1
|
Zhang C, Fu Y, Zheng W, Chang F, Shen Y, Niu J, Wang Y, Ma X. Enhancing the Antibody Production Efficiency of Chinese Hamster Ovary Cells through Improvement of Disulfide Bond Folding Ability and Apoptosis Resistance. Cells 2024; 13:1481. [PMID: 39273052 PMCID: PMC11394227 DOI: 10.3390/cells13171481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The complex structure of monoclonal antibodies (mAbs) expressed in Chinese hamster ovary (CHO) cells may result in the accumulation of unfolded proteins, triggering endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). If the protein folding ability cannot maintain ER homeostasis, the cell will shut down protein translation and ultimately induce apoptosis. We co-overexpressed HsQSOX1b and survivin proteins in the antibody-producing cell line CHO-PAb to obtain a new cell line, CHO-PAb-QS. Compared with CHO-PAb cells, the survival time of CHO-PAb-QS cells in batch culture was extended by 2 days, and the antibody accumulation and productivity were increased by 52% and 45%, respectively. The proportion of (HC-LC)2 was approximately doubled in the CHO-PAb-QS cells, which adapted to the accelerated disulfide bond folding capacity by upregulating the UPR's strength and increasing the ER content. The results of the apoptosis assays indicated that the CHO-PAb-QS cell line exhibited more excellent resistance to apoptosis induced by ER stress. Finally, CHO-PAb-QS cells exhibited mild oxidative stress but did not significantly alter the redox status. This study demonstrated that strategies based on HsQSOX1b and survivin co-overexpression could facilitate protein disulfide bond folding and anti-apoptosis ability, enhancing antibody production efficiency in CHO cell lines.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Yunhui Fu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Yue Shen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Jinping Niu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Yangmin Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; (C.Z.)
| |
Collapse
|
2
|
Liu S, Liu Y, Bao E, Tang S. The Protective Role of Heat Shock Proteins against Stresses in Animal Breeding. Int J Mol Sci 2024; 25:8208. [PMID: 39125776 PMCID: PMC11311290 DOI: 10.3390/ijms25158208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Heat shock proteins (HSPs) play an important role in all living organisms under stress conditions by acting as molecular chaperones. The expression of different HSPs during stress varies depending on their protective functions and anti-apoptotic activities. The application of HSPs improves the efficiency and decreases the economic cost of animal breeding. By upregulating the expression of HSPs, feed supplements can improve stress tolerance in farm animals. In addition, high expression of HSPs is often a feature of tumor cells, and inhibiting the expression of HSPs is a promising novel method for killing these cells and treating cancers. In the present review, the findings of previous research on the application of HSPs in animal breeding and veterinary medicine are summarized, and the knowledge of the actions of HSPs in animals is briefly discussed.
Collapse
Affiliation(s)
| | | | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1 Road, Nanjing 210095, China; (S.L.); (Y.L.)
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No. 1 Road, Nanjing 210095, China; (S.L.); (Y.L.)
| |
Collapse
|
3
|
Olukunle OF, Olowosoke CB, Khalid A, Oke GA, Omoboyede V, Umar HI, Ibrahim O, Adeboboye CF, Iwaloye O, Olawale F, Adedeji AA, Bello T, Alabere HO, Chukwuemeka PO. Identification of a 1, 8-naphthyridine-containing compound endowed with the inhibition of p53-MDM2/X interaction signaling: a computational perspective. Mol Divers 2024; 28:1109-1127. [PMID: 37029281 DOI: 10.1007/s11030-023-10637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Various studies have established that molecules specific for MDMX inhibition or optimized for dual inhibition of p53-MDM2/MDMX interaction signaling are more suitable for activating the Tp53 gene in tumor cells. Nevertheless, there are sparse numbers of approved molecules to treat the health consequences brought by the lost p53 functions in tumor cells. Consequently, this study explored the potential of a small molecule ligand containing 1, 8-naphthyridine scaffold to act as a dual inhibitor of p53-MDM2/X interactions using computational methods. The results obtained from quantum mechanical calculations revealed our studied compound entitled CPO is more stable but less reactive compared to standard dual inhibitor RO2443. Like RO2443, CPO also exhibited good non-linear optical properties. The results of molecular docking studies predicted that CPO has a higher potential to inhibit MDM2/MDMX than RO2443. Furthermore, CPO was stable over 50 ns molecular dynamics (MD) simulation in complex with MDM2 and MDMX respectively. On the whole, CPO also exhibited good drug-likeness and pharmacokinetics properties compared to RO2443 and was found with more anti-cancer activity than RO2443 in bioactivity prediction. CPO is anticipated to elevate effectiveness and alleviate drug resistance in cancer therapy. Ultimately, our results provide an insight into the mechanism that underlay the inhibition of p53-MDM2/X interactions by a molecule containing 1, 8-naphthyridine scaffold in its molecular structure.
