1
|
Firdous Z, Kalra S, Chattopadhyay R, Bari VK. Current insight into the role of mRNA decay pathways in fungal pathogenesis. Microbiol Res 2024; 283:127671. [PMID: 38479232 DOI: 10.1016/j.micres.2024.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.
Collapse
Affiliation(s)
- Zulikha Firdous
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Sapna Kalra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India.
| |
Collapse
|
2
|
Zuo Z, Roux ME, Dagdas YF, Rodriguez E, Petersen M. PAT mRNA decapping factors are required for proper development in Arabidopsis. FEBS Lett 2024; 598:1008-1021. [PMID: 38605280 DOI: 10.1002/1873-3468.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Evolutionarily conserved protein associated with topoisomerase II (PAT1) proteins activate mRNA decay through binding mRNA and recruiting decapping factors to optimize posttranscriptional reprogramming. Here, we generated multiple mutants of pat1, pat1 homolog 1 (path1), and pat1 homolog 2 (path2) and discovered that pat triple mutants exhibit extremely stunted growth and all mutants with pat1 exhibit leaf serration while mutants with pat1 and path1 display short petioles. All three PATs can be found localized to processing bodies and all PATs can target ASYMMETRIC LEAVES 2-LIKE 9 transcripts for decay to finely regulate apical hook and lateral root development. In conclusion, PATs exhibit both specific and redundant functions during different plant growth stages and our observations underpin the selective regulation of the mRNA decay machinery for proper development.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Yasin F Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
3
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
4
|
Vijjamarri AK, Gupta N, Onu C, Niu X, Zhang F, Kumar R, Lin Z, Greenberg M, Hinnebusch AG. mRNA decapping activators Pat1 and Dhh1 regulate transcript abundance and translation to tune cellular responses to nutrient availability. Nucleic Acids Res 2023; 51:9314-9336. [PMID: 37439347 PMCID: PMC10516646 DOI: 10.1093/nar/gkad584] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
We have examined the roles of yeast mRNA decapping-activators Pat1 and Dhh1 in repressing the translation and abundance of specific mRNAs in nutrient-replete cells using ribosome profiling, RNA-Seq, CAGE analysis of capped mRNAs, RNA Polymerase II ChIP-Seq, and TMT-mass spectrometry of mutants lacking one or both factors. Although the Environmental Stress Response (ESR) is activated in dhh1Δ and pat1Δ mutants, hundreds of non-ESR transcripts are elevated in a manner indicating cumulative repression by Pat1 and Dhh1 in wild-type cells. These mRNAs show both reduced decapping and diminished transcription in the mutants, indicating that impaired mRNA turnover drives transcript derepression in cells lacking Dhh1 or Pat1. mRNA degradation stimulated by Dhh1/Pat1 is not dictated by poor translation nor enrichment for suboptimal codons. Pat1 and Dhh1 also collaborate to reduce translation and protein production from many mRNAs. Transcripts showing concerted translational repression by Pat1/Dhh1 include mRNAs involved in cell adhesion or utilization of the poor nitrogen source allantoin. Pat1/Dhh1 also repress numerous transcripts involved in respiration, catabolism of non-preferred carbon or nitrogen sources, or autophagy; and we obtained evidence for elevated respiration and autophagy in the mutants. Thus, Pat1 and Dhh1 function as post-transcriptional repressors of multiple pathways normally activated only during nutrient limitation.
Collapse
Affiliation(s)
- Anil Kumar Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neha Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chisom Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Xiao Niu
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rakesh Kumar
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Zuo Z, Roux M, Rodriguez E, Petersen M. mRNA Decapping Factors LSM1 and PAT Paralogs Are Involved in Turnip Mosaic Virus Viral Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:125-130. [PMID: 35100808 DOI: 10.1094/mpmi-09-21-0220-sc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Turnip mosaic virus is a devastating potyvirus infecting many economically important brassica crops. In response to this, the plant host engages its RNA silencing machinery, involving AGO proteins, as a prominent strategy to restrain turnip mosaic virus (TuMV) infection. It has also been shown that the mRNA decay components DCP2 and VCS partake in viral infection suppression. Here, we report that the mRNA decapping components LSM1, PAT1, PATH1, and PATH2 are essential for TuMV infection. More specifically, lsm1a/lsm1b double mutants and pat1/path1/path2 triple mutants in summ2 background exhibit resistance to TuMV. Concurrently, we observed that TuMV interferes with the decapping function of LSM1 and PAT proteins as the mRNA-decay target genes UGT87A2 and ASL9 accumulate during TuMV infection. Moreover, as TuMV coat protein can be specifically found in complexes with PAT proteins but not LSM1, this suggests that TuMV "hijacks" decapping components via PAT proteins to support viral infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Milena Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Zuo Z, Roux ME, Saemundsson HP, Müller M, Munne Bosch S, Petersen M. The Arabidopsis thaliana mRNA decay factor PAT1 functions in osmotic stress responses and decaps ABA-responsive genes. FEBS Lett 2020; 595:253-263. [PMID: 33124072 DOI: 10.1002/1873-3468.13977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/12/2022]
Abstract
mRNA decapping plays essential roles in regulating gene expression during cellular reprogramming in response to developmental and environmental cues. The evolutionarily conserved PAT1 proteins activate decapping by binding mRNA, recruiting other decapping components, and promoting processing body (PB) assembly. Arabidopsis encodes 3 PAT proteins: PAT1, PATH1, and PATH2. Here, we report that only pat1 mutants exhibit hypersensitivity to ABA and that transcripts of ABA-responsive genes, but not those of ABA biosynthesis genes, persist longer in these mutants. The pat1 mutants also exhibit increased resistance to drought stress and resistance to Pythium irregulare. This is supported by assays showing that PAT1 functions specifically in decapping of the canonical ABA-responsive gene COR15A. In summary, PAT1 protein mediates decay of ABA-responsive genes and, thus, regulates stress responses.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark.,Novo Nordisk, Regulatory Affairs Durable Devices and Needles, Søborg, Denmark
| | | | - Maren Müller
- Department of Evolutionary Biology, Ecology & Environmental Sciences, Faculty of Biology, University of Barcelona, Spain
| | - Sergi Munne Bosch
- Department of Evolutionary Biology, Ecology & Environmental Sciences, Faculty of Biology, University of Barcelona, Spain
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Brambilla M, Martani F, Bertacchi S, Vitangeli I, Branduardi P. The Saccharomyces cerevisiae
poly (A) binding protein (Pab1): Master regulator of mRNA metabolism and cell physiology. Yeast 2018; 36:23-34. [DOI: 10.1002/yea.3347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marco Brambilla
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Francesca Martani
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Stefano Bertacchi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Ilaria Vitangeli
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
8
|
Vindry C, Marnef A, Broomhead H, Twyffels L, Ozgur S, Stoecklin G, Llorian M, Smith CW, Mata J, Weil D, Standart N. Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes. Cell Rep 2018; 20:1187-1200. [PMID: 28768202 PMCID: PMC5554784 DOI: 10.1016/j.celrep.2017.06.091] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Pat1 RNA-binding proteins, enriched in processing bodies (P bodies), are key players in cytoplasmic 5' to 3' mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA). Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3' UTR AU-rich elements. Changes in >180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.
Collapse
Affiliation(s)
- Caroline Vindry
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Aline Marnef
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse UT3, 31062 Toulouse, France
| | - Helen Broomhead
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Laure Twyffels
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Sevim Ozgur
- Max Planck Institute of Biochemistry, Am Klopferspitz, 82152 Martinsried, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, 69047 Heidelberg, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), 69047 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 68167 Mannheim, Germany
| | - Miriam Llorian
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Christopher W Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Dominique Weil
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement Paris Seine - Institut de Biologie Paris Seine (LBD - IBPS), 75005 Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
9
|
Brambilla M, Martani F, Branduardi P. The recruitment of the Saccharomyces cerevisiae poly(A)-binding protein into stress granules: new insights into the contribution of the different protein domains. FEMS Yeast Res 2017; 17:4061003. [DOI: 10.1093/femsyr/fox059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
|
10
|
Muppavarapu M, Huch S, Nissan T. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing. RNA Biol 2016; 13:455-65. [PMID: 26918764 DOI: 10.1080/15476286.2016.1154253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation.
