1
|
Kim TD, Gu R, Janknecht R. Methylation of the JMJD2B epigenetic regulator differentially affects its ability to coactivate the ETV1 and JUN transcription factors. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 14:101-115. [PMID: 38213775 PMCID: PMC10776875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVES Jumonji C domain-containing (JMJD) 2B (JMJD2B) is a transcriptional cofactor and histone demethylase that is involved in prostate cancer formation. However, how its function is regulated by posttranslational modification has remained elusive. Hence, we examined if JMJD2B would be regulated by lysine methylation. METHODS Through in vitro methylation assays and Western blotting with methyl-lysine specific antibodies, we analyzed lysine methylation within JMJD2B. Identified methylated lysine residues were mutated to arginine residues and the respective impact on JMJD2B transcriptional activity measured with a reporter gene assay in human LNCaP prostate cancer cells. RESULTS We discovered that JMJD2B is methylated on up to six different lysine residues. Further, we identified the suppressor of variegation 3-9/enhancer of zeste/trithorax (SET) domain-containing protein 7/9 (SET7/9) as the methyltransferase being responsible for this posttranslational modification. Mutating the methylation sites in JMJD2B to arginine residues led to diminished coactivation of the Ju-nana (JUN) transcription factor, which is a known oncogenic protein in prostate tumors. In contrast, methylation of JMJD2B had no impact on its ability to coactivate another transcription factor associated with prostate cancer, the DNA-binding protein E26 transformation-specific (ETS) variant 1 (ETV1). Consistent with a potential joint action of JMJD2B, SET7/9 and JUN in prostate cancer, the expression of JMJD2B in human prostate tumors was positively correlated with both SET7/9 and JUN levels. CONCLUSIONS The identified SET7/9-mediated methylation of JMJD2B appears to impact its cooperation with selected interacting transcription factors in prostate cancer cells. Given the implicated roles of JMJD2B beyond prostate tumorigenesis, SET7/9-mediated methylation of JMJD2B possibly also influences the development of other cancers, while its impairment might have relevance for obesity or a global developmental delay that can be elicited by reduced JMJD2B activity.
Collapse
Affiliation(s)
- Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | - Ruicai Gu
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| |
Collapse
|
2
|
Gu R, Kim TD, Jiang H, Shin S, Oh S, Janknecht R. Methylation of the epigenetic JMJD2D protein by SET7/9 promotes prostate tumorigenesis. Front Oncol 2023; 13:1295613. [PMID: 38045004 PMCID: PMC10690936 DOI: 10.3389/fonc.2023.1295613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
How the function of the JMJD2D epigenetic regulator is regulated or whether it plays a role in prostate cancer has remained elusive. We found that JMJD2D was overexpressed in prostate tumors, stimulated prostate cancer cell growth and became methylated by SET7/9 on K427. Mutation of this lysine residue in JMJD2D reduced the ability of DU145 prostate cancer cells to grow, invade and form tumors and elicited extensive transcriptomic changes. This included downregulation of CBLC, a ubiquitin ligase gene with hitherto unknown functions in prostate cancer, and upregulation of PLAGL1, a transcription factor with reported tumor suppressive characteristics in the prostate. Bioinformatic analyses indicated that CBLC expression was elevated in prostate tumors. Further, downregulation of CBLC largely phenocopied the effects of the K427 mutation on DU145 cells. In sum, these data have unveiled a novel mode of regulation of JMJD2D through lysine methylation, illustrated how this can affect oncogenic properties by influencing expression of the CBLC gene, and established a pro-tumorigenic role for CBLC in the prostate. A corollary is that JMJD2D and CBLC inhibitors could have therapeutic benefits in the treatment of prostate and possibly other cancers.
Collapse
Affiliation(s)
- Ruicai Gu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hanlin Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Gu R, Kim TD, Song H, Sui Y, Shin S, Oh S, Janknecht R. SET7/9-mediated methylation affects oncogenic functions of histone demethylase JMJD2A. JCI Insight 2023; 8:e164990. [PMID: 37870957 PMCID: PMC10619491 DOI: 10.1172/jci.insight.164990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
The histone demethylase JMJD2A/KDM4A facilitates prostate cancer development, yet how JMJD2A function is regulated has remained elusive. Here, we demonstrate that SET7/9-mediated methylation on 6 lysine residues modulated JMJD2A. Joint mutation of these lysine residues suppressed JMJD2A's ability to stimulate the MMP1 matrix metallopeptidase promoter upon recruitment by the ETV1 transcription factor. Mutation of just 3 methylation sites (K505, K506, and K507) to arginine residues (3xR mutation) was sufficient to maximally reduce JMJD2A transcriptional activity and also decreased its binding to ETV1. Introduction of the 3xR mutation into DU145 prostate cancer cells reduced in vitro growth and invasion and also severely compromised tumorigenesis. Consistently, the 3xR genotype caused transcriptome changes related to cell proliferation and invasion pathways, including downregulation of MMP1 and the NPM3 nucleophosmin/nucleoplasmin gene. NPM3 downregulation phenocopied and its overexpression rescued, to a large degree, the 3xR mutation in DU145 cells, suggesting that NPM3 was a seminal downstream effector of methylated JMJD2A. Moreover, we found that NPM3 was overexpressed in prostate cancer and might be indicative of disease aggressiveness. SET7/9-mediated lysine methylation of JMJD2A may aggravate prostate tumorigenesis in a manner dependent on NPM3, implying that the SET7/9→JMJD2A→NPM3 axis could be targeted for therapy.
Collapse
Affiliation(s)
| | | | | | | | - Sook Shin
- Department of Cell Biology
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sangphil Oh
- Department of Cell Biology
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ralf Janknecht
- Department of Cell Biology
- Department of Pathology, and
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Heil BJ, Crawford J, Greene CS. The effect of non-linear signal in classification problems using gene expression. PLoS Comput Biol 2023; 19:e1010984. [PMID: 36972227 PMCID: PMC10079219 DOI: 10.1371/journal.pcbi.1010984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/06/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Those building predictive models from transcriptomic data are faced with two conflicting perspectives. The first, based on the inherent high dimensionality of biological systems, supposes that complex non-linear models such as neural networks will better match complex biological systems. The second, imagining that complex systems will still be well predicted by simple dividing lines prefers linear models that are easier to interpret. We compare multi-layer neural networks and logistic regression across multiple prediction tasks on GTEx and Recount3 datasets and find evidence in favor of both possibilities. We verified the presence of non-linear signal when predicting tissue and metadata sex labels from expression data by removing the predictive linear signal with Limma, and showed the removal ablated the performance of linear methods but not non-linear ones. However, we also found that the presence of non-linear signal was not necessarily sufficient for neural networks to outperform logistic regression. Our results demonstrate that while multi-layer neural networks may be useful for making predictions from gene expression data, including a linear baseline model is critical because while biological systems are high-dimensional, effective dividing lines for predictive models may not be.