Collapse
Affiliation(s)
- Oluwatoyin Folake Olukunle
- Department of Biotechnology, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
| | - Christopher Busayo Olowosoke
- Department of Biotechnology, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
| | - Aqsa Khalid
- Research Center for Modelling and Simulation (RCMS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Grace Ayomide Oke
- Department of Food Science and Technology, School of Agriculture and Agricultural Technology (SAAT), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
| | - Victor Omoboyede
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
| | - Haruna Isiyaku Umar
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
| | - Ochapa Ibrahim
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Covenant Femi Adeboboye
- Department of Microbiology, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
| | - Opeyemi Iwaloye
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
| | - Femi Olawale
- Nano-Gene and Drug Delivery Group, Department of Biochemistry, School of Life Sciences, University of Kwazulu Natal, Durban, 4000, South Africa
- Department of Biochemistry, University of Lagos, Lagos, Nigeria
| | - Ayodeji Adeola Adedeji
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
| | - Taye Bello
- Department of Medical Rehabilitation, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun, Nigeria
| | - Hafsat Olateju Alabere
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
- Department of Microbiology, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria
| | - Prosper Obed Chukwuemeka
- Department of Biotechnology, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria.
- Computer Aided Therapeutics and Drug Design (CATDD) Group, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Ondo, Nigeria.
| |
Collapse
|
4
|
Fayaz H, Gupta T, Rab SO, Jha SK, Kumar S. Mechanisms and prospects of piezoelectric materials as smart delivery vehicles in cancer treatment. Drug Discov Today 2024; 29:103862. [PMID: 38122966 DOI: 10.1016/j.drudis.2023.103862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Piezoelectric materials, capable of converting mechanical energy into electrical energy and vice versa, have emerged as promising candidates for designing intelligent drug delivery vehicles. Leveraging their inherent electrical properties, these materials respond to external stimuli, such as mechanical forces and electrical signals, to control drug release. By integrating piezoelectric materials into drug delivery systems, we can achieve exacting control over drug-release mechanisms. Piezoelectric materials hold enormous promise as smart delivery vehicles in cancer treatment, responding to mechanical and electrical cues, enabling site-specific drug release, reducing systemic toxicity and enhancing therapeutic effectiveness. Further advancements in the field are expected to lead to innovative piezoelectric-based systems that can revolutionize cancer treatment strategies, as explored in this review article.
Collapse
Affiliation(s)
- Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, India
| | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, India
| | | |
Collapse
|
5
|
Beilankouhi EAV, Sajadi MA, Alipourfard I, Hassani P, Valilo M, Safaralizadeh R. Role of the ER-induced UPR pathway, apoptosis, and autophagy in colorectal cancer. Pathol Res Pract 2023; 248:154706. [PMID: 37499516 DOI: 10.1016/j.prp.2023.154706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
When large amounts of misfolded or unfolded proteins accumulate in the endoplasmic reticulum (ER) in response to stress, a process called unfolded protein response (UPR) is activated. The disruption of this process leads to many diseases including diabetes, neurodegenerative diseases, and many cancers. In the process of UPR in response to stress and unfolded proteins, specific signaling pathways are induced in the endoplasmic reticulum and subsequently transmitted to the nucleus and cytoplasm, causing homeostasis and restoring the cell's normal condition with reducing protein translation and synthesis. The UPR response followed by stress enhancement balances cell survival with death, therefore in this condition cells decide either to survive or have the path of apoptosis ahead. However, in some cases, this balance is disturbed and the UPR pathway is chronically activated or not activated and the cell conditions lead to cancer. This study aimed to briefly investigate the association between ER stress, UPR, apoptosis, and autophagy in colorectal cancer (CRC). Moreover, in current study, we will try to demonstrate canonical ways and methods for the treatment of CRC cells with attenuated ER stress.
Collapse
Affiliation(s)
| | | | - Iraj Alipourfard
- Insttue of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia, Katowice, Poland
| | - Peyman Hassani
- DVM Graduated, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Gu C, Fan X, Yu W. Functional Diversity of Mammalian Small Heat Shock Proteins: A Review. Cells 2023; 12:1947. [PMID: 37566026 PMCID: PMC10417760 DOI: 10.3390/cells12151947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The small heat shock proteins (sHSPs), whose molecular weight ranges from 12∼43 kDa, are members of the heat shock protein (HSP) family that are widely found in all organisms. As intracellular stress resistance molecules, sHSPs play an important role in maintaining the homeostasis of the intracellular environment under various stressful conditions. A total of 10 sHSPs have been identified in mammals, sharing conserved α-crystal domains combined with variable N-terminal and C-terminal regions. Unlike large-molecular-weight HSP, sHSPs prevent substrate protein aggregation through an ATP-independent mechanism. In addition to chaperone activity, sHSPs were also shown to suppress apoptosis, ferroptosis, and senescence, promote autophagy, regulate cytoskeletal dynamics, maintain membrane stability, control the direction of cellular differentiation, modulate angiogenesis, and spermatogenesis, as well as attenuate the inflammatory response and reduce oxidative damage. Phosphorylation is the most significant post-translational modification of sHSPs and is usually an indicator of their activation. Furthermore, abnormalities in sHSPs often lead to aggregation of substrate proteins and dysfunction of client proteins, resulting in disease. This paper reviews the various biological functions of sHSPs in mammals, emphasizing the roles of different sHSPs in specific cellular activities. In addition, we discuss the effect of phosphorylation on the function of sHSPs and the association between sHSPs and disease.