Collapse
Affiliation(s)
- Mridula Muppavarapu
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| | - Susanne Huch
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| | - Tracy Nissan
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| |
Collapse
|
11
|
Mota S, Vieira N, Barbosa S, Delaveau T, Torchet C, Le Saux A, Garcia M, Pereira A, Lemoine S, Coulpier F, Darzacq X, Benard L, Casal M, Devaux F, Paiva S. Role of the DHH1 gene in the regulation of monocarboxylic acids transporters expression in Saccharomyces cerevisiae. PLoS One 2014; 9:e111589. [PMID: 25365506 PMCID: PMC4218774 DOI: 10.1371/journal.pone.0111589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023] Open
Abstract
Previous experiments revealed that DHH1, a RNA helicase involved in the regulation of mRNA stability and translation, complemented the phenotype of a Saccharomyces cerevisiae mutant affected in the expression of genes coding for monocarboxylic-acids transporters, JEN1 and ADY2 (Paiva S, Althoff S, Casal M, Leao C. FEMS Microbiol Lett, 1999, 170:301-306). In wild type cells, JEN1 expression had been shown to be undetectable in the presence of glucose or formic acid, and induced in the presence of lactate. In this work, we show that JEN1 mRNA accumulates in a dhh1 mutant, when formic acid was used as sole carbon source. Dhh1 interacts with the decapping activator Dcp1 and with the deadenylase complex. This led to the hypothesis that JEN1 expression is post-transcriptionally regulated by Dhh1 in formic acid. Analyses of JEN1 mRNAs decay in wild-type and dhh1 mutant strains confirmed this hypothesis. In these conditions, the stabilized JEN1 mRNA was associated to polysomes but no Jen1 protein could be detected, either by measurable lactate carrier activity, Jen1-GFP fluorescence detection or western blots. These results revealed the complexity of the expression regulation of JEN1 in S. cerevisiae and evidenced the importance of DHH1 in this process. Additionally, microarray analyses of dhh1 mutant indicated that Dhh1 plays a large role in metabolic adaptation, suggesting that carbon source changes triggers a complex interplay between transcriptional and post-transcriptional effects.
Collapse
Affiliation(s)
- Sandra Mota
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Centre of Health and Environmental Research (CISA), School of Allied Health Sciences, Polytechnic Institute of Porto, Vila Nova de Gaia, Portugal
| | - Neide Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sónia Barbosa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Thierry Delaveau
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Claire Torchet
- CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie UPMC, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
| | - Agnès Le Saux
- CNRS, FRE3630, Laboratoire de l’Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France
| | - Mathilde Garcia
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Ana Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sophie Lemoine
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Fanny Coulpier
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Xavier Darzacq
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Lionel Benard
- CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie UPMC, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Frédéric Devaux
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
12
|
The C-terminal domain from S. cerevisiae Pat1 displays two conserved regions involved in decapping factor recruitment. PLoS One 2014; 9:e96828. [PMID: 24830408 PMCID: PMC4022514 DOI: 10.1371/journal.pone.0096828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/11/2014] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic mRNA decay is a highly regulated process allowing cells to rapidly modulate protein production in response to internal and environmental cues. Mature translatable eukaryotic mRNAs are protected from fast and uncontrolled degradation in the cytoplasm by two cis-acting stability determinants: a methylguanosine (m7G) cap and a poly(A) tail at their 5′ and 3′ extremities, respectively. The hydrolysis of the m7G cap structure, known as decapping, is performed by the complex composed of the Dcp2 catalytic subunit and its partner Dcp1. The Dcp1-Dcp2 decapping complex has a low intrinsic activity and requires accessory factors to be fully active. Among these factors, Pat1 is considered to be a central scaffolding protein involved in Dcp2 activation but also in inhibition of translation initiation. Here, we present the structural and functional study of the C-terminal domain from S. cerevisiae Pat1 protein. We have identified two conserved and functionally important regions located at both extremities of the domain. The first region is involved in binding to Lsm1-7 complex. The second patch is specific for fungal proteins and is responsible for Pat1 interaction with Edc3. These observations support the plasticity of the protein interaction network involved in mRNA decay and show that evolution has extended the C-terminal alpha-helical domain from fungal Pat1 proteins to generate a new binding platform for protein partners.
Collapse
|
13
|
Structural integrity of centromeric chromatin and faithful chromosome segregation requires Pat1. Genetics 2013; 195:369-79. [PMID: 23893485 DOI: 10.1534/genetics.113.155291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The kinetochore (centromeric DNA and associated protein complex) is essential for faithful chromosome segregation and maintenance of genome stability. Here we report that an evolutionarily conserved protein Pat1 is a structural component of Saccharomyces cerevisiae kinetochore and associates with centromeres in a NDC10-dependent manner. Consistent with a role for Pat1 in kinetochore structure and function, a deletion of PAT1 results in delay in sister chromatid separation, errors in chromosome segregation, and defects in structural integrity of centromeric chromatin. Pat1 is involved in topological regulation of minichromosomes as altered patterns of DNA supercoiling were observed in pat1Δ cells. Studies with pat1 alleles uncovered an evolutionarily conserved region within the central domain of Pat1 that is required for its association with centromeres, sister chromatid separation, and faithful chromosome segregation. Taken together, our data have uncovered a novel role for Pat1 in maintaining the structural integrity of centromeric chromatin to facilitate faithful chromosome segregation and proper kinetochore function.
Collapse
|
14
|
The cellular decapping activators LSm1, Pat1, and Dhh1 control the ratio of subgenomic to genomic Flock House virus RNAs. J Virol 2013; 87:6192-200. [PMID: 23536653 DOI: 10.1128/jvi.03327-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Positive-strand RNA viruses depend on recruited host factors to control critical replication steps. Previously, it was shown that replication of evolutionarily diverse positive-strand RNA viruses, such as hepatitis C virus and brome mosaic virus, depends on host decapping activators LSm1-7, Pat1, and Dhh1 (J. Diez et al., Proc. Natl. Acad. Sci. U. S. A. 97:3913-3918, 2000; A. Mas et al., J. Virol. 80:246 -251, 2006; N. Scheller et al., Proc. Natl. Acad. Sci. U. S. A. 106:13517-13522, 2009). By using a system that allows the replication of the insect Flock House virus (FHV) in yeast, here we show that LSm1-7, Pat1, and Dhh1 control the ratio of subgenomic RNA3 to genomic RNA1 production, a key feature in the FHV life cycle mediated by a long-distance base pairing within RNA1. Depletion of LSM1, PAT1, or DHH1 dramatically increased RNA3 accumulation during replication. This was not caused by differences between RNA1 and RNA3 steady-state levels in the absence of replication. Importantly, coimmunoprecipitation assays indicated that LSm1-7, Pat1, and Dhh1 interact with the FHV RNA genome and the viral polymerase. By using a strategy that allows dissecting different stages of the replication process, we found that LSm1-7, Pat1, and Dhh1 did not affect the early replication steps of RNA1 recruitment to the replication complex or RNA1 synthesis. Furthermore, their function on RNA3/RNA1 ratios was independent of the membrane compartment, where replication occurs and requires ATPase activity of the Dhh1 helicase. Together, these results support that LSm1-7, Pat1, and Dhh1 control RNA3 synthesis. Their described function in mediating cellular mRNP rearrangements suggests a parallel role in mediating key viral RNP transitions, such as the one required to maintain the balance between the alternative FHV RNA1 conformations that control RNA3 synthesis.
