1
|
Osman EEA, Neamati N. Ironing Out the Mechanism of gp130 Signaling. Pharmacol Rev 2024; 76:1399-1443. [PMID: 39414364 DOI: 10.1124/pharmrev.124.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| |
Collapse
|
2
|
Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA Metabolism Links with the DNA Damage Response. Genes (Basel) 2021; 12:1446. [PMID: 34573428 PMCID: PMC8465283 DOI: 10.3390/genes12091446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Human cells are subjected to continuous challenges by different genotoxic stress attacks. DNA damage leads to erroneous mutations, which can alter the function of oncogenes or tumor suppressors, resulting in cancer development. To circumvent this, cells activate the DNA damage response (DDR), which mainly involves cell cycle regulation and DNA repair processes. The tumor suppressor p53 plays a pivotal role in the DDR by halting the cell cycle and facilitating the DNA repair processes. Various pathways and factors participating in the detection and repair of DNA have been described, including scores of RNA-binding proteins (RBPs) and RNAs. It has become increasingly clear that p53's role is multitasking, and p53 mRNA regulation plays a prominent part in the DDR. This review is aimed at covering the p53 RNA metabolism linked to the DDR and highlights the recent findings.
Collapse
Affiliation(s)
| | - Ondrej Bonczek
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Sa Chen
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
| | - Robin Fahraeus
- Department of Medical Biosciences, Umeå University, 901-87 Umeå, Sweden; (O.B.); (L.W.); (S.C.)
- RECAMO, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656-53 Brno, Czech Republic
- Inserm UMRS1131, Institut de Genetique Moleculaire, Universite Paris 7, Hopital St Louis, F-75010 Paris, France
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| |
Collapse
|
3
|
Muys BR, Anastasakis DG, Claypool D, Pongor L, Li XL, Grammatikakis I, Liu M, Wang X, Prasanth KV, Aladjem MI, Lal A, Hafner M. The p53-induced RNA-binding protein ZMAT3 is a splicing regulator that inhibits the splicing of oncogenic CD44 variants in colorectal carcinoma. Genes Dev 2021; 35:102-116. [PMID: 33334821 PMCID: PMC7778265 DOI: 10.1101/gad.342634.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
p53 is an intensely studied tumor-suppressive transcription factor. Recent studies suggest that the RNA-binding protein (RBP) ZMAT3 is important in mediating the tumor-suppressive effects of p53. Here, we globally identify ZMAT3-regulated RNAs and their binding sites at nucleotide resolution in intact colorectal cancer (CRC) cells. ZMAT3 binds to thousands of mRNA precursors, mainly at intronic uridine-rich sequences and affects their splicing. The strongest alternatively spliced ZMAT3 target was CD44, a cell adhesion gene and stem cell marker that controls tumorigenesis. Silencing ZMAT3 increased inclusion of CD44 variant exons, resulting in significant up-regulation of oncogenic CD44 isoforms (CD44v) and increased CRC cell growth that was rescued by concurrent knockdown of CD44v Silencing p53 phenocopied the loss of ZMAT3 with respect to CD44 alternative splicing, suggesting that ZMAT3-mediated regulation of CD44 splicing is vital for p53 function. Collectively, our findings uncover a p53-ZMAT3-CD44 axis in growth suppression in CRC cells.
Collapse
Affiliation(s)
- Bruna R Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dimitrios G Anastasakis
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Duncan Claypool
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lörinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Minxue Liu
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
4
|
Nowrouzi A, Sertorio MG, Akbarpour M, Knoll M, Krunic D, Kuhar M, Schwager C, Brons S, Debus J, Wells SI, Wells JM, Abdollahi A. Personalized Assessment of Normal Tissue Radiosensitivity via Transcriptome Response to Photon, Proton and Carbon Irradiation in Patient-Derived Human Intestinal Organoids. Cancers (Basel) 2020; 12:cancers12020469. [PMID: 32085439 PMCID: PMC7072449 DOI: 10.3390/cancers12020469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced normal tissue toxicity often limits the curative treatment of cancer. Moreover, normal tissue relative biological effectiveness data for high-linear energy transfer particles are urgently needed. We propose a strategy based on transcriptome analysis of patient-derived human intestinal organoids (HIO) to determine molecular surrogates for radioresponse of gastrointestinal (GI) organs at risk in a personalized manner. HIO were generated from induced pluripotent stem cells (iPSC), which were derived from skin biopsies of three patients, including two patients with FANCA deficiency as a paradigm for enhanced radiosensitivity. For the two Fanconi anemia (FA) patients (HIO-104 and 106, previously published as FA-A#1 IND-iPS1 and FA-A#2 IND-iPS3), FANCA expression was reconstituted as a prerequisite for generation of HIO via lentiviral expression of a doxycycline inducible construct. For radiosensitivity analysis, FANCA deficient and FANCA rescued as well as wtHIO were sham treated or irradiated with 4Gy photon, proton or carbon ions at HIT, respectively. Immunofluorescence staining of HIO for 53BP1-foci was performed 1 h post IR and gene expression analyses was performed 12 and 48 h post IR. 53BP1-foci numbers and size correlated with the higher RBE of carbon ions. A FANCA dependent differential gene expression in response to radiation was found (p < 0.01, ANOVA; n = 1071 12 h; n = 1100 48 h). Pathways associated with FA and DNA-damage repair i.e., transcriptional coupled nucleotide excision repair, homology-directed repair and translational synthesis were found to be differentially regulated in FANCA deficient HIO. Next, differential regulated genes were investigated as a function of radiation quality (RQ, p < 0.05, ANOVA; n = 742 12 h; n = 553 48 h). Interestingly, a gradual increase or decrease of gene expression was found to correlate with the three main qualities, from photon to proton and carbon irradiation. Clustering separated high-linear energy transfer irradiation with carbons from proton and photon irradiation. Genes associated with dual incision steps of TC-NER were differentially regulated in photon vs. proton and carbon irradiation. Consequently, SUMO3, ALC1, POLE4, PCBP4, MUTYH expression correlated with the higher RBE of carbon ions. An interaction between the two studied parameters FA and RQ was identified (p < 0.01, 2-way ANOVA n = 476). A comparison of genes regulated as a function of FA, RQ and RBE suggest a role for p53 interacting genes BRD7, EWSR1, FBXO11, FBXW8, HMGB1, MAGED2, PCBP4, and RPS27 as modulators of FA in response to radiation. This proof of concept study demonstrates that patient tailored evaluation of GI response to radiation is feasible via generation of HIO and comparative transcriptome profiling. This methodology can now be further explored for a personalized assessment of GI radiosensitivity and RBE estimation.
Collapse
Affiliation(s)
- Ali Nowrouzi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-56-34638
| | - Mathieu G. Sertorio
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.G.S.); (S.I.W.)
| | - Mahdi Akbarpour
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| | - Maximillian Knoll
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Matthew Kuhar
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.K.); (J.M.W.)
| | - Christian Schwager
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.G.S.); (S.I.W.)
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.K.); (J.M.W.)
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; (M.A.); (M.K.); (C.S.); (J.D.); (A.A.)
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany;
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Papasavvas E, Kossenkov AV, Azzoni L, Zetola NM, Mackiewicz A, Ross BN, Fair M, Vadrevu S, Ramogola-Masire D, Sanne I, Firnhaber C, Montaner LJ. Gene expression profiling informs HPV cervical histopathology but not recurrence/relapse after LEEP in ART-suppressed HIV+HPV+ women. Carcinogenesis 2019; 40:225-233. [PMID: 30364933 DOI: 10.1093/carcin/bgy149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022] Open
Abstract
Identification of factors associated with human papillomavirus (HPV) cervical histopathology or recurrence/relapse following loop electrosurgical excision procedure (LEEP) would allow for better management of the disease. We investigated whether gene signatures could (i) associate with HPV cervical histopathology and (ii) identify women with post-LEEP disease recurrence/relapse. Gene array analysis was performed on paraffin-embedded cervical tissue-isolated RNA from two cross-sectional cohorts of antiretroviral therapy (ART)-suppressed HIV+HPV+ coinfected women: (i) 55 women in South Africa recruited into three groups: high risk (HR) (-) (n = 16) and HR (+) (n = 15) HPV without cervical histopathology and HR (+) HPV with cervical intraepithelial neoplasia (CIN) grade 1/2/3 (n = 24), (ii) 28 women in Botswana with CIN2/3 treated with LEEP 12-month prior to recruitment and presenting with (n = 13) and without (n = 15) lesion recurrence/relapse (tissue was analyzed at first LEEP). Three distinct gene expression signatures identified were able to segregate: (i) HR+ HPV and CIN1/2/3, (ii) HR HPV-free and cervical histopathology-free and (iii) HR+ HPV and cervical histopathology-free. Immune activation and neoplasia-associated genes (n = 272 genes; e.g. IL-1A, IL-8, TCAM1, POU4F1, MCM2, SMC1B, CXCL6, MMP12) were a feature of cancer precursor dysplasia within HR HPV infection. No difference in LEEP tissue gene expression was detected between women with or without recurrence/relapse. In conclusion, distinctive gene signatures were associated with presence of cervical histopathology in tissues from ART-suppressed HIV+/HPV+ coinfected women. Lack of detection of LEEP tissue gene signature able to segregate subsequent post-LEEP disease recurrence/relapse indicates additional factors independent of local gene expression as determinants of recurrence/relapse.