Collapse
Affiliation(s)
- Chaoguang Gu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Hangzhou 310018, China;
| |
Collapse
|
7
|
Karademir D, Özgür A. Small molecule heat shock protein 27 inhibitor J2 decreases ovarian cancer cell proliferation via induction of apoptotic pathways. Med Oncol 2023; 40:250. [PMID: 37493998 DOI: 10.1007/s12032-023-02126-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Heat shock protein 27 (Hsp27) is an important member of the chaperone protein family and its overexpression promotes cancer cell survival. Here, we investigated the apoptosis inducer role of the J2 compound (Hsp27 inhibitor) in human ovarian cancer cell lines (SKOV3 and OVCAR-3). Cell proliferation was measured by MTT assay. The parameters of J2-Hsp27 interaction were determined with molecular docking calculation. The inhibitory effect of the J2 compound on Hsp27 chaperone activity was investigated by luciferase activity assay. Finally, the apoptotic inducer role of the J2 compound on SKOV3 and OVCAR-3 cells was determined by RT-PCR and caspase-3 activity assay. J2 compound decreased SKOV3 and OVCAR-3 cell proliferation in a dose-dependent manner at 48 h with IC50 values of 17.34 µM and 12.63 µM, respectively. J2 inhibited the refolding process of denatured luciferase as an Hsp27 inhibitor. Molecular docking calculation was carried out to determine the interaction between Hsp27 and J2. The results indicated that J2 selectively binds to the phosphorylation site of the Hsp27 and inhibits the phosphorylation process of Hsp27. To determine the apoptotic potential of the J2 compound against ovarian cancer cells, the mRNA expression levels of apoptotic and antiapoptotic markers (Bax, Bcl-2, Bcl-xL, Cyt-c, p53, Apaf-1, Cas-3, Cas-8, Cas-9, TNF-α, DAXX, and Ask-1) were measured using RT-PCR. While J2 increased the expressions of apoptotic genes, it decreased the expressions of anti-apoptotic genes. Further, the J2 compound increased Cas-3 activity in SKOV3 and OVCAR-3 at 5.52 and 4.12 folds, respectively. These results confirm that J2 has great potential and significance in the stimulation of apoptosis in ovarian cancer cells as an Hsp27 inhibitor.
Collapse
Affiliation(s)
- Dilay Karademir
- Faculty of Medicine, Department of Gynecology and Obstetrics, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
8
|
Hebishy M, Shintouo CM, Dufait I, Debacq-Chainiaux F, Bautmans I, Njemini R. Heat shock proteins and cellular senescence in humans: A systematic review. Arch Gerontol Geriatr 2023; 113:105057. [PMID: 37207540 DOI: 10.1016/j.archger.2023.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Cellular senescence (CS) is a permanent arrest of cell growth and exit of the cell cycle. It is an important tumor suppression mechanism and has a key role in wound healing, tissue regeneration, and prevention of tissue fibrosis. Despite the short-term benefits of CS, accumulation of senescent cells has deleterious effects and is associated with several pathological age-related phenotypes. As Heat Shock Proteins (HSP) are associated with cyto-protection, their role in longevity and CS became a research interest. However, an overview of the relationship between HSP and CS in humans still lacks in the literature. To provide an overview of the current state of the literature, this systematic review focused on the role of HSP in the development of CS in humans. PubMed, Web of Science and Embase were systematically screened for studies on the relationship between HSP and CS in humans. A total of 14 articles were eligible for inclusion. The heterogeneity and lack of numerical reporting of outcomes obstructed the conduction of a meta-analysis. The results consistently show that HSP depletion results in increased CS, while overexpression of HSP decreases CS, whether in cancer, fibroblasts, or stem cell lines. This systematic review summarized the literature on the prospective role of HSP in the development of CS in humans.
Collapse
Affiliation(s)
- Mariam Hebishy
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Cabirou Mounchili Shintouo
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63 Buea, Cameroon
| | - Ines Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Florence Debacq-Chainiaux
- Research Unit on Cellular Biology (URBC), Department of Biology, University of Namur, Rue de Bruxelles, 61, Namur B-5000, Belgium
| | - Ivan Bautmans
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Rose Njemini
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
| |
Collapse
|
9
|
Mao M, Jiang J, Xu J, Liu Y, Wang H, Mao Y. Cells and Fugu Response to Capsid of BFNNV Genotype. Viruses 2023; 15:v15040988. [PMID: 37112968 PMCID: PMC10142826 DOI: 10.3390/v15040988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The nervous necrosis virus (NNV) of the BFNNV genotype is the causative agent of viral encephalopathy and retinopathy (VER) in cold water fishes. Similar to the RGNNV genotype, BFNNV is also considered a highly destructive virus. In the present study, the RNA2 of the BFNNV genotype was modified and expressed in the EPC cell line. The subcellular localization results showed that the capsid and N-terminal (1-414) were located in the nucleus, while the C-terminal (415-1014) of the capsid was located in the cytoplasm. Meanwhile, cell mortality obviously increased after expression of the capsid in EPC. EPC cells were transfected with pEGFP-CP and sampled at 12 h, 24 h and 48 h for transcriptome sequencing. There are 254, 2997 and 229 up-regulated genes and 387, 1611, and 649 down-regulated genes post-transfection, respectively. The ubiquitin-activating enzyme and ubiquitin-conjugating enzyme were up-regulated in the DEGs, indicating that cell death evoked by capsid transfection may be related to ubiquitination. The qPCR results showed that heat stock protein 70 (HSP70) is extremely up-regulated after expression of BFNNV capsid in EPC, and N-terminal is the key region to evoke the high expression. For further study, the immunoregulation of the capsid in fish pcDNA-3.1-CP was constructed and injected into the Takifugu rubripes muscle. pcDNA-3.1-CP can be detected in gills, muscle and head kidney, and lasted for more than 70 d post-injection. The transcripts of IgM and interferon inducible gene Mx were up-regulated after being immunized in different tissues, and immune factors, such as IFN-γ and C3, were also up-regulated in serum, while C4 was down-regulated one week after injection. It was suggested that pcDNA-3.1-CP can be a potential DNA vaccine in stimulating the immune system of T. rubripes; however, NNV challenge needs to be conducted in the following experiments.