Collapse
|
15
|
Taranukha D, Budovsky A, Gobshtis N, Braiman A, Porat Z, Aronov S, Fraifeld VE. Co-regulation of polar mRNA transport and lifespan in budding yeast Saccharomyces cerevisiae. Cell Cycle 2012; 11:4275-80. [PMID: 23111244 DOI: 10.4161/cc.22659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies have uncovered the links between aging, rejuvenation and polar protein transport in the budding yeast Saccharomyces cerevisiae. Here, we examined a still unexplored possibility for co-regulation of polar mRNA transport and lifespan. To monitor the amount and distribution of mRNA-containing granules in mother and daughter cells, we used a fluorescent mRNA-labeling system, with MFA2 as a reporter gene. The results obtained showed that deletion of the selected longevity regulators in budding yeast had a significant impact on the polar mRNA transport. This included changes in the amount of mRNA-containing granules in cytoplasm, their aggregation and distribution between the mother and daughter cells. A significant negative correlation was found between strain-specific longevity, amount of granules and total fluorescent intensity both in mother and daughter cells. As indicated by the coefficient of determination, approximately 50-75% of variation in yeast lifespan could be attributed to the differences in polar mRNA transport.
Collapse
Affiliation(s)
- Dmitri Taranukha
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang X, Zhang C, Chiang YC, Toomey S, Power MP, Granoff ME, Richardson R, Xi W, Lee DJ, Chase S, Laue TM, Denis CL. Use of the novel technique of analytical ultracentrifugation with fluorescence detection system identifies a 77S monosomal translation complex. Protein Sci 2012; 21:1253-68. [PMID: 22733647 DOI: 10.1002/pro.2110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 11/08/2022]
Abstract
A fundamental problem in proteomics is the identification of protein complexes and their components. We have used analytical ultracentrifugation with a fluorescence detection system (AU-FDS) to precisely and rapidly identify translation complexes in the yeast Saccharomyces cerevisiae. Following a one-step affinity purification of either poly(A)-binding protein (PAB1) or the large ribosomal subunit protein RPL25A in conjunction with GFP-tagged yeast proteins/RNAs, we have detected a 77S translation complex that contains the 80S ribosome, mRNA, and components of the closed-loop structure, eIF4E, eIF4G, and PAB1. This 77S structure, not readily observed previously, is consistent with the monosomal translation complex. The 77S complex abundance decreased with translational defects and following the stress of glucose deprivation that causes translational stoppage. By quantitating the abundance of the 77S complex in response to different stress conditions that block translation initiation, we observed that the stress of glucose deprivation affected translation initiation primarily by operating through a pathway involving the mRNA cap binding protein eIF4E whereas amino acid deprivation, as previously known, acted through the 43S complex. High salt conditions (1M KCl) and robust heat shock acted at other steps. The presumed sites of translational blockage caused by these stresses coincided with the types of stress granules, if any, which are subsequently formed.
Collapse
Affiliation(s)
- Xin Wang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schmid M, Poulsen MB, Olszewski P, Pelechano V, Saguez C, Gupta I, Steinmetz LM, Moore C, Jensen TH. Rrp6p controls mRNA poly(A) tail length and its decoration with poly(A) binding proteins. Mol Cell 2012; 47:267-80. [PMID: 22683267 DOI: 10.1016/j.molcel.2012.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 03/30/2012] [Accepted: 05/01/2012] [Indexed: 11/17/2022]
Abstract
Poly(A) (pA) tail binding proteins (PABPs) control mRNA polyadenylation, stability, and translation. In a purified system, S. cerevisiae PABPs, Pab1p and Nab2p, are individually sufficient to provide normal pA tail length. However, it is unknown how this occurs in more complex environments. Here we find that the nuclear exosome subunit Rrp6p counteracts the in vitro and in vivo extension of mature pA tails by the noncanonical pA polymerase Trf4p. Moreover, PABP loading onto nascent pA tails is controlled by Rrp6p; while Pab1p is the major PABP, Nab2p only associates in the absence of Rrp6p. This is because Rrp6p can interact with Nab2p and displace it from pA tails, potentially leading to RNA turnover, as evidenced for certain pre-mRNAs. We suggest that a nuclear mRNP surveillance step involves targeting of Rrp6p by Nab2p-bound pA-tailed RNPs and that pre-mRNA abundance is regulated at this level.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, DK-8000 Aarhus C., Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marnef A, Weil D, Standart N. RNA-related nuclear functions of human Pat1b, the P-body mRNA decay factor. Mol Biol Cell 2012; 23:213-24. [PMID: 22090346 PMCID: PMC3248899 DOI: 10.1091/mbc.e11-05-0415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 11/11/2022] Open
Abstract
The evolutionarily conserved Pat1 proteins are P-body components recently shown to play important roles in cytoplasmic gene expression control. Using human cell lines, we demonstrate that human Pat1b is a shuttling protein whose nuclear export is mediated via a consensus NES sequence and Crm1, as evidenced by leptomycin B (LMB) treatment. However, not all P-body components are nucleocytoplasmic proteins; rck/p54, Dcp1a, Edc3, Ge-1, and Xrn1 are insensitive to LMB and remain cytoplasmic in its presence. Nuclear Pat1b localizes to PML-associated foci and SC35-containing splicing speckles in a transcription-dependent manner, whereas in the absence of RNA synthesis, Pat1b redistributes to crescent-shaped nucleolar caps. Furthermore, inhibition of splicing by spliceostatin A leads to the reorganization of SC35 speckles, which is closely mirrored by Pat1b, indicating that it may also be involved in splicing processes. Of interest, Pat1b retention in these three nuclear compartments is mediated via distinct regions of the protein. Examination of the nuclear distribution of 4E-T(ransporter), an additional P-body nucleocytoplasmic protein, revealed that 4E-T colocalizes with Pat1b in PML-associated foci but not in nucleolar caps. Taken together, our findings strongly suggest that Pat1b participates in several RNA-related nuclear processes in addition to its multiple regulatory roles in the cytoplasm.
Collapse
Affiliation(s)
- Aline Marnef
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Dominique Weil
- UPMC University Paris 06, CNRS-FRE 3402, 75005 Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
19
|
Drummond SP, Hildyard J, Firczuk H, Reamtong O, Li N, Kannambath S, Claydon AJ, Beynon RJ, Eyers CE, McCarthy JEG. Diauxic shift-dependent relocalization of decapping activators Dhh1 and Pat1 to polysomal complexes. Nucleic Acids Res 2011; 39:7764-74. [PMID: 21712243 PMCID: PMC3177209 DOI: 10.1093/nar/gkr474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dhh1 and Pat1 in yeast are mRNA decapping activators/translational repressors thought to play key roles in the transition of mRNAs from translation to degradation. However, little is known about the physical and functional relationships between these proteins and the translation machinery. We describe a previously unknown type of diauxic shift-dependent modulation of the intracellular locations of Dhh1 and Pat1. Like the formation of P bodies, this phenomenon changes the spatial relationship between components involved in translation and mRNA degradation. We report significant spatial separation of Dhh1 and Pat1 from ribosomes in exponentially growing cells. Moreover, biochemical analyses reveal that these proteins are excluded from polysomal complexes in exponentially growing cells, indicating that they may not be associated with active states of the translation machinery. In contrast, under diauxic growth shift conditions, Dhh1 and Pat1 are found to co-localize with polysomal complexes. This work suggests that Dhh1 and Pat1 functions are modulated by a re-localization mechanism that involves eIF4A. Pull-down experiments reveal that the intracellular binding partners of Dhh1 and Pat1 change as cells undergo the diauxic growth shift. This reveals a new dimension to the relationship between translation activity and interactions between mRNA, the translation machinery and decapping activator proteins.
