1
|
Faucher-Giguère L, de Préval BS, Rivera A, Scott MS, Elela SA. Small nucleolar RNAs: the hidden precursors of cancer ribosomes. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230376. [PMID: 40045787 PMCID: PMC11883439 DOI: 10.1098/rstb.2023.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 03/09/2025] Open
Abstract
Ribosomes are heterogeneous in terms of their constituent proteins, structural RNAs and ribosomal RNA (rRNA) modifications, resulting in diverse potential translatomes. rRNA modifications, guided by small nucleolar RNAs (snoRNAs), enable fine-tuning of ribosome function and translation profiles. Recent studies have begun linking dysregulation of snoRNAs, via rRNA modifications, to tumourigenesis. Deciphering the specific contributions of individual rRNA modifications to cancer hallmarks and identifying snoRNAs with oncogenic potential could lead to novel therapeutic strategies. These strategies might target snoRNAs or exploit the dependence of cancer cells on specific rRNA modification sites, potentially disrupting aberrant ribosomal translation programs and hindering tumour growth. This review discusses current evidence and challenges in linking changes in snoRNA expression to rRNA modification and cancer biology.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Laurence Faucher-Giguère
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Baudouin S. de Préval
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Andrea Rivera
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Michelle S. Scott
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| | - Sherif Abou Elela
- Department of Microbiology and Infectiology, University of Sherbrooke, Sherbrooke, QuébecJ1E 4K8, Canada
| |
Collapse
|
2
|
Zacchini F, Barozzi C, Venturi G, Montanaro L. How snoRNAs can contribute to cancer at multiple levels. NAR Cancer 2024; 6:zcae005. [PMID: 38406265 PMCID: PMC10894041 DOI: 10.1093/narcan/zcae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
snoRNAs are a class of non-coding RNAs known to guide site specifically RNA modifications such as 2'-O-methylation and pseudouridylation. Recent results regarding snoRNA alterations in cancer has been made available and suggest their potential evaluation as diagnostic and prognostic biomarkers. A large part of these data, however, was not consistently confirmed and failed to provide mechanistic insights on the contribution of altered snoRNA expression to the neoplastic process. Here, we aim to critically review the available literature on snoRNA in cancer focusing on the studies elucidating the functional consequences of their deregulation. Beyond the canonical guide function in RNA processing and modification we also considered additional roles in which snoRNA, in various forms and through different modalities, are involved and that have been recently reported.
Collapse
Affiliation(s)
- Federico Zacchini
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Chiara Barozzi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna I-40138, Italy
| | - Giulia Venturi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna I-40138, Italy
- Centre for Applied Biomedical Research – CRBA, University of Bologna, Sant’Orsola Hospital, Bologna I-40138, Italy
| | - Lorenzo Montanaro
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna I-40138, Italy
| |
Collapse
|
3
|
Monziani A, Ulitsky I. Noncoding snoRNA host genes are a distinct subclass of long noncoding RNAs. Trends Genet 2023; 39:908-923. [PMID: 37783604 DOI: 10.1016/j.tig.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.
Collapse
Affiliation(s)
- Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
4
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Thalalla Gamage S, Bortolin-Cavaillé ML, Link C, Bryson K, Sas-Chen A, Schwartz S, Cavaillé J, Meier JL. Antisense pairing and SNORD13 structure guide RNA cytidine acetylation. RNA (NEW YORK, N.Y.) 2022; 28:1582-1596. [PMID: 36127124 PMCID: PMC9670809 DOI: 10.1261/rna.079254.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/02/2022] [Indexed: 05/21/2023]
Abstract
N4-acetylcytidine (ac4C) is an RNA nucleobase found in all domains of life. The establishment of ac4C in helix 45 (h45) of human 18S ribosomal RNA (rRNA) requires the combined activity of the acetyltransferase NAT10 and the box C/D snoRNA SNORD13. However, the molecular mechanisms governing RNA-guided nucleobase acetylation in humans remain unexplored. After applying comparative sequence analysis and site-directed mutagenesis to provide evidence that SNORD13 folds into three main RNA helices, we report two assays that enable the study of SNORD13-dependent RNA acetylation in human cells. First, we demonstrate that ectopic expression of SNORD13 rescues h45 in a SNORD13 knockout cell line. Next, we show that mutant snoRNAs can be used in combination with nucleotide resolution ac4C sequencing to define structure and sequence elements critical for SNORD13 function. Finally, we develop a second method that reports on the substrate specificity of endogenous NAT10-SNORD13 via mutational analysis of an ectopically expressed pre-rRNA substrate. By combining mutational analysis of these reconstituted systems with nucleotide resolution ac4C sequencing, our studies reveal plasticity in the molecular determinants underlying RNA-guided cytidine acetylation that is distinct from deposition of other well-studied rRNA modifications (e.g., pseudouridine). Overall, our studies provide a new approach to reconstitute RNA-guided cytidine acetylation in human cells as well as nucleotide resolution insights into the mechanisms governing this process.
Collapse
Affiliation(s)
| | - Marie-Line Bortolin-Cavaillé
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse III; UPS; CNRS; 31062 Cedex 9, Toulouse, France
| | - Courtney Link
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Keri Bryson
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Aldema Sas-Chen
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6195001 Tel Aviv, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jérôme Cavaillé
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse III; UPS; CNRS; 31062 Cedex 9, Toulouse, France
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
6
|
Fractional 2'-O-methylation in the ribosomal RNA of Dictyostelium discoideum supports ribosome heterogeneity in Amoebozoa. Sci Rep 2022; 12:1952. [PMID: 35121764 PMCID: PMC8817022 DOI: 10.1038/s41598-022-05447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
A hallmark of ribosomal RNA (rRNA) are 2′-O-methyl groups that are introduced sequence specifically by box C/D small nucleolar RNAs (snoRNAs) in ribonucleoprotein particles. Most data on this chemical modification and its impact on RNA folding and stability are derived from organisms of the Opisthokonta supergroup. Using bioinformatics and RNA-seq data, we identify 30 novel box C/D snoRNAs in Dictyostelium discoideum, many of which are differentially expressed during the multicellular development of the amoeba. By applying RiboMeth-seq, we find 49 positions in the 17S and 26S rRNA 2′-O-methylated. Several of these nucleotides are substoichiometrically modified, with one displaying dynamic modification levels during development. Using homology-based models for the D. discoideum rRNA secondary structures, we localize many modified nucleotides in the vicinity of the ribosomal A, P and E sites. For most modified positions, a guiding box C/D snoRNA could be identified, allowing to determine idiosyncratic features of the snoRNA/rRNA interactions in the amoeba. Our data from D. discoideum represents the first evidence for ribosome heterogeneity in the Amoebozoa supergroup, allowing to suggest that it is a common feature of all eukaryotes.
