1
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Generation of Transgenic Fluorescent Reporter Lines for Studying Hematopoietic Development in the Mouse. Methods Mol Biol 2021; 2224:153-182. [PMID: 33606214 DOI: 10.1007/978-1-0716-1008-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hematopoiesis in the mouse and other mammals occurs in several waves and arises from distinct anatomic sites. Transgenic mice expressing fluorescent reporter proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to more restricted progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and describe methods for confirming and analyzing transgene expression in the hematopoietic tissues of the embryo, fetus, and postnatal/adult animal.
Collapse
|
3
|
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019; 72:89-105. [PMID: 31769197 DOI: 10.1002/iub.2192] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
GATA1 is considered as the "master" transcription factor in erythropoiesis. It regulates at the transcriptional level all aspects of erythroid maturation and function, as revealed by gene knockout studies in mice and by genome-wide occupancies in erythroid cells. The GATA1 protein contains two zinc finger domains and an N-terminal transactivation domain. GATA1 translation results in the production of the full-length protein and of a shorter variant (GATA1s) lacking the N-terminal transactivation domain, which is functionally deficient in supporting erythropoiesis. GATA1 protein abundance is highly regulated in erythroid cells at different levels, including transcription, mRNA translation, posttranslational modifications, and protein degradation, in a differentiation-stage-specific manner. Maintaining high GATA1 protein levels is essential in the early stages of erythroid maturation, whereas downregulating GATA1 protein levels is a necessary step in terminal erythroid differentiation. The importance of maintaining proper GATA1 protein homeostasis in erythropoiesis is demonstrated by the fact that both GATA1 loss and its overexpression result in lethal anemia. Importantly, alterations in any of those GATA1 regulatory checkpoints have been recognized as an important cause of hematological disorders such as dyserythropoiesis (with or without thrombocytopenia), β-thalassemia, Diamond-Blackfan anemia, myelodysplasia, or leukemia. In this review, we provide an overview of the multilevel regulation of GATA1 protein homeostasis in erythropoiesis and of its deregulation in hematological disease.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Noemí Caballero
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Fernández-Calleja
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Crete, Greece
| | - John Strouboulis
- Cancer Comprehensive Center, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
5
|
Law WD, Fogarty EA, Vester A, Antonellis A. A genome-wide assessment of conserved SNP alleles reveals a panel of regulatory SNPs relevant to the peripheral nerve. BMC Genomics 2018; 19:311. [PMID: 29716548 PMCID: PMC5930951 DOI: 10.1186/s12864-018-4692-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/17/2018] [Indexed: 12/29/2022] Open
Abstract
Background Identifying functional non-coding variation is critical for defining the genetic contributions to human disease. While single-nucleotide polymorphisms (SNPs) within cis-acting transcriptional regulatory elements have been implicated in disease pathogenesis, not all cell types have been assessed and functional validations have been limited. In particular, the cells of the peripheral nervous system have been excluded from genome-wide efforts to link non-coding SNPs to altered gene function. Addressing this gap is essential for defining the genetic architecture of diseases that affect the peripheral nerve. We developed a computational pipeline to identify SNPs that affect regulatory function (rSNPs) and evaluated our predictions on a set of 144 regions in Schwann cells, motor neurons, and muscle cells. Results We identified 28 regions that display regulatory activity in at least one cell type and 13 SNPs that affect regulatory function. We then tailored our pipeline to one peripheral nerve cell type by incorporating SOX10 ChIP-Seq data; SOX10 is essential for Schwann cells. We prioritized 22 putative SOX10 response elements harboring a SNP and rapidly validated two rSNPs. We then selected one of these elements for further characterization to assess the biological relevance of our approach. Deletion of the element from the genome of cultured Schwann cells—followed by differential gene expression studies—revealed Tubb2b as a candidate target gene. Studying the enhancer in developing mouse embryos revealed activity in SOX10-positive cells including the dorsal root ganglia and melanoblasts. Conclusions Our efforts provide insight into the utility of employing strict conservation for rSNP discovery. This strategy, combined with functional analyses, can yield candidate target genes. In support of this, our efforts suggest that investigating the role of Tubb2b in SOX10-positive cells may reveal novel biology within these cell populations. Electronic supplementary material The online version of this article (10.1186/s12864-018-4692-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth A Fogarty
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aimée Vester
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA. .,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Neurology, University of Michigan Medical School, 3710A Medical Sciences II, 1241 E. Catherine St. SPC 5618, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Park S, Han CR, Park JW, Zhao L, Zhu X, Willingham M, Bodine DM, Cheng SY. Defective erythropoiesis caused by mutations of the thyroid hormone receptor α gene. PLoS Genet 2017; 13:e1006991. [PMID: 28910278 PMCID: PMC5621702 DOI: 10.1371/journal.pgen.1006991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/29/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with mutations of the THRA gene exhibit classical features of hypothyroidism, including erythroid disorders. We previously created a mutant mouse expressing a mutated TRα1 (denoted as PV; Thra1PV/+ mouse) that faithfully reproduces the classical hypothyroidism seen in patients. Using Thra1PV/+ mice, we explored how the TRα1PV mutant acted to cause abnormalities in erythropoiesis. Thra1PV/+ mice exhibited abnormal red blood cell indices similarly as reported for patients. The total bone marrow cells and erythrocytic progenitors were markedly reduced in the bone marrow of Thra1PV/+ mice. In vitro terminal differentiation assays showed a significant reduction of mature erythrocytes in Thra1PV/+ mice. In wild-type mice, the clonogenic potential of progenitors in the erythrocytic lineage was stimulated by thyroid hormone (T3), suggesting that T3 could directly accelerate the differentiation of progenitors to mature erythrocytes. Analysis of gene expression profiles showed that the key regulator of erythropoiesis, the Gata-1 gene, and its regulated genes, such as the Klf1, β-globin, dematin genes, CAII, band3 and eALAS genes, involved in the maturation of erythrocytes, was decreased in the bone marrow cells of Thra1PV/+ mice. We further elucidated that the Gata-1 gene was a T3-directly regulated gene and that TRα1PV could impair erythropoiesis via repression of the Gata-1 gene and its regulated genes. These results provide new insights into how TRα1 mutants acted to cause erythroid abnormalities in patients with mutations of the THRA gene. Importantly, the Thra1PV/+ mouse could serve as a preclinical mouse model to identify novel molecular targets for treatment of erythroid disorders. Patients with mutations of the THRA gene exhibit erythroid disorders. The molecular pathogenesis underlying erythroid abnormalities is poorly understood. In Thra1PV/+ mice expressing a dominant negative mutant TRα1PV, we found abnormal red blood cell indices similar to patients. Total bone marrow cells, the clonogenic potential of erythrocytic progenitors, and terminal differentiation of erythrocytes were markedly decreased in Thra1PV/+ mice. We elucidated that Gata-1, a key erythroid gene, was directly positively regulated by TRα1. The erythroid defects in Thra1PV/+ mice were due, at least partly, to the TRα1PV-mediated suppression of the Gata-1 gene and its down-stream target genes. Over-expression of Gata-1 rescued impaired terminal differentiation. Our studies elucidated molecular mechanisms by which TRα1 mutants caused erythroid disorders in patients. The present study suggests that therapies aimed at GATA1 could be tested as a potential target in treating erythroid abnormalities in patients.
Collapse
Affiliation(s)
- Sunmi Park
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Cho Rong Han
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeong Won Park
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Li Zhao
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xuguang Zhu
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mark Willingham
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David M. Bodine
- Hematopoiesis Section, National Human Geneome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Derepression of the DNA Methylation Machinery of the Gata1 Gene Triggers the Differentiation Cue for Erythropoiesis. Mol Cell Biol 2017; 37:MCB.00592-16. [PMID: 28069743 DOI: 10.1128/mcb.00592-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
GATA1 is a critical regulator of erythropoiesis. While the mechanisms underlying the high-level expression of GATA1 in maturing erythroid cells have been studied extensively, the initial activation of the Gata1 gene in early hematopoietic progenitors remains to be elucidated. We previously identified a hematopoietic stem and progenitor cell (HSPC)-specific silencer element (the Gata1 methylation-determining region [G1MDR]) that recruits DNA methyltransferase 1 (Dnmt1) and provokes methylation of the Gata1 gene enhancer. In the present study, we hypothesized that removal of the G1MDR-mediated silencing machinery is the molecular basis of the initial activation of the Gata1 gene and erythropoiesis. To address this hypothesis, we generated transgenic mouse lines harboring a Gata1 bacterial artificial chromosome in which the G1MDR was deleted. The mice exhibited abundant GATA1 expression in HSPCs, in a GATA2-dependent manner. The ectopic GATA1 expression repressed Gata2 transcription and induced erythropoiesis and apoptosis of HSPCs. Furthermore, genetic deletion of Dnmt1 in HSPCs activated Gata1 expression and depleted HSPCs, thus recapitulating the HSC phenotype associated with GATA1 gain of function. These results demonstrate that the G1MDR holds the key to HSPC maintenance and suggest that release from this suppressive mechanism is a fundamental requirement for subsequent initiation of erythroid differentiation.