Collapse
Affiliation(s)
- Mingguang Mao
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jielan Jiang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jia Xu
- College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Yumeng Liu
- College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Haishan Wang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yunxiang Mao
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
10
|
Aghazadeh N, Beilankouhi EAV, Fakhri F, Gargari MK, Bahari P, Moghadami A, Khodabandeh Z, Valilo M. Involvement of heat shock proteins and parkin/α-synuclein axis in Parkinson's disease. Mol Biol Rep 2022; 49:11061-11070. [PMID: 36097120 DOI: 10.1007/s11033-022-07900-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurological diseases, next only to Alzheimer's disease (AD) in terms of prevalence. It afflicts about 2-3% of individuals over 65 years old. The etiology of PD is unknown and several environmental and genetic factors are involved. From a pathological point of view, PD is characterized by the loss of dopaminergic neurons in the substantia nigra, which causes the abnormal accumulation of α-synuclein (α-syn) (a component of Lewy bodies), which subsequently interact with heat shock proteins (HSPs), leading to apoptosis. Apoptosis is a vital pathway for establishing homeostasis in body tissues, which is regulated by pro-apoptotic and anti-apoptotic factors. Recent findings have shown that HSPs, especially HSP27 and HSP70, play a pivotal role in regulating apoptosis by influencing the factors involved in the apoptosis pathway. Moreover, it has been reported that the expression of these HSPs in the nervous system is high. Apart from this finding, investigations have suggested that HSP27 and HSP70 (related to parkin) show a potent protective and anti-apoptotic impact against the damaging outcomes of mutant α-syn toxicity to nerve cells. Therefore, in this study, we aimed to investigate the relationship between these HSPs and apoptosis in patients with PD.
Collapse
Affiliation(s)
- Nina Aghazadeh
- Department of biology, Islamic Azad University, Tabriz, Iran
| | | | - Farima Fakhri
- Research Institute for Neuroscience, Kerman University of Medical Sciences, Kerman, Iran
| | - Morad Kohandel Gargari
- Faculty of Medicine, Imamreza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Bahari
- Department of Clinical Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Aliasghar Moghadami
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Sooraj K, Shukla S, Kaur R, Titiyal JS, Kaur J. The protective role of HSP27 in ocular diseases. Mol Biol Rep 2022; 49:5107-5115. [PMID: 35212927 DOI: 10.1007/s11033-022-07222-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
Heat shock proteins (HSPs) are stress-induced proteins that are important constituents of the cell's defense system. The activity of HSPs enhances when the cell undergoes undesirable environmental conditions like stress. The protective roles of HSPs are due to their molecular chaperone and anti-apoptotic functions. HSPs have a central role in the eye, and their malfunction has been associated with the manifestation of ocular diseases. Heat shock protein 27 (HSP27, HSPB1) is present in various ocular tissues, and it has been found to protect the eye from disease states such as retinoblastoma, uveal melanoma, glaucoma, and cataract. But some recent studies have shown the destructive role of HSP27 on retinal ganglionic cells. Thus, this article summarizes the role of heat shock protein 27 in eye and ocular diseases and will focus on the expression, regulation, and function of HSP27 in ocular complications.
Collapse
Affiliation(s)
- K Sooraj
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Swati Shukla
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ranjeet Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jeewan Singh Titiyal
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jasbir Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
12
|
Wang Y, Dai X, Dong C, Guo W, Xu Z, Chen Y, Xiang H, Zhang R. Engineering Electronic Band Structure of Binary Thermoelectric Nanocatalysts for Augmented Pyrocatalytic Tumor Nanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106773. [PMID: 34783097 DOI: 10.1002/adma.202106773] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/27/2021] [Indexed: 05/19/2023]
Abstract
Photothermal therapy (PTT) has emerged as a distinct therapeutic modality owing to its noninvasiveness and spatiotemporal selectivity. However, heat-shock proteins (HSPs) endow tumor cells with resistance to heat-induced apoptosis, severely lowering the therapeutic efficacy of PTT. Here, a high-performance pyroelectric nanocatalyst, Bi13 S18 I2 nanorods (NRs), with prominent pyroelectric conversion and photothermal conversion performance for augmented pyrocatalytic tumor nanotherapy, is developed. Canonical binary compounds are reconstructed by inserting a third biocompatible agent, thus facilitating the formation of Bi13 S18 I2 NRs with enhanced pyrocatalytic conversion efficiency. Under 808 nm laser irradiation, Bi13 S18 I2 NRs induce a conspicuous temperature elevation for photonic hyperthermia. In particular, Bi13 S18 I2 NRs harvest pyrocatalytic energy from the heating and cooling alterations to produce abundant reactive oxygen species, which results in the depletion of HSPs and hence the reduction of thermoresistance of tumor cells, thereby significantly augmenting the therapeutic efficacy of photothermal tumor hyperthermia. By synergizing the pyroelectric dynamic therapy with PTT, tumor suppression with a significant tumor inhibition rate of 97.2% is achieved after intravenous administration of Bi13 S18 I2 NRs and subsequent exposure to an 808 nm laser. This work opens an avenue for the design of high-performance pyroelectric nanocatalysts by reconstructing canonical binary compounds for therapeutic applications in biocatalytic nanomedicine.