Collapse
Affiliation(s)
- Benjamin J. Heil
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Jake Crawford
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Casey S. Greene
- Department of Pharmacology, University of Colorado School of Medicine, Colorado, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Colorado, United States of America
| |
Collapse
|
5
|
Sui Y, Jiang H, Kellogg CM, Oh S, Janknecht R. Promotion of colorectal cancer by transcription factor BHLHE40 involves upregulation of ADAM19 and KLF7. Front Oncol 2023; 13:1122238. [PMID: 36890812 PMCID: PMC9986587 DOI: 10.3389/fonc.2023.1122238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
BHLHE40 is a transcription factor, whose role in colorectal cancer has remained elusive. We demonstrate that the BHLHE40 gene is upregulated in colorectal tumors. Transcription of BHLHE40 was jointly stimulated by the DNA-binding ETV1 protein and two associated histone demethylases, JMJD1A/KDM3A and JMJD2A/KDM4A, which were shown to also form complexes on their own and whose enzymatic activity was required for BHLHE40 upregulation. Chromatin immunoprecipitation assays revealed that ETV1, JMJD1A and JMJD2A interacted with several regions within the BHLHE40 gene promoter, suggesting that these three factors directly control BHLHE40 transcription. BHLHE40 downregulation suppressed both growth and clonogenic activity of human HCT116 colorectal cancer cells, strongly hinting at a pro-tumorigenic role of BHLHE40. Through RNA sequencing, the transcription factor KLF7 and the metalloproteinase ADAM19 were identified as putative BHLHE40 downstream effectors. Bioinformatic analyses showed that both KLF7 and ADAM19 are upregulated in colorectal tumors as well as associated with worse survival and their downregulation impaired HCT116 clonogenic activity. In addition, ADAM19, but not KLF7, downregulation reduced HCT116 cell growth. Overall, these data have revealed a ETV1/JMJD1A/JMJD2A→BHLHE40 axis that may stimulate colorectal tumorigenesis through upregulation of genes such as KLF7 and ADAM19, suggesting that targeting this axis represents a potential novel therapeutic avenue.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hanlin Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Collyn M Kellogg
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Stephenson Cancer Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Hongo I, Okamoto H. FGF/MAPK/Ets signaling in Xenopus ectoderm contributes to neural induction and patterning in an autonomous and paracrine manner, respectively. Cells Dev 2022; 170:203769. [DOI: 10.1016/j.cdev.2022.203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/16/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
7
|
Oh S, Shin S, Janknecht R. Sumoylation of transcription factor ETV1 modulates its oncogenic potential in prostate cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:795-810. [PMID: 34367411 PMCID: PMC8339722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The transcription factor ETS variant 1 (ETV1) is capable of promoting prostate tumorigenesis. We demonstrate that ETV1 can be posttranslationally modified by covalent attachment of small ubiquitin-like modifier 1 (SUMO1) onto four different lysine residues. In human embryonic kidney 293T cells, mutation of these sumoylation sites stimulated the transactivation potential of ETV1 at the matrix metalloproteinase 1 (MMP1), but not Yes-associated protein 1 gene promoter, while ETV1 protein stability and intracellular localization remained unchanged. In stark contrast, sumoylation-deficient ETV1 was repressed in its ability to stimulate the MMP1 promoter and to cooperate with a histone demethylase, JmjC domain-containing 2A (JMJD2A), in LNCaP prostate cancer cells. Mutation of sumoylation sites enhanced the ability of ETV1 to interact with the histone deacetylase (HDAC) 1, but had basically no impact on complex formation with HDAC3 or JMJD2A. Further, compared to non-sumoylated ETV1, its sumoylated forms were less able to bind to the transcription factor, SMAD family member 4. Lastly, in contrast to wild-type ETV1, sumoylation-deficient ETV1 repressed LNCaP cell growth. Altogether, these data suggest that sumoylation modulates ETV1 function in a cell type-specific manner, possibly by altering the spectrum of transcriptional cofactors being recruited. Notably, SUMO pathway components SUMO1, ubiquitin-like modifier activating enzyme 2 and ubiquitin conjugating enzyme 9 were upregulated in prostate tumors, implying that enhanced sumoylation indeed promotes ETV1's oncogenic activity during prostate cancer formation.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences CenterOklahoma City, Oklahoma, USA
| |
Collapse
|
8
|
Oh S, Song H, Freeman WM, Shin S, Janknecht R. Cooperation between ETS transcription factor ETV1 and histone demethylase JMJD1A in colorectal cancer. Int J Oncol 2020; 57:1319-1332. [PMID: 33174020 PMCID: PMC7646594 DOI: 10.3892/ijo.2020.5133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
ETS variant 1 (ETV1) is an oncogenic transcription factor. However, its role in colorectal cancer has remained understudied. The present study demonstrated that ETV1 downregulation led to reduced HCT116 colorectal cancer cell growth and clonogenic activity. Furthermore, the ETV1 mRNA levels were enhanced in colorectal tumors and were associated with disease severity. In addition, ETV1 directly bound to Jumonji C domain-containing (JMJD) 1A, a histone demethylase known to promote colon cancer. ETV1 and JMJD1A, but not a catalytically inactive mutant thereof, cooperated in inducing the matrix metalloproteinase (MMP)1 gene promoter that was similar to the cooperation between ETV1 and another histone demethylase, JMJD2A. RNA-sequencing revealed multiple potential ETV1 target genes in HCT116 cells, including the FOXQ1 and TBX6 transcription factor genes. Moreover, JMJD1A co-regulated FOXQ1 and other ETV1 target genes, but not TBX6, whereas JMJD2A downregulation had no impact on FOXQ1 as well as TBX6 transcription. Accordingly, the FOXQ1 gene promoter was stimulated by ETV1 and JMJD1A in a cooperative manner, and both ETV1 and JMJD1A bound to the FOXQ1 promoter. Notably, the overexpression of FOXQ1 partially reversed the growth inhibitory effects of ETV1 ablation on HCT116 cells, whereas TBX6 impaired HCT116 cell growth and may thereby dampen the oncogenic activity of ETV1. The latter also revealed for the first time, to the best of our knowledge, a potential tumor suppressive function of TBX6. Taken together, the present study uncovered a ETV1/JMJD1A-FOXQ1 axis that may drive colorectal tumorigenesis.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hoogeun Song
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Sui Y, Li X, Oh S, Zhang B, Freeman WM, Shin S, Janknecht R. Opposite Roles of the JMJD1A Interaction Partners MDFI and MDFIC in Colorectal Cancer. Sci Rep 2020; 10:8710. [PMID: 32457453 PMCID: PMC7250871 DOI: 10.1038/s41598-020-65536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
MyoD family inhibitor (MDFI) and MDFI domain-containing (MDFIC) are homologous proteins known to regulate myogenic transcription factors. Hitherto, their role in cancer is unknown. We discovered that MDFI is up- and MDFIC downregulated in colorectal tumors. Mirroring these different expression patterns, MDFI stimulated and MDFIC inhibited growth of HCT116 colorectal cancer cells. Further, MDFI and MDFIC interacted with Jumonji C domain-containing (JMJD) 1 A, a histone demethylase and epigenetic regulator involved in colorectal cancer. JMJD1A influenced transcription of several genes that were also regulated by MDFI or MDFIC. Notably, the HIC1 tumor suppressor gene was stimulated by JMJD1A and MDFIC, but not by MDFI, and HIC1 overexpression phenocopied the growth suppressive effects of MDFIC in HCT116 cells. Similar to colorectal cancer, MDFI was up- and MDFIC downregulated in breast, ovarian and prostate cancer, but both were overexpressed in brain, gastric and pancreatic tumors that implies MDFIC to also promote tumorigenesis in certain tissues. Altogether, our data suggest a tumor modulating function for MDFI and MDFIC in colorectal and other cancers that may involve their interaction with JMJD1A and a MDFIC→HIC1 axis.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xiaomeng Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | - Bin Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Willard M Freeman
- Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.,Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
10
|
Khatiwada P, Kannan A, Malla M, Dreier M, Shemshedini L. Androgen up-regulation of Twist1 gene expression is mediated by ETV1. PeerJ 2020; 8:e8921. [PMID: 32296610 PMCID: PMC7151753 DOI: 10.7717/peerj.8921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Twist1, a basic helix-loop-helix transcription factor that regulates a number of genes involved in epithelial-to-mesenchymal transition (EMT), is upregulated in prostate cancer. Androgen regulation of Twist1 has been reported in a previous study. However, the mechanism of androgen regulation of the Twist1 gene is not understood because the Twist1 promoter lacks androgen receptor (AR)-responsive elements. Previous studies have shown that the Twist1 promoter has putative binding sites for PEA3 subfamily of ETS transcription factors. Our lab has previously identified Ets Variant 1 (ETV1), a member of the PEA3 subfamily, as a novel androgen-regulated gene that is involved in prostate cancer cell invasion through unknown mechanism. In view of these data, we hypothesized that androgen-activated AR upregulates Twist1 gene expression via ETV1. Our data confirmed the published work that androgen positively regulates Twist1 gene expression and further showed that this positive effect was directed at the Twist1 promoter. The positive effect of androgen on Twist1 gene expression was abrogated upon disruption of AR expression by siRNA or of AR activity by Casodex. More importantly, our data show that disruption of ETV1 leads to significant decrease in both androgen-mediated upregulation as well as basal level of Twist1, which we are able to rescue upon re-expression of ETV1. Indeed, we are able to show that ETV1 mediates the androgen upregulation of Twist1 by acting on the proximal region of Twist1 promoter. Additionally, our data show that Twist1 regulates prostate cancer cell invasion and EMT, providing a possible mechanism by which ETV1 mediates prostate cancer cell invasion. In conclusion, in this study we report Twist1 as an indirect target of AR and androgen regulation through ETV1.
Collapse
Affiliation(s)
- Prabesh Khatiwada
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Archana Kannan
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Mamata Malla
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Megan Dreier
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Lirim Shemshedini
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
11
|
Oh S, Shin S, Song H, Grande JP, Janknecht R. Relationship between ETS Transcription Factor ETV1 and TGF-β-regulated SMAD Proteins in Prostate Cancer. Sci Rep 2019; 9:8186. [PMID: 31160676 PMCID: PMC6546734 DOI: 10.1038/s41598-019-44685-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/22/2019] [Indexed: 01/12/2023] Open
Abstract
The ETS transcription factor ETV1 is frequently overexpressed in aggressive prostate cancer, which is one underlying cause of this disease. Accordingly, transgenic mice that prostate-specifically overexpress ETV1 develop prostatic intraepithelial neoplasia. However, progression to the adenocarcinoma stage is stifled in these mice, suggesting that inhibitory pathways possibly preclude ETV1 from exerting its full oncogenic potential. Here we provide evidence that TGF-β/SMAD signaling represents such an inhibitory pathway. First, we discovered that ETV1 forms complexes with SMAD4. Second, SMAD2, SMAD3 and SMAD4 overexpression impaired ETV1’s ability to stimulate gene transcription. Third, TGF-β1 inhibited ETV1-induced invasion by benign RWPE-1 prostate cells. Fourth, increased expression of SMAD3 and SMAD4 was observable in prostates of ETV1 transgenic mice. Conversely, we found that ETV1 may enhance TGF-β signaling in PC3 prostate cancer cells, revealing a different facet of the ETV1/TGF-β interplay. Altogether, these data provide more insights into the regulation and action of ETV1 and additionally suggest that TGF-β/SMAD signaling exerts its tumor suppressive activity, at least in part, by curtailing the oncogenic potential of ETV1 in prostatic lesions.