Collapse
|
8
|
Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, Kane M, Cleary B, Lander ES, Engreitz JM. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 2016; 354:769-773. [PMID: 27708057 DOI: 10.1126/science.aag2445] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/21/2016] [Indexed: 11/03/2022]
Abstract
Gene expression in mammals is regulated by noncoding elements that can affect physiology and disease, yet the functions and target genes of most noncoding elements remain unknown. We present a high-throughput approach that uses clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) to discover regulatory elements and identify their target genes. We assess >1 megabase of sequence in the vicinity of two essential transcription factors, MYC and GATA1, and identify nine distal enhancers that control gene expression and cellular proliferation. Quantitative features of chromatin state and chromosome conformation distinguish the seven enhancers that regulate MYC from other elements that do not, suggesting a strategy for predicting enhancer-promoter connectivity. This CRISPRi-based approach can be applied to dissect transcriptional networks and interpret the contributions of noncoding genetic variation to human disease.
Collapse
Affiliation(s)
- Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rockwell Anyoha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sharon R Grossman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Division of Health Sciences and Technology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.,Department of Biology, MIT, Cambridge, MA 02139, USA
| | | | - Michael Kane
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian Cleary
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Computational and Systems Biology Program, MIT, Cambridge, MA 02139, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, MIT, Cambridge, MA 02139, USA
| | | |
Collapse
|
9
|
Shimizu R, Yamamoto M. GATA-related hematologic disorders. Exp Hematol 2016; 44:696-705. [PMID: 27235756 DOI: 10.1016/j.exphem.2016.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023]
Abstract
The transcription factors GATA1 and GATA2 are fundamental regulators of hematopoiesis and have overlapping expression profiles. GATA2 is expressed in hematopoietic stem cells and early erythroid-megakaryocytic progenitors and activates a certain set of early-phase genes, including the GATA2 gene itself. GATA2 also initiates GATA1 gene expression. In contrast, GATA1 is expressed in relatively mature erythroid progenitors and facilitates the expression of genes associated with differentiation, including the GATA1 gene itself; however, GATA1 represses the expression of GATA2. Switching the GATA factors from GATA2 to GATA1 appears to be one of the key regulatory mechanisms underlying erythroid differentiation. Loss-of-function analyses using mice in vivo have indicated that GATA2 and GATA1 are functionally nonredundant and that neither can compensate for the absence of the other. However, transgenic expression of GATA2 under the transcriptional regulation of the Gata1 gene rescues lethal dyserythropoiesis in GATA1-deficient mice, illustrating that the dynamic expression profiles of these GATA factors are critically important for the maintenance of hematopoietic homeostasis. Analysis of naturally occurring leukemias in GATA1-knockdown mice revealed that leukemic stem cells undergo functional alterations in response to exposure to chemotherapeutic agents. This mechanism may also underlie the aggravating features of relapsing leukemias. Recent hematologic analyses have suggested that disturbances in the balance of the GATA factors are associated with specific types of hematopoietic disorders. Here, we describe GATA1- and GATA2-related hematologic diseases, focusing on the regulation of GATA factor gene expression.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Guo Y, Fu X, Huo B, Wang Y, Sun J, Meng L, Hao T, Zhao ZJ, Hu X. GATA2 regulates GATA1 expression through LSD1-mediated histone modification. Am J Transl Res 2016; 8:2265-2274. [PMID: 27347333 PMCID: PMC4891438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/03/2016] [Indexed: 06/06/2023]
Abstract
The dynamic and reversed expression of GATA1 and GATA2 are essential for proper erythroid differentiation. Our previous work demonstrates that LSD1, a histone H3K4 demethylase, represses GATA2 expression at late stage of erythroid differentiation. K562 and MEL cells were used and cultured in Roswell Park Memorial Institute-1640 medium (RPMI) and Dulbecco's modified Eagle's medium (DMEM), respectively. Western blot assay was used to examine the GATA1, GATA2, TAL1, HDAC1, HDAC2, CoREST and β-actin protein. The immunoprecipitation assay and GST pull-down assay were employed to detect the precipitated protein complexes and investigate the interaction between the proteins. The small interfering RNA (siRNA) and nonspecific control siRNA were synthesized to silence the target genes. Double fluorescence immunostaining was used to observe the association of LSD1 with GATA2 in K562 cells. The results indicated that knockdown of LSD1 in K562 cell causes increased H3K4 di-methylation at GATA1 locus and activates GATA1 expression, demonstrating that LSD1 represses GATA1 expression through LSD1-mediated histone demethylation. Upon induced erythroid differentiation of K562 cells, the interaction between GATA2 and LSD1 is decreased, consistent with a de-repression of GATA1 expression. Meanwhile, the interaction between TAL1 and LSD1 is increased, which forms a complex that efficiently suppresses GATA2 expression. In conclusion, these observations reveal an elegant mechanism to modulate GATA1 and GATA2 expression during erythroid differentiation. While LSD1 mainly forms complex with GATA2 to repress GATA1 expression in hematopoietic progenitor cells, it mostly forms complex with TAL1 to repress GATA2 expression in differentiated cells.
Collapse
Affiliation(s)
- Yidi Guo
- School of Life Sciences, Jilin UniversityChangchun 130012, China
| | - Xueqi Fu
- School of Life Sciences, Jilin UniversityChangchun 130012, China
| | - Bo Huo
- School of Life Sciences, Jilin UniversityChangchun 130012, China
| | - Yongsen Wang
- School of Life Sciences, Jilin UniversityChangchun 130012, China
| | - Jing Sun
- School of Life Sciences, Jilin UniversityChangchun 130012, China
| | - Lingyuan Meng
- School of Life Sciences, Jilin UniversityChangchun 130012, China
| | - Tian Hao
- School of Life Sciences, Jilin UniversityChangchun 130012, China
| | | | - Xin Hu
- School of Life Sciences, Jilin UniversityChangchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin UniversityChangchun 130012, China
- National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin UniversityChangchun 130012, China
| |
Collapse
|
11
|
The Human GATA1 Gene Retains a 5' Insulator That Maintains Chromosomal Architecture and GATA1 Expression Levels in Splenic Erythroblasts. Mol Cell Biol 2015; 35:1825-37. [PMID: 25755285 DOI: 10.1128/mcb.00011-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/04/2015] [Indexed: 01/21/2023] Open
Abstract
GATA1 is a key transcription factor for erythropoiesis. GATA1 gene expression is strictly regulated at the transcriptional level. While the regulatory mechanisms governing mouse Gata1 (mGata1) gene expression have been studied extensively, how expression of the human GATA1 (hGATA1) gene is regulated remains to be elucidated. To address this issue, we generated hGATA1 bacterial artificial chromosome (BAC) transgenic mouse lines harboring a 183-kb hGATA1 locus covering the hGATA1 exons and distal flanking sequences. Transgenic hGATA1 expression coincides with endogenous mGata1 expression and fully rescues hematopoietic deficiency in mGata1 knockdown mice. The transgene exhibited copy number-dependent and integration position-independent expression of hGATA1, indicating the presence of chromatin insulator activity within the transgene. We found a novel insulator element at 29 kb 5' to the hGATA1 gene and refer to this element as the 5' CCCTC-binding factor (CTCF) site. Substitution mutation of the 5' CTCF site in the hGATA1 BAC disrupted the chromatin architecture and led to a reduction of hGATA1 expression in splenic erythroblasts under conditions of stress erythropoiesis. Our results demonstrate that expression of the hGATA1 gene is regulated through the chromatin architecture organized by 5' CTCF site-mediated intrachromosomal interactions in the hGATA1 locus.
Collapse
|
12
|
Progenitor stage-specific activity of a cis-acting double GATA motif for Gata1 gene expression. Mol Cell Biol 2014; 35:805-15. [PMID: 25535330 DOI: 10.1128/mcb.01011-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
GATA1 is a master regulator of erythropoiesis, expression of which is regulated by multiple discrete cis-acting elements. In this study, we examine the activity of a promoter-proximal double GATA (dbGATA) motif, using a Gata1 bacterial artificial chromosome (BAC)-transgenic green fluorescent protein (GFP) reporter (G1BAC-GFP) mouse system. Deletion of the dbGATA motif led to significant reductions in GFP expression in hematopoietic progenitors, while GFP expression was maintained in erythroblasts. Consistently, in mice with a germ line deletion of the dbGATA motif (Gata1(ΔdbGATA) mice), GATA1 expression in progenitors was significantly decreased. The suppressed GATA1 expression was associated with a compensatory increase in GATA2 levels in progenitors. When we crossed Gata1(ΔdbGATA) mice with Gata2 hypomorphic mutant mice (Gata2(fGN/fGN) mice), the Gata1(ΔdbGATA)::Gata2(fGN/fGN) compound mutant mice succumbed to a significant decrease in the progenitor population, whereas both groups of single mutant mice maintained progenitors and survived to adulthood, indicating the functional redundancy between GATA1 and GATA2 in progenitors. Meanwhile, the effects of the dbGATA site deletion on Gata1 expression were subtle in erythroblasts, which showed increased GATA1 binding and enhanced accumulation of active histone marks around the 1st-intron GATA motif of the ΔdbGATA locus. These results thus reveal a novel role of the dbGATA motif in the maintenance of Gata1 expression in hematopoietic progenitors and a functional compensation between the dbGATA site and the 1st-intron GATA motif in erythroblasts.