Collapse
Affiliation(s)
- Sheona P Drummond
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pat1 proteins: a life in translation, translation repression and mRNA decay. Biochem Soc Trans 2011; 38:1602-7. [PMID: 21118134 DOI: 10.1042/bst0381602] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pat1 proteins are conserved across eukaryotes. Vertebrates have evolved two Pat1 proteins paralogues, whereas invertebrates and yeast only possess one such protein. Despite their lack of known domains or motifs, Pat1 proteins are involved in several key post-transcriptional mechanisms of gene expression control. In yeast, Pat1p interacts with translating mRNPs (messenger ribonucleoproteins), and is responsible for translational repression and decapping activation, ultimately leading to mRNP degradation. Drosophila HPat and human Pat1b (PatL1) proteins also have conserved roles in the 5'→3' mRNA decay pathway. Consistent with their functions in silencing gene expression, Pat1 proteins localize to P-bodies (processing bodies) in yeast, Drosophila, Caenorhabditis elegans and human cells. Altogether, Pat1 proteins may act as scaffold proteins allowing the sequential binding of repression and decay factors on mRNPs, eventually leading to their degradation. In the present mini-review, we present the current knowledge on Pat1 proteins in the context of their multiple functions in post-transcriptional control.
Collapse
|
21
|
Harel-Sharvit L, Eldad N, Haimovich G, Barkai O, Duek L, Choder M. RNA polymerase II subunits link transcription and mRNA decay to translation. Cell 2010; 143:552-63. [PMID: 21074047 DOI: 10.1016/j.cell.2010.10.033] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/28/2010] [Accepted: 10/25/2010] [Indexed: 01/13/2023]
Abstract
Little is known about crosstalk between the eukaryotic transcription and translation machineries that operate in different cell compartments. The yeast proteins Rpb4p and Rpb7p represent one such link as they form a heterodimer that shuttles between the nucleus, where it functions in transcription, and the cytoplasm, where it functions in the major mRNA decay pathways. Here we show that the Rpb4/7 heterodimer interacts physically and functionally with components of the translation initiation factor 3 (eIF3), and is required for efficient translation initiation. Efficient translation in the cytoplasm depends on association of Rpb4/7 with RNA polymerase II (Pol II) in the nucleus, leading to a model in which Pol II remotely controls translation. Hence, like in prokaryotes, the eukaryotic translation is coupled to transcription. We propose that Rpb4/7, through its interactions at each step in the mRNA lifecycle, represents a class of factors, "mRNA coordinators," which integrate the various stages of gene expression into a system.
Collapse
Affiliation(s)
- Liat Harel-Sharvit
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Marnef A, Maldonado M, Bugaut A, Balasubramanian S, Kress M, Weil D, Standart N. Distinct functions of maternal and somatic Pat1 protein paralogs. RNA (NEW YORK, N.Y.) 2010; 16:2094-107. [PMID: 20826699 PMCID: PMC2957050 DOI: 10.1261/rna.2295410] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells. xPat1a and 1b have essentially mutually exclusive expression patterns in oogenesis and embryogenesis. xPat1a is degraded during meiotic maturation, via PEST-like regions, while xPat1b mRNA is translationally activated at GVBD by cytoplasmic polyadenylation. Pat1 proteins bind RNA in vitro, via a central domain, with a preference for G-rich sequences, including the NRAS 5' UTR G-quadruplex-forming sequence. When tethered to reporter mRNA, both Pat proteins repress translation in oocytes. Indeed, both epitope-tagged proteins interact with the same components of the CPEB RNP complex, including CPEB, Xp54, eIF4E1b, Rap55B, and ePAB. However, examining endogenous protein interactions, we find that in oocytes only xPat1a is a bona fide component of the CPEB RNP, and that xPat1b resides in a separate large complex. In tissue culture cells, hPat1b localizes to P-bodies, while mPat1a-GFP is either found weakly in P-bodies or disperses P-bodies in a dominant-negative fashion. Altogether we conclude that Pat1a and Pat1b proteins have distinct functions, mediated in separate complexes. Pat1a is a translational repressor in oocytes in a CPEB-containing complex, and Pat1b is a component of P-bodies in somatic cells.
Collapse
Affiliation(s)
- Aline Marnef
- Department of Biochemistry, University of Cambridge, Cambridge CB21QW, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Nakamura Y, Tanaka KJ, Miyauchi M, Huang L, Tsujimoto M, Matsumoto K. Translational repression by the oocyte-specific protein P100 in Xenopus. Dev Biol 2010; 344:272-83. [PMID: 20471969 DOI: 10.1016/j.ydbio.2010.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/09/2010] [Accepted: 05/07/2010] [Indexed: 01/10/2023]
Abstract
The translational regulation of maternal mRNAs is one of the most important steps in the control of temporal-spatial gene expression during oocyte maturation and early embryogenesis in various species. Recently, it has become clear that protein components of mRNPs play essential roles in the translational regulation of maternal mRNAs. In the present study, we investigated the function of P100 in Xenopus oocytes. P100 exhibits sequence conservation with budding yeast Pat1 and is likely the orthologue of human Pat1a (also called PatL2). P100 is maternally expressed in immature oocytes, but disappears during oocyte maturation. In oocytes, P100 is an RNA binding component of ribosome-free mRNPs, associating with other mRNP components such as Xp54, xRAP55 and CPEB. Translational repression by overexpression of P100 occurred when reporter mRNAs were injected into oocytes. Intriguingly, we found that when P100 was overexpressed in the oocytes, the kinetics of oocyte maturation was considerably retarded. In addition, overexpression of P100 in oocytes significantly affected the accumulation of c-Mos and cyclin B1 during oocyte maturation. These results suggest that P100 plays a role in regulating the translation of specific maternal mRNAs required for the progression of Xenopus oocyte maturation.
Collapse
Affiliation(s)
- Yoriko Nakamura
- Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Haas G, Braun JE, Igreja C, Tritschler F, Nishihara T, Izaurralde E. HPat provides a link between deadenylation and decapping in metazoa. ACTA ACUST UNITED AC 2010; 189:289-302. [PMID: 20404111 PMCID: PMC2856893 DOI: 10.1083/jcb.200910141] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Decapping of eukaryotic messenger RNAs (mRNAs) occurs after they have undergone deadenylation, but how these processes are coordinated is poorly understood. In this study, we report that Drosophila melanogaster HPat (homologue of Pat1), a conserved decapping activator, interacts with additional decapping factors (e.g., Me31B, the LSm1-7 complex, and the decapping enzyme DCP2) and with components of the CCR4-NOT deadenylase complex. Accordingly, HPat triggers deadenylation and decapping when artificially tethered to an mRNA reporter. These activities reside, unexpectedly, in a proline-rich region. However, this region alone cannot restore decapping in cells depleted of endogenous HPat but also requires the middle (Mid) and the very C-terminal domains of HPat. We further show that the Mid and C-terminal domains mediate HPat recruitment to target mRNAs. Our results reveal an unprecedented role for the proline-rich region and the C-terminal domain of metazoan HPat in mRNA decapping and suggest that HPat is a component of the cellular mechanism that couples decapping to deadenylation in vivo.