Collapse
Affiliation(s)
- Sangphil Oh
- University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | - Sook Shin
- University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | - Hoogeun Song
- University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, 73104, USA
| | - Joseph P Grande
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, 55905, USA
| | - Ralf Janknecht
- University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA. .,University of Oklahoma Health Sciences Center, Department of Pathology, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
12
|
Li X, Oh S, Song H, Shin S, Zhang B, Freeman WM, Janknecht R. A potential common role of the Jumonji C domain-containing 1A histone demethylase and chromatin remodeler ATRX in promoting colon cancer. Oncol Lett 2018; 16:6652-6662. [PMID: 30405805 PMCID: PMC6202502 DOI: 10.3892/ol.2018.9487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Jumonji C domain-containing 1A (JMJD1A) is a histone demethylase and epigenetic regulator that has been implicated in cancer development. In the current study, its mRNA and protein expression was analyzed in human colorectal tumors. It was demonstrated that JMJD1A levels were increased and correlated with a more aggressive phenotype. Downregulation of JMJD1A in human HCT116 colorectal cancer cells caused negligible growth defects, but robustly decreased clonogenic activity. Transcriptome analysis revealed that JMJD1A downregulation led to multiple changes in HCT116 cells, including inhibition of MYC- and MYCN-regulated pathways and stimulation of the TP53 tumor suppressor response. One gene identified to be stimulated by JMJD1A was α-thalassemia/mental retardation syndrome X-linked (ATRX), which encodes for a chromatin remodeler. The JMJD1A protein, but not a catalytically inactive mutant, activated the ATRX gene promoter and JMJD1A also affected levels of dimethylation on lysine 9 of histone H3. Similar to JMJD1A, ATRX was significantly overexpressed in human colorectal tumors and correlated with increased disease recurrence and lethality. Furthermore, ATRX downregulation in HCT116 cells reduced their growth and clonogenic activity. Accordingly, upregulation of ATRX may represent one mechanism by which JMJD1A promotes colorectal cancer. In addition, the data presented in this study suggest that the current notion of ATRX as a tumor suppressor is incomplete and that ATRX might context dependently also function as a tumor promoter.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of Endoscopy and Gastrointestinal Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Hoogeun Song
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Bin Zhang
- Department of Endoscopy and Gastrointestinal Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Willard M Freeman
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
13
|
Li X, Moon G, Shin S, Zhang B, Janknecht R. Cooperation between ETS variant 2 and Jumonji domain‑containing 2 histone demethylases. Mol Med Rep 2018; 17:5518-5527. [PMID: 29393482 PMCID: PMC5865994 DOI: 10.3892/mmr.2018.8507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
The E26 transformation-specific (ETS) variant 2 (ETV2) protein, also designated as ETS-related 71, is a member of the ETS transcription factor family and is essential for blood and vascular development in the embryo. The role of ETV2 in cancer has not yet been investigated. In the present study, the expression of ETV2 mRNA was identified in a variety of tumor types, including prostate carcinoma. In addition, ETV2 gene amplification was identified in several types of cancer, suggesting that ETV2 plays an oncogenic role in tumorigenesis. It was demonstrated that ETV2 forms complexes with two histone demethylases: Jumonji domain-containing (JMJD)2A and JMJD2D; JMJD2A has been previously reported as a driver of prostate cancer development. In the present study, it was reported that ETV2 exhibited the potential to stimulate the promoters of matrix metalloproteinases (MMPs), including MMP1 and MMP7, within LNCaP prostate cancer cells. JMJD2A and JMJD2D could synergize with ETV2 to activate the MMP1 promoter, whereas only JMJD2A stimulated the MMP7 promoter in cooperation with ETV2. Furthermore, ETV2 expression was positively associated with JMJD2A and JMJD2D mRNA levels in neuroendocrine prostate tumors, in which an ETV2 gene amplification rate of 17.8% was identified. Collectively, the results of the present study indicated that ETV2, JMJD2A and JMJD2D may jointly promote tumorigenesis, particularly neuroendocrine prostate tumors. In addition, the interaction with the JMJD2A and JMJD2D epigenetic regulators may be important in the ability of ETV2 to reprogram cells, modulate normal and cancer stem cells, and affect spermatogenesis.
Collapse
Affiliation(s)
- Xiaomeng Li
- China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Gene Moon
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Bin Zhang
- China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
14
|
Tuning neural circuits by turning the interneuron knob. Curr Opin Neurobiol 2017; 42:144-151. [DOI: 10.1016/j.conb.2016.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 01/23/2023]
|
15
|
Gu ML, Wang YM, Zhou XX, Yao HP, Zheng S, Xiang Z, Ji F. An inhibitor of the acetyltransferases CBP/p300 exerts antineoplastic effects on gastrointestinal stromal tumor cells. Oncol Rep 2016; 36:2763-2770. [PMID: 27633918 DOI: 10.3892/or.2016.5080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasm featured by activated mutations of KIT and PDGFRA. Although overall survival rates have greatly improved by the development of receptor tyrosine kinase inhibitors, most patients ultimately acquire resistance due to secondary mutations of KIT or PDGFRA. Inhibition of the histone acetyltransferases (HATs) CREB‑binding protein (CBP) and p300 results in antineoplastic effects in various cancers. To determine whether CBP/p300 can serve as an antineoplastic target for GISTs, specific short interfering RNA sequences and the selective HAT inhibitor C646 were administered to GIST882 cells. Cell viability, apoptosis and the cell cycle were analysed using the Cell Counting Kit-8, a caspase-3/7 activity assay or Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and PI staining. Gene and protein expression levels were measured by quantitative real-time polymerase chain reaction and western blotting, respectively. Transcriptional blockage of CBP, rather than p300, resulted in suppression of cell proliferation. Interestingly, both CBP and p300 depletion enhanced caspase-3/7 activity. A lack of CBP and p300 caused ETS translocation variant 1 (ETV1) downregulation and KIT inhibition in GIST cells. Nevertheless, the absence of CBP, not p300, leads to extracellular signal-regulated kinase 1/2 inactivation and c-Jun NH2-terminal kinase activation, suggesting a more crucial role for CBP than p300 in cell proliferation and survival. Furthermore, proliferation of GIST cells was reduced by administration of C646, a selective HAT inhibitor for CBP/p300. Apoptosis induction and cell cycle arrest were detected after exposure to C646, indicating that its antitumor activities were supported by its antiproliferative and proapoptotic effects. Additionally, C646 treatment attenuated ETV1 protein expression and inactivated KIT-dependent pathways. Taken together, the present study suggests that CBP/p300 may serve as novel antineoplastic targets and that use of the selective HAT inhibitor C646 is a promising antitumor strategy for GISTs.
Collapse
Affiliation(s)
- Meng-Li Gu
- Department of Gastroenterology, The First Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ya-Mei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xin-Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Song Zheng
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Zun Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital of Medical College of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
16
|
Kim TD, Oh S, Lightfoot SA, Shin S, Wren JD, Janknecht R. Upregulation of PSMD10 caused by the JMJD2A histone demethylase. Int J Clin Exp Med 2016; 9:10123-10134. [PMID: 28883898 PMCID: PMC5584593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PSMD10, also known as gankyrin, is associated with the proteasome and has been shown to be an oncoprotein in the liver. Here, we report that PSMD10 expression is stimulated by the histone demethylase JMJD2A/KDM4A and its interaction partner, the ETV1 transcription factor, in LNCaP prostate cancer cells. Global analysis of expression patterns revealed that PSMD10 mRNA levels are positively correlated with those of both JMJD2A and ETV1. In human prostate tumors, PSMD10 is highly overexpressed at the protein level and correlates with JMJD2A overexpression; further, PSMD10 expression is enhanced in the prostates of transgenic JMJD2A mice. Moreover, PSMD10 is particularly overexpressed in high Gleason score prostate tumors. Downregulation of PSMD10 in LNCaP prostate cancer cells impaired their growth, indicating that PSMD10 may exert a pro-oncogenic function in the prostate. Lastly, we observed that PSMD10 expression is correlated to YAP1, a component of the Hippo signaling pathway and whose gene promoter is regulated by JMJD2A, and that PSMD10 can cooperate with YAP1 in stimulating LNCaP cell growth. Altogether, these data indicate that PSMD10 is a novel downstream effector of JMJD2A and suggest that inhibition of the JMJD2A histone demethylase by small molecule drugs may be effective to curtail the oncogenic activity of PSMD10 in various PSMD10-overexpressing tumors.