Collapse
|
13
|
Biased, non-equivalent gene-proximal and -distal binding motifs of orphan nuclear receptor TR4 in primary human erythroid cells. PLoS Genet 2014; 10:e1004339. [PMID: 24811540 PMCID: PMC4014424 DOI: 10.1371/journal.pgen.1004339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 03/17/2014] [Indexed: 02/04/2023] Open
Abstract
We previously reported that TR2 and TR4 orphan nuclear receptors bind to direct repeat (DR) elements in the ε- and γ-globin promoters, and act as molecular anchors for the recruitment of epigenetic corepressors of the multifaceted DRED complex, thereby leading to ε- and γ-globin transcriptional repression during definitive erythropoiesis. Other than the ε- and γ-globin and the GATA1 genes, TR4-regulated target genes in human erythroid cells remain unknown. Here, we identified TR4 binding sites genome-wide using chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) as human primary CD34+ hematopoietic progenitors differentiated progressively to late erythroid precursors. We also performed whole transcriptome analyses by RNA-seq to identify TR4 downstream targets after lentiviral-mediated TR4 shRNA knockdown in erythroid cells. Analyses from combined ChIP-seq and RNA-seq datasets indicate that DR1 motifs are more prevalent in the proximal promoters of TR4 direct target genes, which are involved in basic biological functions (e.g., mRNA processing, ribosomal assembly, RNA splicing and primary metabolic processes). In contrast, other non-DR1 repeat motifs (DR4, ER6 and IR1) are more prevalent at gene-distal TR4 binding sites. Of these, approximately 50% are also marked with epigenetic chromatin signatures (such as P300, H3K27ac, H3K4me1 and H3K27me3) associated with enhancer function. Thus, we hypothesize that TR4 regulates gene transcription via gene-proximal DR1 sites as TR4/TR2 heterodimers, while it can associate with novel nuclear receptor partners (such as RXR) to bind to distant non-DR1 consensus sites. In summary, this study reveals that the TR4 regulatory network is far more complex than previously appreciated and that TR4 regulates basic, essential biological processes during the terminal differentiation of human erythroid cells. Sequential genome-wide binding studies investigated by deep sequencing (ChIP-seq) represent a powerful tool for investigating the temporal sequence of gene activation and repression events that take place as cells differentiate. Here, we report the binding of an “orphan” nuclear receptor (one for which no ligand has been identified) to its cognate genomic regulatory sites and perform the functional analysis to validate its downstream targets as precursor cells differentiate from very early human hematopoietic progenitors into red blood cells. We discovered that when this receptor is bound at gene proximal promoters, it recognizes a different DNA sequence than when it binds to more distant regulatory sites (enhancers and silencers). Since this receptor can either activate or repress specific target genes, the data suggest the intriguing possibility that the two different modes of DNA recognition may reflect association of the receptor with different partner molecules when regulating gene expression from proximal or distal sequences.
Collapse
|
14
|
Moriguchi T, Yamamoto M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. Int J Hematol 2014; 100:417-24. [PMID: 24638828 DOI: 10.1007/s12185-014-1568-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 12/17/2022]
Abstract
GATA transcription factor family members GATA1 and GATA2 play crucial roles in the regulation of lineage-restricted genes during erythroid differentiation. GATA1 is indispensable for survival and terminal differentiation of erythroid, megakaryocytic and eosinophilic progenitors, whereas GATA2 regulates proliferation and maintenance of hematopoietic stem and progenitor cells. Expression levels of GATA1 and GATA2 are primarily regulated at the transcriptional level through auto- and reciprocal regulatory networks formed by these GATA factors. The dynamic and strictly controlled change of expression from GATA2 to GATA1 during erythropoiesis has been referred to as GATA factor switching, which plays a crucial role in erythropoiesis. The regulatory network comprising GATA1 and GATA2 gives rise to the stage-specific changes in Gata1 and Gata2 gene expression during erythroid differentiation, which ensures specific expression of early and late erythroid genes at each stage. Recent studies have also shed light on the genome-wide binding profiles of GATA1 and GATA2, and the significance of epigenetic modification of Gata1 gene during erythroid differentiation. This review summarizes the current understanding of network regulation underlying stage-dependent Gata1 and Gata2 gene expressions and the functional contribution of these GATA factors in erythroid differentiation.
Collapse
Affiliation(s)
- Takashi Moriguchi
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | | |
Collapse
|
15
|
Transcription factor GATA1 is dispensable for mast cell differentiation in adult mice. Mol Cell Biol 2014; 34:1812-26. [PMID: 24615013 DOI: 10.1128/mcb.01524-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although previous studies have shown that GATA1 is required for mast cell differentiation, the effects of the complete ablation of GATA1 in mast cells have not been examined. Using conditional Gata1 knockout mice (Gata1(-/y)), we demonstrate here that the complete ablation of GATA1 has a minimal effect on the number and distribution of peripheral tissue mast cells in adult mice. The Gata1(-/y) bone marrow cells were capable of differentiating into mast cells ex vivo. Microarray analyses showed that the repression of GATA1 in bone marrow mast cells (BMMCs) has a small impact on the mast cell-specific gene expression in most cases. Interestingly, however, the expression levels of mast cell tryptases in the mouse chromosome 17A3.3 were uniformly reduced in the GATA1 knockdown cells, and GATA1 was found to bind to a 500-bp region at the 5' end of this locus. Revealing a sharp contrast to that observed in the Gata1-null BMMCs, GATA2 deficiency resulted in a significant loss of the c-Kit(+) FcεRIα(+) mast cell fraction and a reduced expression of several mast cell-specific genes. Collectively, GATA2 plays a more important role than GATA1 in the regulation of most mast cell-specific genes, while GATA1 might play specific roles in mast cell functions.
Collapse
|
16
|
Tian T, Smith-Miles K. Mathematical modeling of GATA-switching for regulating the differentiation of hematopoietic stem cell. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 1:S8. [PMID: 24565335 PMCID: PMC4080254 DOI: 10.1186/1752-0509-8-s1-s8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Hematopoiesis is a highly orchestrated developmental process that comprises various developmental stages of the hematopoietic stem cells (HSCs). During development, the decision to leave the self-renewing state and selection of a differentiation pathway is regulated by a number of transcription factors. Among them, genes GATA-1 and PU.1 form a core negative feedback module to regulate the genetic switching between the cell fate choices of HSCs. Although extensive experimental studies have revealed the mechanisms to regulate the expression of these two genes, it is still unclear how this simple module regulates the genetic switching. Methods In this work we proposed a mathematical model to study the mechanisms of the GATA-PU.1 gene network in the determination of HSC differentiation pathways. We incorporated the mechanisms of GATA switch into the module, and developed a mathematical model that comprises three genes GATA-1, GATA-2 and PU.1. In addition, a novel multiple-objective optimization method was designed to infer unknown parameters in the proposed model by realizing different experimental observations. A stochastic model was also designed to describe the critical function of noise, due to the small copy numbers of molecular species, in determining the differentiation pathways. Results The proposed deterministic model has successfully realized three stable steady states representing the priming and different progenitor cells as well as genetic switching between the genetic states under various experimental conditions. Using different values of GATA-1 synthesis rate for the GATA-1 protein availability in the chromatin sites during the time period of GATA switch, stochastic simulations for the first time have realized different proportions of cells leading to different developmental pathways under various experimental conditions. Conclusions Mathematical models provide testable predictions regarding the mechanisms and conditions for realizing different differentiation pathways of hematopoietic stem cells. This work represents the first attempt at using a discrete stochastic model to realize the decision of HSC differentiation pathways showing a multimodal distribution.
Collapse
|
17
|
Vacaru AM, Vitale J, Nieves J, Baron MH. Generation of transgenic mouse fluorescent reporter lines for studying hematopoietic development. Methods Mol Biol 2014; 1194:289-312. [PMID: 25064110 PMCID: PMC4418647 DOI: 10.1007/978-1-4939-1215-5_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
During the development of the hematopoietic system, at least eight distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene and survey available fluorescent probes and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal.