Collapse
|
7
|
Yang Z, Wang J, Huang L, Lilley DMJ, Ye K. Functional organization of box C/D RNA-guided RNA methyltransferase. Nucleic Acids Res 2020; 48:5094-5105. [PMID: 32297938 PMCID: PMC7229835 DOI: 10.1093/nar/gkaa247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/14/2022] Open
Abstract
Box C/D RNA protein complexes (RNPs) catalyze site-specific 2'-O-methylation of RNA with specificity determined by guide RNAs. In eukaryotic C/D RNP, the paralogous Nop58 and Nop56 proteins specifically associate with terminal C/D and internal C'/D' motifs of guide RNAs, respectively. We have reconstituted active C/D RNPs with recombinant proteins of the thermophilic yeast Chaetomium thermophilum. Nop58 and Nop56 could not distinguish between the two C/D motifs in the reconstituted enzyme, suggesting that the assembly specificity is imposed by trans-acting factors in vivo. The two C/D motifs are functionally independent and halfmer C/D RNAs can also guide site-specific methylation. Extensive pairing between C/D RNA and substrate is inhibitory to modification for both yeast and archaeal C/D RNPs. N6-methylated adenine at box D/D' interferes with the function of the coupled guide. Our data show that all C/D RNPs share the same functional organization and mechanism of action and provide insight into the assembly specificity of eukaryotic C/D RNPs.
Collapse
Affiliation(s)
- Zuxiao Yang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhang D, Zhou J, Gao J, Wu RY, Huang YL, Jin QW, Chen JS, Tang WZ, Yan LH. Targeting snoRNAs as an emerging method of therapeutic development for cancer. Am J Cancer Res 2019; 9:1504-1516. [PMID: 31497339 PMCID: PMC6726984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/18/2019] [Indexed: 06/10/2023] Open
Abstract
The relevance of the dysregulation of snoRNAs in human cancer has been widely investigated and has challenged the view that snoRNAs merely function as house-keeping genes for the posttranscriptional modification of rRNAs. Accumulating evidence has shown the intimate connection between snoRNAs and proliferation, apoptosis, invasion and migration of tumor cells via manual intervention patterns of snoRNA expression. In this review, we focused on how snoRNAs are dysregulated and its regulation of the formation and development of cancer. We summarized the non-classical functions of snoRNAs in the context of their regulations of the signaling pathways involving PI3K-AKT and K-Ras and p53-dependant manner. Under these novel functions and characteristics, snoRNAs can act as potential and feasible biomarkers for diagnosis. Simultaneously, these promising therapeutic strategies should be considered to counteract the perturbations of snoRNAs.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Juan Zhou
- Department of Gynecological Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jie Gao
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ri-Ying Wu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ying-Long Huang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qin-Wen Jin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-Si Chen
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Zhong Tang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lin-Hai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
Dodbele S, Moreland B, Gardner SM, Bundschuh R, Jackman JE. 5'-End sequencing in Saccharomyces cerevisiae offers new insights into 5'-ends of tRNA H is and snoRNAs. FEBS Lett 2019; 593:971-981. [PMID: 30908619 DOI: 10.1002/1873-3468.13364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/19/2023]
Abstract
tRNAH is guanylyltransferase (Thg1) specifies eukaryotic tRNAH is identity by catalysing a 3'-5' non-Watson-Crick (WC) addition of guanosine to the 5'-end of tRNAH is . Thg1 family enzymes in Archaea and Bacteria, called Thg1-like proteins (TLPs), catalyse a similar but distinct 3'-5' addition in an exclusively WC-dependent manner. Here, a genetic system in Saccharomyces cerevisiae was employed to further assess the biochemical differences between Thg1 and TLPs. Utilizing a novel 5'-end sequencing pipeline, we find that a Bacillus thuringiensis TLP sustains the growth of a thg1Δ strain by maintaining a WC-dependent addition of U-1 across from A73 . Additionally, we observe 5'-end heterogeneity in S. cerevisiae small nucleolar RNAs (snoRNAs), an observation that may inform methods of annotation and mechanisms of snoRNA processing.
Collapse
Affiliation(s)
- Samantha Dodbele
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Blythe Moreland
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Spencer M Gardner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jane E Jackman
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Terns MP, Terns RM. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr 2018; 10:17-39. [PMID: 11868985 PMCID: PMC5977530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The small nucleolar RNAs (snoRNAs) are an abundant class of trans-acting RNAs that function in ribosome biogenesis in the eukaryotic nucleolus. Elegant work has revealed that most known snoRNAs guide modification of pre-ribosomal RNA (pre-rRNA) by base pairing near target sites. Other snoRNAs are involved in cleavage of pre-rRNA by mechanisms that have not yet been detailed. Moreover, our appreciation of the cellular roles of the snoRNAs is expanding with new evidence that snoRNAs also target modification of small nuclear RNAs and messenger RNAs. Many snoRNAs are produced by unorthodox modes of biogenesis including salvage from introns of pre-mRNAs. The recent discovery that homologs of snoRNAs as well as associated proteins exist in the domain Archaea indicates that the RNA-guided RNA modification system is of ancient evolutionary origin. In addition, it has become clear that the RNA component of vertebrate telomerase (an enzyme implicated in cancer and cellular senescence) is related to snoRNAs. During its evolution, vertebrate telomerase RNA appears to have co-opted a snoRNA domain that is essential for the function of telomerase RNA in vivo. The unique properties of snoRNAs are now being harnessed for basic research and therapeutic applications.