Collapse
Affiliation(s)
- Emmanouil Papasavvas
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Livio Azzoni
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Nicola M Zetola
- The Botswana-UPenn Partnership, Department of Radiation Oncology, Gaborone, Botswana.,The University of Pennsylvania, Department of Radiation Oncology, Philadelphia, PA, USA
| | - Agnieszka Mackiewicz
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Brian N Ross
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Matthew Fair
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Surya Vadrevu
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | | | - Ian Sanne
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cynthia Firnhaber
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Right To Care, Johannesburg, South Africa
| | - Luis J Montaner
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| |
Collapse
|
6
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
7
|
Lee TG, Jeong EH, Min IJ, Kim SY, Kim HR, Kim CH. Altered expression of cellular proliferation, apoptosis and the cell cycle-related genes in lung cancer cells with acquired resistance to EGFR tyrosine kinase inhibitors. Oncol Lett 2017; 14:2191-2197. [PMID: 28781659 PMCID: PMC5530116 DOI: 10.3892/ol.2017.6428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Non-small cell lung cancers harboring somatic gain-of-function mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain respond well to treatment with EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib. However, all patients who experience a marked improvement with these drugs eventually develop disease progression due to the acquisition of drug resistance. Approximately half of the cases with acquired resistance to EGFR TKIs can be accounted for by a second-site mutation in exon 20 of the EGFR kinase domain (T790M). However, the changes of gene expression involved in EGFR TKI resistance due to the T790M mutation remain poorly defined. The present study established lung cancer cell lines that were resistant to gefitinib or erlotinib, and these cell lines were verified to contain the EGFR T790M mutation. The differential expression of genes associated with acquired resistance was verified in the present study by mRNA microarray analysis. Among the genes whose expression was significantly altered, genes whose expression was altered in gefitinib- and erlotinib-resistant cells were focused on. Notably, a total of 1,617 genes were identified as being differentially expressed in gefitinib- and erlotinib-resistant cells. Indeed, Gene ontology analysis revealed altered expression of genes involved in the regulation of cellular proliferation, apoptosis, and the cell cycle in EGFR TKI-resistant cells. The present results demonstrate distinctive gene expression patterns of EGFR TKI-resistant lung cancer cells with the EGFR T790M mutation. The present study can provide key insights into gene expression profiles involved in conferring resistance to EGFR TKI therapy in lung cancer cells.
Collapse
Affiliation(s)
- Tae-Gul Lee
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea
| | - Eun-Hui Jeong
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea.,University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| | - Il Jae Min
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea
| | - Seo Yun Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea
| | - Hye-Ryoun Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea
| | - Cheol Hyeon Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea.,University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| |
Collapse
|
8
|
Abstract
Since its discovery more than three decades ago, tumor suppressor p53 has been shown to play pivotal roles in both maintaining genomic integrity and tumor suppression. p53 functions as a transcription factor responding to a multitude of cellular stressors, regulating the transcription of many genes involved in cell-cycle arrest, senescence, autophagy, and apoptosis. Extensive work has revealed that p53 is one of the most commonly mutated tumor suppressor genes. The last three decades have demonstrated that p53 activity is controlled through transcriptional regulation and posttranslational modifications. However, evolving work is now uncovering that p53, and other p53 family members, are post-transcriptionally regulated by multiple RNA-binding proteins (RBPs). Understanding the regulation of p53 by RBPs may potentially open up the possibility for cancer therapeutic intervention. This review focuses on the posttranscriptional regulation of p53, and p53 family members, by RNA binding proteins and the reciprocal feedback pathways between several RNA-biding proteins modulating p53, and p53 family members.
Collapse
Affiliation(s)
- Chris Lucchesi
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
9
|
Shen S, Wang Y, Wang C, Wu YN, Xing Y. SURVIV for survival analysis of mRNA isoform variation. Nat Commun 2016; 7:11548. [PMID: 27279334 PMCID: PMC4906168 DOI: 10.1038/ncomms11548] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/07/2016] [Indexed: 01/07/2023] Open
Abstract
The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects.
Collapse
Affiliation(s)
- Shihao Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yuanyuan Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chengyang Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Ying Nian Wu
- Department of Statistics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Zahmatkesh A, Ansari Mahyari S, Daliri Joupari M, Rahmani H, Shirazi A, Amiri Roudbar M, Ansari Majd S. Expressional and Bioinformatic Analysis of Bovine Filia/Ecat1/Khdc3l Gene: A Comparison with Ovine Species. Anim Biotechnol 2016; 27:174-81. [PMID: 27070240 DOI: 10.1080/10495398.2016.1157081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Maternal effect genes have highly impressive effects on pre-implantation development. Filia/Ecat1/Khdc3l is a maternal effect gene found in mouse oocytes and embryos, loss of which causes a 50% decrease in fertility. In the present study, we investigated Filia mRNA expression in bovine oviduct, 30- to 40-day fetus, liver, heart, lung, and oocytes (as a positive control), by RT-PCR and detected it only in oocytes. A 443 bp fragment was amplified only in oocytes and was sequenced as a part of bovine predicted Filia mRNA. We analyzed bovine and ovine Filia N-terminal peptide sequence in PHYRE2, and a KH domain was predicted. Protein alignment using ClustalW indicated a highly identical N-terminal extention between the 2 species. Immunohistochemical analysis using anti-bovine Filia antibody showed the expression of Filia protein in the zone surrounding the nuclear membrane, and in the subcortex of ovine oocytes of primary and antral follicles. However, in the bovine, Filia has been found through the oocyte cytoplasm of antral follicles, and here it is further confirmed in the primary follicles. Our data suggests a difference in Filia expression pattern between cow and sheep, although the sequence is highly conserved.
Collapse
Affiliation(s)
- Azadeh Zahmatkesh
- a Department of Animal Science, College of Agriculture , Isfahan University of Technology , Isfahan , Iran
| | - Saeid Ansari Mahyari
- a Department of Animal Science, College of Agriculture , Isfahan University of Technology , Isfahan , Iran
| | - Morteza Daliri Joupari
- b Department of Animal Biotechnology , Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Hamidreza Rahmani
- a Department of Animal Science, College of Agriculture , Isfahan University of Technology , Isfahan , Iran
| | - Abolfazl Shirazi
- c Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR , Tehran , Iran
| | - Mahmood Amiri Roudbar
- d Department of Animal Science, Faculty of Agriculture , Shahid Bahonar University of Kerman , Kerman , Iran
| | - Saeid Ansari Majd
- b Department of Animal Biotechnology , Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| |
Collapse
|
11
|
Giono LE, Nieto Moreno N, Cambindo Botto AE, Dujardin G, Muñoz MJ, Kornblihtt AR. The RNA Response to DNA Damage. J Mol Biol 2016; 428:2636-2651. [PMID: 26979557 DOI: 10.1016/j.jmb.2016.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023]
Abstract
Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.
Collapse
Affiliation(s)
- Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Nicolás Nieto Moreno
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Adrián E Cambindo Botto
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Gwendal Dujardin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Centre for Genomic Regulation, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Manuel J Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
12
|
Yan W, Scoumanne A, Jung YS, Xu E, Zhang J, Zhang Y, Ren C, Sun P, Chen X. Mice deficient in poly(C)-binding protein 4 are susceptible to spontaneous tumors through increased expression of ZFP871 that targets p53 for degradation. Genes Dev 2016; 30:522-34. [PMID: 26915821 PMCID: PMC4782047 DOI: 10.1101/gad.271890.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/26/2016] [Indexed: 01/06/2023]
Abstract
Poly(C)-binding protein 4 (PCBP4), also called MCG10 and a target of p53, plays a role in the cell cycle and is implicated in lung tumor suppression. Here, we found that PCBP4-deficient mice are prone to lung adenocarcinoma, lymphoma, and kidney tumor and that PCBP4-deficient mouse embryo fibroblasts (MEFs) exhibit enhanced cell proliferation but decreased cellular senescence. We also found that p53 expression is markedly reduced in PCBP4-deficient MEFs and mouse tissues, suggesting that PCBP4 in turn regulates p53 expression. To determine how PCBP4 regulates p53 expression, PCBP4 targets were identified by RNA immunoprecipitation followed by RNA sequencing (RNA-seq). We found that the transcript encoding ZFP871 (zinc finger protein 871; also called ZNF709 in humans) interacts with and is regulated by PCBP4 via mRNA stability. Additionally, we found that ZFP871 physically interacts with p53 and MDM2 proteins. Consistently, ectopic expression of ZFP871 decreases-whereas knockdown of ZFP871 increases-p53 protein stability through a proteasome-dependent degradation pathway. Moreover, loss of ZFP871 reverses the reduction of p53 expression by lack of PCBP4, and thus increased expression of ZFP871 is responsible for decreased expression of p53 in the PCBP4-deficient MEFs and mouse tissues. Interestingly, we found that, like PCBP4, ZFP871 is also regulated by DNA damage and p53. Finally, we showed that knockdown of ZFP871 markedly enhances p53 expression, leading to growth suppression and apoptosis in a p53-dependent manner. Thus, the p53-PCBP4-ZFP871 axis represents a novel feedback loop in the p53 pathway. Together, we hypothesize that PCBP4 is a potential tissue-specific tumor suppressor and that ZFP871 is part of MDM2 and possibly other ubiquitin E3 ligases that target p53 for degradation.