Collapse
Affiliation(s)
- Andrei M. Vacaru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Vitale
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnathan Nieves
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Margaret H. Baron
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Shimizu R, Hasegawa A, Ottolenghi S, Ronchi A, Yamamoto M. Verification of the in vivo activity of three distinct cis-acting elements within the Gata1 gene promoter-proximal enhancer in mice. Genes Cells 2013; 18:1032-41. [PMID: 24118212 DOI: 10.1111/gtc.12096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
The transcription factor GATA1 is essential for erythroid and megakaryocytic cell differentiation. Gata1 hematopoietic regulatory domain (G1HRD) has been shown to recapitulate endogenous Gata1 gene expression in transgenic mouse assays in vivo. G1HRD contains a promoter-proximal enhancer composed of a GATA-palindrome motif, four CP2-binding sites and two CACCC boxes. We prepared transgenic reporter mouse lines in which green fluorescent protein and β-galactosidase expression are driven by wild-type G1HRD (as a positive control) and the G1HRD harboring mutations within these cis-acting elements (as the experimental conditions), respectively. Exploiting this transgenic dual reporter (TDR) assay, we show here that in definitive erythropoiesis, G1HRD activity was markedly affected by individual mutations in the GATA-palindrome motif and the CACCC boxes. Mutation of CP2-binding sites also moderately decreased G1HRD activity. The combined mutation of the CP2-binding sites and the GATA-palindrome motif resulted in complete loss of G1HRD activity. In contrast, in primitive erythroid cells, individual mutations of each element did not affect G1HRD activity; G1HRD activity was abolished only when these three mutations were combined. These results thus show that all three elements independently and cooperatively contribute to G1HRD activity in vivo in definitive erythropoiesis, although these are contributing redundantly to primitive erythropoiesis.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | | | | | | | | |
Collapse
|
19
|
The Gata1 5' region harbors distinct cis-regulatory modules that direct gene activation in erythroid cells and gene inactivation in HSCs. Blood 2013; 122:3450-60. [PMID: 24021675 DOI: 10.1182/blood-2013-01-476911] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
GATA1 is a master regulator of hematopoietic differentiation, but Gata1 expression is inactivated in hematopoietic stem cells (HSCs). Using a bacterial artificial chromosome containing the Gata1 gene modified with green fluorescent protein (GFP) reporter, we explored the function of the 3.7-kb Gata1 upstream region (GdC region) that harbors 3 core cis-elements: Gata1 hematopoietic enhancer, double GATA-motif, and CACCC-motif. Transgenic GFP expression directed by the Gata1-BAC faithfully recapitulated the endogenous Gata1 expression pattern. However, deletion of the GdC-region eliminated reporter expression in all hematopoietic cells. To test whether the combination of the core cis-elements represents the regulatory function of the GdC-region, we replaced the region with a 659-bp minigene that linked the three cis-elements (MG-GFP). The GFP reporter expression directed by the MG-GFP BAC fully recapitulated the erythroid-megakaryocytic Gata1 expression. However, the GFP expression was aberrantly increased in the HSCs and was associated with decreases in DNA methylation and abundant GATA2 binding to the transgenic MG-GFP allele. The 3.2-kb sequences interspaced between the Gata1 hematopoietic enhancer and the double GATA-motif were able to recruit DNA methyltransferase 1, thereby exerting a cis-repressive function in the HSC-like cell line. These results indicate that the 3.2-kb interspacing sequences inactivate Gata1 by maintaining DNA-methylation in the HSCs.
Collapse
|
20
|
Suzuki M, Kobayashi-Osaki M, Tsutsumi S, Pan X, Ohmori S, Takai J, Moriguchi T, Ohneda O, Ohneda K, Shimizu R, Kanki Y, Kodama T, Aburatani H, Yamamoto M. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation. Genes Cells 2013; 18:921-33. [PMID: 23911012 DOI: 10.1111/gtc.12086] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/16/2013] [Indexed: 11/30/2022]
Abstract
Transcription factor GATA2 is highly expressed in hematopoietic stem cells and progenitors, whereas its expression declines after erythroid commitment of progenitors. In contrast, the start of GATA1 expression coincides with the erythroid commitment and increases along with the erythroid differentiation. We refer this dynamic transition of GATA factor expression to as the 'GATA factor switching'. Here, we examined contribution of the GATA factor switching to the erythroid differentiation. In Gata1-knockdown embryos that concomitantly express Gata2-GFP reporter, high-level expression of GFP reporter was detected in accumulated immature hematopoietic cells with impaired differentiation, demonstrating that GATA1 represses Gata2 gene expression in hematopoietic progenitors in vivo. We have conducted chromatin immunoprecipitation (ChIP) on microarray analyses of GATA2 and GATA1, and results indicate that the GATA1-binding sites widely overlap with the sites pre-occupied by GATA2 before the GATA1 expression. Importantly, erythroid genes harboring GATA boxes bound by both GATA1 and GATA2 tend to be expressed in immature erythroid cells, whereas those harboring GATA boxes to which GATA1 binds highly but GATA2 binds only weakly are important for the mature erythroid cell function. Our results thus support the contention that preceding binding of GATA2 helps the following binding of GATA1 and thereby secures smooth expression of the transient-phase genes.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan; Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Q, Bhattacharya S, Andersen ME. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol 2013; 3:130031. [PMID: 23615029 PMCID: PMC3718334 DOI: 10.1098/rsob.130031] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm.
Collapse
Affiliation(s)
- Qiang Zhang
- Center for Dose Response Modeling, Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
22
|
Jiang Y, Peng D, Bai LP, Ma H, Chen LJ, Zhao MH, Xu ZJ, Guo ZF. Molecular switch for cold acclimation — anatomy of the cold-inducible promoter in plants. BIOCHEMISTRY (MOSCOW) 2013; 78:342-54. [DOI: 10.1134/s0006297913040032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Disruption of the Hbs1l-Myb locus causes hereditary persistence of fetal hemoglobin in a mouse model. Mol Cell Biol 2013; 33:1687-95. [PMID: 23428869 DOI: 10.1128/mcb.01617-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human β-globin locus is comprised of embryonic, fetal, and adult globin genes, each of which is expressed at distinct stages of pre- and postnatal development. Functional defects in globin proteins or expression results in mild to severe anemia, such as in sickle-cell disease or β-thalassemia, but the clinical symptoms of both disorders are ameliorated by persistent expression of the fetal globin genes. Recent genome-wide association studies (GWAS) identified the intergenic region between the HBS1L and MYB loci as a candidate modifier of fetal hemoglobin expression in adults. However, it remains to be clarified whether the enhancer activity within the HBS1L-MYB regulatory domain contributes to the production of fetal hemoglobin in adults. Here we report a new mouse model of hereditary persistence of fetal hemoglobin (HPFH) in which a transgene was randomly inserted into the orthologous murine Hbs1l-Myb locus. This mutant mouse exhibited typically elevated expression of embryonic globins and hematopoietic parameters similar to those observed in human HPFH. These results support the contention that mutation of the HBS1L-MYB genomic domain is responsible for elevated expression of the fetal globin genes, and this model serves as an important means for the analysis of networks that regulate fetal globin gene expression.
Collapse
|
24
|
Su MY, Steiner LA, Bogardus H, Mishra T, Schulz VP, Hardison RC, Gallagher PG. Identification of biologically relevant enhancers in human erythroid cells. J Biol Chem 2013; 288:8433-8444. [PMID: 23341446 DOI: 10.1074/jbc.m112.413260] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Identification of cell type-specific enhancers is important for understanding the regulation of programs controlling cellular development and differentiation. Enhancers are typically marked by the co-transcriptional activator protein p300 or by groups of cell-expressed transcription factors. We hypothesized that a unique set of enhancers regulates gene expression in human erythroid cells, a highly specialized cell type evolved to provide adequate amounts of oxygen throughout the body. Using chromatin immunoprecipitation followed by massively parallel sequencing, genome-wide maps of candidate enhancers were constructed for p300 and four transcription factors, GATA1, NF-E2, KLF1, and SCL, using primary human erythroid cells. These data were combined with gene expression analyses, and candidate enhancers were identified. Consistent with their predicted function as candidate enhancers, there was statistically significant enrichment of p300 and combinations of co-localizing erythroid transcription factors within 1-50 kb of the transcriptional start site (TSS) of genes highly expressed in erythroid cells. Candidate enhancers were also enriched near genes with known erythroid cell function or phenotype. Candidate enhancers exhibited moderate conservation with mouse and minimal conservation with nonplacental vertebrates. Candidate enhancers were mapped to a set of erythroid-associated, biologically relevant, SNPs from the genome-wide association studies (GWAS) catalogue of NHGRI, National Institutes of Health. Fourteen candidate enhancers, representing 10 genetic loci, mapped to sites associated with biologically relevant erythroid traits. Fragments from these loci directed statistically significant expression in reporter gene assays. Identification of enhancers in human erythroid cells will allow a better understanding of erythroid cell development, differentiation, structure, and function and provide insights into inherited and acquired hematologic disease.
Collapse
Affiliation(s)
- Mack Y Su
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Laurie A Steiner
- Department of Pediatrics, University of Rochester, Rochester, New York 14642
| | - Hannah Bogardus
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Tejaswini Mishra
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520; Departments of Pathology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
25
|
Abstract
Enormous numbers of adult blood cells are constantly regenerated throughout life from hematopoietic stem cells through a series of progenitor stages. Accessibility, robust functional assays, well-established prospective isolation, and successful clinical application made hematopoiesis the classical mammalian stem cell system. Most of the basic concepts of stem cell biology have been defined in this system. At the same time, many long-standing disputes in hematopoiesis research illustrate our still limited understanding. Here we discuss the embryonic development and lifelong maintenance of the hematopoietic system, its cellular components, and some of the hypotheses about the molecular mechanisms involved in controlling hematopoietic cell fates.