Collapse
MESH Headings
- Animals
- Base Pairing
- Biological Transport
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Eukaryotic Cells/metabolism
- Evolution, Molecular
- Methylation
- Prokaryotic Cells/metabolism
- Pseudouridine/metabolism
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/physiology
- RNA, Catalytic/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/physiology
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribosomes/metabolism
- Species Specificity
- Structure-Activity Relationship
- Telomerase/metabolism
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.
| | | |
Collapse
|
11
|
Jorjani H, Kehr S, Jedlinski DJ, Gumienny R, Hertel J, Stadler PF, Zavolan M, Gruber AR. An updated human snoRNAome. Nucleic Acids Res 2016; 44:5068-82. [PMID: 27174936 PMCID: PMC4914119 DOI: 10.1093/nar/gkw386] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs that guide the post-transcriptional processing of other non-coding RNAs (mostly ribosomal RNAs), but have also been implicated in processes ranging from microRNA-dependent gene silencing to alternative splicing. In order to construct an up-to-date catalog of human snoRNAs we have combined data from various databases, de novo prediction and extensive literature review. In total, we list more than 750 curated genomic loci that give rise to snoRNA and snoRNA-like genes. Utilizing small RNA-seq data from the ENCODE project, our study characterizes the plasticity of snoRNA expression identifying both constitutively as well as cell type specific expressed snoRNAs. Especially, the comparison of malignant to non-malignant tissues and cell types shows a dramatic perturbation of the snoRNA expression profile. Finally, we developed a high-throughput variant of the reverse-transcriptase-based method for identifying 2'-O-methyl modifications in RNAs termed RimSeq. Using the data from this and other high-throughput protocols together with previously reported modification sites and state-of-the-art target prediction methods we re-estimate the snoRNA target RNA interaction network. Our current results assign a reliable modification site to 83% of the canonical snoRNAs, leaving only 76 snoRNA sequences as orphan.
Collapse
Affiliation(s)
- Hadi Jorjani
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany
| | - Dominik J Jedlinski
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| | - Rafal Gumienny
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| | - Jana Hertel
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology, D-04103 Leipzig, Germany Department of Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria Santa Fe Institute, NM-87501Santa Fe, USA
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| | - Andreas R Gruber
- Computational and Systems Biology, Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel CH-4056, Switzerland
| |
Collapse
|
12
|
Keller A, Meese E. Can circulating miRNAs live up to the promise of being minimal invasive biomarkers in clinical settings? WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:148-56. [PMID: 26670867 DOI: 10.1002/wrna.1320] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/23/2022]
Abstract
MicroRNAs have been discussed as non- or minimal invasive biomarkers with a remarkable extracellular stability. Despite a multitude of studies in basic research, there are only few independent validation studies on blood-born miRNAs as disease markers. Toward clinical applications numerous obstacles still need to be overcome. They are of technical origin but also fundamentally associated with the source and the nature of miRNAs. Here, we emphasize on potential confounding factors, the nature and the source of miRNAs. We recently showed that age and gender could influence the pattern of circulating miRNAs. On the cellular level, the miRNA pattern differs between plasma and serum preparations. On the molecular level, one has to differentiate between extracellular miRNAs that are encapsulated in microvesicles or bound to proteins or high-density lipoproteins. Using whole blood as source for miRNAs helps to minimize miRNA expression changes due to environmental influences and allows attributing miRNA changes to their cells of origin like B-cells and T-cells. Moreover, unambiguous annotation and differentiation from other noncoding RNAs can be challenging. Even not all miRNAs deposited in miRBase do necessarily represent true miRNAs, just a fraction of miRNAs in the reference database have been experimentally validated by Northern blotting. Functional evidence for a true miRNA should be obtained by cloning the precursor miRNA and by subsequent detection of the processed mature form in host cells. Surprisingly, attempts to finally confirm a true miRNA are frequently postponed until evidence has been established for a likely value as biomarker.
Collapse
Affiliation(s)
- Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, University Hospital, Homburg, Germany
| |
Collapse
|
13
|
Dupuis-Sandoval F, Poirier M, Scott MS. The emerging landscape of small nucleolar RNAs in cell biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:381-97. [PMID: 25879954 PMCID: PMC4696412 DOI: 10.1002/wrna.1284] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are a large class of small noncoding RNAs present in all eukaryotes sequenced thus far. As a family, they have been well characterized as playing a central role in ribosome biogenesis, guiding either the sequence-specific chemical modification of pre-rRNA (ribosomal RNA) or its processing. However, in higher eukaryotes, numerous orphan snoRNAs were described over a decade ago, with no known target or ascribed function, suggesting the possibility of alternative cellular functionality. In recent years, thanks in great part to advances in sequencing methodologies, we have seen many examples of the diversity that exists in the snoRNA family on multiple levels. In this review, we discuss the identification of novel snoRNA members, of unexpected binding partners, as well as the clarification and extension of the snoRNA target space and the characterization of diverse new noncanonical functions, painting a new and extended picture of the snoRNA landscape. Under the deluge of novel features and functions that have recently come to light, snoRNAs emerge as a central, dynamic, and highly versatile group of small regulatory RNAs. WIREs RNA 2015, 6:381–397. doi: 10.1002/wrna.1284
Collapse
Affiliation(s)
- Fabien Dupuis-Sandoval
- Biochemistry Department, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Mikaël Poirier
- Biochemistry Department, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Michelle S Scott
- Biochemistry Department and RNA Group, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
14
|
Mo D, Raabe CA, Reinhardt R, Brosius J, Rozhdestvensky TS. Alternative processing as evolutionary mechanism for the origin of novel nonprotein coding RNAs. Genome Biol Evol 2014; 5:2061-71. [PMID: 24132753 PMCID: PMC3845636 DOI: 10.1093/gbe/evt155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The evolution of new genes can ensue through either gene duplication and the neofunctionalization of one of the copies or the formation of a de novo gene from hitherto nonfunctional, neutrally evolving intergenic or intronic genomic sequences. Only very rarely are entire genes created de novo. Mostly, nonfunctional sequences are coopted as novel parts of existing genes, such as in the process of exonization whereby introns become exons through changes in splicing. Here, we report a case in which a novel nonprotein coding RNA evolved by intron-sequence recruitment into its structure. cDNAs derived from rat brain small RNAs, revealed a novel small nucleolar RNA (snoRNA) originating from one of the Snord115 copies in the rat Prader–Willi syndrome locus. We suggest that a single-point substitution in the Snord115 region led to the expression of a longer snoRNA variant, designated as L-Snord115. Cell culture and footprinting experiments confirmed that a single nucleotide substitution at Snord115 position 67 destabilized the kink-turn motif within the canonical snoRNA, while distal intronic sequences provided an alternate D-box region. The exapted sequence displays putative base pairing to 28S rRNA and mRNA targets.