Collapse
Affiliation(s)
- Wensheng Yan
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Ariane Scoumanne
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Yong-Sam Jung
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Enshun Xu
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Yanhong Zhang
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Cong Ren
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Pei Sun
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, School of Veterinary Medicine, School of Medicine, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
13
|
Ito Y, Narita N, Nomi N, Sugimoto C, Takabayashi T, Yamada T, Karaya K, Matsumoto H, Fujieda S. Suppression of Poly(rC)-Binding Protein 4 (PCBP4) reduced cisplatin resistance in human maxillary cancer cells. Sci Rep 2015. [PMID: 26196957 PMCID: PMC4508830 DOI: 10.1038/srep12360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cisplatin plays an important role in the therapy for human head and neck cancers. However, cancer cells develop cisplatin resistance, leading to difficulty in treatment and poor prognosis. To analyze cisplatin-resistant mechanisms, a cisplatin-resistant cell line, IMC-3CR, was established from the IMC-3 human maxillary cancer cell line. Flow cytometry revealed that, compared with IMC-3 cells, cisplatin more dominantly induced cell cycle G2/M arrest rather than apoptosis in IMC-3CR cells. That fact suggests that IMC-3CR cells avoid cisplatin-induced apoptosis through induction of G2/M arrest, which allows cancer cells to repair damaged DNA and survive. In the present study, we specifically examined Poly(rC)-Binding Protein 4 (PCBP4), which reportedly induces G2/M arrest. Results showed that suppression of PCBP4 by RNAi reduced cisplatin-induced G2/M arrest and enhanced apoptosis in IMC-3CR cells, resulting in the reduction of cisplatin resistance. In contrast, overexpression of PCBP4 in IMC-3 cells induced G2/M arrest after cisplatin treatment and enhanced cisplatin resistance. We revealed that PCBP4 combined with Cdc25A and suppressed the expression of Cdc25A, resulting in G2/M arrest. PCBP4 plays important roles in the induction of cisplatin resistance in human maxillary cancers. PCBP4 is a novel molecular target for the therapy of head and neck cancers, especially cisplatin-resistant cancers.
Collapse
Affiliation(s)
- Yumi Ito
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Norihiko Narita
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Nozomi Nomi
- Department of Otorhinolaryngology, Faculty of Medical Sciences, University of Oita
| | - Chizuru Sugimoto
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Tetsuji Takabayashi
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Kazuhiro Karaya
- Division of Bioresearch, Life Science Research Laboratory, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Hideki Matsumoto
- Division of Oncology, Biomedical Imaging Research Center, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
14
|
Differential expression of polycytosine-binding protein isoforms in adrenal gland, locus coeruleus and midbrain. Neuroscience 2015; 286:1-12. [DOI: 10.1016/j.neuroscience.2014.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022]
|
15
|
Speidel D. The role of DNA damage responses in p53 biology. Arch Toxicol 2015; 89:501-17. [PMID: 25618545 DOI: 10.1007/s00204-015-1459-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
The tumour suppressor p53 is a central player in cellular DNA damage responses. P53 is upregulated and activated by genotoxic stress and induces a transcriptional programme with effectors promoting apoptosis, cell cycle arrest, senescence and DNA repair. For the best part of the last three decades, these DNA damage-related programmes triggered by p53 were unequivocally regarded as the major if not sole mechanism by which p53 exerts its tumour suppressor function. However, this interpretation has been challenged by a number of recent in vivo studies, demonstrating that mice which are defective in inducing p53-dependent apoptosis, cell cycle arrest and senescence suppress thymic lymphoma as well as wild-type p53 expressing animals. Consequently, the importance of DNA damage responses for p53-mediated tumour suppression has been questioned. In this review, I summarize current knowledge on p53-controlled DNA damage responses and argue that these activities, while their role has certainly changed, remain an important feature of p53 biology with relevance for cancer therapy and tumour suppression.
Collapse
Affiliation(s)
- Daniel Speidel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia,
| |
Collapse
|
16
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
17
|
Kang DH, Song KY, Wei LN, Law PY, Loh HH, Choi HS. Novel function of the poly(c)-binding protein α-CP2 as a transcriptional activator that binds to single-stranded DNA sequences. Int J Mol Med 2013; 32:1187-94. [PMID: 24026233 PMCID: PMC4432725 DOI: 10.3892/ijmm.2013.1488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022] Open
Abstract
α-complex protein 2 (α-CP2) is known as an RNA-binding protein that interacts in a sequence-specific manner with single-stranded polycytosine [poly(C)]. This protein is involved in various post-transcriptional regulations, such as mRNA stabilization and translational regulation. In this study, the full-length mouse α-CP2 gene was expressed in an insoluble form with an N-terminal histidine tag in Escherichia coli and purified for homogeneity using affinity column chromatography. Its identity was confirmed using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Recombinant α-CP2 was expressed and refolded. The protein folding conditions for denatured α-CP2 were optimized. DNA and RNA electrophoretic mobility shift assays demonstrated that the recombinant α-CP2 is capable of binding to both single-stranded DNA and RNA poly(C) sequences. Furthermore, plasmids expressing α-CP2 activated the expression of a luciferase reporter when co-transfected with a single-stranded (pGL-SS) construct containing a poly(C) sequence. To our knowledge, this study demonstrates for the first time that α-CP2 functions as a transcriptional activator by binding to a single-stranded poly(C) sequence.
Collapse
Affiliation(s)
- Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Yangcheon‑gu, Seoul 158-710, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Leidgens S, Bullough KZ, Shi H, Li F, Shakoury-Elizeh M, Yabe T, Subramanian P, Hsu E, Natarajan N, Nandal A, Stemmler TL, Philpott CC. Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J Biol Chem 2013; 288:17791-802. [PMID: 23640898 DOI: 10.1074/jbc.m113.460253] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mechanisms through which iron-dependent enzymes receive their metal cofactors are largely unknown. Poly r(C)-binding protein 1 (PCBP1) is an iron chaperone for ferritin; both PCBP1 and its paralog PCBP2 are required for iron delivery to the prolyl hydroxylase that regulates HIF1. Here we show that PCBP2 is also an iron chaperone for ferritin. Co-expression of PCBP2 and human ferritins in yeast activated the iron deficiency response and increased iron deposition into ferritin. Depletion of PCBP2 in Huh7 cells diminished iron incorporation into ferritin. Both PCBP1 and PCBP2 were co-immunoprecipitated with ferritin in HEK293 cells, and expression of both PCBPs was required for ferritin complex formation in cells. PCBP1 and -2 exhibited high affinity binding to ferritin in vitro. Mammalian genomes encode 4 PCBPs, including the minimally expressed PCBPs 3 and 4. Expression of PCBP3 and -4 in yeast activated the iron deficiency response, but only PCBP3 exhibited strong interactions with ferritin. Expression of PCBP1 and ferritin in an iron-sensitive, ccc1 yeast strain intensified the toxic effects of iron, whereas expression of PCBP4 protected the cells from iron toxicity. Thus, PCBP1 and -2 form a complex for iron delivery to ferritin, and all PCBPs may share iron chaperone activity.
Collapse
Affiliation(s)
- Sebastien Leidgens
- From the Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1800, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
αCP Poly(C) binding proteins act as global regulators of alternative polyadenylation. Mol Cell Biol 2013; 33:2560-73. [PMID: 23629627 DOI: 10.1128/mcb.01380-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously demonstrated that the KH-domain protein αCP binds to a 3' untranslated region (3'UTR) C-rich motif of the nascent human alpha-globin (hα-globin) transcript and enhances the efficiency of 3' processing. Here we assess the genome-wide impact of αCP RNA-protein (RNP) complexes on 3' processing with a specific focus on its role in alternative polyadenylation (APA) site utilization. The major isoforms of αCP were acutely depleted from a human hematopoietic cell line, and the impact on mRNA representation and poly(A) site utilization was determined by direct RNA sequencing (DRS). Bioinformatic analysis revealed 357 significant alterations in poly(A) site utilization that could be specifically linked to the αCP depletion. These APA events correlated strongly with the presence of C-rich sequences in close proximity to the impacted poly(A) addition sites. The most significant linkage was the presence of a C-rich motif within a window 30 to 40 bases 5' to poly(A) signals (AAUAAA) that were repressed upon αCP depletion. This linkage is consistent with a general role for αCPs as enhancers of 3' processing. These findings predict a role for αCPs in posttranscriptional control pathways that can alter the coding potential and/or levels of expression of subsets of mRNAs in the mammalian transcriptome.