Collapse
Affiliation(s)
- Michael A Rieger
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt (Main), Germany
| | | |
Collapse
|
26
|
Xia X. Position weight matrix, gibbs sampler, and the associated significance tests in motif characterization and prediction. SCIENTIFICA 2012; 2012:917540. [PMID: 24278755 PMCID: PMC3820676 DOI: 10.6064/2012/917540] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/11/2012] [Indexed: 05/31/2023]
Abstract
Position weight matrix (PWM) is not only one of the most widely used bioinformatic methods, but also a key component in more advanced computational algorithms (e.g., Gibbs sampler) for characterizing and discovering motifs in nucleotide or amino acid sequences. However, few generally applicable statistical tests are available for evaluating the significance of site patterns, PWM, and PWM scores (PWMS) of putative motifs. Statistical significance tests of the PWM output, that is, site-specific frequencies, PWM itself, and PWMS, are in disparate sources and have never been collected in a single paper, with the consequence that many implementations of PWM do not include any significance test. Here I review PWM-based methods used in motif characterization and prediction (including a detailed illustration of the Gibbs sampler for de novo motif discovery), present statistical and probabilistic rationales behind statistical significance tests relevant to PWM, and illustrate their application with real data. The multiple comparison problem associated with the test of site-specific frequencies is best handled by false discovery rate methods. The test of PWM, due to the use of pseudocounts, is best done by resampling methods. The test of individual PWMS for each sequence segment should be based on the extreme value distribution.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
27
|
Shimizu R, Yamamoto M. Contribution of GATA1 dysfunction to multi-step leukemogenesis. Cancer Sci 2012; 103:2039-44. [PMID: 22937757 DOI: 10.1111/cas.12007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/19/2012] [Accepted: 08/23/2012] [Indexed: 01/01/2023] Open
Abstract
In mammals, hematopoietic homeostasis is maintained by a fine-tuned balance among the self-renewal, proliferation, differentiation and survival of hematopoietic stem cells and their progenies. Each process is also supported by the delicate balance of the expression of multiple genes specific to each process. GATA1 is a transcription factor that comprehensively regulates the genes that are important for the development of erythroid and megakaryocytic cells. Accumulating evidence supports the notion that defects in GATA1 function are intimately linked to hematopoietic disorders. In particular, the somatic mutation of the GATA1 gene, which leads to the production of N-terminally truncated GATA1, contributes to the genesis of transient myeloproliferative disorder and acute megakaryoblastic leukemia in infants with Down syndrome. Similarly, a mutation in the GATA1 regulatory region that reduces GATA1 expression is involved in the onset of erythroid leukemia in mice. In both cases, the accumulation of immature progenitor cells caused by GATA1 dysregulation underlies the pathogenesis of the leukemia. This review provides a summary of multi-step leukemogenesis with a focus on GATA1 dysfunction.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
28
|
Regulation of GATA factor expression is distinct between erythroid and mast cell lineages. Mol Cell Biol 2012; 32:4742-55. [PMID: 22988301 DOI: 10.1128/mcb.00718-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zinc finger transcription factors GATA1 and GATA2 participate in mast cell development. Although the expression of these factors is regulated in a cell lineage-specific and differentiation stage-specific manner, their regulation during mast cell development has not been clarified. Here, we show that the GATA2 mRNA level was significantly increased while GATA1 was maintained at low levels during the differentiation of mast cells derived from mouse bone marrow (BMMCs). Unlike in erythroid cells, forced expression or small interfering RNA (siRNA)-mediated knockdown of GATA1 rarely affected GATA2 expression, and vice versa, in mast cells, indicating the absence of cross-regulation between Gata1 and Gata2 genes. Chromatin immunoprecipitation assays revealed that both GATA factors bound to most of the conserved GATA sites of Gata1 and Gata2 loci in BMMCs. However, the GATA1 hematopoietic enhancer (G1HE) of the Gata1 gene, which is essential for GATA1 expression in erythroid and megakaryocytic lineages, was bound only weakly by both GATA factors in BMMCs. Furthermore, transgenic-mouse reporter assays revealed that the G1HE is not essential for reporter expression in BMMCs and peritoneal mast cells. Collectively, these results demonstrate that the expression of GATA factors in mast cells is regulated in a manner quite distinct from that in erythroid cells.
Collapse
|
29
|
A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells. Mol Cell Biol 2012; 32:3814-22. [PMID: 22801375 DOI: 10.1128/mcb.05938-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RUNX1 is known to be an essential transcription factor for generating hematopoietic stem cells (HSC), but much less is known about its role in the downstream process of hematopoietic differentiation. RUNX1 has been shown to be part of a large transcription factor complex, together with LDB1, GATA1, TAL1, and ETO2 (N. Meier et al., Development 133:4913-4923, 2006) in erythroid cells. We used a tagging strategy to show that RUNX1 interacts with two novel protein partners, LSD1 and MYEF2, in erythroid cells. MYEF2 is bound in undifferentiated cells and is lost upon differentiation, whereas LSD1 is bound in differentiated cells. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and microarray expression analysis were used to show that RUNX1 binds approximately 9,000 target sites in erythroid cells and is primarily active in the undifferentiated state. Functional analysis shows that a subset of the target genes is suppressed by RUNX1 via the newly identified partner MYEF2. Knockdown of Myef2 expression in developing zebrafish results in a reduced number of HSC.
Collapse
|
30
|
Flöttmann M, Scharp T, Klipp E. A stochastic model of epigenetic dynamics in somatic cell reprogramming. Front Physiol 2012; 3:216. [PMID: 22754535 PMCID: PMC3384084 DOI: 10.3389/fphys.2012.00216] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/30/2012] [Indexed: 11/13/2022] Open
Abstract
Somatic cell reprogramming has dramatically changed stem cell research in recent years. The high pace of new findings in the field and an ever increasing amount of data from new high throughput techniques make it challenging to isolate core principles of the process. In order to analyze such mechanisms, we developed an abstract mechanistic model of a subset of the known regulatory processes during cell differentiation and production of induced pluripotent stem cells. This probabilistic Boolean network describes the interplay between gene expression, chromatin modifications, and DNA methylation. The model incorporates recent findings in epigenetics and partially reproduces experimentally observed reprogramming efficiencies and changes in methylation and chromatin remodeling. It enables us to investigate, how the temporal progression of the process is regulated. It also explicitly includes the transduction of factors using viral vectors and their silencing in reprogrammed cells, since this is still a standard procedure in somatic cell reprogramming. Based on the model we calculate an epigenetic landscape for probabilities of cell states. Simulation results show good reproduction of experimental observations during reprogramming, despite the simple structure of the model. An extensive analysis and introduced variations hint toward possible optimizations of the process that could push the technique closer to clinical applications. Faster changes in DNA methylation increase the speed of reprogramming at the expense of efficiency, while accelerated chromatin modifications moderately improve efficiency.
Collapse
Affiliation(s)
- Max Flöttmann
- Department of Biology, Theoretical Biophysics, Humboldt-Universität zu Berlin Berlin, Germany
| | | | | |
Collapse
|
31
|
The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol 2011; 82:1-17. [PMID: 21605981 DOI: 10.1016/j.critrevonc.2011.04.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/18/2011] [Accepted: 04/21/2011] [Indexed: 11/23/2022] Open
Abstract
Hematopoiesis involves an elaborate regulatory network of transcription factors that coordinates the expression of multiple downstream genes, and maintains homeostasis within the hematopoietic system through the accurate orchestration of cellular proliferation, differentiation and survival. As a result, defects in the expression levels or the activity of these transcription factors are intimately linked to hematopoietic disorders, including leukemia. The GATA family of nuclear regulatory proteins serves as a prototype for the action of lineage-restricted transcription factors. GATA1 and GATA2 are expressed principally in hematopoietic lineages, and have essential roles in the development of multiple hematopoietic cells, including erythrocytes and megakaryocytes. Moreover, GATA2 is crucial for the proliferation and maintenance of hematopoietic stem cells and multipotential progenitors. In this review, we summarize the current knowledge regarding the biological properties and functions of the GATA2 transcription factor in normal and malignant hematopoiesis.
Collapse
|
32
|
Bonello GB, Pham MH, Begum K, Sigala J, Sataranatarajan K, Mummidi S. An evolutionarily conserved TNF-alpha-responsive enhancer in the far upstream region of human CCL2 locus influences its gene expression. THE JOURNAL OF IMMUNOLOGY 2011; 186:7025-38. [PMID: 21551367 DOI: 10.4049/jimmunol.0900643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Comparative cross-species genomic analysis has served as a powerful tool to discover novel noncoding regulatory regions that influence gene expression in several cytokine loci. In this study, we have identified several evolutionarily conserved regions (ECRs) that are shared between human, rhesus monkey, dog, and horse and that are upstream of the promoter regions that have been previously shown to play a role in regulating CCL2 gene expression. Of these, an ECR that was ~16.5 kb (-16.5 ECR) upstream of its coding sequence contained a highly conserved NF-κB site. The region encompassing the -16.5 ECR conferred TNF-α responsiveness to homologous and heterologous promoters. In vivo footprinting demonstrated that specific nucleotide residues in the -16.5 ECR were protected or became hypersensitive after TNF-α treatment. The footprinted regions were found to bind NF-κB subunits in vitro and in vivo. Mutation/deletion of the conserved NF-κB binding site in the -16.5 ECR led to loss of TNF-α responsiveness. After TNF-α stimulation, the -16.5 ECR showed increased sensitivity to nuclease digestion and loss of histone signatures that are characteristic of a repressive chromatin. Chromosome conformation capture assays indicated that -16.5 ECR physically interacts with the CCL2 proximal promoter after TNF-α stimulation. Taken together, these results suggest that the -16.5 ECR may play a critical role in the regulation of CCL2.