Collapse
Affiliation(s)
- Dingding Mo
- Institute of Experimental Pathology, ZMBE, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
15
|
Deschamps-Francoeur G, Garneau D, Dupuis-Sandoval F, Roy A, Frappier M, Catala M, Couture S, Barbe-Marcoux M, Abou-Elela S, Scott MS. Identification of discrete classes of small nucleolar RNA featuring different ends and RNA binding protein dependency. Nucleic Acids Res 2014; 42:10073-85. [PMID: 25074380 PMCID: PMC4150776 DOI: 10.1093/nar/gku664] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are among the first discovered and most extensively studied group of small non-coding RNA. However, most studies focused on a small subset of snoRNAs that guide the modification of ribosomal RNA. In this study, we annotated the expression pattern of all box C/D snoRNAs in normal and cancer cell lines independent of their functions. The results indicate that C/D snoRNAs are expressed as two distinct forms differing in their ends with respect to boxes C and D and in their terminal stem length. Both forms are overexpressed in cancer cell lines but display a conserved end distribution. Surprisingly, the long forms are more dependent than the short forms on the expression of the core snoRNP protein NOP58, thought to be essential for C/D snoRNA production. In contrast, a subset of short forms are dependent on the splicing factor RBFOX2. Analysis of the potential secondary structure of both forms indicates that the k-turn motif required for binding of NOP58 is less stable in short forms which are thus less likely to mature into a canonical snoRNP. Taken together the data suggest that C/D snoRNAs are divided into at least two groups with distinct maturation and functional preferences.
Collapse
Affiliation(s)
- Gabrielle Deschamps-Francoeur
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Daniel Garneau
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Québec J1E 4K8, Canada Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Fabien Dupuis-Sandoval
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Audrey Roy
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Marie Frappier
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Mathieu Catala
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Québec J1E 4K8, Canada Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sonia Couture
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Québec J1E 4K8, Canada Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Mélissa Barbe-Marcoux
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Sherif Abou-Elela
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Québec J1E 4K8, Canada Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Michelle S Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
16
|
Kishore S, Gruber AR, Jedlinski DJ, Syed AP, Jorjani H, Zavolan M. Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome Biol 2013; 14:R45. [PMID: 23706177 PMCID: PMC4053766 DOI: 10.1186/gb-2013-14-5-r45] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/15/2013] [Accepted: 05/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, a variety of small RNAs derived from other RNAs with well-known functions such as tRNAs and snoRNAs, have been identified. The functional relevance of these RNAs is largely unknown. To gain insight into the complexity of snoRNA processing and the functional relevance of snoRNA-derived small RNAs, we sequence long and short RNAs, small RNAs that co-precipitate with the Argonaute 2 protein and RNA fragments obtained in photoreactive nucleotide-enhanced crosslinking and immunoprecipitation (PAR-CLIP) of core snoRNA-associated proteins. RESULTS Analysis of these data sets reveals that many loci in the human genome reproducibly give rise to C/D box-like snoRNAs, whose expression and evolutionary conservation are typically less pronounced relative to the snoRNAs that are currently cataloged. We further find that virtually all C/D box snoRNAs are specifically processed inside the regions of terminal complementarity, retaining in the mature form only 4-5 nucleotides upstream of the C box and 2-5 nucleotides downstream of the D box. Sequencing of the total and Argonaute 2-associated populations of small RNAs reveals that despite their cellular abundance, C/D box-derived small RNAs are not efficiently incorporated into the Ago2 protein. CONCLUSIONS We conclude that the human genome encodes a large number of snoRNAs that are processed along the canonical pathway and expressed at relatively low levels. Generation of snoRNA-derived processing products with alternative, particularly miRNA-like, functions appears to be uncommon.