Collapse
Affiliation(s)
- Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stan A Lightfoot
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D Wren
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
17
|
Ta L, Xuan C, Xing N, Zhu X. COP1 is downregulated in renal cell carcinoma (RCC) and inhibits the migration of RCC ACHN cells in vitro. Mol Med Rep 2016; 14:1371-8. [DOI: 10.3892/mmr.2016.5373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/09/2016] [Indexed: 11/06/2022] Open
|
18
|
Kim TD, Shin S, Janknecht R. ETS transcription factor ERG cooperates with histone demethylase KDM4A. Oncol Rep 2016; 35:3679-88. [PMID: 27109047 PMCID: PMC4869937 DOI: 10.3892/or.2016.4747] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
ERG (ETS-related gene) is a member of the ETS (erythroblast transformation-specific) family of transcription factors. Overexpression of the ERG transcription factor is observed in half of all prostate tumors and is an underlying cause of this disease. However, the mechanisms involved in the functions of ERG are still not fully understood. In the present study, we showed that ERG can directly bind to KDM4A (also known as JMJD2A), a histone demethylase that particularly demethylates lysine 9 on histone H3. ERG and KDM4A cooperated in upregulating the promoter of Yes-associated protein 1 (YAP1), a downstream effector in the Hippo signaling pathway and crucial growth regulator. Multiple ERG binding sites within the human YAP1 gene promoter were identified and their impact on transcription was determined through mutational analysis. Furthermore, we found that ERG expression reduced histone H3 lysine 9 trimethylation at the YAP1 gene promoter, consistent with its epigenetic regulation through the ERG interaction partner, KDM4A. Finally, downregulation of YAP1 phenocopied the growth-retarding effect of ERG or KDM4A depletion in human VCaP prostate cancer cells. Collectively, these results elucidated a novel mechanism - ERG promotes prostate tumorigenesis together with KDM4A through the upregulation of YAP1. A corollary is that KDM4A as well as YAP1 inhibitors may prove beneficial for the therapy of ERG-overexpressing prostate tumors.
Collapse
Affiliation(s)
- Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Kim TD, Jin F, Shin S, Oh S, Lightfoot SA, Grande JP, Johnson AJ, van Deursen JM, Wren JD, Janknecht R. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest 2016; 126:706-20. [PMID: 26731476 DOI: 10.1172/jci78132] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Histone demethylase upregulation has been observed in human cancers, yet it is unknown whether this is a bystander event or a driver of tumorigenesis. We found that overexpression of lysine-specific demethylase 4A (KDM4A, also known as JMJD2A) was positively correlated with Gleason score and metastasis in human prostate tumors. Overexpression of JMJD2A resulted in the development of prostatic intraepithelial neoplasia in mice, demonstrating that JMJD2A can initiate prostate cancer development. Moreover, combined overexpression of JMJD2A and the ETS transcription factor ETV1, a JMJD2A-binding protein, resulted in prostate carcinoma formation in mice haplodeficient for the phosphatase and tensin homolog (Pten) tumor-suppressor gene. Additionally, JMJD2A cooperated with ETV1 to increase expression of yes associated protein 1 (YAP1), a Hippo pathway component that itself was associated with prostate tumor aggressiveness. ETV1 facilitated the recruitment of JMJD2A to the YAP1 promoter, leading to changes in histone lysine methylation in a human prostate cancer cell line. Further, YAP1 expression largely rescued the growth inhibitory effects of JMJD2A depletion in prostate cancer cells, indicating that YAP1 is a downstream effector of JMJD2A. Taken together, these data reveal a JMJD2A/ETV1/YAP1 axis that promotes prostate cancer initiation and that may be a suitable target for therapeutic inhibition.
Collapse
|
20
|
Ouyang M, Wang H, Ma J, Lü W, Li J, Yao C, Chang G, Bi J, Wang S, Wang W. COP1, the negative regulator of ETV1, influences prognosis in triple-negative breast cancer. BMC Cancer 2015; 15:132. [PMID: 25884720 PMCID: PMC4381371 DOI: 10.1186/s12885-015-1151-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ETS variant 1 (ETV1) and E3 ubiquitin ligase constitutive photomorphogenetic 1 (COP1) have been proposed to be a pair of oncogene and tumor suppressor. However, the co-existing status of ETV1 and COP1 in triple-negative breast cancer (TNBC) and their predictive role in determining the patient's outcome are uncertain. METHODS We examined the abundance of COP1 and ETV1 proteins and their clinicopathologic significance in archival TNBC tissues from 105 patients by tissue microarray. The potential function link between COP1 and ETV1 was observed in MDA-MB-231 cells by cell proliferation, invasion and migration assays. RESULTS ETV1 expression was higher in TNBC tissues compared to normal tissues, while COP1 was lower. ETV1 expression was negatively associated with COP1 abundance in TNBCs. Overexpression of COP1 led to significant reduction of ETV1 in MDA-MB-231 cells, and suppressed the cells migration and invasion. Rescue of ETV1 expression in the presence of COP1 notably regained the cells behaviors. ETV1-positive group was associated with a markedly poor overall survival. Meanwhile, we had observed favourable prognosis in COP1-positive cases for the first time. Multivariate analysis showed that COP1 together with ETV1 were independent risk factors in the prognosis of TNBC patients. CONCLUSIONS COP1 might be a tumor suppressor by negative regulating ETV1 in patients with TNBCs. COP1 and ETV1 are a pair of independent predictors of prognosis for TNBC cases. Thus, targeting them might be a potential strategy for personalized TNBC treatment.
Collapse
Affiliation(s)
- Mao Ouyang
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China. .,Department of Clinical Laboratory, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Hua Wang
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jieyi Ma
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Weiming Lü
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jie Li
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Chen Yao
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Guangqi Chang
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jiong Bi
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Shenming Wang
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Wenjian Wang
- Laboratory of Department of Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
21
|
Kim TD, Fuchs JR, Schwartz E, Abdelhamid D, Etter J, Berry WL, Li C, Ihnat MA, Li PK, Janknecht R. Pro-growth role of the JMJD2C histone demethylase in HCT-116 colon cancer cells and identification of curcuminoids as JMJD2 inhibitors. Am J Transl Res 2014; 6:236-247. [PMID: 24936217 PMCID: PMC4058306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Colon tumors are a major cause of cancer death, yet their molecular intricacies are not fully understood. We demonstrate that the histone demethylases JMJD2A, JMJD2B and JMJD2C are overexpressed in colon cancer cell lines, whereas another related protein, JMJD2D, is not. Interestingly, despite their high homology, the intracellular localization of JMJD2A-C is different in colon and other cancer cells, with JMJD2A being present comparably in the cytoplasm and nucleus, JMJD2B more prevalent in the nucleus and JMJD2C strongly associated with chromatin. This suggests that each of these three proteins performs different, non-redundant functions. Moreover, we show that JMJD2C (also called KDM4C) forms complexes with β-catenin, an oncoprotein whose overexpression is crucial for the development of most colonic tumors. In addition, JMJD2C downregulation reduced both growth and clonogenic capacity of HCT-116 colon cancer cells. Further, JMJD2C was required for efficient expression of the growth stimulatory proteins FRA1 and cyclin D1 as well as the survival factor BCL2. Lastly, we identified derivatives of curcumin as in vitro inhibitors of JMJD2 enzymes, suggesting that these curcuminoids could be useful for decreasing JMJD2 activity in vivo. In conclusion, our data highlight that overexpression of JMJD2C confers a pro-growth effect on colon cancer cells and, therefore, its inhibition by curcuminoids or other small molecules could be beneficial as an adjuvant therapy for colon cancer patients.
Collapse
Affiliation(s)
- Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State UniversityColumbus, OH 43210, USA
| | - Eric Schwartz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State UniversityColumbus, OH 43210, USA
| | - Dalia Abdelhamid
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State UniversityColumbus, OH 43210, USA
| | - Jonathan Etter
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State UniversityColumbus, OH 43210, USA
| | - William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State UniversityColumbus, OH 43210, USA
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer CenterOklahoma City, OK 73104, USA
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State UniversityColumbus, OH 43210, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer CenterOklahoma City, OK 73104, USA
| |
Collapse
|
22
|
Berry WL, Kim TD, Janknecht R. Stimulation of β-catenin and colon cancer cell growth by the KDM4B histone demethylase. Int J Oncol 2014; 44:1341-8. [PMID: 24481461 DOI: 10.3892/ijo.2014.2279] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/21/2013] [Indexed: 11/06/2022] Open
Abstract
The linchpin of colorectal cancer is the oncoprotein and transcriptional cofactor β-catenin, whose overexpression is causative for the neoplastic transformation of colon cells. However, the molecular details of β-catenin dependent gene transcription in cancer cells are still not comprehensively explored. Here, we show that the histone demethylase KDM4B was upregulated in colon and rectal adenocarcinomas and required for efficient growth and clonogenic activity of human HT-29 colon cancer cells. Moreover, KDM4B formed complexes with β-catenin in vitro and in vivo, which involved its central amino acids 353-740. In addition, KDM4B also interacted with the DNA-binding protein TCF4, which is the main factor recruiting β-catenin to chromatin in the intestine. KDM4B downregulation resulted in reduced expression of the β-catenin/TCF4 target genes JUN, MYC and Cyclin D1, all of which encode for oncoproteins. Collectively, our data indicate that KDM4B overexpression supports β-catenin mediated gene transcription and thereby contributes to the genesis of colorectal tumors. Accordingly, inhibition of the KDM4B histone demethylase may represent a novel avenue of fighting colorectal cancer, one of the major causes of cancer death throughout the world.