Collapse
|
20
|
Wu Q, Beland FA, Chang CW, Fang JL. Role of DNA Repair Pathways in Response to Zidovudine-induced DNA Damage in Immortalized Human Liver THLE2 Cells. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2013; 9:18-25. [PMID: 23675285 PMCID: PMC3644411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/09/2013] [Indexed: 11/03/2022]
Abstract
The nucleoside reverse transcriptase inhibitor zidovudine (3'-azido-3'-dexoythymidine, AZT) can be incorporated into DNA and cause DNA damage. Previously, we determined that the human hepatocellular carcinoma HepG2 cells are more susceptible to AZT-induced toxicities than the immortalized normal human liver THLE2 cells and the nucleotide excision repair (NER) pathway plays an essential role in the response to AZT-induced DNA damage. We have now investigated if the effects of AZT treatment on the expression levels of genes related to DNA damage and repair pathways contribute to the differences in sensitivity to AZT treatment between HepG2 cells and THLE2 cells. Of total 84 genes related to DNA damage and repair, two, five, and six genes were up-regulated more than 1.5-fold at 50, 500, and 2,500 µM AZT groups compared with that of control THLE2 cells. Seven genes showed a decreased expression of more than 1.5-fold following the 2,500 µM AZT treatment. Two-sided multivariate analysis of variance indicated that the change in expression of genes involved in apoptosis, cell cycle, and DNA repair pathways was significant only at 2,500 µM AZT. Statistically significant dose-related increases were identified in XPC gene expression and GTF2H1 protein level after the AZT treatments, which implicated the NER pathway in response to the DNA damage induced by AZT. In contrast, AZT treatment did not alter significantly the expression of the APE1 gene or the levels of APE1 protein. These results indicate that the NER repair pathway is involved in AZT-induced DNA damage response in immortalized human hepatic THLE2 cells.
Collapse
Affiliation(s)
- Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
- Department of Environmental Health, Indiana University, Bloomington, IN 47405, USA
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Ching-Wei Chang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| |
Collapse
|
21
|
Nahar-Gohad P, Sultan H, Esteban Y, Stabile A, Ko JL. RACK1 identified as the PCBP1-interacting protein with a novel functional role on the regulation of human MOR gene expression. J Neurochem 2012; 124:466-77. [PMID: 23173782 DOI: 10.1111/jnc.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/10/2012] [Accepted: 11/14/2012] [Indexed: 12/23/2022]
Abstract
Poly C binding protein 1 (PCBP1) is an expressional regulator of the mu-opioid receptor (MOR) gene. We hypothesized the existence of a PCBP1 co-regulator modifying human MOR gene expression by protein-protein interaction with PCBP1. A human brain cDNA library was screened using the two-hybrid system with PCBP1 as the bait. Receptor for activated protein kinase C (RACK1) protein, containing seven WD domains, was identified. PCBP1-RACK1 interaction was confirmed via in vivo validation using the two-hybrid system, and by co-immunoprecipitation with anti-PCBP1 antibody and human neuronal NMB cell lysate, endogenously expressing PCBP1 and RACK1. Further co-immunoprecipitation suggested that RACK1-PCBP1 interaction occurred in cytosol alone. Single and serial WD domain deletion analyses demonstrated that WD7 of RACK1 is the key domain interacting with PCBP1. RACK1 over-expression resulted in a dose-dependent decrease of MOR promoter activity using p357 plasmid containing human MOR promoter and luciferase reporter gene. Knock-down analysis showed that RACK1 siRNA decreased the endogenous RACK1 mRNA level in NMB, and elevated MOR mRNA level as indicated by RT-PCR. Likewise, a decrease of RACK1 resulted in an increase of MOR proteins, verified by (3) H-diprenorphine binding assay. Collectively, this study reports a novel role of RACK1, physically interacting with PCBP1 and participating in the regulation of human MOR gene expression in neuronal NMB cells.
Collapse
Affiliation(s)
- Pranjal Nahar-Gohad
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | | | | | | | | |
Collapse
|
22
|
Singer S, Zhao R, Barsotti AM, Ouwehand A, Fazollahi M, Coutavas E, Breuhahn K, Neumann O, Longerich T, Pusterla T, Powers MA, Giles KM, Leedman PJ, Hess J, Grunwald D, Bussemaker HJ, Singer RH, Schirmacher P, Prives C. Nuclear pore component Nup98 is a potential tumor suppressor and regulates posttranscriptional expression of select p53 target genes. Mol Cell 2012; 48:799-810. [PMID: 23102701 PMCID: PMC3525737 DOI: 10.1016/j.molcel.2012.09.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 06/06/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022]
Abstract
The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3σ) to be similarly regulated by Nup98. The expression of Nup98 is reduced in murine and human hepatocellular carcinomas (HCCs) and correlates with p21 expression in HCC patients. Our study elucidates a previously unrecognized function of wild-type Nup98 in regulating select p53 target genes that is distinct from the well-characterized oncogenic properties of Nup98 fusion proteins.
Collapse
MESH Headings
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/metabolism
- 3' Untranslated Regions
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Binding Sites
- Camptothecin/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cellular Senescence
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Exosomes/metabolism
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Knockout
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Messenger/metabolism
- Time Factors
- Transfection
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Stephan Singer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ruiying Zhao
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Anthony M. Barsotti
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Anette Ouwehand
- Department of Bionanoscience, Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Mina Fazollahi
- Department of Physics, Columbia University, New York, NY 10027, USA
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 100
| | - Elias Coutavas
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tobias Pusterla
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Maureen A. Powers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Keith M. Giles
- Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth 6000, Australia
| | - Peter J. Leedman
- Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth 6000, Australia
| | - Jochen Hess
- Junior Research Group Molecular Mechanisms of Head and Neck Tumors, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - David Grunwald
- Department of Bionanoscience, Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 100
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
23
|
Cai C, Liu J, Wang C, Shen J. KHDC1A, a novel translational repressor, induces endoplasmic reticulum-dependent apoptosis. DNA Cell Biol 2012; 31:1447-57. [PMID: 22731819 DOI: 10.1089/dna.2012.1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA binding proteins are characterized as a new family of apoptosis inducers; however, the mechanism by which they induce apoptosis is poorly understood. KHDC1 family members were recently identified as K-homology (KH)-domain containing RNA binding proteins that are unique to eutherian mammals and highly expressed in oocytes. In this study, we report that the expression of KHDC1A induces caspase-3 dependent apoptosis and inhibits mRNA translation, and the translational repression is independent of apoptosis. We demonstrate that both the N-terminus and C-terminus of KHDC1A are required for its pro-apoptotic and translational repression activities. Furthermore, in the C-terminus of KHDC1A, a putative trans-membrane motif (TMM) is critical for these activities. In addition, the ectopically expressed KHDC1A is localized to the endoplasmic reticulum (ER) and changes the morphology of the ER. The inhibition of ER-specific caspase-12 successfully rescues KHDC1A-induced apoptosis, but not Fas-induced apoptosis. Taken together, we conclude that KHDC1A functions as a global translational repressor and induces apoptosis through an ER-dependent signaling pathway.
Collapse
Affiliation(s)
- Congli Cai
- Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | | | | | | |
Collapse
|
24
|
Neff AT, Lee JY, Wilusz J, Tian B, Wilusz CJ. Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells. Genome Res 2012; 22:1457-67. [PMID: 22534399 PMCID: PMC3409259 DOI: 10.1101/gr.134312.111] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pluripotency is a unique state in which cells can self-renew indefinitely but also retain the ability to differentiate into other cell types upon receipt of extracellular cues. Although it is clear that stem cells have a distinct transcriptional program, little is known about how alterations in post-transcriptional mechanisms, such as mRNA turnover, contribute to the achievement and maintenance of pluripotency. Here we have assessed the rates of decay for the majority of mRNAs expressed in induced pluripotent stem (iPS) cells and the fully differentiated human foreskin fibroblasts (HFFs) they were derived from. Comparison of decay rates in the two cell types led to the discovery of three independent regulatory mechanisms that allow coordinated turnover of specific groups of mRNAs. One mechanism results in increased stability of many histone mRNAs in iPS cells. A second pathway stabilizes a large set of zinc finger protein mRNAs, potentially through reduced levels of miRNAs that target them. Finally, a group of transcripts bearing 3' UTR C-rich sequence elements, many of which encode transcription factors, are significantly less stable in iPS cells. Intriguingly, two poly(C)-binding proteins that recognize this type of element are reciprocally expressed in iPS and HFF cells. Overall, our results highlight the importance of post-transcriptional control in pluripotent cells and identify miRNAs and RNA-binding proteins whose activity may coordinately control expression of a wide range of genes in iPS cells.
Collapse
Affiliation(s)
- Ashley T Neff
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
25
|
Kang DH, Song KY, Choi HS, Law PY, Wei LN, Loh HH. Novel dual-binding function of a poly (C)-binding protein 3, transcriptional factor which binds the double-strand and single-stranded DNA sequence. Gene 2012; 501:33-8. [PMID: 22521865 DOI: 10.1016/j.gene.2012.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Poly(C)-binding proteins (PCBPs) are generally known as RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. These proteins are mainly involved in various posttranscriptional regulations (e.g., mRNA stabilization or translational activation/silencing). This study reports a novel dual-binding function for PCBP3, a member of the PCBP family. Recombinant PCBP3 was purified using affinity column chromatography and its identity confirmed by MALDI-TOF mass spectrometry. The protein folding conditions of the purified and renatured PCBP3 were optimized. Electrophoretic mobility shift assays demonstrated that the recombinant PCBP3 is capable of binding to both double- and single-strand poly(C) sequences. Furthermore, plasmids expressing PCBP3 repressed the expression of luciferase reporters when cotransfected with single-strand (pGL-SS) and double-strand (pGL-DS) constructs containing poly(C) sequences in their promoters. This study demonstrates for the first time that PCBP3 can function as a repressor dependent on binding to single-strand and double-stranded poly(C) sequences.