Collapse
Affiliation(s)
- Shivendra Kishore
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Andreas R Gruber
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Dominik J Jedlinski
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Afzal P Syed
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Hadi Jorjani
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Kaur D, Gupta AK, Kumari V, Sharma R, Bhattacharya A, Bhattacharya S. Computational prediction and validation of C/D, H/ACA and Eh_U3 snoRNAs of Entamoeba histolytica. BMC Genomics 2012; 13:390. [PMID: 22892049 PMCID: PMC3542256 DOI: 10.1186/1471-2164-13-390] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small nucleolar RNAs are a highly conserved group of small RNAs found in eukaryotic cells. Genes encoding these RNAs are diversely located throughout the genome. They are functionally conserved, performing post transcriptional modification (methylation and pseudouridylation) of rRNA and other nuclear RNAs. They belong to two major categories: the C/D box and H/ACA box containing snoRNAs. U3 snoRNA is an exceptional member of C/D box snoRNAs and is involved in early processing of pre-rRNA. An antisense sequence is present in each snoRNA which guides the modification or processing of target RNA. However, some snoRNAs lack this sequence and often they are called orphan snoRNAs. RESULTS We have searched snoRNAs of Entamoeba histolytica from the genome sequence using computational programmes (snoscan and snoSeeker) and we obtained 99 snoRNAs (C/D and H/ACA box snoRNAs) along with 5 copies of Eh_U3 snoRNAs. These are located diversely in the genome, mostly in intergenic regions, while some are found in ORFs of protein coding genes, intron and UTRs. The computationally predicted snoRNAs were validated by RT-PCR and northern blotting. The expected sizes were in agreement with the observed sizes for all C/D box snoRNAs tested, while for some of the H/ACA box there was indication of processing to generate shorter products. CONCLUSION Our results showed the presence of snoRNAs in E. histolytica, an early branching eukaryote, and the structural features of E. histolytica snoRNAs were well conserved when compared with yeast and human snoRNAs. This study will help in understanding the evolution of these conserved RNAs in diverse phylogenetic groups.
Collapse
Affiliation(s)
- Devinder Kaur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | | | | | | | |
Collapse
|
18
|
Bortolin-Cavaillé ML, Cavaillé J. The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res 2012; 40:6800-7. [PMID: 22495932 PMCID: PMC3413130 DOI: 10.1093/nar/gks321] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The imprinted Snurf–Snrpn chromosomal domain contains two large arrays of tandemly repeated, paternally expressed box C/D small-nucleolar RNA (snoRNA) genes: the SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters believed to play key roles in the fine-tuning of serotonin receptor (5-HT2C) pre-mRNA processing and in the etiology of the Prader–Willi Syndrome (PWS), respectively. SNORD115 and SNORD116 were recently proposed to undergo significant conversion into shorter RNA species, the so-called psnoRNAs. Here, we provide evidence that argues against the existence of abundant psnoRNAs in human or mouse brain. Instead, we characterize a previously unsuspected low-abundance, fibrillarin-associated SNORD115-derived smaller RNA species. Based on these findings, we strongly recommend that PWS-encoded SNORD115 and SNORD116 be considered as bona fide box C/D snoRNAs.
Collapse
|
19
|
Andersen KL, Nielsen H. Experimental identification and analysis of macronuclear non-coding RNAs from the ciliate Tetrahymena thermophila. Nucleic Acids Res 2011; 40:1267-81. [PMID: 21967850 PMCID: PMC3273799 DOI: 10.1093/nar/gkr792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ciliate Tetrahymena thermophila is an important eukaryotic model organism that has been used in pioneering studies of general phenomena, such as ribozymes, telomeres, chromatin structure and genome reorganization. Recent work has shown that Tetrahymena has many classes of small RNA molecules expressed during vegetative growth or sexual reorganization. In order to get an overview of medium-sized (40-500 nt) RNAs expressed from the Tetrahymena genome, we created a size-fractionated cDNA library from macronuclear RNA and analyzed 80 RNAs, most of which were previously unknown. The most abundant class was small nucleolar RNAs (snoRNAs), many of which are formed by an unusual maturation pathway. The modifications guided by the snoRNAs were analyzed bioinformatically and experimentally and many Tetrahymena-specific modifications were found, including several in an essential, but not conserved domain of ribosomal RNA. Of particular interest, we detected two methylations in the 5'-end of U6 small nuclear RNA (snRNA) that has an unusual structure in Tetrahymena. Further, we found a candidate for the first U8 outside metazoans, and an unusual U14 candidate. In addition, a number of candidates for new non-coding RNAs were characterized by expression analysis at different growth conditions.
Collapse
Affiliation(s)
- Kasper L Andersen
- Department of Cellular and Molecular Medicine and Center for Non-coding RNA in Technology and Health, The Panum Institute, University of Copenhagen, 3 Blegdamsvej, DK-2200N, Denmark
| | | |
Collapse
|
20
|
Molecular Evolution of the HBII-52 snoRNA Cluster. J Mol Biol 2008; 381:810-5. [DOI: 10.1016/j.jmb.2008.06.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/12/2008] [Accepted: 06/23/2008] [Indexed: 11/18/2022]
|
21
|
Liang XH, Hury A, Hoze E, Uliel S, Myslyuk I, Apatoff A, Unger R, Michaeli S. Genome-wide analysis of C/D and H/ACA-like small nucleolar RNAs in Leishmania major indicates conservation among trypanosomatids in the repertoire and in their rRNA targets. EUKARYOTIC CELL 2006; 6:361-77. [PMID: 17189491 PMCID: PMC1828925 DOI: 10.1128/ec.00296-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a large group of noncoding RNAs that exist in eukaryotes and archaea and guide modifications such as 2'-O-ribose methylations and pseudouridylation on rRNAs and snRNAs. Recently, we described a genome-wide screening approach with Trypanosoma brucei that revealed over 90 guide RNAs. In this study, we extended this approach to analyze the repertoire of the closely related human pathogen Leishmania major. We describe 23 clusters that encode 62 C/Ds that can potentially guide 79 methylations and 37 H/ACA-like RNAs that can potentially guide 30 pseudouridylation reactions. Like T. brucei, Leishmania also contains many modifications and guide RNAs relative to its genome size. This study describes 10 H/ACAs and 14 C/Ds that were not found in T. brucei. Mapping of 2'-O-methylations in rRNA regions rich in modifications suggests the existence of trypanosomatid-specific modifications conserved in T. brucei and Leishmania. Structural features of C/D snoRNAs, such as copy number, conservation of boxes, K turns, and intragenic and extragenic base pairing, were examined to elucidate the great variation in snoRNA abundance. This study highlights the power of comparative genomics for determining conserved features of noncoding RNAs.