Collapse
Affiliation(s)
- Gabrielle Haas
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The control of mRNA degradation and translation are important for the regulation of gene expression. mRNA degradation is often initiated by deadenylation, which leads to decapping and 5'-3' decay. In the budding yeast Saccharomyces cerevisae, decapping is promoted by the Dhh1 and Pat1 proteins, which appear to both inhibit translation initiation and promote decapping. To understand the function of these factors, we identified the ribosome binding protein Stm1 as a multicopy suppressor of the temperature sensitivity of the pat1Delta strain. Stm1 loss-of-function alleles and overexpression strains show several genetic interactions with Pat1 and Dhh1 alleles in a manner consistent with Stm1 working upstream of Dhh1 to promote Dhh1 function. Consistent with Stm1 affecting Dhh1 function, stm1Delta strains are defective in the degradation of the EDC1 and COX17 mRNAs, whose decay is strongly affected by the loss of Dhh1. These results identify Stm1 as an additional component of the mRNA degradation machinery and suggest a possible connection of mRNA decapping to ribosome function.
Collapse
|
26
|
Tharun S. Roles of eukaryotic Lsm proteins in the regulation of mRNA function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:149-89. [PMID: 19121818 DOI: 10.1016/s1937-6448(08)01604-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The eukaryotic Lsm proteins belong to the large family of Sm-like proteins, which includes members from all organisms ranging from archaebacteria to humans. The Sm and Lsm proteins typically exist as hexameric or heptameric complexes in vivo and carry out RNA-related functions. Multiple complexes made up of different combinations of Sm and Lsm proteins are known in eukaryotes and these complexes are involved in a variety of functions such as mRNA decay in the cytoplasm, mRNA and pre-mRNA decay in the nucleus, pre-mRNA splicing, replication dependent histone mRNA 3'-end processing, etc. While most Lsm proteins function in the form of heteromeric complexes that include other Lsm proteins, some Lsm proteins are also known that do not behave in that manner. Abnormal expression of some Lsm proteins has also been implicated in human diseases. The various roles of eukaryotic Lsm complexes impacting mRNA function are discussed in this review.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
27
|
Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping. Mol Cell Biol 2007; 28:1298-312. [PMID: 18086885 DOI: 10.1128/mcb.00936-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of mRNA degradation and translation are important aspects of gene regulation. Recent results suggest that translation repression and mRNA decapping can be intertwined and involve the formation of a quiescent mRNP, which can accumulate in cytoplasmic foci referred to as P bodies. The Pat1 protein is a key component of this complex and an important activator of decapping, yet little is known about its function. In this work, we analyze Pat1 in Saccharomyces cerevisiae function by deletion and functional analyses. Our results identify two primary functional domains in Pat1: one promoting translation repression and P-body assembly and a second domain promoting mRNA decapping after assembly of the mRNA into a P-body mRNP. In addition, we provide evidence that Pat1 binds RNA and has numerous domain-specific interactions with mRNA decapping factors. These results indicate that Pat1 is an RNA binding protein and a multidomain protein that functions at multiple stages in the process of translation repression and mRNA decapping.
Collapse
|
28
|
Scheller N, Resa-Infante P, de la Luna S, Galao RP, Albrecht M, Kaestner L, Lipp P, Lengauer T, Meyerhans A, Díez J. Identification of PatL1, a human homolog to yeast P body component Pat1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1786-92. [PMID: 17936923 DOI: 10.1016/j.bbamcr.2007.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 08/23/2007] [Accepted: 08/24/2007] [Indexed: 11/29/2022]
Abstract
In yeast, the activators of mRNA decapping, Pat1, Lsm1 and Dhh1, accumulate in processing bodies (P bodies) together with other proteins of the 5'-3'-deadenylation-dependent mRNA decay pathway. The Pat1 protein is of particular interest because it functions in the opposing processes of mRNA translation and mRNA degradation, thus suggesting an important regulatory role. In contrast to other components of this mRNA decay pathway, the human homolog of the yeast Pat1 protein was unknown. Here we describe the identification of two human PAT1 genes and show that one of them, PATL1, codes for an ORF with similar features as the yeast PAT1. As expected for a protein with a fundamental role in translation control, PATL1 mRNA was ubiquitously expressed in all human tissues as were the mRNAs of LSM1 and RCK, the human homologs of yeast LSM1 and DHH1, respectively. Furthermore, fluorescence-tagged PatL1 protein accumulated in distinct foci that correspond to P bodies, as they co-localized with the P body components Lsm1, Rck/p54 and the decapping enzyme Dcp1. In addition, as for its yeast counterpart, PatL1 expression was required for P body formation. Taken together, these data emphasize the conservation of important P body components from yeast to human cells.
Collapse
|
29
|
Röther S, Sträßer K. The RNA polymerase II CTD kinase Ctk1 functions in translation elongation. Genes Dev 2007; 21:1409-21. [PMID: 17545469 PMCID: PMC1877752 DOI: 10.1101/gad.428407] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Translation is a highly complex process that is regulated by a multitude of factors. Here, we show that the conserved kinase Ctk1 functions in translation by enhancing decoding fidelity. Ctk1 associates with translating ribosomes in vivo and is needed for efficient translation. Ctk1 phosphorylates Rps2, a protein of the small ribosomal subunit, on Ser 238. Importantly, Ctk1-depleted as well as rps2-S238A mutant cells show a defect in translation elongation through an increase in the frequency of miscoding. The role of Ctk1 in translation may be conserved as the mammalian homolog of Ctk1, CDK9, also associates with polysomes. Since Ctk1 interacts with the TREX (transcription and mRNA export) complex, which couples transcription to mRNA export, Ctk1/CDK9 might bind to correctly processed mRNPs during transcription and accompany the mRNP to the ribosomes in the cytoplasm, where Ctk1 enhances efficient and accurate translation of the mRNA.
Collapse
Affiliation(s)
- Susanne Röther
- Gene Center and Laboratory of Molecular Biology, Department of Chemistry and Biochemistry, Ludwig Maximilians University of Munich (LMU), 81377 Munich, Germany
| | - Katja Sträßer
- Gene Center and Laboratory of Molecular Biology, Department of Chemistry and Biochemistry, Ludwig Maximilians University of Munich (LMU), 81377 Munich, Germany
- Corresponding author.E-MAIL ; FAX 49-89-2180-76945
| |
Collapse
|
30
|
Chowdhury A, Mukhopadhyay J, Tharun S. The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA (NEW YORK, N.Y.) 2007; 13:998-1016. [PMID: 17513695 PMCID: PMC1894922 DOI: 10.1261/rna.502507] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
Decapping is a critical step in mRNA decay. In the 5'-to-3' mRNA decay pathway conserved in all eukaryotes, decay is initiated by poly(A) shortening, and oligoadenylated mRNAs (but not polyadenylated mRNAs) are selectively decapped allowing their subsequent degradation by 5' to 3' exonucleolysis. The highly conserved heptameric Lsm1p-7p complex (made up of the seven Sm-like proteins, Lsm1p-Lsm7p) and its interacting partner Pat1p activate decapping by an unknown mechanism and localize with other decapping factors to the P-bodies in the cytoplasm. The Lsm1p-7p-Pat1p complex also protects the 3'-ends of mRNAs in vivo from trimming, presumably by binding to the 3'-ends. In order to determine the intrinsic RNA-binding properties of this complex, we have purified it from yeast and carried out in vitro analyses. Our studies revealed that it directly binds RNA at/near the 3'-end. Importantly, it possesses the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs such that the former are bound with much higher affinity than the latter. These results indicate that the intrinsic RNA-binding characteristics of this complex form a critical determinant of its in vivo interactions and functions.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | | | | |
Collapse
|
31
|
Mas A, Alves-Rodrigues I, Noueiry A, Ahlquist P, Díez J. Host deadenylation-dependent mRNA decapping factors are required for a key step in brome mosaic virus RNA replication. J Virol 2007; 80:246-51. [PMID: 16352549 PMCID: PMC1317526 DOI: 10.1128/jvi.80.1.246-251.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The genomes of positive-strand RNA [+RNA] viruses perform two mutually exclusive functions: they act as mRNAs for the translation of viral proteins and as templates for viral replication. A universal key step in the replication of +RNA viruses is the coordinated transition of the RNA genome from the cellular translation machinery to the viral replication complex. While host factors are involved in this step, their nature is largely unknown. By using the ability of the higher eukaryotic +RNA virus brome mosaic virus (BMV) to replicate in yeast, we previously showed that the host Lsm1p protein is required for efficient recruitment of BMV RNA from translation to replication. Here we show that in addition to Lsm1p, all tested components of the Lsm1p-7p/Pat1p/Dhh1p decapping activator complex, which functions in deadenylation-dependent decapping of cellular mRNAs, are required for BMV RNA recruitment for RNA replication. In contrast, other proteins of the decapping machinery, such as Edc1p and Edc2p from the deadenylation-dependent decapping pathway and Upf1p, Upf2p, and Upf3p from the deadenylation-independent decapping pathway, had no significant effects. The dependence of BMV RNA recruitment on the Lsm1p-7p/Pat1p/Dhh1p complex was linked exclusively to the 3' noncoding region of the BMV RNA. Collectively, our results suggest that the Lsm1p-7p/Pat1p/Dhh1p complex that transfers cellular mRNAs from translation to degradation might act as a key regulator in the switch from BMV RNA translation to replication.