Collapse
Affiliation(s)
- William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Fukuyo Y, Nakamura T, Bubenshchikova E, Powell R, Tsuji T, Janknecht R, Obara T. Nephrin and Podocin functions are highly conserved between the zebrafish pronephros and mammalian metanephros. Mol Med Rep 2013; 9:457-65. [PMID: 24337247 PMCID: PMC3896505 DOI: 10.3892/mmr.2013.1844] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 11/22/2013] [Indexed: 01/28/2023] Open
Abstract
The slit diaphragm (SD) is a highly specialized intercellular junction between podocyte foot processes and is crucial in the formation of the filtration barrier in the renal glomeruli. Zebrafish Nephrin and Podocin are important in the formation of the podocyte SD and mutations in NEPHRIN and PODOCIN genes cause human nephrotic syndrome. In the present study, the zebrafish Podocin protein was observed to be predominantly localized in the pronephric glomerular podocytes, as previously reported for Nephrin. To understand the function of Podocin and Nephrin in zebrafish, splice-blocking morpholino antisense oligonucleotides were used. Knockdown of Podocin or Nephrin by this method induced pronephric glomerular hypoplasia with pericardial edema. Human NEPHRIN and PODOCIN mRNA rescued this glomerular phenotype, however, the efficacy of the rescues was greatly reduced when mRNA-encoding human disease-causing NEPHRIN-R1109X and PODOCIN-R138Q were used. Furthermore, an association between zebrafish Nephrin and Podocin proteins was observed. Notably, Podocin-R150Q, corresponding to human PODOCIN-R138Q, markedly interacted with NEPHRIN compared with wild-type PODOCIN, suggesting that this strong binding capacity of mutated PODOCIN impairs the transport of NEPHRIN and PODOCIN out of the endoplasmic reticulum. The results suggest that the functions of Nephrin and Podocin are highly conserved between the zebrafish pronephros and mammalian metanephros. Accordingly, the zebrafish pronephros may provide a useful tool for analyzing disease-causing gene mutations in human kidney disorders.
Collapse
Affiliation(s)
- Yayoi Fukuyo
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tomomi Nakamura
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ekaterina Bubenshchikova
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecca Powell
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Takashi Tsuji
- Department of Biological Science and Technology, Graduate School of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278‑8510, Japan
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tomoko Obara
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
24
|
Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding BS, Schachterle W, Liu Y, Rosenwaks Z, Butler JM, Xiang J, Rafii A, Shido K, Rabbany SY, Elemento O, Rafii S. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 2013; 26:204-19. [PMID: 23871589 DOI: 10.1016/j.devcel.2013.06.017] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/01/2013] [Accepted: 06/18/2013] [Indexed: 02/08/2023]
Abstract
Microvascular endothelial cells (ECs) within different tissues are endowed with distinct but as yet unrecognized structural, phenotypic, and functional attributes. We devised EC purification, cultivation, profiling, and transplantation models that establish tissue-specific molecular libraries of ECs devoid of lymphatic ECs or parenchymal cells. These libraries identify attributes that confer ECs with their organotypic features. We show that clusters of transcription factors, angiocrine growth factors, adhesion molecules, and chemokines are expressed in unique combinations by ECs of each organ. Furthermore, ECs respond distinctly in tissue regeneration models, hepatectomy, and myeloablation. To test the data set, we developed a transplantation model that employs generic ECs differentiated from embryonic stem cells. Transplanted generic ECs engraft into regenerating tissues and acquire features of organotypic ECs. Collectively, we demonstrate the utility of informational databases of ECs toward uncovering the extravascular and intrinsic signals that define EC heterogeneity. These factors could be exploited therapeutically to engineer tissue-specific ECs for regeneration.
Collapse
Affiliation(s)
- Daniel J Nolan
- Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Oh S, Shin S, Lightfoot SA, Janknecht R. 14-3-3 proteins modulate the ETS transcription factor ETV1 in prostate cancer. Cancer Res 2013; 73:5110-9. [PMID: 23774214 DOI: 10.1158/0008-5472.can-13-0578] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of the ETS-related transcription factor ETV1 can initiate neoplastic transformation of the prostate. ETV1 activity is highly regulated by phosphorylation, but the underlying mechanisms are unknown. Here we report that all 14-3-3 proteins, with the exception of the tumor suppressor 14-3-3σ, can bind to ETV1 in a condition manner dictated by its prominent phosphorylation site S216. Non-σ 14-3-3 proteins synergized with ETV1 to activate transcription of its target genes MMP-1 and MMP-7, which regulate extracellular matrix in the prostate tumor microenvironment. S216 mutation or 14-3-3τ downregulation was sufficient to reduce ETV1 protein levels in prostate cancer cells, indicating that non-σ 14-3-3 proteins protect ETV1 from degradation. Notably, S216 mutation also decreased ETV1-dependent migration and invasion in benign prostate cells. Downregulation of 14-3-3τ reduced prostate cancer cell invasion and growth in the same manner as ETV1 attenuation. Finally, we showed that 14-3-3τ and 14-3-3ε were overexpressed in human prostate tumors. Taken together, our results showed that non-σ 14-3-3 proteins are important modulators of ETV1 function that promote prostate tumorigenesis.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
26
|
Ichimura K, Fukuyo Y, Nakamura T, Powell R, Sakai T, Janknecht R, Obara T. Developmental localization of nephrin in zebrafish and medaka pronephric glomerulus. J Histochem Cytochem 2013; 61:313-24. [PMID: 23324868 DOI: 10.1369/0022155413477115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Slit diaphragm (SD) is a highly specialized intercellular junction between podocyte foot processes and plays a crucial role in the formation of the filtration barrier. In this study, we examined the developmental localization of Nephrin, an essential component of SD, in the pronephric glomerulus of zebrafish and medaka. In the mature glomerulus of both fish, Nephrin is localized along the glomerular basement membrane as seen in mammals, indicating that Nephrin is localized at the SD. Interestingly, Nephrin was detected already in immature podocytes before the SD and foot processes started to form in both fish. Nephrin was localized along the cell surface of immature podocytes but as different localization patterns. In zebrafish, Nephrin signal bordered the lateral membrane of podocytes, which were columnar in shape, as in rat immature podocytes. However, in medaka immature podocytes, Nephrin was localized in a punctate pattern among podocyte cell bodies. These findings suggest that Nephrin needs to be integrated to the membrane before the formation of the SD and then moves to the proper site to form the SD. Furthermore, a podocyte-specific marker, such as Nephrin, should be a useful tool for the future analysis of pronephric glomerular development in fish mutants and morphants.
Collapse
Affiliation(s)
- Koichiro Ichimura
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Shin S, Oh S, An S, Janknecht R. ETS variant 1 regulates matrix metalloproteinase-7 transcription in LNCaP prostate cancer cells. Oncol Rep 2012; 29:306-14. [PMID: 23076342 DOI: 10.3892/or.2012.2079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/30/2012] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is characterized by the recurrent translocation of ETS transcription factors, including ETS variant 1 (ETV1) [also known as ETS-related 81 (ER81)]. Transgenic ETV1 mice develop prostatic intraepithelial neoplasia, yet the mechanisms by which ETV1 exerts its deleterious function remain largely unexplored. In this study, we demonstrated that ETV1 is capable of binding to the matrix metalloproteinase-7 (MMP-7) gene promoter both in vitro and in vivo. ETV1 stimulated the activity of the MMP-7 promoter, which was suppressed upon mutation of two ETV1 binding sites located within 200 base pairs upstream of the MMP-7 transcription start site. ETV1 overexpression in human LNCaP prostate cancer cells induced endogenous MMP-7 gene transcription, whereas ETV1 downregulation had the opposite effect. While MMP-7 overexpression did not influence LNCaP cell proliferation, it increased cell migration, which may be important during later stages of tumorigenesis. Finally, MMP-7 mRNA was significantly overexpressed in human prostate tumors compared to normal tissue. Together, these results showed that MMP-7 is a bona fide ETV1 target gene, implicating that MMP-7 upregulation is partially responsible for the oncogenic effects of ETV1 in the prostate.