Collapse
Affiliation(s)
- Xue-hai Liang
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Richard P, Kiss AM, Darzacq X, Kiss T. Cotranscriptional recognition of human intronic box H/ACA snoRNAs occurs in a splicing-independent manner. Mol Cell Biol 2006; 26:2540-9. [PMID: 16537900 PMCID: PMC1430331 DOI: 10.1128/mcb.26.7.2540-2549.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing from pre-mRNA introns is a widespread mechanism to generate human box C/D and H/ACA snoRNAs. Recent studies revealed that an optimal position relative to the 3' splice site is important for efficient processing of most box C/D snoRNAs and that assembly of box C/D snoRNPs is stimulated by splicing factors likely bound to the branch point region. Here we have investigated the processing of another major class of human intron-encoded RNAs, the box H/ACA snoRNAs. Analysis of 80 H/ACA RNA genes revealed that human H/ACA RNAs possess no preferential localization close to the 3' or 5' splice site. In vivo processing experiments confirmed that H/ACA intronic snoRNAs are processed in a position-independent manner, indicating that there is no synergy between H/ACA RNA processing and splicing. We also showed that recognition of intronic H/ACA snoRNAs and assembly of pre-snoRNPs is an early event that occurs during transcription elongation parallel with pre-mRNA splice site selection. Finally, we found that efficient processing and correct nucleolar localization of the human U64 H/ACA snoRNA requires RNA polymerase II-mediated synthesis of the U64 precursor. This suggests that polymerase II-associated factors direct the efficient assembly and determine the correct subnuclear trafficking of human H/ACA snoRNPs.
Collapse
Affiliation(s)
- Patricia Richard
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
23
|
Russell AG, Schnare MN, Gray MW. A Large Collection of Compact Box C/D snoRNAs and their Isoforms in Euglena gracilis: Structural, Functional and Evolutionary Insights. J Mol Biol 2006; 357:1548-65. [PMID: 16497322 DOI: 10.1016/j.jmb.2006.01.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 11/27/2022]
Abstract
In the domains Eucarya and Archaea, box C/D RNAs guide methylation at the 2'-position of selected ribose residues in ribosomal RNA (rRNA). Those eukaryotic box C/D RNAs that have been identified to date are larger and more variable in size than their archaeal counterparts. Here, we report the first extensive identification and characterization of box C/D small nucleolar (sno) RNAs from the protist Euglena gracilis. Among several unexpected findings, this organism contains a large assortment of methylation-guide RNAs that are smaller and more uniformly sized than those of other eukaryotes, and that consist of surprisingly few double-guide RNAs targeting sites of rRNA modification. Our comprehensive examination of the modification status of E.gracilis rRNA indicates that many of these box C/D snoRNAs target clustered methylation sites requiring extensive, overlapping guide RNA/rRNA pairings. An examination of the structure of the RNAs, in particular the location of the functional guide elements, suggests that the distances between adjacent box elements are an important factor in determining which of the potential guide elements is used to target a site of O(2')-methylation.
Collapse
Affiliation(s)
- Anthony G Russell
- Department of Biochemistry and Molecular Biology Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5.
| | | | | |
Collapse
|
24
|
Szewczak LBW, Gabrielsen JS, Degregorio SJ, Strobel SA, Steitz JA. Molecular basis for RNA kink-turn recognition by the h15.5K small RNP protein. RNA (NEW YORK, N.Y.) 2005; 11:1407-19. [PMID: 16120832 PMCID: PMC1370824 DOI: 10.1261/rna.2830905] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 05/31/2005] [Indexed: 05/04/2023]
Abstract
The interaction between box C/D small nucleolar (sno)RNAs and the 15.5K protein nucleates snoRNP assembly. Many eukaryotic snoRNAs contain two potential binding sites for this protein, only one of which appears to be utilized in vivo. The binding site conforms to the consensus for a kink-turn motif. We have investigated the molecular basis for selection of one potential site over the other using in vitro mobility shift assays and nucleotide analog interference mapping of Xenopus U25 snoRNA and of a circularly permuted form. We find that preferential binding of human 15.5K is not dependent on the proximity of RNA ends, but instead appears to require a structural context beyond the kink-turn itself. Direct analysis of the energetic contributions to binding made by 18 functional groups within the kink-turn identified both backbone atoms and base functionalities as key for interaction. An intramolecular RNA-RNA contact via a 2'-hydroxyl may supercede a putative Type I A-minor interaction in stabilizing the RNA-protein complex.
Collapse
|
25
|
|
26
|
Aspegren A, Hinas A, Larsson P, Larsson A, Söderbom F. Novel non-coding RNAs in Dictyostelium discoideum and their expression during development. Nucleic Acids Res 2004; 32:4646-56. [PMID: 15333696 PMCID: PMC516072 DOI: 10.1093/nar/gkh804] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The quest for non-coding RNAs (ncRNAs) in the last few years has revealed a surprisingly large number of small RNAs belonging to previously known as well as entirely novel classes. Computational and experimental approaches have uncovered new ncRNAs in all kingdoms of life. In this work, we used a shotgun cloning approach to construct full-length cDNA libraries of small RNAs from the eukaryotic model organism Dictyostelium discoideum. Interestingly, two entirely novel classes of RNAs were identified of which one is developmentally regulated. The RNAs within each class share conserved 5'- and 3'-termini that can potentially form stem structures. RNAs of both classes show predominantly cytoplasmic localization. In addition, based on conserved structure and/or sequence motifs, several of the identified ncRNAs could be divided into classes known from other organisms, e.g. 18 small nucleolar RNA candidates (17 box C/D, of which a few are developmentally regulated, and one box H/ACA). Two ncRNAs showed a high degree of similarity to the small nuclear U2 RNA and signal recognition particle RNA (SRP RNA), respectively. Furthermore, the majority of the regions upstream of the sequences encoding the isolated RNAs share conserved motifs that may constitute new promoter elements.