Collapse
Affiliation(s)
- Duk-Hee Kang
- Division of Nephrology Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul 158-710, South Korea
| | | | | | | | | | | |
Collapse
|
26
|
Wang J, Xu M, Zhu K, Li L, Liu X. The N-terminus of FILIA forms an atypical KH domain with a unique extension involved in interaction with RNA. PLoS One 2012; 7:e30209. [PMID: 22276159 PMCID: PMC3261892 DOI: 10.1371/journal.pone.0030209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/12/2011] [Indexed: 01/07/2023] Open
Abstract
FILIA is a member of the recently identified oocyte/embryo expressed gene family in eutherian mammals, which is characterized by containing an N-terminal atypical KH domain. Here we report the structure of the N-terminal fragment of FILIA (FILIA-N), which represents the first reported three-dimensional structure of a KH domain in the oocyte/embryo expressed gene family of proteins. The structure of FILIA-N revealed a unique N-terminal extension beyond the canonical KH region, which plays important roles in interaction with RNA. By co-incubation with the lysates of mice ovaries, FILIA and FILIA-N could sequester specific RNA components, supporting the critical roles of FILIA in regulation of RNA transcripts during mouse oogenesis and early embryogenesis.
Collapse
Affiliation(s)
- Juke Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengyuan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kai Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LL); (XL)
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (LL); (XL)
| |
Collapse
|
27
|
Ramachandran S, Tran DDH, Klebba-Faerber S, Kardinal C, Whetton AD, Tamura T. An ataxia-telangiectasia-mutated (ATM) kinase mediated response to DNA damage down-regulates the mRNA-binding potential of THOC5. RNA (NEW YORK, N.Y.) 2011; 17:1957-1966. [PMID: 21937706 PMCID: PMC3198589 DOI: 10.1261/rna.2820911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In response to DNA damage, transcription is blocked by inhibition of RNA polymerase II activity. The regulation of a preexisting pool of mRNAs, therefore, plays a key role in DNA repair, cell cycle arrest, or inhibition of differentiation. THOC5 is a member of the THO complex and plays a role in the export of a subset of mRNA, which plays an important role in hematopoiesis and maintaining primitive cells. Since three serine residues in the PEST domain of THOC5 have been shown to be directly phosphorylated by ataxia-telangiectasia-mutated (ATM) kinase, we examined the THOC5-dependent mRNA export under DNA damage. We show here that DNA damage drastically decreased the cytoplasmic pool of a set of THOC5-dependent mRNAs and impaired the THOC5/mRNA complex formation. The mRNP complex formed with nonphosphorylation mutant (S307/312/314A) THOC5, but not with a C-terminal deletion mutant after DNA damage, suggesting that the C-terminal domain of THOC5, but not its phosphorylation in the PEST domain, is necessary for the regulation of the mRNA-binding potency of THOC5. The cytoplasmic THOC5-dependent mRNAs were recovered by treatment with ATM kinase-specific or p53-specific siRNA, as well as by treatment with ATM kinase inhibitor, KU55933, under DNA damage conditions, suggesting that the ATM-kinase-p53 pathway is involved in this response to the DNA damage. Furthermore, the treatment with KU55933 blocked DNA damage-induced THOC5mRNP complex dissociation, indicating that activation of ATM kinase suppresses the ability of THOC5 to bind to its target mRNAs.
Collapse
Affiliation(s)
- Sheetal Ramachandran
- Institut für Biochemie, OE4310, Medizinische Hochschule Hannover, D-30623 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Liu W, Li X, Chu ESH, Go MYY, Xu L, Zhao G, Li L, Dai N, Si J, Tao Q, Sung JJY, Yu J. Paired box gene 5 is a novel tumor suppressor in hepatocellular carcinoma through interaction with p53 signaling pathway. Hepatology 2011; 53:843-53. [PMID: 21319196 DOI: 10.1002/hep.24124] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/16/2010] [Indexed: 12/21/2022]
Abstract
UNLABELLED The paired box 5 (PAX5) is a member of PAX transcription factors family involved in the regulation of embryonic development. However, the role of PAX5 in carcinogenesis is largely unclear. We identified that PAX5 is involved in human cancer by methylation-sensitive representational difference analysis. We examined the biological functions and related molecular mechanisms of PAX5 in hepatocellular carcinoma (HCC). Promoter methylation of PAX5 was evaluated by methylation-specific polymerase chain reaction (PCR) and bisulfite genomic sequencing (BGS). The functions of ectopic PAX5 expression were determined by viability assay, colony formation, and cell cycle analyses, along with in vivo tumorigenicity assays. The PAX5 target signal pathway was identified by promoter luciferase assay, chromosome immunoprecipitation (ChIP), and pathway PCR array. PAX5 is expressed in normal human liver tissue, but silenced or down-regulated in 83% (10/12) of HCC cell lines. The mean expression level of PAX5 was significantly lower in primary HCCs as compared to their adjacent normal tissues (P < 0.0001). The promoter methylation contributes to the inactivation of PAX5. Restoring PAX5 expression in silenced HCC cell lines suppressed cell proliferation, induced apoptosis in vitro, and inhibited tumor growth in nude mice (P < 0.0001). The pathway luciferase reporter assay indicated that PAX5 activated p53 and p21 signaling. ChIP analysis demonstrated that PAX5 directly bound to the p53 promoter. The antitumorigenic function of PAX5 was at least up-regulated by p53 and its downstream targets including tumor necrosis factor, Fas ligand, leucine-rich repeats, and death domain-containing, poly(rC) binding protein 4, p21, and growth arrest and DNA-damage-inducible alpha. CONCLUSION PAX5 is frequently inactivated by promoter methylation in HCC. PAX5 appears to be a functional tumor suppressor involved in liver carcinogenesis through direct regulation of the p53 signaling pathway.
Collapse
Affiliation(s)
- Weili Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zheltukhin AO, Chumakov PM. Constitutive and induced functions of the p53 gene. BIOCHEMISTRY (MOSCOW) 2011; 75:1692-721. [DOI: 10.1134/s0006297910130110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Scoumanne A, Cho SJ, Zhang J, Chen X. The cyclin-dependent kinase inhibitor p21 is regulated by RNA-binding protein PCBP4 via mRNA stability. Nucleic Acids Res 2010; 39:213-24. [PMID: 20817677 PMCID: PMC3017617 DOI: 10.1093/nar/gkq778] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA-binding proteins (RBPs) play a major role in many post-transcriptional processes, including mRNA stability, alternative splicing and translation. PCBP4, also called MCG10, is an RBP belonging to the poly(C)-binding protein family and a target of p53 tumor suppressor. Ectopic expression of PCBP4 induces cell-cycle arrest in G2 and apoptosis. To identify RNA targets regulated by PCBP4 and further decipher its function, we generated multiple cell lines in which PCBP4 is either inducibly over-expressed or knocked down. We found that PCBP4 expression decreases cyclin-dependent kinase inhibitor p21 induction in response to DNA damage. We also provided evidence that PCBP4 regulates p21 expression independently of p53. In addition, we showed that a deficiency in PCBP4 enhances p21 induction upon DNA damage. To validate PCBP4 regulation of p21, we made PCBP4-deficient mice and showed that p21 expression is markedly increased in PCBP4-deficient primary mouse embryo fibroblasts compared to that in wild-type counterparts. Finally, we uncovered that PCBP4 binds to the 3′-UTR of p21 transcript in vitro and in vivo to regulate p21 mRNA stability. Taken together, we revealed that PCBP4 regulates both basal and stress-induced p21 expression through binding p21 3′-UTR and modulating p21 mRNA stability.
Collapse
Affiliation(s)
- Ariane Scoumanne
- The Center for Comparative Oncology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
31
|
Murrell RN, Gibson JE. Brevetoxin 2 alters expression of apoptotic, DNA damage, and cytokine genes in Jurkat cells. Hum Exp Toxicol 2010; 30:182-91. [DOI: 10.1177/0960327110372644] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brevetoxins are potent neurotoxins that exert their toxicity through activation of voltage-gated sodium channels. Exposure to brevetoxins cause severe respiratory inflammation in marine mammals and humans. Brevetoxin activation of voltage-gated sodium channels on immune cells can lead to several biological responses including cell proliferation, gene transcription, cytokine production and even apoptosis. Jurkat E6-1 T cells were treated with brevetoxin 2 for 4 hours at a dose previously shown to induce apoptosis and DNA damage. Changes in gene expression were then assessed via PCR arrays. Gene expression analysis revealed significant change in expression of 17 genes related to apoptosis, 21 genes related to DNA damage signaling, and 19 genes encoding common cytokines. The gene expression data supports the idea that brevetoxins trigger complex reactions involving both inflammation and cell death.