Collapse
Affiliation(s)
- Grégory B Bonello
- Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
33
|
Duff C, Smith-Miles K, Lopes L, Tian T. Mathematical modelling of stem cell differentiation: the PU.1-GATA-1 interaction. J Math Biol 2011; 64:449-68. [PMID: 21461760 DOI: 10.1007/s00285-011-0419-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 02/08/2011] [Indexed: 11/28/2022]
Abstract
The transcription factors PU.1 and GATA-1 are known to be important in the development of blood progenitor cells. Specifically they are thought to regulate the differentiation of progenitor cells into the granulocyte/macrophage lineage and the erythrocyte/megakaryocite lineage. While several mathematical models have been proposed to investigate the interaction between the transcription factors in recent years, there is still debate about the nature of the progenitor state in the dynamical system, and whether the existing models adequately capture new knowledge about the interactions gleaned from experimental data. Further, the models utilise different formalisms to represent the genetic regulation, and it appears that the resulting dynamical system depends upon which formalism is adopted. In this paper we analyse the four existing models, and propose an alternative model which is shown to demonstrate a rich variety of dynamical systems behaviours found across the existing models, including both bistability and tristability required for modelling the undifferentiated progenitors.
Collapse
Affiliation(s)
- Campbell Duff
- School of Mathematical Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | | | | | | |
Collapse
|
34
|
Suzuki M, Shimizu R, Yamamoto M. Transcriptional regulation by GATA1 and GATA2 during erythropoiesis. Int J Hematol 2011; 93:150-155. [PMID: 21279818 DOI: 10.1007/s12185-011-0770-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
The transcription factor GATA1 regulates multiple genes in erythroid lineage cells. However, the means by which GATA1 regulates the expression of target genes during erythropoiesis remains to be elucidated. Three mechanisms have been postulated for the regulation of genes by GATA1. First, individual target genes may have multiple discrete thresholds for cellular GATA1. GATA1 has a dynamic expression profile during erythropoiesis, thus the expression of a set of GATA1 target genes may be triggered at a given stage of differentiation by cellular GATA1. Second, the expression of GATA1 target genes may be modified, at least in part, by GATA2 occupying the GATA-binding motifs. GATA2 is expressed earlier in erythropoiesis than GATA1, and prior GATA2 binding may afford GATA1 access to GATA motifs through epigenetic remodeling and thus facilitate target gene expression. Third, other regulatory molecules specific to each target gene may function cooperatively with GATA1. If GATA1 is required for the expression of such cofactors, a regulatory network will be formed and relevant gene expression will be delayed. We propose that the stage-specific regulation of erythroid genes by GATA1 is tightly controlled through a combination of these mechanisms in vivo.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
35
|
Identification of distal cis-regulatory elements at mouse mitoferrin loci using zebrafish transgenesis. Mol Cell Biol 2011; 31:1344-56. [PMID: 21248200 DOI: 10.1128/mcb.01010-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitoferrin 1 (Mfrn1; Slc25a37) and mitoferrin 2 (Mfrn2; Slc25a28) function as essential mitochondrial iron importers for heme and Fe/S cluster biogenesis. A genetic deficiency of Mfrn1 results in a profound hypochromic anemia in vertebrate species. To map the cis-regulatory modules (CRMs) that control expression of the Mfrn genes, we utilized genome-wide chromatin immunoprecipitation (ChIP) datasets for the major erythroid transcription factor GATA-1. We identified the CRMs that faithfully drive the expression of Mfrn1 during blood and heart development and Mfrn2 ubiquitously. Through in vivo analyses of the Mfrn-CRMs in zebrafish and mouse, we demonstrate their functional and evolutionary conservation. Using knockdowns with morpholinos and cell sorting analysis in transgenic zebrafish embryos, we show that GATA-1 directly regulates the expression of Mfrn1. Mutagenesis of individual GATA-1 binding cis elements (GBE) demonstrated that at least two of the three GBE within this CRM are functionally required for GATA-mediated transcription of Mfrn1. Furthermore, ChIP assays demonstrate switching from GATA-2 to GATA-1 at these elements during erythroid maturation. Our results provide new insights into the genetic regulation of mitochondrial function and iron homeostasis and, more generally, illustrate the utility of genome-wide ChIP analysis combined with zebrafish transgenesis for identifying long-range transcriptional enhancers that regulate tissue development.
Collapse
|
36
|
Gallagher PG, Steiner LA, Liem RI, Owen AN, Cline AP, Seidel NE, Garrett LJ, Bodine DM. Mutation of a barrier insulator in the human ankyrin-1 gene is associated with hereditary spherocytosis. J Clin Invest 2010; 120:4453-65. [PMID: 21099109 DOI: 10.1172/jci42240] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 09/22/2010] [Indexed: 11/17/2022] Open
Abstract
Defects of the ankyrin-1 gene are the most common cause in humans of hereditary spherocytosis, an inherited anemia that affects patients of all ethnic groups. In some kindreds, linked -108/-153 nucleotide substitutions have been found in the upstream region of the ankyrin gene promoter that is active in erythroid cells. In vivo, the ankyrin erythroid promoter and its upstream region direct position-independent, uniform expression, a property of barrier insulators. Using human erythroid cell lines and primary cells and transgenic mice, here we have demonstrated that a region upstream of the erythroid promoter is a barrier insulator in vivo in erythroid cells. The region exhibited both functional and structural characteristics of a barrier, including prevention of gene silencing in an in vivo functional assay, appropriate chromatin configuration, and occupancy by barrier-associated proteins. Fragments with the -108/-153 spherocytosis-associated mutations failed to function as barrier insulators in vivo and demonstrated perturbations in barrier-associated chromatin configuration. In transgenic mice, flanking a mutant -108/-153 ankyrin gene promoter with the well-characterized chicken HS4 barrier insulator restored position-independent, uniform expression at levels comparable to wild-type. These data indicate that an upstream region of the ankyrin-1 erythroid promoter acts as a barrier insulator and identify disruption of the barrier element as a potential pathogenetic mechanism of human disease.
Collapse
Affiliation(s)
- Patrick G Gallagher
- Departments of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency. PLoS Comput Biol 2010; 6:e1000785. [PMID: 20485562 PMCID: PMC2869311 DOI: 10.1371/journal.pcbi.1000785] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 04/13/2010] [Indexed: 12/31/2022] Open
Abstract
With relatively low efficiency, differentiated cells can be reprogrammed to a pluripotent state by ectopic expression of a few transcription factors. An understanding of the mechanisms that underlie data emerging from such experiments can help design optimal strategies for creating pluripotent cells for patient-specific regenerative medicine. We have developed a computational model for the architecture of the epigenetic and genetic regulatory networks which describes transformations resulting from expression of reprogramming factors. Importantly, our studies identify the rare temporal pathways that result in induced pluripotent cells. Further experimental tests of predictions emerging from our model should lead to fundamental advances in our understanding of how cellular identity is maintained and transformed. Most cells in an organism have the same DNA. Yet, different cell types express different proteins and carry out different functions. These differences are reflected by cell epigenetics; i.e., DNA in different cell types is packaged distinctly, making it hard to express certain genes while facilitating the expression of others. During development, upon receipt of appropriate cues, pluripotent embryonic stem cells differentiate into diverse cell types that make up the organism (e.g., a human). There has long been an effort to make this process go backward— i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent status. Recently, this has been achieved by overexpressing specific transcription factors in differentiated cells. This method does not use embryonic material and promises the development of patient-specific regenerative medicine. The mechanisms that make reprogramming rare, or even possible, are poorly understood. We have developed the first computational model of transcription factor-induced reprogramming. Results obtained from the model are consistent with diverse observations, and identify the rare pathways that allow reprogramming to occur. If validated by further experiments, our model could be further developed to design optimal strategies for reprogramming and shed light on basic questions in biology.
Collapse
|
38
|
EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation. Mol Cell Biol 2010; 30:2811-22. [PMID: 20368355 DOI: 10.1128/mcb.01016-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The switch from proliferation to differentiation during the terminal stages of erythropoiesis is a tightly controlled process that relies in part on transcription factor-mediated activation of cell cycle components. EKLF is a key transcription factor that is necessary for the initial establishment of the red cell phenotype. Here, we find that EKLF also plays a role during the subsequent differentiation process, as it induces p21(WAF1/CIP1) expression independent of p53 to regulate the changes in the cell cycle underlying erythroid maturation. EKLF activates p21 not only by directly binding to an EKLF site within a previously characterized GC-rich region in the p21 proximal promoter but also by occupancy at a novel, phylogenetically conserved region that contains consensus CACCC core motifs located downstream from the p21 TATA box. Our findings demonstrate that EKLF, likely in coordination with other transcription factors, directly contributes to the complex set of events that occur at the final erythroid cell divisions and accentuates terminal differentiation directly by activation of CDK inhibitors such as p21.