Collapse
Affiliation(s)
- Yachao Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xinyue Dai
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Weitao Guo
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Ziwei Xu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ruifang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
13
|
The role of heat shock proteins in neoplastic processes and the research on their importance in the diagnosis and treatment of cancer. Contemp Oncol (Pozn) 2021; 25:73-79. [PMID: 34667432 PMCID: PMC8506434 DOI: 10.5114/wo.2021.106006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins (HSPs) are chaperones with highly conservative primary structure, necessary in the processes of protein folding to the most energetically advantageous conformation and maintaining their stability. HSPs perform a number of important functions in various cellular processes and are capable of modulating pathophysiological conditions at the cellular and systemic levels. An example is the high level of HSP expression in neoplastic tissues, which disrupts the apoptosis of transformed cells and promotes the processes of proliferation, invasion, and metastasis. In addition, an increasing amount of information is appearing about the participation of HSPs in the formation of multidrug resistance.This paper provides a review of the current state of research on the fundamental importance as well as the diagnostic and prognostic role of various classes of HSP in cancer treatment. It presents the prospects for using HSPs as biological markers of disease progression and targets in various cancer treatment strategies. However, the need for additional research is quite high. Only numerous joint efforts of research groups will allow the effective use of HSPs as a tool to combat cancer.
Collapse
|
14
|
San Gil R, Clarke BE, Ecroyd H, Kalmar B, Greensmith L. Regional Differences in Heat Shock Protein 25 Expression in Brain and Spinal Cord Astrocytes of Wild-Type and SOD1 G93A Mice. Cells 2021; 10:1257. [PMID: 34069691 PMCID: PMC8160835 DOI: 10.3390/cells10051257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Heterogeneity of glia in different CNS regions may contribute to the selective vulnerability of neuronal populations in neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). Here, we explored regional variations in the expression of heat shock protein 25 in glia under conditions of acute and chronic stress. Hsp27 (Hsp27; murine orthologue: Hsp25) fulfils a number of cytoprotective functions and may therefore be a possible therapeutic target in ALS. We identified a subpopulation of astrocytes in primary murine mixed glial cultures that expressed Hsp25. Under basal conditions, the proportion of Hsp25-positive astrocytes was twice as high in spinal cord cultures than in cortical cultures. To explore the physiological role of the elevated Hsp25 expression in spinal cord astrocytes, we exposed cortical and spinal cord glia to acute stress, using heat stress and pro-inflammatory stimuli. Surprisingly, we observed no stress-induced increase in Hsp25 expression in either cortical or spinal cord astrocytes. Similarly, exposure to endogenous stress, as modelled in glial cultures from SOD1 G93A-ALS mice, did not increase Hsp25 expression above that observed in astrocytes from wild-type mice. In vivo, Hsp25 expression was greater under conditions of chronic stress present in the spinal cord of SOD1 G93A mice than in wild-type mice, although this increase in expression is likely to be due to the extensive gliosis that occurs in this model. Together, these results show that there are differences in the expression of Hsp25 in astrocytes in different regions of the central nervous system, but Hsp25 expression is not upregulated under acute or chronic stress conditions.
Collapse
Affiliation(s)
- Rebecca San Gil
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2519, Australia; (R.S.G.); (H.E.)
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin E. Clarke
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (B.E.C.); (B.K.)
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2519, Australia; (R.S.G.); (H.E.)
| | - Bernadett Kalmar
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (B.E.C.); (B.K.)
| | - Linda Greensmith
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; (B.E.C.); (B.K.)
| |
Collapse
|
15
|
Verma A, Sumi S, Seervi M. Heat shock proteins-driven stress granule dynamics: yet another avenue for cell survival. Apoptosis 2021; 26:371-384. [PMID: 33978921 DOI: 10.1007/s10495-021-01678-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
Heat shock proteins (HSPs) are evolutionary conserved 'stress-response' proteins that facilitate cell survival against various adverse conditions. HSP-mediated cytoprotection was hitherto reported to occur principally in two ways. Firstly, HSPs interact directly or indirectly with apoptosis signaling components and suppress apoptosis. Secondly, through chaperon activity, HSPs suppress proteotoxicity and maintain protein-homeostasis. Recent studies highlight the interaction of HSPs with cytoplasmic stress granules (SGs). SGs are conserved cytoplasmic mRNPs granules that aid in cell survival under stressful conditions. We primarily aim to describe the distinct cell survival strategy mediated by HSPs as the crucial regulators of SGs assembly and disassembly. Based on the growing evidence, HSPs and associated co-chaperones act as important determinants of SG assembly, composition and dissolution. Under cellular stress, as a 'stress-coping mechanism', the formation of SGs reprograms protein translation machinery and modulates signaling pathways indispensable for cell survival. Besides their role in suppressing apoptosis, HSPs also regulate protein-homeostasis by their chaperone activity as well as by their tight regulation of SG dynamics. The intricate molecular signaling in and around the nexus of HSPs-SGs and its importance in diseases has to be unearthed. These studies have significant implications in the management of chronic diseases such as cancer and neurodegenerative diseases where SGs possess pathological functions.