Collapse
Affiliation(s)
- Rachel N Murrell
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA, , Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, North Carolina, USA
| | - James E Gibson
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA, Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, North Carolina, USA
| |
Collapse
|
32
|
Waggoner SA, Johannes GJ, Liebhaber SA. Depletion of the poly(C)-binding proteins alphaCP1 and alphaCP2 from K562 cells leads to p53-independent induction of cyclin-dependent kinase inhibitor (CDKN1A) and G1 arrest. J Biol Chem 2009; 284:9039-49. [PMID: 19211566 PMCID: PMC2666552 DOI: 10.1074/jbc.m806986200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 02/03/2009] [Indexed: 12/23/2022] Open
Abstract
The alpha-globin poly(C)-binding proteins (alphaCPs) comprise an abundant and widely expressed set of K-homolog domain RNA-binding proteins. alphaCPs regulate the expression of a number of cellular and viral mRNAs at the levels of splicing, stability, and translation. Previous surveys have identified 160 mRNAs that are bound by alphaCP in the human hematopoietic cell line, K562. To explore the functions of these alphaCP/mRNA interactions, we identified mRNAs whose levels are altered in K562 cells acutely depleted of the two major alphaCP proteins, alphaCP1 and alphaCP2. Microarray analysis identified 27 mRNAs that are down-regulated and 14 mRNAs that are up-regulated in the alphaCP1/2-co-depleted cells. This alphaCP1/2 co-depletion was also noted to inhibit cell proliferation and trigger a G(1) cell cycle arrest. Targeted analysis of genes involved in cell cycle control revealed a marked increase in p21(WAF) mRNA and protein. Analysis of mRNP complexes in K562 cells demonstrates in vivo association of p21(WAF) mRNA with alphaCP1 and alphaCP2. In vitro binding assays indicate that a 127-nucleotide region of the 3'-untranslated region of p21(WAF) interacts with both alphaCP1 and alphaCP2, and co-depletion of alphaCP1/2 results in a marked increase in p21(WAF) mRNA half-life. p21(WAF) induction and G(1) arrest in the alphaCP1/2-co-depleted cells occur in the absence of p53 and are not observed in cells depleted of the individual alphaCP isoforms. The apparent redundancy in the actions of alphaCP1 and alphaCP2 upon p21(WAF) expression correlates with a parallel redundancy in their effects on cell cycle control. These data reveal a pivotal role for alphaCP1 and alphaCP2 in a p53-independent pathway of p21(WAF) control and cell cycle progression.
Collapse
Affiliation(s)
- Shelly A Waggoner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
33
|
Zhang J, Chen X. Posttranscriptional regulation of p53 and its targets by RNA-binding proteins. Curr Mol Med 2009; 8:845-9. [PMID: 19075680 DOI: 10.2174/156652408786733748] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
p53 tumor suppressor plays a pivotal role in maintaining genomic integrity and preventing cancer development. The importance of p53 in tumor suppression is illustrated by the observation that about 50% human tumor cells have a dysfunctional p53 pathway. Although it has been well accepted that the activity of p53 is mainly controlled through post-translational modifications, recent studies have revealed that posttranscriptional regulations of p53 by various RNA-binding proteins also play a crucial role in modulating p53 activity and its downstream targets.
Collapse
Affiliation(s)
- Jin Zhang
- Center for Comparative Oncology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
34
|
Choi HS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem Biophys Res Commun 2009; 380:431-6. [PMID: 19284986 DOI: 10.1016/j.bbrc.2009.01.136] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Poly(C)-binding proteins (PCBPs) are generally known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). They can be divided into two groups: hnRNP K and PCBP1-4. These proteins are involved mainly in various posttranscriptional regulations (e.g., mRNA stabilization or translational activation/silencing). In this review, we summarize and discuss how PCBPs act as transcriptional regulators by binding to specific elements in gene promoters that interact with the RNA polymerase II transcription machinery. Transcriptional regulation of PCBPs might itself be regulated by their localization within the cell. For example, activation by p21-activated kinase 1 induces increased nuclear retention of PCBP1, as well as increased promoter activity. PCBPs can function as a signal-dependent and coordinated regulator of transcription in eukaryotic cells. We address the molecular mechanisms by which PCBPs binding to single- and double-stranded DNA mediates gene expression.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Camats M, Guil S, Kokolo M, Bach-Elias M. P68 RNA helicase (DDX5) alters activity of cis- and trans-acting factors of the alternative splicing of H-Ras. PLoS One 2008; 3:e2926. [PMID: 18698352 PMCID: PMC2491553 DOI: 10.1371/journal.pone.0002926] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/18/2008] [Indexed: 02/07/2023] Open
Abstract
Background H-Ras pre-mRNA undergoes an alternative splicing process to render two proteins, namely p21 H-Ras and p19 H-Ras, due to either the exclusion or inclusion of the alternative intron D exon (IDX), respectively. p68 RNA helicase (p68) is known to reduce IDX inclusion. Principal Findings Here we show that p68 unwinds the stem-loop IDX-rasISS1 structure and prevents binding of hnRNP H to IDX-rasISS1. We also found that p68 alters the dynamic localization of SC35, a splicing factor that promotes IDX inclusion. The knockdown of hnRNP A1, FUS/TLS and hnRNP H resulted in upregulation of the expression of the gene encoding the SC35-binding protein, SFRS2IP. Finally, FUS/TLS was observed to upregulate p19 expression and to stimulate IDX inclusion, and in vivo RNAi-mediated depletion of hnRNP H decreased p19 H-Ras abundance. Significance Taken together, p68 is shown to be an essential player in the regulation of H-Ras expression as well as in a vital transduction signal pathway tied to cell proliferation and many cancer processes.
Collapse
Affiliation(s)
- Maria Camats
- Unidad de Splicing, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Sonia Guil
- Unidad de Splicing, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Mariette Kokolo
- Unidad de Splicing, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Montse Bach-Elias
- Unidad de Splicing, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- * E-mail:
| |
Collapse
|
36
|
Choi HS, Song KY, Hwang CK, Kim CS, Law PY, Wei LN, Loh HH. A proteomics approach for identification of single strand DNA-binding proteins involved in transcriptional regulation of mouse mu opioid receptor gene. Mol Cell Proteomics 2008; 7:1517-29. [PMID: 18453338 PMCID: PMC2494908 DOI: 10.1074/mcp.m800052-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pharmacological actions of morphine and morphine-like drugs such as heroin are mediated primarily through the μ opioid receptor. Previously a single strand DNA element of the mouse μ opioid receptor gene (Oprm1) proximal promoter was found to be important for regulating Oprm1 in neuronal cells. To identify proteins binding to the single strand DNA element as potential regulators for Oprm1, affinity column chromatography with the single strand DNA element was performed using neuroblastoma NS20Y cells followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. We identified five poly(C)-binding proteins: heterogeneous nuclear ribonucleoprotein (hnRNP) K, α-complex proteins (αCP) αCP1, αCP2, αCP2-KL, and αCP3. Binding of these proteins to the single strand DNA element of Oprm1 was sequence-specific as confirmed by supershift assays. In cotransfection studies, hnRNP K, αCP1, αCP2, and αCP2-KL activated the Oprm1 promoter activity, whereas αCP3 acted as a repressor. Ectopic expression of hnRNP K, αCP1, αCP2, and αCP2-KL also led to activation of the endogenous Oprm1 transcripts, and αCP3 repressed endogenous Oprm1 transcripts. We demonstrate novel roles as transcriptional regulators in Oprm1 regulation for hnRNP K and αCP binding to the single strand DNA element.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Castaño Z, Vergara-Irigaray N, Pajares MJ, Montuenga LM, Pio R. Expression of alpha CP-4 inhibits cell cycle progression and suppresses tumorigenicity of lung cancer cells. Int J Cancer 2008; 122:1512-20. [PMID: 17973258 DOI: 10.1002/ijc.23236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protein alpha CP-4 (also known as hnRNP E4) is an RNA binding protein encoded by a gene at 3p21, one of the most common altered regions in lung cancer. It has been proposed that alpha CP-4 may function as a lung tumor suppressor. Lack of alpha CP-4 expression is frequent in highly proliferative lung tumors and correlates with alpha CP-4 allele losses. The aim of this study was to evaluate the effect of alpha CP-4 on the tumorigenic capacity of lung cancer cells. alpha CP-4 expression was induced by transient transfection or stable infection with recombinant retroviruses. Induction of alpha CP-4 expression caused cell cycle arrest in G(2)/M in 3 out of the 7 lung cancer cell lines studied, while no effect on apoptosis was observed. Anchorage-independent growth and invasion capacity of H1299 cells were significantly reduced by alpha CP-4 induction. Tumorigenicity of H1299 cells in nude mice was greatly inhibited by the expression of alpha CP-4. Moreover, induction of alpha CP-4 expression in already established tumors resulted in a sudden growth arrest. Immunocytochemistry analysis of the xenograft tumors revealed an in vivo effect of alpha CP-4 on cell proliferation and no effect on apoptosis. Finally, alpha CP-4 showed a subcellular localization different from alpha CP-4a, a splice variant that does not affect cell proliferation. In conclusion, expression of alpha CP-4 can inhibit proliferation and tumorigenesis of lung cancer cells, both in vivo and in vitro, by delaying the progression of the cell cycle.