Collapse
Affiliation(s)
- Anders Aspegren
- Department of Molecular Biology, Biomedical Center, Swedish University of Agricultural Sciences, Box 590, S-75124 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
27
|
Abstract
Small nucleolar RNAs (snoRNAs) are involved in precursor ribosomal RNA (pre-rRNA) processing and rRNA base modifications (2'-O-ribose methylation and pseudouridylation). Their genomic organization show great flexibility: some are individually or polycistronically transcribed, while others are encoded within introns of other genes. Here, we present an evolutionary analysis of the U49 gene in seven species. In all species analyzed, U49 contains the typical hallmarks of C and D box motifs, and a conserved 12-15 nt sequence complementary to rRNA that define them as homologs. In mouse, human, and Drosophila U49 is found encoded within introns of different genes, and in plants it is transcribed polycistronically from four different locations. In addition, U49 has two copies in two different introns of the RpL14 gene in Drosophila. The results indicate a substantial degree of duplication and translocation of the U49 gene in evolution. In light of its variable organization we discuss which of the two proposed mechanisms of rearrangement has acted upon the U49 snoRNA gene: chromosomal duplication or transposition through an RNA intermediate.
Collapse
Affiliation(s)
- Espen Enerly
- Division of Molecular Biology, Institute of Biology, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
28
|
Hirose T, Shu MD, Steitz JA. Splicing-dependent and -independent modes of assembly for intron-encoded box C/D snoRNPs in mammalian cells. Mol Cell 2003; 12:113-23. [PMID: 12887897 DOI: 10.1016/s1097-2765(03)00267-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In mammalian cells, all small nucleolar RNAs (snoRNAs) that guide rRNA modification are encoded within the introns of host genes. An optimal position about 70 nts upstream of the 3' splice site of the host intron is critical for efficient expression of box C/D snoRNAs in vivo, suggesting synergy with splicing. Here, we have used a coupled in vitro splicing-snoRNA processing system to demonstrate that assembly of box C/D snoRNP proteins is the step affected by snoRNA location, and that active splicing is essential for snoRNP assembly. Splicing blockage experiments further reveal that snoRNP proteins bind specifically at the spliceosomal C1 complex stage. In contrast, splicing-independent snoRNP assembly can occur in vitro on snoRNAs that possess stable external stems. In vivo analyses confirm that a stable stem can compensate for the unusual position of those few box C/D snoRNAs located far from the 3' splice site of their host intron.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
29
|
Marmier-Gourrier N, Cléry A, Senty-Ségault V, Charpentier B, Schlotter F, Leclerc F, Fournier R, Branlant C. A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA. RNA (NEW YORK, N.Y.) 2003; 9:821-38. [PMID: 12810916 PMCID: PMC1370449 DOI: 10.1261/rna.2130503] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Accepted: 03/28/2003] [Indexed: 05/19/2023]
Abstract
The 15.5-kD protein and its yeast homolog Snu13p bind U4 snRNA, U3 snoRNA, and the C/D box snoRNAs. In U4 snRNA, they associate with a helix-bulge-helix (K-turn) structure. U3 snoRNA contains two conserved pairs of boxes, C'/D and B/C, which were both expected to bind the 15.5-kD/Snu13 protein. Only binding to the B/C motif was experimentally demonstrated. Here, by chemical probing of in vitro reconstituted RNA/protein complexes, we demonstrate the independent binding of the 15.5-kD/Snu13 protein to each of the two motifs. Due to a highly reduced stem I (1 bp), the K-turn structure is not formed in the naked B/C motif. However, gel-shift experiments revealed a higher affinity of Snu13p for the B/C motif, compared to the C'/D motif. A phylogenetic analysis of U3 snoRNA, coupled with an analysis of Snu13p affinity for variant yeast C'/D and B/C motifs, and a study of the functionality of a truncated yeast U3 snoRNA carrying base substitutions in the C'/D and B/C motifs, revealed that conservation of the identities of residues 2 and 3 in the B/C K-turn is more important for Snu13p binding and U3 snoRNA function, than conservation of the identities of corresponding residues in the C'/D K-turn. This suggests that binding of Snu13p to K-turns with a very short helix I imposes sequence constraints in the bulge. Altogether, the data demonstrate the strong importance of the binding of the 15.5-kD/Snu13 protein to the C'/D and B/C motifs for both U3 snoRNP assembly and activity.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Genetic Variation
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- Phylogeny
- Protein Binding
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nuclear/genetics
- Saccharomyces cerevisiae Proteins/genetics
- Templates, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Nathalie Marmier-Gourrier
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 UHP-CNRS, Université Henri Poincaré Nancy 1, 54506 Vandoeuvre-Lès-Nancy cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
It has been known for nearly half a century that coding and non-coding RNAs (mRNA, and tRNAs and rRNAs respectively) play critical roles in the process of information transfer from DNA to protein. What is both surprising and exciting, are the discoveries in the last decade that cells, particularly eukaryotic cells, contain a plethora of non-coding RNAs and that these RNAs can either possess catalytic activity or can function as integral components of dynamic ribonucleoprotein machines. These machines appear to mediate diverse, complex and essential processes such as intron excision, RNA modification and editing, protein targeting, DNA packaging, etc. Archaea have been shown to possess RNP complexes; some of these are authentic homologues of the eukaryotic complexes that function as machines in the processing, modification and assembly of rRNA into ribosomal subunits. Deciphering how these RNA-containing machines function will require a dissection and analysis of the component parts, an understanding of how the parts fit together and an ability to reassemble the parts into complexes that can function in vitro. This article summarizes our current knowledge about small-non-coding RNAs in Archaea, their roles in ribosome biogenesis and their relationships to the complexes that have been identified in eukaryotic cells.