Collapse
Affiliation(s)
- Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
28
|
Kim TD, Shin S, Berry WL, Oh S, Janknecht R. The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem 2012; 113:1368-76. [PMID: 22134899 DOI: 10.1002/jcb.24009] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
JMJD2A is a transcriptional cofactor and enzyme that catalyzes demethylation of histone H3 lysines 9 and 36 and is overexpressed in human tumors, but its role in oncogenesis remains unclear. Here, we show that JMJD2A interacts with the tumor suppressor p53 both in vitro and in HCT116 colon cancer cells. Chromatin immunoprecipitation assays demonstrated that JMJD2A was recruited together with p53 to the promoter of the p21 cell cycle inhibitor upon stimulation with the DNA damaging agent, adriamycin. Downregulation of JMJD2A resulted in increased expression of p21 and of the pro-apoptotic Puma protein, whereas levels of the anti-apoptotic Bcl-2 protein were decreased. Furthermore, JMJD2A knock-down led to reduced HCT116, DLD-1 and HT-29 colon cancer cell proliferation, while overexpression of JMJD2A enhanced HCT116 proliferation in low serum media. Finally, JMJD2A depletion induced apoptosis in HCT116 cells and this effect was less pronounced in the absence of p53. Collectively, these data indicate that JMJD2A is a novel promoter of colon cancer cell proliferation and survival, which mediates its effects in p53-dependent and -independent ways. JMJD2A may therefore be a valid target to sensitize tumor cells to chemotherapy-induced cell death and growth suppression.
Collapse
Affiliation(s)
- Tae-Dong Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
29
|
Berry WL, Shin S, Lightfoot SA, Janknecht R. Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol 2012; 41:1701-6. [PMID: 22948256 DOI: 10.3892/ijo.2012.1618] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 07/06/2012] [Indexed: 11/05/2022] Open
Abstract
Estrogen receptor α (ERα) plays a pivotal role in the genesis of the majority of breast tumors. Consequently, endocrine therapy is now routinely utilized in the clinic for the treatment of ERα-positive breast cancer patients. However, how ERα activity becomes dysregulated in breast cancer cells remains to be elucidated. The aim of this study was to show that the histone demethylase JMJD2A, also known as KDM4A, is capable of forming a complex with ERα in vivo. Moreover, wild-type JMJD2A, but not a catalytically impaired mutant, was able to strongly coactivate ERα-mediated transcription. Consistently, the downregulation of JMJD2A in human T47D breast cancer cells led to a decreased expression of cyclin D1, a prominent ERα target gene and cell cycle regulator. The downregulation of JMJD2A induced a reduction in the growth of T47D cells. In addition, we found that JMJD2A is overexpressed in human breast tumors both at the mRNA and protein level. Taken together, these data indicate that the overexpression of JMJD2A may contribute to breast tumor formation by stimulating ERα activity and that JMJD2A may be a breast-relevant oncoprotein. As such, small molecule drugs targeting the catalytic center of JMJD2A might be useful in breast cancer adjuvant therapy.
Collapse
Affiliation(s)
- William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
30
|
Chen Y, Zou H, Yang LY, Li Y, Wang L, Hao Y, Yang JL. ER81-shRNA Inhibits Growth of Triple-negative Human Breast Cancer Cell Line MDA-MB-231 In Vivo and in Vitro. Asian Pac J Cancer Prev 2012; 13:2385-92. [DOI: 10.7314/apjcp.2012.13.5.2385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
DiTacchio L, Bowles J, Shin S, Lim DS, Koopman P, Janknecht R. Transcription factors ER71/ETV2 and SOX9 participate in a positive feedback loop in fetal and adult mouse testis. J Biol Chem 2012; 287:23657-66. [PMID: 22613723 DOI: 10.1074/jbc.m111.320101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ER71, also known as ETV2, is an ETS transcription factor that is expressed during embryogenesis and in adult testes. We show that Er71 transcription can be up-regulated by SRY, the key determinant of male differentiation. Accordingly, SRY bound to and activated the Er71 promoter, and mutation of a putative SRY binding site abolished this promoter activation. In turn, ER71 was able to bind to the promoter of Sox9, the primary target of SRY and a critical transcription factor for maintenance of the Sertoli cell phenotype. Mutation of the ER71 binding site in the Sox9 promoter suppressed ER71-dependent up-regulation of Sox9 transcription, and a dominant-negative ER71 molecule severely reduced Sox9 transcription in a Sertoli cell line. Conversely, SOX9 bound the Er71 promoter in vivo and Sox9 down-regulation reduced Er71 transcript levels. Together, these data suggest a mechanism by which SRY induces Sox9 and Er71 transcription early in testis differentiation, whereas ER71 and SOX9 participate in an autoregulatory loop to sustain each other's expression after Sry expression has subsided in mice. Thereby, ER71 and SOX9 may affect late testis development as well as the function of the adult male gonad.
Collapse
|
32
|
Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS One 2012; 7:e34618. [PMID: 22514644 PMCID: PMC3326058 DOI: 10.1371/journal.pone.0034618] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/02/2012] [Indexed: 12/12/2022] Open
Abstract
JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro. A luciferase reporter plasmid driven by the promoter of p21, a cell cycle inhibitor and prominent target gene of p53, was synergistically activated by p53 and JMJD2D, which was dependent on JMJD2D catalytic activity. Likewise, overexpression of JMJD2D induced p21 expression in U2OS osteosarcoma cells in the absence and presence of adriamycin, an agent that induces DNA damage. Furthermore, downregulation of JMJD2D inhibited cell proliferation in wild-type and even more so in p53−/− HCT116 colon cancer cells, suggesting that JMJD2D is a pro-proliferative molecule. JMJD2D depletion also induced more strongly apoptosis in p53−/− compared to wild-type HCT116 cells. Collectively, our results demonstrate that JMJD2D can stimulate cell proliferation and survival, suggesting that its inhibition may be helpful in the fight against cancer. Furthermore, our data imply that activation of p53 may represent a mechanism by which the pro-oncogenic functions of JMJD2D become dampened.
Collapse
|
33
|
Oh S, Shin S, Janknecht R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta Rev Cancer 2012; 1826:1-12. [PMID: 22425584 DOI: 10.1016/j.bbcan.2012.02.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 12/30/2022]
Abstract
The homologous ETV1, ETV4 and ETV5 proteins form the PEA3 subfamily of ETS transcription factors. In Ewing tumors, chromosomal translocations affecting ETV1 or ETV4 are an underlying cause of carcinogenesis. Likewise, chromosomal rearrangements of the ETV1, ETV4 or ETV5 gene occur in prostate tumors and are thought to be one of the major driving forces in the genesis of prostate cancer. In addition, these three ETS proteins are implicated in melanomas, breast and other types of cancer. Complex posttranslational modifications govern the activity of PEA3 factors, which can promote cell proliferation, motility and invasion. Here, we review evidence for a role of ETV1, 4 and 5 as oncoproteins and describe modes of their action. Modulation of their activation or interaction with cofactors as well as inhibiting crucial target gene products may ultimately be exploited to treat various cancers that are dependent on the PEA3 group of ETS transcription factors.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
34
|
Oh S, Janknecht R. Histone demethylase JMJD5 is essential for embryonic development. Biochem Biophys Res Commun 2012; 420:61-5. [DOI: 10.1016/j.bbrc.2012.02.115] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
|
35
|
Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 2011; 80:437-71. [PMID: 21548782 DOI: 10.1146/annurev.biochem.79.081507.103945] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ETS proteins are a group of evolutionarily related, DNA-binding transcriptional factors. These proteins direct gene expression in diverse normal and disease states by binding to specific promoters and enhancers and facilitating assembly of other components of the transcriptional machinery. The highly conserved DNA-binding ETS domain defines the family and is responsible for specific recognition of a common sequence motif, 5'-GGA(A/T)-3'. Attaining specificity for biological regulation in such a family is thus a conundrum. We present the current knowledge of routes to functional diversity and DNA binding specificity, including divergent properties of the conserved ETS and PNT domains, the involvement of flanking structured and unstructured regions appended to these dynamic domains, posttranslational modifications, and protein partnerships with other DNA-binding proteins and coregulators. The review emphasizes recent advances from biochemical and biophysical approaches, as well as insights from genomic studies that detect ETS-factor occupancy in living cells.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
36
|
Kim J, Shin S, Subramaniam M, Bruinsma E, Kim TD, Hawse JR, Spelsberg TC, Janknecht R. Histone demethylase JARID1B/KDM5B is a corepressor of TIEG1/KLF10. Biochem Biophys Res Commun 2010; 401:412-6. [PMID: 20863814 DOI: 10.1016/j.bbrc.2010.09.068] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
JARID1B/KDM5B (jumonji AT-rich interactive domain 1B/lysine-specific demethylase 5B) is an enzyme that efficiently removes methyl residues from trimethylated lysine 4 on histone H3, a pivotal mark for active chromatin. TIEG1/KLF10 (transforming growth factor-β inducible early gene-1/Krüppel-like transcription factor 10) is a zinc-finger transcription factor that is involved in bone metabolism and exerts antiproliferative activity. Here, we found that TIEG1 interacts with JARID1B. In particular, the repression domains of TIEG1 bind to the C-terminus of JARID1B. Moreover, overexpression of JARID1B augments TIEG1 to repress transcription of Smad7, an inhibitor of the TGF-β (transforming growth factor-β) signaling pathway. Conversely, JARID1B knock-down leads to increased Smad7 mRNA levels. Thus, TIEG1 and JARID1B may cooperate to suppress tumorigenesis by enhancing TGF-β signaling. Notably, both TIEG1 and JARID1B are downregulated in melanomas, suggesting that they indeed cooperate physiologically. In conclusion, JARID1B is the first TIEG1 corepressor identified, explaining how TIEG1 represses transcription through inducing histone H3 lysine 4 demethylation, which may be important for TIEG1 function in both normal and cancer cells.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mooney SM, Goel A, D'Assoro AB, Salisbury JL, Janknecht R. Pleiotropic effects of p300-mediated acetylation on p68 and p72 RNA helicase. J Biol Chem 2010; 285:30443-52. [PMID: 20663877 DOI: 10.1074/jbc.m110.143792] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here, we demonstrate that p68 (DDX5) and p72 (DDX17), two homologous RNA helicases and transcriptional cofactors, are substrates for the acetyltransferase p300 in vitro and in vivo. Mutation of acetylation sites affected the binding of p68/p72 to histone deacetylases, but not to p300 or estrogen receptor. Acetylation additionally increased the stability of p68 and p72 RNA helicase and stimulated their ability to coactivate the estrogen receptor, thereby potentially contributing to its aberrant activation in breast tumors. Also, acetylation of p72, but not of p68 RNA helicase, enhanced p53-dependent activation of the MDM2 promoter, pointing at another mechanism of how p72 acetylation may facilitate carcinogenesis by boosting the negative p53-MDM2 feedback loop. Furthermore, blocking p72 acetylation caused cell cycle arrest and apoptosis, revealing an essential role for p72 acetylation. In conclusion, our report has identified for the first time that acetylation modulates RNA helicases and provides multiple mechanisms how acetylation of p68 and p72 may affect normal and tumor cells.