Collapse
Affiliation(s)
- Zafira Castaño
- Division of Oncology, CIMA, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
38
|
Abstract
The p53 tumor suppressor plays a pivotal role in multicellular organism by enforcing benefits of the organism over those of an individual cell. The task of p53 is to control the integrity and correctness of all processes in each individual cell and in the organism as a whole. Information about the state of ongoing events in the cell is gathered through multiple signaling pathways that convey signals modifying activities of p53. Changes in the activities depend on the character of damages or deviations from optimum in processes, and the activity of p53 changes depending on the degree of the aberration, which results in either stimulation of repair processes and protective mechanisms, or the cessation of further cell divisions and the induction of programmed cell death. The strategy of p53 ensures genetic identity of cells and prevents the selection of abnormal cells. By accomplishing these strategic tasks, p53 may use a wide spectrum of activities, such as its ability to function as a transcription factor, by inducing or repressing different genes, or as an enzyme, by acting as an exonuclease during DNA reparation, or as an adaptor or a regulatory protein, intervening into functions of numerous signaling pathways. Loss of function of the p53 gene occurs in virtually every case of cancer, and deficiency in p53 is an unavoidable prerequisite to the development of malignancies. The functions of p53 play substantial roles in many other pathologies as well as in the aging process. This review is focused on strategies of the p53 gene, demonstrating individual mechanisms underlying its functions.
Collapse
Affiliation(s)
- P M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
39
|
Pierre A, Gautier M, Callebaut I, Bontoux M, Jeanpierre E, Pontarotti P, Monget P. Atypical structure and phylogenomic evolution of the new eutherian oocyte- and embryo-expressed KHDC1/DPPA5/ECAT1/OOEP gene family. Genomics 2007; 90:583-94. [PMID: 17913455 DOI: 10.1016/j.ygeno.2007.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/09/2007] [Accepted: 06/12/2007] [Indexed: 12/22/2022]
Abstract
Several recent studies have shown that genes specifically expressed by the oocyte are subject to rapid evolution, in particular via gene duplication mechanisms. In the present work, we have focused our attention on a family of genes, specific to eutherian mammals, that are located in unstable genomic regions. We have identified two genes specifically expressed in the mouse oocyte: Khdc1a (KH homology domain containing 1a, also named Ndg1 for Nur 77 downstream gene 1, a target gene of the Nur77 orphan receptor), and another gene structurally related to Khdc1a that we have renamed Khdc1b. In this paper, we show that Khdc1a and Khdc1b belong to a family of several members including the so-called developmental pluripotency A5 (Dppa5) genes, the cat/dog oocyte expressed protein (cat OOEP and dog OOEP) genes, and the ES cell-associated transcript 1 (Ecat1) genes. These genes encode structurally related proteins that are characterized by an atypical RNA-binding KH domain and are specifically expressed in oocytes and/or embryonic stem cells. They are absent in fish, bird, and marsupial genomes and thus seem to have first appeared in eutherian mammals, in which they have evolved rapidly. They are located in a single syntenic region in all mammalian genomes studied, except in rodents, in which a synteny rupture due to a paracentric inversion has separated this gene family into two genomic regions and seems to be associated with increased instability in these regions. Overall, we have identified and characterized a novel family of oocyte and/or embryonic stem cell-specific genes encoding proteins that share an atypical KH RNA-binding domain and that have evolved rapidly since their emergence in eutherian mammalian genomes.
Collapse
Affiliation(s)
- Alice Pierre
- Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université F. Rabelais de Tours Haras Nationaux, 37380 Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Choi HS, Kim CS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Novel function of the poly(C)-binding protein alpha CP3 as a transcriptional repressor of the mu opioid receptor gene. FASEB J 2007; 21:3963-73. [PMID: 17625070 DOI: 10.1096/fj.07-8561com] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The alpha-complex proteins (alphaCP) are generally known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). These proteins are mainly involved in various post-transcriptional regulations (e.g., mRNA stabilization or translational activation/silencing). Here we report a novel function of alphaCP3, a member of the alphaCP family. alphaCP3 bound to the double-stranded poly(C) element essential for the mu opioid receptor (MOR) promoter and repressed the promoter activity at the transcriptional level. We identified alphaCP3 using affinity column chromatography containing the double-stranded poly(C) element and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. AlphaCP3 binding to the poly(C) sequence of the MOR gene was sequence specific, as confirmed by the supershift assay. In cotransfection studies, alphaCP3 repressed the MOR promoter only when the poly(C) sequence was intact. Ectopic expression of alphaCP3 led to repression of the endogenous MOR transcripts in NS20Y cells. When alphaCP3 was disrupted using small interfering RNA (siRNA) in NS20Y cells, the transcription of the endogenous target MOR gene was increased significantly. Our data suggest that alphaCP3 can function as a repressor of MOR transcription dependent on the MOR poly(C) sequence. We demonstrate for the first time a role of alphaCP3 as a transcriptional repressor in MOR gene regulation.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Du Z, Lee JK, Fenn S, Tjhen R, Stroud RM, James TL. X-ray crystallographic and NMR studies of protein-protein and protein-nucleic acid interactions involving the KH domains from human poly(C)-binding protein-2. RNA (NEW YORK, N.Y.) 2007; 13:1043-51. [PMID: 17526645 PMCID: PMC1894928 DOI: 10.1261/rna.410107] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Poly(C)-binding proteins (PCBPs) are KH (hnRNP K homology) domain-containing proteins that recognize poly(C) DNA and RNA sequences in mammalian cells. Binding poly(C) sequences via the KH domains is critical for PCBP functions. To reveal the mechanisms of KH domain-D/RNA recognition and its functional importance, we have determined the crystal structures of PCBP2 KH1 domain in complex with a 12-nucleotide DNA corresponding to two repeats of the human C-rich strand telomeric DNA and its RNA equivalent. The crystal structures reveal molecular details for not only KH1-DNA/RNA interaction but also protein-protein interaction between two KH1 domains. NMR studies on a protein construct containing two KH domains (KH1 + KH2) of PCBP2 indicate that KH1 interacts with KH2 in a way similar to the KH1-KH1 interaction. The crystal structures and NMR data suggest possible ways by which binding certain nucleic acid targets containing tandem poly(C) motifs may induce structural rearrangement of the KH domains in PCBPs; such structural rearrangement may be crucial for some PCBP functions.
Collapse
Affiliation(s)
- Zhihua Du
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The tumor suppressor p53 plays a central role in the DNA damage response. After exposure to genotoxic stress, p53 can both positively and negatively regulate cell fate. Initially, p53 promotes cell survival by inducing cell cycle arrest, DNA repair, and other pro-survival pathways. However, when cells accumulate DNA damage or demonstrate aberrant growth, p53 can direct the elimination of damaged cells. In this review, we will discuss the transcriptional-dependent and -independent roles of p53 in regulating the DNA damage response.
Collapse
Affiliation(s)
- E Scott Helton
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
43
|
Fenn S, Du Z, Lee JK, Tjhen R, Stroud RM, James TL. Crystal structure of the third KH domain of human poly(C)-binding protein-2 in complex with a C-rich strand of human telomeric DNA at 1.6 A resolution. Nucleic Acids Res 2007; 35:2651-60. [PMID: 17426136 PMCID: PMC1885661 DOI: 10.1093/nar/gkm139] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
KH (hnRNP K homology) domains, consisting of ∼70 amino acid residues, are present in a variety of nucleic-acid-binding proteins. Among these are poly(C)-binding proteins (PCBPs), which are important regulators of mRNA stability and posttranscriptional regulation in general. All PCBPs contain three different KH domains and recognize poly(C)-sequences with high affinity and specificity. To reveal the molecular basis of poly(C)-sequence recognition, we have determined the crystal structure, at 1.6 Å resolution, of PCBP2 KH3 domain in complex with a 7-nt DNA sequence (5′-AACCCTA-3′) corresponding to one repeat of the C-rich strand of human telomeric DNA. The domain assumes a type-I KH fold in a βααββα configuration. The protein–DNA interface could be studied in unprecedented detail and is made up of a series of direct and water-mediated hydrogen bonds between the protein and the DNA, revealing an especially dense network involving several structural water molecules for the last 2 nt in the core recognition sequence. Unlike published KH domain structures, the protein crystallizes without protein–protein contacts, yielding new insights into the dimerization properties of different KH domains. A nucleotide platform, an interesting feature found in some RNA molecules, was identified, evidently for the first time in DNA.
Collapse
Affiliation(s)
- Sebastian Fenn
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2280, USA
| | - Zhihua Du
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2280, USA
| | - John K. Lee
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2280, USA
| | - Richard Tjhen
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2280, USA
| | - Robert M. Stroud
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2280, USA
| | - Thomas L. James
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2280, USA
- *To whom correspondence should be addressed +1-415 476-1916+1-415-502-8298
| |
Collapse
|
44
|
Roychoudhury P, Paul RR, Chowdhury R, Chaudhuri K. HnRNP E2 is downregulated in human oral cancer cells and the overexpression of hnRNP E2 induces apoptosis. Mol Carcinog 2007; 46:198-207. [PMID: 17219427 DOI: 10.1002/mc.20265] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human hnRNP genes have been reported to be involved in human malignancies and several hnRNPs are promising biomarkers of lung, head and neck, colon, breast, and pancreatic cancers. The present study investigated the clinicopathologic and biological significance of hnRNP E2 gene expression in oral cancer. Human hnRNP E2 was significantly downregulated in oral cancer tissues compared to normal one (P<0.0001) as determined by quantitative real-time reverse transcription PCR. The expression of hnRNP E2 is correlated with histology, being lower in moderate and poorly differentiated squamous cell carcinoma (SCC) compared to well-differentiated SCC. Transient transfection of hnRNP E2 in cancerous cell lines resulted in reduced cell viability and increased apoptotic nuclei. Compared to control transfectants, cells with higher expression showed an increase in the number of apoptotic cells by annexin-PI staining and an increase in caspase activity. The present study thus implicates downregulation of hnRNP E2 as a novel mechanism to enhance the resistance of cancer cells to apoptosis.