Collapse
Affiliation(s)
- Antonio Mas
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
32
|
Coller J, Parker R. General translational repression by activators of mRNA decapping. Cell 2005; 122:875-86. [PMID: 16179257 PMCID: PMC1853273 DOI: 10.1016/j.cell.2005.07.012] [Citation(s) in RCA: 504] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/22/2005] [Accepted: 07/13/2005] [Indexed: 12/24/2022]
Abstract
Translation and mRNA degradation are affected by a key transition where eukaryotic mRNAs exit translation and assemble an mRNP state that accumulates into processing bodies (P bodies), cytoplasmic sites of mRNA degradation containing non-translating mRNAs, and mRNA degradation machinery. We identify the decapping activators Dhh1p and Pat1p as functioning as translational repressors and facilitators of P body formation. Strains lacking both Dhh1p and Pat1p show strong defects in mRNA decapping and P body formation and are blocked in translational repression. Contrastingly, overexpression of Dhh1p or Pat1p causes translational repression, P body formation, and arrests cell growth. Dhh1p, and its human homolog, RCK/p54, repress translation in vitro, and Dhh1p function is bypassed in vivo by inhibition of translational initiation. These results identify a broadly acting mechanism of translational repression that targets mRNAs for decapping and functions in translational control. We propose this mechanism is competitively balanced with translation, and shifting this balance is an important basis of translational control.
Collapse
Affiliation(s)
- Jeff Coller
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology University of Arizona Tucson, Arizona 85721
| | - Roy Parker
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology University of Arizona Tucson, Arizona 85721
- *Correspondence:
| |
Collapse
|
33
|
Tharun S, Muhlrad D, Chowdhury A, Parker R. Mutations in the Saccharomyces cerevisiae LSM1 gene that affect mRNA decapping and 3' end protection. Genetics 2005; 170:33-46. [PMID: 15716506 PMCID: PMC1449704 DOI: 10.1534/genetics.104.034322] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 01/20/2005] [Indexed: 11/18/2022] Open
Abstract
The decapping of eukaryotic mRNAs is a key step in their degradation. The heteroheptameric Lsm1p-7p complex is a general activator of decapping and also functions in protecting the 3' ends of deadenylated mRNAs from a 3'-trimming reaction. Lsm1p is the unique member of the Lsm1p-7p complex, distinguishing that complex from the functionally different Lsm2p-8p complex. To understand the function of Lsm1p, we constructed a series of deletion and point mutations of the LSM1 gene and examined their effects on phenotype. These studies revealed the following: (i) Mutations affecting the predicted RNA-binding and inter-subunit interaction residues of Lsm1p led to impairment of mRNA decay, suggesting that the integrity of the Lsm1p-7p complex and the ability of the Lsm1p-7p complex to interact with mRNA are important for mRNA decay function; (ii) mutations affecting the predicted RNA contact residues did not affect the localization of the Lsm1p-7p complex to the P-bodies; (iii) mRNA 3'-end protection could be indicative of the binding of the Lsm1p-7p complex to the mRNA prior to activation of decapping, since all the mutants defective in mRNA 3' end protection were also blocked in mRNA decay; and (iv) in addition to the Sm domain, the C-terminal domain of Lsm1p is also important for mRNA decay function.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA.
| | | | | | | |
Collapse
|
34
|
Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 2005; 39:197-216. [PMID: 15596551 DOI: 10.1080/10409230490513991] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The control of mRNA degradation is an important component of the regulation of gene expression since the steady-state concentration of mRNA is determined both by the rates of synthesis and of decay. Two general pathways of mRNA decay have been described in eukaryotes. Both pathways share the exonucleolytic removal of the poly(A) tail (deadenylation) as the first step. In one pathway, deadenylation is followed by the hydrolysis of the cap and processive degradation of the mRNA body by a 5' exonuclease. In the second pathway, the mRNA body is degraded by a complex of 3' exonucleases before the remaining cap structure is hydrolyzed. This review discusses the proteins involved in the catalysis and control of both decay pathways.
Collapse
Affiliation(s)
- Sylke Meyer
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
35
|
Dunn EF, Hammell CM, Hodge CA, Cole CN. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev 2005; 19:90-103. [PMID: 15630021 PMCID: PMC540228 DOI: 10.1101/gad.1267005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/02/2004] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, pre-mRNAs undergo extensive processing in the nucleus prior to export. Processing is subject to a quality-control mechanism that retains improperly processed transcripts at or near sites of transcription. A poly(A) tail added by the normal 3'-processing machinery is necessary but not sufficient for export. Retention depends on the exosome. In this study, we identify the poly(A)-binding protein, Pab1, and the poly(A) nuclease, PAN, as important factors that couple 3' processing to export. Pab1 contains a nonessential leucine-rich nuclear export signal and shuttles between the nucleus and the cytoplasm. It can exit the nucleus either as cargo of exportin 1 or bound to mRNA. Pab1 is essential but several bypass suppressors have been identified. Deletion of PAB1 from these bypass suppressor strains results in exosome-dependent retention at sites of transcription. Retention is also seen in cells lacking PAN, which Pab1 is thought to recruit and which may be responsible for the final step of mRNA biogenesis, trimming of the poly(A) tail to the length found on newly exported mRNAs. The studies presented here suggest that proper loading of Pab1 onto mRNAs and final trimming of the tail allows release from transcription sites and couples pre-mRNA processing to export.
Collapse
Affiliation(s)
- Ewan F Dunn
- Department of Biochemistry, the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
36
|
Kühn U, Wahle E. Structure and function of poly(A) binding proteins. ACTA ACUST UNITED AC 2004; 1678:67-84. [PMID: 15157733 DOI: 10.1016/j.bbaexp.2004.03.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 03/30/2004] [Accepted: 03/31/2004] [Indexed: 01/01/2023]
Abstract
Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay. In both functions, an interaction with the m7G cap at the 5' end of the message plays an important role. PABPN1 is involved in the synthesis of poly (A) tails, increasing the processivity of poly (A) polymerase and contributing to defining the length of a newly synthesized poly (A) tail.