Collapse
Affiliation(s)
- Akanksha Verma
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
16
|
Lallier M, Marchandet L, Moukengue B, Charrier C, Baud’huin M, Verrecchia F, Ory B, Lamoureux F. Molecular Chaperones in Osteosarcoma: Diagnosis and Therapeutic Issues. Cells 2021; 10:cells10040754. [PMID: 33808130 PMCID: PMC8067202 DOI: 10.3390/cells10040754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of primary bone tumor affecting mainly children and young adults. Despite therapeutic progress, the 5-year survival rate is 70%, but it drops drastically to 30% for poor responders to therapies or for patients with metastases. Identifying new therapeutic targets is thus essential. Heat Shock Proteins (HSPs) are the main effectors of Heat Shock Response (HSR), the expression of which is induced by stressors. HSPs are a large family of proteins involved in the folding and maturation of other proteins in order to maintain proteostasis. HSP overexpression is observed in many cancers, including breast, prostate, colorectal, lung, and ovarian, as well as OS. In this article we reviewed the significant role played by HSPs in molecular mechanisms leading to OS development and progression. HSPs are directly involved in OS cell proliferation, apoptosis inhibition, migration, and drug resistance. We focused on HSP27, HSP60, HSP70 and HSP90 and summarized their potential clinical uses in OS as either biomarkers for diagnosis or therapeutic targets. Finally, based on different types of cancer, we consider the advantage of targeting heat shock factor 1 (HSF1), the major transcriptional regulator of HSPs in OS.
Collapse
Affiliation(s)
- Morgane Lallier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Louise Marchandet
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Brice Moukengue
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Celine Charrier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Marc Baud’huin
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- CHU Nantes, 44035 Nantes, France
| | - Franck Verrecchia
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Benjamin Ory
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - François Lamoureux
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- Correspondence:
| |
Collapse
|
17
|
Ramani S, Park S. HSP27 role in cardioprotection by modulating chemotherapeutic doxorubicin-induced cell death. J Mol Med (Berl) 2021; 99:771-784. [PMID: 33728476 DOI: 10.1007/s00109-021-02048-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
The common phenomenon expected from any anti-cancer drug in use is to kill the cancer cells without any side effects to non-malignant cells. Doxorubicin is an anthracycline derivative anti-cancer drug active over different types of cancers with anti-cancer activity but attributed to unintended cytotoxicity and genotoxicity triggering mitogenic signals inducing apoptosis. Administration of doxorubicin tends to both acute and chronic toxicity resulting in cardiomyopathy (left ventricular dysfunction) and congestive heart failure (CHF). Cardiotoxicity is prevented through administration of different cardioprotectants along with the drug. This review elaborates on mechanism of drug-mediated cardiotoxicity and attenuation principle by different cardioprotectants, with a focus on Hsp27 as cardioprotectant by prevention of drug-induced oxidative stress, cell survival pathways with suppression of intrinsic cell death. In conclusion, Hsp27 may offer an exciting/alternating cardioprotectant, with a wider study being need of the hour, specifically on primary cell line and animal models in conforming its cardioprotectant behaviour.
Collapse
Affiliation(s)
- Sivasubramanian Ramani
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea.
| |
Collapse
|
18
|
Njemini R, Verhaeghen K, Mets T, Weets I, Bautmans I. A Novel Bead-Based Immunoassay for the Measurement of Heat Shock Proteins 27 and 70. Pathogens 2020; 9:pathogens9110863. [PMID: 33105839 PMCID: PMC7690633 DOI: 10.3390/pathogens9110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Heat shock proteins (HSPs) play an essential role in protecting proteins from denaturation and are implicated in diverse pathophysiological conditions like cardiovascular diseases, cancer, infections, and neurodegenerative diseases. Scientific evidence indicates that if HSP expression falls below a certain level, cells become sensitive to oxidative damage that accelerates protein aggregation diseases. On the other hand, persistently enhanced levels of HSP can lead to inflammatory and oncogenic changes. To date, although techniques for measuring HSPs exist, these assays are limited for use in specific sample types or are time consuming. Therefore, in the present study, we developed a single-molecule assay digital ELISA technology (Single Molecule Array—SIMOA) for the measurement of HSPs, which is time effective and can be adapted to measure multiple analytes simultaneously from a single sample. This technique combines two distinct HSP-specific antibodies that recognize different epitopes on the HSP molecule. A recombinant human HSP protein was used as the standard material. The assay performance characteristics were evaluated by repeated testing of samples spiked with HSP peptide at different levels. The limit of detection was 0.16 and 2 ng/mL for HSP27 and HSP70, respectively. The inter- and intra-assay coefficients of variation were less than 20% in all tested conditions for both HSPs. The HSP levels assayed after serial dilution of samples portrayed dilutional linearity (on average 109%, R2 = 0.998, p < 0.001, for HSP27 and 93%, R2 = 0.994, p < 0.001, for HSP70). A high linear response was also demonstrated with admixtures of plasma exhibiting relatively very low and high levels of HSP70 (R2 = 0.982, p < 0.001). Analyte spike recovery varied between 57% and 95%. Moreover, the relative HSP values obtained using Western blotting correlated significantly with HSP values obtained with the newly developed SIMOA assay (r = 0.815, p < 0.001 and r = 0.895, p < 0.001 for HSP70 and HSP27, respectively), indicating that our method is reliable. In conclusion, the assay demonstrates analytical performance for the accurate assessment of HSPs in various sample types and offers the advantage of a huge range of dilution linearity, indicating that samples with HSP concentration highly above the calibration range can be diluted into range without affecting the precision of the assay.