Collapse
Affiliation(s)
- Steven M Mooney
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
38
|
Mooney SM, Grande JP, Salisbury JL, Janknecht R. Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry 2010; 49:1-10. [PMID: 19995069 DOI: 10.1021/bi901263m] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The p68 (DDX5) and p72 (DDX17) proteins are members of the DEAD-box (DDX) family of RNA helicases. We show that both p68 and p72 are overexpressed in breast tumors. Bioinformatical analysis revealed that the SUMO pathway is upregulated in breast tumors and that both p68 and p72 contain one consensus sumoylation site, implicating that sumoylation of p68 and p72 increases during breast tumorigenesis and potentially contributes to their overexpression. We determined that p68 and p72 are indeed sumoylated at a single, homologous site. Importantly, sumoylation significantly increased the stability of p68 and p72. In contrast to p72 and consistent with an approximately 3-fold lesser half-life, p68 was found to be polyubiquitylated, and mutation of the sumoylation site increased polyubiquitylation, suggesting that sumoylation increases p68 half-life by reducing proteasomal degradation. Moreover, whereas p68 robustly coactivated transcription from an estrogen response element, its sumoylation mutant showed a drastically reduced coactivation potential. In contrast, the p68 sumoylation status did not affect the ability to enhance p53-mediated MDM2 transcription. On the contrary, preventing sumoylation of p72 caused an increase in its ability to transactivate both estrogen receptor and p53. Furthermore, sumoylation promoted the interaction of p68 and p72 with histone deacetylase 1 but had no effect on binding to histone deacetylases 2 and 3, the coactivator p300, or estrogen receptor and also did not affect homo/heterodimerization of p68/p72. In conclusion, sumoylation exerts pleiotropic effects on p68/p72, which may have important implications in breast cancer by modulating estrogen receptor and p53 activity.
Collapse
Affiliation(s)
- Steven M Mooney
- Department of Biochemistry, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
39
|
Shin S, Kim TD, Jin F, van Deursen JM, Dehm SM, Tindall DJ, Grande JP, Munz JM, Vasmatzis G, Janknecht R. Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81. Cancer Res 2009; 69:8102-10. [PMID: 19789348 DOI: 10.1158/0008-5472.can-09-0941] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ETS variant 1 (ETV1), also known as ETS-related protein 81, is overexpressed in prostate tumors, but whether and how this transcription factor affects tumorigenesis has remained elusive. Here, we show that ETV1 is primarily overexpressed in the most aggressive human prostate tumors. Transgenic ETV1 mice developed prostatic intraepithelial neoplasia as well as hyperplasia/neoplasia in seminal vesicles. Moreover, ETV1 cooperated with the androgen receptor (AR) to bind to the prostate-specific antigen enhancer and stimulate gene transcription. Consistent with its ability to physically interact with AR, ETV1 rendered an ETV1 binding site-driven reporter androgen inducible, and, on the other hand, ETV1 super-induced transcription from an AR binding site on androgen stimulation. In conclusion, our study substantiates that ETV1 overexpression is an underlying cause in the development of prostate and possibly also seminal vesicle cancer. Its interaction with and activation of AR provides a molecular mechanism on how ETV1 exerts its deleterious function. Thus, inhibiting ETV1 or blocking its interaction with AR may represent novel strategies in prostate cancer therapy.
Collapse
Affiliation(s)
- Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Synthesis and activity of N-oxalylglycine and its derivatives as Jumonji C-domain-containing histone lysine demethylase inhibitors. Bioorg Med Chem Lett 2009; 19:2852-5. [DOI: 10.1016/j.bmcl.2009.03.098] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/17/2009] [Accepted: 03/21/2009] [Indexed: 11/22/2022]
|
41
|
Abstract
The transcription factors Adr1 and Cat8 act in concert to regulate the expression of numerous yeast genes after the diauxic shift. Their activities are regulated by Snf1, the yeast homolog of the AMP-activated protein kinase of higher eukaryotes. Cat8 is regulated directly by Snf1, but how Snf1 regulates Adr1 is unknown. Mutations in Adr1 that alleviate glucose repression are clustered between amino acids 227 and 239. This region contains a consensus sequence for protein kinase A, RRAS(230)F, and Ser230 is phosphorylated in vitro by both protein kinase A and Ca(++) calmodulin-dependent protein kinase. Using an antiphosphopeptide antibody, we found that the level of Adr1 phosphorylated on Ser230 was highest in glucose-grown cells and decreased in a Snf1-dependent manner when glucose was depleted. A nonphosphorylatable Ser230Ala mutant was no longer Snf1 dependent for activation of Adr1-dependent genes and could suppress Cat8 dependence at genes coregulated by Adr1 and Cat8. Contrary to expectation, neither protein kinase A (PKA) nor Ca(++) calmodulin-dependent protein kinase appeared to have an important role in Ser230 phosphorylation in vivo, and a screen of 102 viable kinase deletion strains failed to identify a candidate kinase. We conclude that either Ser230 is phosphorylated by multiple protein kinases or its kinase is encoded by an essential gene. Using the Ser230Ala mutant, we explain a long-standing observation of synergy between Adr1 constitutive mutants and Snf1 activation and conclude that dephosphorylation of Ser230 via a Snf1-dependent pathway appears to be a major component of Adr1 regulation.
Collapse
|
42
|
Shin S, Bosc DG, Ingle JN, Spelsberg TC, Janknecht R. Rcl is a novel ETV1/ER81 target gene upregulated in breast tumors. J Cell Biochem 2008; 105:866-74. [DOI: 10.1002/jcb.21884] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Extracellular signals regulate rapid coactivator recruitment at AP-1 sites by altered phosphorylation of both CREB binding protein and c-jun. Mol Cell Biol 2008; 28:4240-50. [PMID: 18443043 DOI: 10.1128/mcb.01489-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoic acid (RA) inhibits matrix metalloproteinase 9 (MMP-9) expression due to AP-1 inhibition resulting from retinoic acid receptors (RARs) competing for limiting amounts of coactivator proteins. However, given the rapid kinetics of MMP-9 transcription, it seems unlikely that these interactions can be explained passively. Our previous studies indicated that coactivator and transcription factor phosphorylation may allow for rapid regulation of MMP-9 expression. In the present study we tested this hypothesis directly. CREB binding protein (CBP) and p300/CBP-associated factor (PCAF) were displaced from transcription factor binding sites on the MMP-9 promoter within minutes of RA treatment. The RAR interaction domains of CBP and PCAF were not required for this displacement. RA and epidermal growth factor had opposing effects on phosphorylation of CBP by extracellular signal-regulated kinase 1 that correlated with altered CBP occupancy of AP-1 sites and differential MMP-9 promoter activation. We identified a novel phosphorylation site in the CBP carboxyl terminus that mediated association with AP-1 sites in the MMP-9 promoter. Inhibition of c-jun phosphorylation displaced PCAF from AP-1 sites and reduced promoter activity. Phosphorylation deficient c-jun was less able to recruit PCAF to AP-1 sites. We also demonstrated novel interactions between coactivators and AP-1 proteins. We propose that extracellular signal-mediated coactivator exchange at AP-1 sites is mediated via protein kinase pathways.