Collapse
Affiliation(s)
- Uwe Kühn
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stasse. 3, D-06120 Halle, Germany
| | | |
Collapse
|
37
|
Kozlov G, De Crescenzo G, Lim NS, Siddiqui N, Fantus D, Kahvejian A, Trempe JF, Elias D, Ekiel I, Sonenberg N, O'Connor-McCourt M, Gehring K. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J 2003; 23:272-81. [PMID: 14685257 PMCID: PMC1271756 DOI: 10.1038/sj.emboj.7600048] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 12/01/2003] [Indexed: 11/08/2022] Open
Abstract
The C-terminal domain of poly(A)-binding protein (PABC) is a peptide-binding domain found in poly(A)-binding proteins (PABPs) and a HECT (homologous to E6-AP C-terminus) family E3 ubiquitin ligase. In protein synthesis, the PABC domain of PABP functions to recruit several translation factors possessing the PABP-interacting motif 2 (PAM2) to the mRNA poly(A) tail. We have determined the solution structure of the human PABC domain in complex with two peptides from PABP-interacting protein-1 (Paip1) and Paip2. The structures show a novel mode of peptide recognition, in which the peptide binds as a pair of beta-turns with extensive hydrophobic, electrostatic and aromatic stacking interactions. Mutagenesis of PABC and peptide residues was used to identify key protein-peptide interactions and quantified by isothermal calorimetry, surface plasmon resonance and GST pull-down assays. The results provide insight into the specificity of PABC in mediating PABP-protein interactions.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Gregory De Crescenzo
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Canada
| | - Nadia S Lim
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Nadeem Siddiqui
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Daniel Fantus
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Avak Kahvejian
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Jean-François Trempe
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Demetra Elias
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Irena Ekiel
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Canada
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Maureen O'Connor-McCourt
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6. Tel.: +1 514 398 7287; Fax: +1 514 398 7384; E-mail:
| |
Collapse
|
38
|
Tseng-Rogenski SSI, Chong JL, Thomas CB, Enomoto S, Berman J, Chang TH. Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes. Nucleic Acids Res 2003; 31:4995-5002. [PMID: 12930949 PMCID: PMC212811 DOI: 10.1093/nar/gkg712] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The DHH1 gene in the yeast Saccharomyces cerevisiae encodes a putative RNA helicase of remarkable sequence similarity to several other DExD/H-box proteins, including Xp54 in Xenopus laevis and Ste13p in Schizosaccharomyces pombe. We show here that over-expression of Xp54, an integral component of the stored messenger ribonucleoprotein (mRNP) particles, can rescue the loss of Dhh1p in yeast. Localization and sedimentation studies showed that Dhh1p exists predominantly in the cytoplasm and is present in large complexes whose sizes appear to vary according to the growth stage of the cell culture. In addition, deletion of dhh1, when placed in conjunction with the mutant dbp5 and ded1 alleles, resulted in a synergistically lethal effect, suggesting that Dhh1p may have a role in mRNA export and translation. Finally, similar to Ste13p, Dhh1p is required for sporulation in the budding yeast. Taken together, our data provide evidence that the functions of Dhh1p are conserved through evolution.
Collapse
|
39
|
Noueiry AO, Diez J, Falk SP, Chen J, Ahlquist P. Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for brome mosaic virus genomic RNA translation. Mol Cell Biol 2003; 23:4094-106. [PMID: 12773554 PMCID: PMC156131 DOI: 10.1128/mcb.23.12.4094-4106.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previously, we used the ability of the higher eukaryotic positive-strand RNA virus brome mosaic virus (BMV) to replicate in yeast to show that the yeast LSM1 gene is required for recruiting BMV RNA from translation to replication. Here we extend this observation to show that Lsm1p and other components of the Lsm1p-Lsm7p/Pat1p deadenylation-dependent mRNA decapping complex were also required for translating BMV RNAs. Inhibition of BMV RNA translation was selective, with no effect on general cellular translation. We show that viral genomic RNAs suitable for RNA replication were already distinguished from nonreplication templates at translation, well before RNA recruitment to replication. Among mRNA turnover pathways, only factors specific for deadenylated mRNA decapping were required for BMV RNA translation. Dependence on these factors was not only a consequence of the nonpolyadenylated nature of BMV RNAs but also involved the combined effects of the viral 5' and 3' noncoding regions and 2a polymerase open reading frame. High-resolution sucrose density gradient analysis showed that, while mutating factors in the Lsm1p-7p/Pat1p complex completely inhibited viral RNA translation, the levels of viral RNA associated with ribosomes were only slightly reduced in mutant yeast. This polysome association was further verified by using a conditional allele of essential translation initiation factor PRT1, which markedly decreased polysome association of viral genomic RNA in the presence or absence of an LSM7 mutation. Together, these results show that a defective Lsm1p-7p/Pat1p complex inhibits BMV RNA translation primarily by stalling or slowing the elongation of ribosomes along the viral open reading frame. Thus, factors in the Lsm1p-7p/Pat1p complex function not only in mRNA decapping but also in translation, and both translation and recruitment of BMV RNAs to viral RNA replication are regulated by a cell pathway that transfers mRNAs from translation to degradation.
Collapse
Affiliation(s)
- Amine O Noueiry
- Institute for Molecular Virology. Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
40
|
Mazzoni C, Mancini P, Verdone L, Madeo F, Serafini A, Herker E, Falcone C. A truncated form of KlLsm4p and the absence of factors involved in mRNA decapping trigger apoptosis in yeast. Mol Biol Cell 2003; 14:721-9. [PMID: 12589065 PMCID: PMC150003 DOI: 10.1091/mbc.e02-05-0258] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The LSM4 gene of Saccharomyces cerevisiae codes for an essential protein involved in pre-mRNA splicing and also in mRNA decapping, a crucial step for mRNA degradation. We previously demonstrated that the first 72 amino acids of the Kluyveromyces lactis Lsm4p (KlLsm4p), which contain the Sm-like domains, can restore cell viability in both K. lactis and S. cerevisiae cells not expressing the endogenous protein. However, the absence of the carboxy-terminal region resulted in a remarkable loss of viability in stationary phase cells (). Herein, we demonstrate that S. cerevisiae cells expressing the truncated LSM4 protein of K. lactis showed the phenotypic markers of yeast apoptosis such as chromatin condensation, DNA fragmentation, and accumulation of reactive oxygen species. The study of deletion mutants revealed that apoptotic markers were clearly evident also in strains lacking genes involved in mRNA decapping, such as LSM1, DCP1, and DCP2, whereas a slight effect was observed in strains lacking the genes DHH1 and PAT1. This is the first time that a connection between mRNA stability and apoptosis is reported in yeast, pointing to mRNA decapping as the crucial step responsible of the observed apoptotic phenotypes.
Collapse
Affiliation(s)
- Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Gilliland LU, Pawloski LC, Kandasamy MK, Meagher RB. Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:319-28. [PMID: 12535345 DOI: 10.1046/j.1365-313x.2003.01626.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arabidopsis contains eight actin genes. Of these ACT7 is the most strongly expressed in young plant tissues and shows the greatest response to physiological cues. Adult plants homozygous for the act7 mutant alleles show no obvious above-ground phenotypes, which suggests a high degree of functional redundancy among plant actins. However, act7-1 mutant plants are at a strong selective disadvantage when grown in competition with wild-type plants and therefore must have undetected physical defects. The act7-1 and act7-4 alleles contain T-DNA insertions just after the stop codon and within the first intron, respectively. Homozygous mutant seedlings of both alleles showed less than 7% of normal ACT7 protein levels. Mutants displayed delayed and less efficient germination, increased root twisting and waving, and retarded root growth. The act7-4 mutant showed the most dramatic reduction in root growth. The act7-4 root apical cells were not in straight files and contained oblique junctions between cells suggesting a possible role for ACT7 in determining cell polarity. Wild-type root growth was fully restored to the act7-1 mutant by the addition of an exogenous copy of the ACT7 gene. T-DNA insertions just downstream of the major polyadenylation sites (act7-2, act7-3) appeared fully wild type. The act7 mutant phenotypes demonstrate a significant requirement for functional ACT7 protein during root development and explain the strong negative selection component seen for the act7-1 mutant.
