laboratory, Merck Farma y Química, S.A., Science Park of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wessells J, Baer M, Young HA, Claudio E, Brown K, Siebenlist U, Johnson PF. BCL-3 and NF-kappaB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J Biol Chem 2004; 279:49995-50003. [PMID: 15465827 DOI: 10.1074/jbc.m404246200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS) induces expression of tumor necrosis factor alpha (TNFalpha) and other pro-inflammatory cytokines in macrophages. Following its induction, TNFalpha gene transcription is rapidly attenuated, in part due to the accumulation of NF-kappaB p50 homodimers that bind to three kappaB sites in the TNFalpha promoter. Here we have investigated the inhibitory role of BCL-3, an IkappaB-like protein that interacts exclusively with p50 and p52 homodimers. BCL-3 was induced by LPS with delayed kinetics and was associated with p50 in the nucleus. Forced expression of BCL-3 suppressed LPS-induced transcription from the TNFalpha promoter and inhibited two artificial promoters composed of TNFalphakappaB sites that preferentially bind p50 dimers. BCL-3-mediated repression was reversed by trichostatin A and was enhanced by overexpression of HDAC-1, indicating that transcriptional attenuation involves recruitment of histone deacetylase. Analysis of macrophages from p50 and BCL-3 knock-out mice revealed that both transcription factors negatively regulate TNFalpha expression and that BCL-3 inhibits IL-1alpha and IL-1beta. In contrast, induction of the anti-inflammatory cytokine IL-10 was reduced in BCL-3 null macrophages. BCL-3 was not required for the production of p50 homodimers but BCL-3 expression was severely diminished in p50-deficient cells. Together, these findings indicate that p50 and BCL-3 function as anti-inflammatory regulators in macrophages by attenuating transcription of pro-inflammatory cytokines and activating IL-10 expression.
Collapse
Affiliation(s)
- Jennifer Wessells
- Laboratory of Protein Dynamics and Signaling, NCI-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|