Collapse
Affiliation(s)
- Rose Njemini
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-477-42-41; Fax: +32-2-477-63-64
| | - Katrijn Verhaeghen
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Tony Mets
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| | - Ilse Weets
- Laboratory of Clinical Chemistry and Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium; (K.V.); (I.W.)
| | - Ivan Bautmans
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
- Department of Geriatric Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
| |
Collapse
|
19
|
Shan R, Liu N, Yan Y, Liu B. Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol Res 2020; 166:105169. [PMID: 33053445 DOI: 10.1016/j.phrs.2020.105169] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a multifactorial chronic inflammatory disease of the arterial wall, and an important pathological basis of coronary heart disease. Endothelial cells, vascular smooth muscle cells, and macrophages play important roles in the development of atherosclerosis. Of note, apoptosis and autophagy, two types of programmed cell death, influence the development and progression of atherosclerosis via the modulation of such cells. The small heat shock protein Hsp27 is a multifunctional protein induced by various stress factors and has a protective effect on cells. A large number of studies have demonstrated that Hsp27 plays an important role in regulating apoptosis. Recently, some studies have suggested that Hsp27 also participates in the autophagic process. Moreover, Hsp27 is closely related to the occurrence and development of atherosclerosis. Here, we summarize the molecular mechanisms of apoptosis and autophagy and discuss their effects on endothelial cells, vascular smooth muscle cells, and macrophages in the context of atherosclerotic procession. We further explore the involvement of Hsp27 in apoptosis, autophagy, and atherosclerosis. We speculate that Hsp27 may exert its anti-atherosclerotic role via the regulation of apoptosis and autophagy; this may provide the basis for the development of new approaches for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ruiting Shan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Youyou Yan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
20
|
Yin B, Di L, Tang S, Bao E. Vitamin CNa enhances the antioxidant ability of chicken myocardium cells and induces heat shock proteins to relieve heat stress injury. Res Vet Sci 2020; 133:124-130. [PMID: 32977120 DOI: 10.1016/j.rvsc.2020.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
Abstract
In order to explore the function of vitamin C (VC) and VC-Na in the relief of heat stress injury in chicken cardiomyocytes, 150 30-day-old specific-pathogen-free chickens were randomly divided into a control group (fed normal drinking water), a VC group (50 μg/mL VC in drinking water), and a VC-Na group (50 μg/mL VC-Na in drinking water). After 7 days of adaptation feeding, the chickens were subjected to heat stress at 40 ± 2 °C and 60%-70% humidity for 0, 1, 3, 5, and 10 h, respectively, and the sera and heart tissues of the chickens were collected immediately at the corresponding heat stress time points. The effects of VC and VC-Na supplementation on the relief of chicken myocardial cell injury following heat stress was studied by detecting the levels of LDH, CK, CK-MB, and total antioxidant capacity (T-AOC) in the sera, and through histopathological analysis and the expression of CRYAB, Hsp27, and Hsp70 in the myocardial cells. The results showed that supplementing with 50 μg/mL VC or VC-Na significantly reduced the levels of LDH, and CK-MB in serum as well as heat-stress-induced granular and vacuolar degeneration, myocardial fiber breakage, and cell necrosis, indicating effective resistance to heat-stress damage. Additionally, the levels of T-AOC in serum were increased in the VC and VC-Na groups, suggesting enhancing of antioxidant capacity. Furthermore, the expression of CRYAB were induced at 0, 3, 5, and 10 h (P < 0.01) in both VC and VC-Na group, and that of Hsp70 were induced at 0 h (P < 0.05) in VC group and at 0, 3, 5, 10 h (P < 0.01) in VC-Na group. Thus, supplementing chicken diets with VC or VC-Na presented heat-stress damage resistance by enhancing antioxidant capacity and inducing expression of CRYAB and Hsp70.
Collapse
Affiliation(s)
- Bin Yin
- Poultry Institue, Shandong Academy of Agricultural Science, Jinan, Shandong 250023, China
| | - Liangjiao Di
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shu Tang
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Endong Bao
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
21
|
Vendredy L, Adriaenssens E, Timmerman V. Small heat shock proteins in neurodegenerative diseases. Cell Stress Chaperones 2020; 25:679-699. [PMID: 32323160 PMCID: PMC7332613 DOI: 10.1007/s12192-020-01101-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Small heat shock proteins are ubiquitously expressed chaperones, yet mutations in some of them cause tissue-specific diseases. Here, we will discuss how small heat shock proteins give rise to neurodegenerative disorders themselves while we will also highlight how these proteins can fulfil protective functions in neurodegenerative disorders caused by protein aggregation. The first half of this paper will be focused on how mutations in HSPB1, HSPB3, and HSPB8 are linked to inherited peripheral neuropathies like Charcot-Marie-Tooth (CMT) disease and distal hereditary motor neuropathy (dHMN). The second part of the paper will discuss how small heat shock proteins are linked to neurodegenerative disorders like Alzheimer's, Parkinson's, and Huntington's disease.