Collapse
Affiliation(s)
- Arina D Omer
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
31
|
Abstract
In eukaryotes, the site-specific formation of the two prevalent types of rRNA modified nucleotides, 2'-O-methylated nucleotides and pseudouridines, is directed by two large families of snoRNAs. These are termed box C/D and H/ACA snoRNAs, respectively, and exert their function through the formation of a canonical guide RNA duplex at the modification site. In each family, one snoRNA acts as a guide for one, or at most two modifications, through a single, or a pair of appropriate antisense elements. The two guide families now appear much larger than anticipated and their role not restricted to ribosome synthesis only. This is reflected by the recent detection of guides that can target other cellular RNAs, including snRNAs, tRNAs and possibly even mRNAs, and by the identification of scores of tissue-specific specimens in mammals. Recent characterization of homologs of eukaryotic modification guide snoRNAs in Archaea reveals the ancient origin of these non-coding RNA families and offers new perspectives as to their range of function.
Collapse
Affiliation(s)
- Jean Pierre Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,France.
| | | | | |
Collapse
|
32
|
Gogolevskaya IK, Makarova JA, Gause LN, Kulichkova VA, Konstantinova IM, Kramerov DA. U87 RNA, a novel C/D box small nucleolar RNA from mammalian cells. Gene 2002; 292:199-204. [PMID: 12119114 DOI: 10.1016/s0378-1119(02)00678-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel 72 nt small nucleolar RNA (snoRNA) called U87 was found in rat liver cells. This RNA possesses the features of C/D box snoRNA family: boxes C, D', C', D, and 11 nt antisense element complementary to 28S ribosomal RNA (rRNA). The vast majority of C/D box snoRNAs direct site-specific 2'-O-ribose methylation of rRNAs. U87 RNA is suggested to be involved in 2'-O-methylation of a G(3468) residue in 28S rRNA. U87 RNA was detected in different mammalian species with slight length variability. Rat and mouse U87 RNA gene was characterized. Unlike the majority of C/D box snoRNAs U87 RNA lacks the terminal stem required for snoRNA processing. However, U87 gene is flanked by 7 bp inverted repeats potentially able to form a terminal stem in U87 RNA precursor.
Collapse
Affiliation(s)
- Irina K Gogolevskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Eukaryotic cells contain a very complex population of small nucleolar RNAs. They function, as small nucleolar ribonucleoproteins, in pre-ribosomal RNA processing reactions, and also guide methylation and pseudouridylation of ribosomal RNA, spliceosomal small nuclear RNAs, and possibly other cellular RNAs. Synthesis of small nucleolar RNAs frequently follows unusual strategies. Some newly discovered brain-specific small nucleolar RNAs of unknown function are encoded in introns of tandemly repeated units, expression of which is paternally imprinted. Recent studies of the protein components and factors participating in small nucleolar ribonucleoprotein assembly have revealed interesting connections with other classes of cellular ribonucleoproteins such as spliceosomal small nuclear ribonucleoproteins and telomerase. Cajal bodies emerge as nuclear structures important for the biogenesis and function of small nucleolar ribonucleoproteins.
Collapse
Affiliation(s)
- Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
34
|
Zhou H, Chen YQ, Du YP, Qu LH. The Schizosaccharomyces pombe mgU6-47 gene is required for 2'-O-methylation of U6 snRNA at A41. Nucleic Acids Res 2002; 30:894-902. [PMID: 11842100 PMCID: PMC100344 DOI: 10.1093/nar/30.4.894] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Through a computer search of DNA databases, we have identified the homologs of the mgU6-47 snoRNA gene from the yeast Schizosaccharomyces pombe, the fly Drosophila melanogaster and human. The three box C/D-containing snoRNA genes showed no significant similarity in their sequences except for an 11 nt long complementarity to U6 snRNA, suggesting that the mechanism of snoRNA guided snRNA methylation is conserved from mammals to yeast. The corresponding snoRNAs have been positively detected by reverse transcription and northern blotting. Taking advantage of the fission yeast system, we have disrupted the yeast mgU6-47 gene and demonstrated that it is absolutely required for site-specific 2'-O-methylation of U6 at position A41. No growth differences between mgU6-47 gene-disrupted and wild-type cells were observed, suggesting that the mgU6-47 gene, as for most rRNA methylation guides, is dispensable in yeast. Nevertheless, it was revealed by temperature shift assay that abolition of A41 methylation in yeast U6 snRNA might cause a small decrease in mRNA splicing efficiency. The timing of S.pombe U6 pre-RNA transport in the nucleus for splicing and methylation was also analyzed and is described.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Hirose T, Steitz JA. Position within the host intron is critical for efficient processing of box C/D snoRNAs in mammalian cells. Proc Natl Acad Sci U S A 2001; 98:12914-9. [PMID: 11606788 PMCID: PMC60799 DOI: 10.1073/pnas.231490998] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammalian cells, all small nucleolar RNAs (snoRNAs) that guide rRNA modification are encoded within the introns of host genes. A database analysis of human box C/D snoRNAs revealed conservation of their intronic location, with a preference for 70-80 nt upstream of the 3' splice site. Transfection experiments showed that synthesis of gas5-encoded U75 and U76 snoRNAs dropped significantly for mutant constructs possessing longer or shorter spacers between the snoRNA and the 3' splice site. However, the position of the snoRNA did not affect splicing of the host intron. Substitution mutations within the spacer indicated that the length, but not the specific sequence, is important. A in vitro system that couples pre-mRNA splicing and processing of U75 has been developed. U75 synthesis in vitro depends on its box C and D sequences and requires an appropriate spacer length. Further mutational analyses both in vivo and in vitro, with subsequent mapping of the branch points, revealed that the critical distance is from the snoRNA coding region to the branch point, suggesting synergy between splicing and snoRNA release.
Collapse
Affiliation(s)
- T Hirose
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | |
Collapse
|