Collapse
Affiliation(s)
- Laura U Gilliland
- Department of Biochemistry, 215 Biochemistry Building, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
42
|
Uchida N, Hoshino SI, Imataka H, Sonenberg N, Katada T. A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J Biol Chem 2002; 277:50286-92. [PMID: 12381739 DOI: 10.1074/jbc.m203029200] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian GSPT, which consists of amino-terminal (N) and carboxyl-terminal (C) domains, functions as the eukaryotic releasing factor 3 (eRF3) by interacting with eRF1 in translation termination. This function requires only the C-domain that is homologous to the elongation factor (EF) 1alpha, while the N-domain interacts with polyadenylate-binding protein (PABP), which binds the poly(A) tail of mRNA and associates with the eukaryotic initiation factor (eIF) 4G. Here we describe a novel role of GSPT in translation. We first determined an amino acid sequence required for the PABP interaction in the N-domain. Inhibition of this interaction significantly attenuated translation of capped/poly(A)-tailed mRNA not only in an in vitro translation system but also in living cells. There was a PABP-dependent linkage between the termination factor complex eRF1-GSPT and the initiation factor eIF4G associating with 5' cap through eIF4E. Although the inhibition of the GSPT-PABP interaction did not affect the de novo formation of an 80 S ribosomal initiation complex, it appears to suppress the subsequent recycle of ribosome. These results indicate that GSPT/eRF3 plays an important role in translation cycle through the interaction with PABP, in addition to mediating the termination with eRF1.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
43
|
de la Cruz BJ, Prieto S, Scheffler IE. The role of the 5' untranslated region (UTR) in glucose-dependent mRNA decay. Yeast 2002; 19:887-902. [PMID: 12112242 DOI: 10.1002/yea.884] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
When S. cerevisiae are grown with glucose, SDH2 mRNA encoding the iron protein of the succinate dehydrogenase complex is unstable and present at low level. In yeast grown without glucose, SDH2 mRNA is stable and its level rises. Addition of glucose to a glucose-limited culture causes the SDH2 mRNA level to fall rapidly with a half-life of approximately 5-7 min. Previously the 5'UTR of the mRNA of SDH2 was shown to be necessary and sufficient to destabilize it in glucose (Lombardo et al., 1992). We now show that the SDH1 and SUC2 5'UTRs are capable of conferring glucose-sensitive mRNA instability. We also examine how changes in the SDH2 5'UTR affect glucose-triggered degradation. Finally, we show that changes in mRNA stability are correlated with changes in translational efficiency for these transcripts.
Collapse
Affiliation(s)
- Bernard J de la Cruz
- Department of Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA.
| | | | | |
Collapse
|
44
|
Kozlov G, Siddiqui N, Coillet-Matillon S, Trempe JF, Ekiel I, Sprules T, Gehring K. Solution structure of the orphan PABC domain from Saccharomyces cerevisiae poly(A)-binding protein. J Biol Chem 2002; 277:22822-8. [PMID: 11940585 DOI: 10.1074/jbc.m201230200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the solution structure of the PABC domain from Saccharomyces cerevisiae Pab1p and mapped its peptide-binding site. PABC domains are peptide binding domains found in poly(A)-binding proteins (PABP) and are a subset of HECT-family E3 ubiquitin ligases (also known as hyperplastic discs proteins (HYDs)). In mammals, the PABC domain of PABP functions to recruit several different translation factors to the mRNA poly(A) tail. PABC domains are highly conserved, with high specificity for peptide sequences of roughly 12 residues with conserved alanine, phenylalanine, and proline residues at positions 7, 10, and 12. Compared with human PABP, the yeast PABC domain is missing the first alpha helix, contains two extra amino acids between helices 2 and 3, and has a strongly bent C-terminal helix. These give rise to unique peptide binding specificity wherein yeast PABC binds peptides from Paip2 and RF3 but not Paip1. Mapping of the peptide-binding site reveals that the bend in the C-terminal helix disrupts binding interactions with the N terminus of peptide ligands and leads to greatly reduced binding affinity for the peptides tested. No high affinity or natural binding partners from S. cerevisiae could be identified by sequence analysis of known PABC ligands. Comparison of the three known PABC structures shows that the features responsible for peptide binding are highly conserved and responsible for the distinct but overlapping binding specificities.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA (NEW YORK, N.Y.) 2001; 7:1717-27. [PMID: 11780629 PMCID: PMC1370212 DOI: 10.1017/s135583820101994x] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A major pathway of mRNA turnover in eukaryotic cells initiates with deadenylation, leading to mRNA decapping and subsequent 5' to 3' exonuclease digestion. We show that a highly conserved member of the DEAD box family of helicases, Dhh1p, stimulates mRNA decapping in yeast. In dhh1delta mutants, mRNAs accumulate as deadenylated, capped species. Dhh1p's effects on decapping only occur on normal messages as nonsense-mediated decay still occurs in dhh1delta mutants. The role of Dhh1p in decapping appears to be direct, as Dhh1p physically interacts with several proteins involved in mRNA decapping including the decapping enzyme Dcp1p, as well as Lsm1p and Pat1p/Mrt1p, which function to enhance the decapping rate. Additional observations suggest Dhh1p functions to coordinate distinct steps in mRNA function and decay. Dhh1p also associates with Pop2p, a subunit of the mRNA deadenylase. In addition, genetic phenotypes suggest that Dhh1p also has a second biological function. Interestingly, Dhh1p homologs in others species function in maternal mRNA storage. This provides a novel link between the mechanisms of decapping and maternal mRNA translational repression.
Collapse
Affiliation(s)
- J M Coller
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.
| | | | | | | | | |
Collapse
|
46
|
Tharun S, Parker R. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell 2001; 8:1075-83. [PMID: 11741542 DOI: 10.1016/s1097-2765(01)00395-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major pathway of eukaryotic mRNA decay involves deadenylation-dependent decapping followed by 5' to 3' exonucleolytic degradation. By examining interactions among mRNA decay factors, the mRNA, and key translation factors, we have identified a critical transition in mRNP organization that leads to decapping and degradation of yeast mRNAs. This transition occurs after deadenylation and includes loss of Pab1p, eIF4E, and eIF4G from the mRNA and association of the decapping activator complex, Lsm1p-7p, which enhances the coimmunoprecipitation of a decapping enzyme complex (Dcp1p and Dcp2p) with the mRNA. These results define an important rearrangement in mRNP organization and suggest that deadenylation promotes mRNA decapping by both the loss of Pab1p and the recruitment of the Lsm1p-7p complex.
Collapse
Affiliation(s)
- S Tharun
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, 1007 E. Lowell, Tucson, AZ 85721, USA.
| | | |
Collapse
|
47
|
Abstract
Nuclear RNA-binding proteins can record pre-mRNA processing events in the structure of messenger ribonucleoprotein particles (mRNPs). During initial rounds of translation, the mature mRNP structure is established and is monitored by mRNA surveillance systems. Competition for the cap structure links translation and subsequent mRNA degradation, which may also involve multiple deadenylases.
Collapse
Affiliation(s)
- P Mitchell
- Wellcome Trust Centre for Cell Biology, ICMB, University of Edinburgh, Kings' Buildings, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
48
|
Abstract
The levels of cellular messenger RNA transcripts can be regulated by controlling the rate at which the mRNA decays. Because decay rates affect the expression of specific genes, they provide a cell with flexibility in effecting rapid change. Moreover, many clinically relevant mRNAs--including several encoding cytokines, growth factors and proto-oncogenes--are regulated by differential RNA stability. But what are the sequence elements and factors that control the half-lives of mRNAs?
Collapse
Affiliation(s)
- C J Wilusz
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School-UMDNJ, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
49
|
|