Collapse
|
44
|
Degerny C, de Launoit Y, Baert JL. ERM transcription factor contains an inhibitory domain which functions in sumoylation-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:183-94. [PMID: 18243147 DOI: 10.1016/j.bbagrm.2008.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
ERM, PEA3 and ETV1 belong to the PEA3 group of ETS transcription factors. They are involved in many developmental processes and are transcriptional regulators in metastasis. The PEA3 group members share an N-terminal transactivation domain (TAD) whose activity is inhibited by a flanking domain named the negative regulatory domain (NRD). The mechanism of this inhibition is still unknown. Here we show that the NRD maps to residues 73 to 298 in ERM and contains three of the five SUMO sites previously identified in the protein. We demonstrate that these three SUMO sites are responsible for NRD's inhibitory function in the Gal4 system. Although the presence of the three sites is required to obtain maximal inhibition, only one SUMO site is sufficient to repress transcription whatever its localization within the NRD. We also show that NRD is a SUMO-dependent repression domain that can act in cis and in trans to downregulate the powerful TAD of the VP16 viral protein. In addition, we find that the SUMO sites outside the NRD also play a role in the negative regulation of full-length ERM activity. We thus postulate that each SUMO site in ERM may function as an inhibitory motif.
Collapse
Affiliation(s)
- Cindy Degerny
- UMR 8161, Institut de Biologie de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
45
|
Ets-2 and p160 proteins collaborate to regulate c-Myc in endocrine resistant breast cancer. Oncogene 2007; 27:3021-31. [DOI: 10.1038/sj.onc.1210964] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Shin S, Janknecht R. Concerted activation of the Mdm2 promoter by p72 RNA helicase and the coactivators p300 and P/CAF. J Cell Biochem 2007; 101:1252-65. [PMID: 17226766 DOI: 10.1002/jcb.21250] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A scarcely studied and under-recognized feature of RNA helicases is their ability to regulate gene transcription. In particular, very little is known about the role of p72 RNA helicase in gene regulation. Here, we have analyzed how this helicase may enhance promoter activity. We demonstrate that p72 RNA helicase forms complexes with the homologous coactivators p300 and CBP in vitro and in vivo, especially leading to an enhancement of the transactivation potential of their C-termini. In addition, we show that the p300/CBP-associated protein (P/CAF) also interacts with p72 RNA helicase, and both this interaction and the binding to p300/CBP are mediated by the N-terminal 63 amino acids of p72 RNA helicase. p300, P/CAF and p72 RNA helicase synergize to stimulate selected promoters, including the Mdm2 one. Notably, downregulation of p72 RNA helicase leads to reduced Mdm2 transcription. Furthermore, our data suggest that p72 RNA helicase activates the Mdm2 promoter in a p53 dependent and independent manner. Collectively, our results have unraveled a mechanism of how p72 RNA helicase can regulate gene transcription, namely by cooperating with p300/CBP and P/CAF. Thereby, p72 RNA helicase may not only be involved in the p53-Mdm2 regulatory loop, but also profoundly impact on the transcriptome through various CBP/p300 and P/CAF interacting proteins.
Collapse
Affiliation(s)
- Sook Shin
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
47
|
Abstract
The homologous proteins p68 and p72 are members of the DEAD box family of RNA helicases. Here, we show that expression of both of these helicases strongly increases during the polyp-->adenoma-->adenocarcinoma transition in the colon. Furthermore, p68 and p72 form complexes with beta-catenin and promote the ability of beta-catenin to activate gene transcription. Conversely, simultaneous knockdown of p68 and p72 leads to reduced expression of the beta-catenin-regulated genes, c-Myc, cyclin D1, c-jun, and fra-1, all of which are proto-oncogenes. Moreover, transcription of the cell cycle inhibitor p21(WAF1/CIP1), whose expression is suppressed by c-Myc, is enhanced on p68/p72 knockdown. Thus, p68/p72 may contribute to colon cancer formation by directly up-regulating proto-oncogenes and indirectly by down-regulating the growth suppressor p21(WAF1/CIP1). Accordingly, knockdown of p68 and p72 in colon cancer cells inhibits their proliferation and diminishes their ability to form tumors in vivo. Altogether, these results suggest that p68/p72 overexpression is not only a potential marker of colon cancer but is also causally linked to this disease. Therefore, p68 and p72 may be novel targets in the combat against colon cancer.
Collapse
Affiliation(s)
- Sook Shin
- Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
48
|
Smith EH, Janknecht R, Maher LJ. Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum Mol Genet 2007; 16:3136-48. [PMID: 17884808 DOI: 10.1093/hmg/ddm275] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tricarboxylic acid (TCA) cycle enzyme succinate dehydrogenase (SDH) is a tumor suppressor. Heterozygosity for defective SDH subunit genes predisposes to familial paraganglioma (PGL) or pheochromocytoma (PHEO). Models invoking reactive oxygen species (ROS) or succinate accumulation have been proposed to explain the link between TCA cycle dysfunction and oncogenesis. Here we study the biochemical consequences of a common familial PGL-linked mutation, loss of the SDHB subunit, in a yeast model. This strain has increased ROS production but no evidence of mutagenic DNA damage. Because the strain lacks SDH activity, succinate accumulates dramatically and inhibits alpha-ketoglutarate (alphaKG)-dependent enzyme Jlp1, involved in sulfur metabolism, and alphaKG-dependent histone demethylase Jhd1. We show that mammalian JmjC-domain histone demethylases are also vulnerable to succinate inhibition in vitro and in cultured cells. Our results suggest that any alphaKG-dependent enzyme is a potential target of accumulated succinate in oncogenesis. The possible role that inhibition of these enzymes by succinate may have in oncogenesis is discussed.
Collapse
Affiliation(s)
- Emily H Smith
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
49
|
Saino-Saito S, Cave JW, Akiba Y, Sasaki H, Goto K, Kobayashi K, Berlin R, Baker H. ER81 and CaMKIV identify anatomically and phenotypically defined subsets of mouse olfactory bulb interneurons. J Comp Neurol 2007; 502:485-96. [PMID: 17394138 DOI: 10.1002/cne.21293] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mechanisms underlying dopamine (DA) phenotypic differentiation in the olfactory bulb (OB) have not yet been fully elucidated and are the subject of some controversy. OB DA interneurons destined for the glomerular layer were shown to originate in the subventricular zone (SVZ) and in the rostral migratory stream (RMS). The current study investigated whether calcium/calmodulin-dependent protein kinase IV (CaMKIV) either alone or together with the Ets transcription factor ER81 was necessary for phenotypic determination during migration of progenitors. In most brain areas, including the OB, CaMKIV and ER81 displayed a reciprocal distribution. In the SVZ, only ER81 could be demonstrated. In the RMS, a subpopulation of progenitors contained ER81, but few, if any, contained CaMKIV. In OB, CaMKIV expression, restricted to deep granule cells, showed limited overlap with ER81. ER81 expression was weak in deep granule cells. Strong labeling occurred in the mitral and glomerular layers, where ER81 colabeled dopaminergic periglomerular cells that expressed either tyrosine hydroxylase (TH) or green fluorescent protein, the latter reporter gene under control of 9-kb of 5' TH promoter. Odor deprivation resulted in a significant 5.2-fold decline in TH immunoreactivity, but ER81 exhibited a relatively small 1.7-fold decline in immunoreactivity. TH expression as well as brain and bulb size were unchanged in CaMKIV knockout mice. These data suggest that ER81 may be required but is not sufficient for DA neuron differentiation and that CaMKIV is not directly involved in TH gene regulation.
Collapse
Affiliation(s)
- Sachiko Saino-Saito
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan 990-9585
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shin S, Janknecht R. Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun 2007; 359:742-6. [PMID: 17555712 DOI: 10.1016/j.bbrc.2007.05.179] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 05/28/2007] [Indexed: 11/22/2022]
Abstract
The androgen receptor (AR) is a transcription factor that is pivotal for the development of prostate cancer. Here, we have identified two related histone demethylases, JMJD2A and JMJD2D, which form complexes with ligand-bound AR. We found that AR interacts through its ligand binding domain with JMJD2A and JMJD2D. On the other hand, JMJD2A utilizes its catalytic domain or C-terminus to bind to AR, and JMJD2D does so via its C-terminus. Further, overexpression of JMJD2A or D stimulates AR function and this is dependent on JMJD2 catalytic activity. Conversely, downregulation of JMJD2A, which is often overexpressed in prostate tumors, reduces basal transcription of the AR target gene, prostate-specific antigen, in LNCaP prostate cancer cells. Altogether, our data have identified a novel class of AR coactivators, whose (over)expression in prostate tumors could contribute to the constitutive activation of AR and thus to androgen-depletion independency of advanced prostate cancer cells.
Collapse
Affiliation(s)
- Sook Shin
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Guggenheim Building 1501A, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|