Collapse
|
39
|
Kozma GT, Martelli F, Verrucci M, Gutiérrez L, Migliaccio G, Sanchez M, Alfani E, Philipsen S, Migliaccio AR. Dynamic regulation of Gata1 expression during the maturation of conventional dendritic cells. Exp Hematol 2010; 38:489-503.e1. [PMID: 20303380 DOI: 10.1016/j.exphem.2010.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To identify the regulatory sequences driving Gata1 expression in conventional dendritic cells (cDC). MATERIALS AND METHODS The number and expression levels of Gata1, Gata1-target genes and hypersensitive site (HS) 2 (the eosinophil-specific enhancer)-driven green fluorescent protein (GFP) reporter of cDCs from mice lacking HS1 (the erythroid/megakaryocytic-specific enhancer, Gata1(low) mutation) and wild-type littermates, as well as the response to lipopolysaccharide of ex vivo-generated wild-type and Gata1(low) DCs were investigated. RESULTS cDC maturation was associated with bell-shaped changes in Gata1 expression that peaked in cDCs precursors from blood. The Gata1(low) mutation did not affect Gata1 expression in cDC precursors and these cells expressed the HS2-driven reporter, indicating that Gata1 expression is HS2-driven in these cells. By contrast, the Gata1(low) mutation reduced Gata1 expression in mature cDCs and these cells did not express GFP, indicating that mature cDCs express Gata1 driven by HS1. In blood, the number of cDC precursors expressing CD40/CD80 was reduced in Gata1(low) mice, while CD40(pos)/CD80(pos) cDC precursors from wild-type mice expressed the HS2-GFP reporter, suggesting that Gata1 expression in these cells is both HS1- and HS2-driven. In addition, the antigen and accessory molecules presentation process induced by lipopolysaccharide in ex vivo-generated wild-type DC was associated with increased acetylated histone 4 occupancy of HS1, while ex vivo-generated Gata1(low) cDCs failed to respond to lipopolysaccharide, suggesting that HS1 activation is required for cDC maturation. CONCLUSION These results identify a dynamic pattern of Gata1 regulation that switches from an HS1 to an HS2-dependent phase during the maturation of cDCs associated with the antigen-presentation process in the blood.
Collapse
Affiliation(s)
- Gergely T Kozma
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fraser ST, Isern J, Baron MH. Use of transgenic fluorescent reporter mouse lines to monitor hematopoietic and erythroid development during embryogenesis. Methods Enzymol 2010; 476:403-27. [PMID: 20691878 DOI: 10.1016/s0076-6879(10)76022-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of fluorescent reporter proteins such as GFP, RFP, and their variants to tag and track cells within the embryo has revolutionized developmental biology. Expression of these proteins within restricted populations has been achieved through the use of lineage-specific regulatory elements. This approach has proven especially powerful in the hematopoietic system, where it has been possible to monitor the generation, expansion, maturation, and migration of primitive erythroid cells, macrophages, and megakaryocytes during embryogenesis at unprecedented resolution. Such analyses have provided novel insights into the development of these lineages. In this chapter, we discuss the design considerations and methodologies involved in the production and analysis of transgenic mouse lines in which fluorescent reporters are expressed in the hematopoietic system of the mouse embryo.
Collapse
Affiliation(s)
- Stuart T Fraser
- Division of Hematology and Medical Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, USA
| | | | | |
Collapse
|
41
|
High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription. Blood 2009; 115:687-95. [PMID: 19965638 DOI: 10.1182/blood-2009-06-230094] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gfi-1B is a transcriptional repressor that is crucial for erythroid differentiation: inactivation of the GFI1B gene in mice leads to embryonic death due to failure to produce differentiated red cells. Accordingly, GFI1B expression is tightly regulated during erythropoiesis, but the mechanisms involved in such regulation remain partially understood. We here identify HMGB2, a high-mobility group HMG protein, as a key regulator of GFI1B transcription. HMGB2 binds to the GFI1B promoter in vivo and up-regulates its trans-activation most likely by enhancing the binding of Oct-1 and, to a lesser extent, of GATA-1 and NF-Y to the GFI1B promoter. HMGB2 expression increases during erythroid differentiation concomitantly to the increase of GfI1B transcription. Importantly, knockdown of HMGB2 in immature hematopoietic progenitor cells leads to decreased Gfi-1B expression and impairs their erythroid differentiation. We propose that HMGB2 potentiates GATA-1-dependent transcription of GFI1B by Oct-1 and thereby controls erythroid differentiation.
Collapse
|
42
|
Ontogenetic development of erythropoiesis can be studied non-invasively in GATA-1:DsRed transgenic zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:270-8. [DOI: 10.1016/j.cbpa.2009.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/19/2022]
|
43
|
Ohneda K, Ohmori S, Ishijima Y, Nakano M, Yamamoto M. Characterization of a functional ZBP-89 binding site that mediates Gata1 gene expression during hematopoietic development. J Biol Chem 2009; 284:30187-99. [PMID: 19723625 DOI: 10.1074/jbc.m109.026948] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
GATA-1 is a lineage-restricted transcription factor that plays essential roles in hematopoietic development. The Gata1 gene hematopoietic enhancer allowed Gata1 reporter expression in erythroid cells and megakaryocytes of transgenic mice. The Gata1 hematopoietic enhancer activity is strictly dependent on a GATA site located in the 5' region of the enhancer. However, the importance of the GC-rich region adjacent to the 3'-end of this GATA site has been also suggested. In this study, we show that this GC-rich region contains five contiguous deoxyguanosine residues (G(5) string) that are bound by multiple nuclear proteins. Interestingly, deletion of one deoxyguanosine residue from the G(5) string (G(4) mutant) specifically eliminates binding to ZBP-89, a Krüppel-like transcription factor, but not to Sp3 and other binding factors. We demonstrate that GATA-1 and ZBP-89 occupy chromatin regions of the Gata1 enhancer and physically associate in vitro through zinc finger domains. Gel mobility shift assays and DNA affinity precipitation assays suggest that binding of ZBP-89 to this region is reduced in the absence of GATA-1 binding to the G1HE. Luciferase reporter assays demonstrate that ZBP-89 activates the Gata1 enhancer depending on the G(5) string sequence. Finally, transgenic mouse studies reveal that the G(4) mutation significantly reduced the reporter activity of the Gata1 hematopoietic regulatory domain encompassing an 8.5-kbp region of the Gata1 gene. These data provide compelling evidence that the G(5) string is necessary for Gata1 gene expression in vivo and ZBP-89 is the functional trans-acting factor for this cis-acting region.
Collapse
Affiliation(s)
- Kinuko Ohneda
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan.
| | | | | | | | | |
Collapse
|
44
|
Shimizu R, Kobayashi E, Engel JD, Yamamoto M. Induction of hyperproliferative fetal megakaryopoiesis by an N-terminally truncated GATA1 mutant. Genes Cells 2009; 14:1119-31. [PMID: 19682090 DOI: 10.1111/j.1365-2443.2009.01338.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Two GATA1-related leukemias have been described: one is an erythroleukemia that develops in mice as a consequence of diminished expression of wild-type GATA1, whereas the other is an acute megakaryoblastic leukemia (AMKL) that arises in Down syndrome children as a consequence of somatic N-terminal truncation (DeltaNT) of GATA1. We discovered that mice expressing the shortened GATA1 protein (DeltaNTR mice) phenocopies the human transient myeloproliferative disorder (TMD) that precedes AMKL in Down syndrome children. In perinatal livers of the DeltaNTR mutant mice, immature megakaryocytes accumulate massively, and this fraction contains cells that form hyperproliferative megakaryocytic colonies. Furthermore, showing good agreement with the clinical course of TMD in humans, DeltaNTR mutant mice undergo spontaneous resolution from the massive megakaryocyte accumulation concomitant with the switch of hematopoietic microenvironment from liver to bone marrow/spleen. These results thus demonstrate that expression of the GATA1/Gata1 N-terminal deletion mutant per se induces hyperproliferative fetal megakaryopoiesis. This mouse model serves as an important means to clarify how impaired GATA1 function contributes to the multi-step leukemogenesis.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Experimental Hematology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | |
Collapse
|
45
|
Marqués-García F, Ferrandiz N, Fernández-Alonso R, González-Cano L, Herreros-Villanueva M, Rosa-Garrido M, Fernández-García B, Vaque JP, Marqués MM, Alonso ME, Segovia JC, León J, Marín MC. p73 plays a role in erythroid differentiation through GATA1 induction. J Biol Chem 2009; 284:21139-56. [PMID: 19509292 DOI: 10.1074/jbc.m109.026849] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TP73 gene gives rise to transactivation domain-p73 isoforms (TAp73) as well as DeltaNp73 variants with a truncated N terminus. Although TAp73alpha and -beta proteins are capable of inducing cell cycle arrest, apoptosis, and differentiation, DeltaNp73 acts in many cell types as a dominant-negative repressor of p53 and TAp73. It has been proposed that p73 is involved in myeloid differentiation, and its altered expression is involved in leukemic degeneration. However, there is little evidence as to which p73 variants (TA or DeltaN) are expressed during differentiation and whether specific p73 isoforms have the capacity to induce, or hinder, this differentiation in leukemia cells. In this study we identify GATA1 as a direct transcriptional target of TAp73alpha. Furthermore, TAp73alpha induces GATA1 activity, and it is required for erythroid differentiation. Additionally, we describe a functional cooperation between TAp73 and DeltaNp73 in the context of erythroid differentiation in human myeloid cells, K562 and UT-7. Moreover, the impaired expression of GATA1 and other erythroid genes in the liver of p73KO embryos, together with the moderated anemia observed in p73KO young mice, suggests a physiological role for TP73 in erythropoiesis.