Collapse
Affiliation(s)
- Paromita Roychoudhury
- Human Genetics & Genomics Group, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | | | | | | |
Collapse
|
45
|
Shu KX, Li B, Wu LX. The p53 network: p53 and its downstream genes. Colloids Surf B Biointerfaces 2007; 55:10-8. [PMID: 17188467 DOI: 10.1016/j.colsurfb.2006.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/17/2006] [Accepted: 11/03/2006] [Indexed: 12/13/2022]
Abstract
The tumor-suppressor gene p53 and its downstream genes consist of a complicated gene network. p53 is a key molecular node in the network, which is activated in response to several cellular signals resulting in the maintenance of genetic stability. Several cellular signals may activate the p53 network. When the expression of P53 is elevated, P53-MDM2 module and the ubiquitin system can accurately regulate the expression level of P53. P53 can bind to specific DNA sequence, activate its downstream genes expression, and control cell-cycle arrest, DNA repair, and apoptosis. Elucidating the function of p53 gene network will help understand the interaction mechanisms of p53 and its downstream genes.
Collapse
Affiliation(s)
- Kun-Xian Shu
- College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | | | | |
Collapse
|
46
|
Bedard KM, Daijogo S, Semler BL. A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J 2007; 26:459-67. [PMID: 17183366 PMCID: PMC1783453 DOI: 10.1038/sj.emboj.7601494] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 11/14/2006] [Indexed: 11/08/2022] Open
Abstract
A significant number of viral and cellular mRNAs utilize cap-independent translation, employing mechanisms distinct from those of canonical translation initiation. Cap-independent translation requires noncanonical, cellular RNA-binding proteins; however, the roles of such proteins in ribosome recruitment and translation initiation are not fully understood. This work demonstrates that a nucleo-cytoplasmic SR protein, SRp20, functions in internal ribosome entry site (IRES)-mediated translation of a viral RNA. We found that SRp20 interacts with the cellular RNA-binding protein, PCBP2, a protein that binds to IRES sequences within the genomic RNAs of certain picornaviruses and is required for viral translation. We utilized in vitro translation in HeLa cell extracts depleted of SRp20 to demonstrate that SRp20 is required for poliovirus translation initiation. Targeting SRp20 in HeLa cells with short interfering RNAs resulted in inhibition of SRp20 protein expression and a corresponding decrease in poliovirus translation. Our data have identified a previously unknown function of an SR protein (i.e., the stimulation of IRES-mediated translation), further documenting the multifunctional nature of this important class of cellular RNA-binding proteins.
Collapse
Affiliation(s)
- Kristin M Bedard
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Sarah Daijogo
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
47
|
Fischer M, Oberthuer A, Brors B, Kahlert Y, Skowron M, Voth H, Warnat P, Ernestus K, Hero B, Berthold F. Differential Expression of Neuronal Genes Defines Subtypes of Disseminated Neuroblastoma with Favorable and Unfavorable Outcome. Clin Cancer Res 2006; 12:5118-28. [PMID: 16951229 DOI: 10.1158/1078-0432.ccr-06-0985] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Identification of molecular characteristics of spontaneously regressing stage IVS and progressing stage IV neuroblastoma to improve discrimination of patients with metastatic disease following favorable and unfavorable clinical courses. EXPERIMENTAL DESIGN Serial analysis of gene expression profiles were generated from five stage IVS and three stage IV neuroblastoma. Differential expression of candidate genes was evaluated by real-time quantitative reverse transcription-PCR in 76 pretreatment tumor samples (stage IVS n=27 and stage IV n=49). Gene expression-based outcome prediction was determined by Prediction Analysis for Microarrays using 38 tumors as a training set and 38 tumors as a test set. RESULTS Comparison of serial analysis of gene expression profiles from stage IV and IVS neuroblastoma revealed approximately 500 differentially expressed transcripts. Genes related to neuronal differentiation were observed more frequently in stage IVS tumors as determined by associating transcripts to Gene Ontology annotations. Forty-one candidate genes were evaluated by quantitative reverse transcription-PCR and 18 were confirmed to be differentially expressed (P<or=0.001). Classification of patients according to expression patterns of these 18 genes using Prediction Analysis for Microarrays discriminated two subgroups with significantly differing event-free survival (96+/-6% versus 40+/-8% at 3 years; P<0.0001) and overall survival (100% versus 72+/-7% at 3 years; P=0.0003). This classifier was the only independent covariate marker in a multivariate analysis considering the variables stage, age, MYCN amplification, and gene signature. CONCLUSIONS Spontaneously regressing and progressing metastatic neuroblastoma differ by specific gene expression patterns, indicating distinct levels of neuronal differentiation and allowing for an improved risk estimation of children with disseminated disease.
Collapse
Affiliation(s)
- Matthias Fischer
- Department of Pediatric Oncology and Hematology and Center of Molecular Medicine Cologne, University Children's Hospital, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schumacher B, Gartner A. Translational regulation of p53 as a potential tumor therapy target. Future Oncol 2006; 2:145-53. [PMID: 16556081 DOI: 10.2217/14796694.2.1.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tumor suppressor p53 is a central player in apoptosis induction in response to oncogenic stimuli and DNA damage. As activation of p53 has been suggested as a prime strategy for future tumor therapy, inhibition of negative regulators of p53 activity would be a similarly desirable strategy. The small worm Caenorhabditis elegans is a model organism in which many conserved biological pathways, including the core apoptotic machinery, were elucidated. The discovery of a worm p53 homolog cep-1/p53 (which stands for C. elegans p53) that specifically induces apoptosis upon DNA damage through a pathway that is conserved from worm to man opened the way for the use of C. elegans genetics to uncover regulatory mechanisms – and hence novel therapeutic targets – of p53-mediated apoptosis. The authors have recently reported a novel mechanism of C. elegans cep-1/p53 regulation through germ line defective-1-mediated translational repression. This review discusses the potential of the worm system to screen for apoptosis-inducing cancer drugs and to identify novel p53 regulators whose human counterparts might become potential tumor therapy targets.
Collapse
Affiliation(s)
- Björn Schumacher
- Department of Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands.
| | | |
Collapse
|
49
|
Carpenter B, MacKay C, Alnabulsi A, MacKay M, Telfer C, Melvin WT, Murray GI. The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. Biochim Biophys Acta Rev Cancer 2005; 1765:85-100. [PMID: 16378690 DOI: 10.1016/j.bbcan.2005.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 10/18/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNP) are a family of proteins which share common structural domains, and extensive research has shown that they have central roles in DNA repair, telomere biogenesis, cell signaling and in regulating gene expression at both transcriptional and translational levels. Through these key cellular functions, individual hnRNPs have a variety of potential roles in tumour development and progression including the inhibition of apoptosis, angiogenesis and cell invasion. The aims of this review are to provide an overview of the multi functional roles of the hnRNPs, and how such roles implicate this family as regulators of tumour development. The different stages of tumour development that are potentially regulated by the hnRNPs along with their aberrant expression profiles in tumour tissues will also be discussed.
Collapse
Affiliation(s)
- Brian Carpenter
- Department of Pathology, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Hearnes JM, Mays DJ, Schavolt KL, Tang L, Jiang X, Pietenpol JA. Chromatin immunoprecipitation-based screen to identify functional genomic binding sites for sequence-specific transactivators. Mol Cell Biol 2005; 25:10148-58. [PMID: 16260627 PMCID: PMC1280257 DOI: 10.1128/mcb.25.22.10148-10158.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/06/2005] [Accepted: 08/28/2005] [Indexed: 02/05/2023] Open
Abstract
In various human diseases, altered gene expression patterns are often the result of deregulated gene-specific transcription factor activity. To further understand disease on a molecular basis, the comprehensive analysis of transcription factor signaling networks is required. We developed an experimental approach, combining chromatin immunoprecipitation (ChIP) with a yeast-based assay, to screen the genome for transcription factor binding sites that link to transcriptionally regulated target genes. We used the tumor suppressor p53 to demonstrate the effectiveness of the method. Using primary and immortalized, nontransformed cultures of human mammary epithelial cells, we isolated over 100 genomic DNA fragments that contain novel p53 binding sites. This approach led to the identification and validation of novel p53 target genes involved in diverse signaling pathways, including growth factor signaling, protein kinase/phosphatase signaling, and RNA binding. Our results yield a more complete understanding of p53-regulated signaling pathways, and this approach could be applied to any number of transcription factors to further elucidate complex transcriptional networks.
Collapse
Affiliation(s)
- Jamie M Hearnes
- Department of Biochemistry, Center for Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232-6838, USA
| | | | | | | | | | | |
Collapse
|