Collapse
|
46
|
Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 2009; 114:983-94. [PMID: 19491391 DOI: 10.1182/blood-2009-03-207944] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
GATA-1 and PU.1 are essential hematopoietic transcription factors that control erythromegakaryocytic and myelolymphoid differentiation, respectively. These proteins antagonize each other through direct physical interaction to repress alternate lineage programs. We used immortalized Gata1(-) erythromegakaryocytic progenitor cells to study how PU.1/Sfpi1 expression is regulated by GATA-1 and GATA-2, a related factor that is normally expressed at earlier stages of hematopoiesis. Both GATA factors bind the PU.1/Sfpi1 gene at 2 highly conserved regions. In the absence of GATA-1, GATA-2 binding is associated with an undifferentiated state, intermediate level PU.1/Sfpi1 expression, and low-level expression of its downstream myeloid target genes. Restoration of GATA-1 function induces erythromegakaryocytic differentiation. Concomitantly, GATA-1 replaces GATA-2 at the PU.1/Sfpi1 locus and PU.1/Sfpi1 expression is extinguished. In contrast, when GATA-1 is not present, shRNA knockdown of GATA-2 increases PU.1/Sfpi1 expression by 3-fold and reprograms the cells to become macrophages. Our findings indicate that GATA factors act sequentially to regulate lineage determination during hematopoiesis, in part by exerting variable repressive effects at the PU.1/Sfpi1 locus.
Collapse
|
47
|
Chickarmane V, Enver T, Peterson C. Computational modeling of the hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and irreversibility. PLoS Comput Biol 2009; 5:e1000268. [PMID: 19165316 PMCID: PMC2613533 DOI: 10.1371/journal.pcbi.1000268] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 12/05/2008] [Indexed: 11/24/2022] Open
Abstract
Hematopoietic stem cell lineage choices are decided by genetic networks that are turned ON/OFF in a switch-like manner. However, prior to lineage commitment, genes are primed at low expression levels. Understanding the underlying molecular circuitry in terms of how it governs both a primed state and, at the other extreme, a committed state is of relevance not only to hematopoiesis but also to developmental systems in general. We develop a computational model for the hematopoietic erythroid-myeloid lineage decision, which is determined by a genetic switch involving the genes PU.1 and GATA-1. Dynamical models based upon known interactions between these master genes, such as mutual antagonism and autoregulation, fail to make the system bistable, a desired feature for robust lineage determination. We therefore suggest a new mechanism involving a cofactor that is regulated as well as recruited by one of the master genes to bind to the antagonistic partner that is necessary for bistability and hence switch-like behavior. An interesting fallout from this architecture is that suppression of the cofactor through external means can lead to a loss of cooperativity, and hence to a primed state for PU.1 and GATA-1. The PU.1–GATA-1 switch also interacts with another mutually antagonistic pair, –FOG-1. The latter pair inherits the state of its upstream master genes and further reinforces the decision due to several feedback loops, thereby leading to irreversible commitment. The genetic switch, which handles the erythroid-myeloid lineage decision, is an example of a network that implements both a primed and a committed state by regulating cooperativity through recruitment of cofactors. Perturbing the feedback between the master regulators and downstream targets suggests potential reprogramming strategies. The approach points to a framework for lineage commitment studies in general and could aid the search for lineage-determining genes. An important question in developmental biology is how different lineage choices are regulated at the genetic level. Robust lineage decisions are implemented by genetic switches, whereby one set of master genes are ON and another set are OFF, leading to a specific expression pattern of genes for a particular lineage. We develop a computational model to illustrate these principles as applied to the hematopoietic erythroid-myeloid lineage choice, where two master regulator genes, PU.1 and GATA-1, function as a genetic switch. The model, which is based upon known interactions, suggests missing interactions between the master genes, which we hypothesize, so as to reproduce the desired dynamics. Furthermore, there exist feedback interactions between the master genes and their downstream targets. When these are included in the model, the dynamics imply that the feedback is responsible for irreversible commitment. Our results suggest the search for missing interactions between the master genes in terms of a coregulated cofactor. The second important result of the model is that reprogramming irreversible cell fate may be possible by perturbing feedback regulation between the master genes and their downstream targets. Hence, dynamical modeling provides prediction of novel mechanisms and also strategies for reprogramming the fates of cells.
Collapse
Affiliation(s)
- Vijay Chickarmane
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Tariq Enver
- MRC Molecular Biology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | - Carsten Peterson
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
48
|
Differential contribution of the Gata1 gene hematopoietic enhancer to erythroid differentiation. Mol Cell Biol 2008; 29:1163-75. [PMID: 19103751 DOI: 10.1128/mcb.01572-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GATA1 is a key regulator of erythroid cell differentiation. To examine how Gata1 gene expression is regulated in a stage-specific manner, transgenic mouse lines expressing green fluorescent protein (GFP) reporter from the Gata1 locus in a bacterial artificial chromosome (G1BAC-GFP) were prepared. We found that the GFP reporter expression faithfully recapitulated Gata1 gene expression. Using GFP fluorescence in combination with hematopoietic surface markers, we established a purification protocol for two erythroid progenitor fractions, referred to as burst-forming units-erythroid cell-related erythroid progenitor (BREP) and CFU-erythroid cell-related erythroid progenitor (CREP) fractions. We examined the functions of the Gata1 gene hematopoietic enhancer (G1HE) and the highly conserved GATA box in the enhancer core. Both deletion of the G1HE and substitution mutation of the GATA box caused almost complete loss of GFP expression in the BREP fraction, but the CREP stage expression was suppressed only partially, indicating the critical contribution of the GATA box to the BREP stage expression of Gata1. Consistently, targeted deletion of G1HE from the chromosomal Gata1 locus provoked suppressed expression of the Gata1 gene in the BREP fraction, which led to aberrant accumulation of BREP stage hematopoietic progenitor cells. These results demonstrate the physiological significance of the dynamic regulation of Gata1 gene expression in a differentiation stage-specific manner.
Collapse
|
49
|
SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 2008; 113:2191-201. [PMID: 19011221 DOI: 10.1182/blood-2008-07-169417] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GATA-1 controls hematopoietic development by activating and repressing gene transcription, yet the in vivo mechanisms that specify these opposite activities are unknown. By examining the composition of GATA-1-associated protein complexes in a conditional erythroid rescue system as well as through the use of tiling arrays we detected the SCL/TAL1, LMO2, Ldb1, E2A complex at all positively acting GATA-1-bound elements examined. Similarly, the SCL complex is present at all activating GATA elements in megakaryocytes and mast cells. In striking contrast, at sites where GATA-1 functions as a repressor, the SCL complex is depleted. A DNA-binding defective form of SCL maintains association with a subset of active GATA elements indicating that GATA-1 is a key determinant for SCL recruitment. Knockdown of LMO2 selectively impairs activation but not repression by GATA-1. ETO-2, an SCL-associated protein with the potential for transcription repression, is also absent from GATA-1-repressed genes but, unlike SCL, fails to accumulate at GATA-1-activated genes. Together, these studies identify the SCL complex as a critical and consistent determinant of positive GATA-1 activity in multiple GATA-1-regulated hematopoietic cell lineages.
Collapse
|
50
|
Liu S, Bhattacharya S, Han A, Suragani RNVS, Zhao W, Fry RC, Chen JJ. Haem-regulated eIF2alpha kinase is necessary for adaptive gene expression in erythroid precursors under the stress of iron deficiency. Br J Haematol 2008; 143:129-37. [PMID: 18665838 DOI: 10.1111/j.1365-2141.2008.07293.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Haem-regulated eIF2alpha kinase (HRI) is essential for the regulation of globin gene translation and the survival of erythroid precursors in iron/haem deficiency. This study found that that in iron deficiency, fetal definitive erythropoiesis is inhibited at the basophilic erythroblast stage with increased proliferation and elevated apoptosis. This hallmark of ineffective erythropoiesis is more severe in HRI deficiency. Microarray gene profiling analysis showed that HRI was required for adaptive gene expression in erythroid precursors during chronic iron deficiency. The number of genes with expression affected more than twofold increased, from 213 in iron deficiency and 73 in HRI deficiency, to 3135 in combined iron and HRI deficiencies. Many of these genes are regulated by Gata1 and Fog1. We demonstrate for the first time that Gata1 expression in developing erythroid precursors is decreased in iron deficiency, and is decreased further in combined iron and HRI deficiencies. Additionally, Fog1 expression is decreased in combined deficiencies, but not in iron or HRI deficiency alone. Our results indicate that HRI confers adaptive gene expression in developing erythroblasts during iron deficiency through maintaining Gata1/Fog1 expression.
Collapse
Affiliation(s)
- Sijin Liu
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|