Collapse
Affiliation(s)
- Leen Vendredy
- Department of Biomedical Sciences and Institute Born Bunge, Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium
| | - Elias Adriaenssens
- Department of Biomedical Sciences and Institute Born Bunge, Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Department of Biomedical Sciences and Institute Born Bunge, Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
22
|
Zhao W, Dai L, Xi XT, Chen QB, An MX, Li Y. Sensitized heat shock protein 27 induces retinal ganglion cells apoptosis in rat glaucoma model. Int J Ophthalmol 2020; 13:525-534. [PMID: 32399401 DOI: 10.18240/ijo.2020.04.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/12/2020] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the relationships between the changes of heat shock protein 27 antibody (anti-HSP27) in serum/cerebrospinal fluid (CSF), intraocular pressure (IOP), retinal ganglion cell (RGC) apoptosis in a rat glaucoma model and disclose the underlying pathogenesis of glaucoma. METHODS A total of 115 Wistar rats were randomly divided into 4 groups. Group 1 was the ocular hypertension group by condensing 3 episcleral & limbal veins or episcleral area of right eye (HP group, n=25) and sham operation group with conjunctiva incision without coagulation (n=25). Group 2: HSP27 or dose-matched PBS was injected into the vitreous (V-HSP27 group, n=15; V-PBS group, n=15). Group 3: HSP27 and complete Freund's adjuvant or dose-matched PBS was injected subcutaneously into the hind limb accompanied intraperitoneal injection of pertussis toxin [sensitized group (I-HSP27 group), n=15; I-PBS group, n=15)]. Group 4 was normal group without any treatment (n=5). IOPs of the rats were measured before, day 3, weeks 1, 2, 4, 6, and 8 after treatment. Paraffin-embedded sections were prepared for HE staining and RGCs apoptosis were detected by TUNEL. Anti-HSP27 level in serum and CSF were examined by ELISA. RESULTS IOPs were elevated significantly in HP and V-HSP27, V-PBS groups (P<0.01) and positively related to anti-HSP27 levels in serum and CSFs. Anti-HSP27 levels in serum and CSF were elevated significantly in I-HSP27 group compared to other groups (P<0.05). However, the IOPs did not show any relationship with the high-level anti-HSP27 in serum and CSFs. RGC apoptosis were all elevated significantly in the HP, V-HSP27, V-PBS and I-HSP27 groups and also positively relative with anti-HSP27 level in serum and CSFs except that high-level of anti-HSP27 in the serum of I-HSP group. CONCLUSION The increases of anti-HSP27 levels in serum and CSFs both promote IOP escalation and the increase of RGC apoptosis in retina when anti-HSP27 is at low level. The case of high-level anti-HSP27 is opposite and shows protective function in preventing IOP increase and RGC apoptosis.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China.,Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali 671000, Yunnan Province, China.,Department of Ophthalmology, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong Province, China
| | - Le Dai
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Xiao-Ting Xi
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Qian-Bo Chen
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Mei-Xia An
- Department of Ophthalmology, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong Province, China
| | - Yan Li
- Department of Ophthalmology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
23
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
24
|
Henry MN, MacDonald MA, Orellana CA, Gray PP, Gillard M, Baker K, Nielsen LK, Marcellin E, Mahler S, Martínez VS. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng 2020; 117:1187-1203. [DOI: 10.1002/bit.27269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew N. Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Michael A. MacDonald
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Peter P. Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Patheon Biologics—A Part of Thermo Fisher Scientific Brisbane Queensland Australia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
- The Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kgs. Lyngby Denmark
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Verónica S. Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
25
|
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res 2019; 47:7734-7752. [PMID: 31350900 PMCID: PMC6735914 DOI: 10.1093/nar/gkz634] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| |
Collapse
|
26
|
Millimeter-wave pulsed heating in vitro: cell mortality and heat shock response. Sci Rep 2019; 9:15249. [PMID: 31649300 PMCID: PMC6813304 DOI: 10.1038/s41598-019-51731-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Millimeter wave (MMW)-induced heating represents a promising alternative for non-invasive hyperthermia of superficial skin cancer, such as melanoma. Pulsed MMW-induced heating of tumors allows for reaching high peak temperatures without overheating surrounding tissues. Herein, for the first time, we evaluate apoptotic and heat shock responses of melanoma cells exposed in vitro to continuous (CW) or pulsed-wave (PW) amplitude-modulated MMW at 58.4 GHz with the same average temperature rise. Using an ad hoc exposure system, we generated 90 min pulse train with 1.5 s pulse duration, period of 20 s, amplitude of 10 °C, and steady-state temperature at the level of cells of 49.2 °C. The activation of Caspase-3 and phosphorylation of HSP27 were investigated using fluorescence microscopy to monitor the spatial variation of cellular response. Our results demonstrate that, under the considered exposure conditions, Caspase-3 activation was almost 5 times greater following PW exposure compared to CW. The relationship between the PW-induced cellular response and SAR-dependent temperature rise was non-linear. Phosphorylation of HSP27 was 58% stronger for PW compared to CW. It exhibits a plateau for the peak temperature ranging from 47.7 to 49.2 °C. Our results provide an insight into understanding of the cellular response to MMW-induced pulsed heating.
Collapse
|
27
|
Han Z, Joo Y, Lee J, Ko S, Xu R, Oh GH, Choi S, Hong JA, Choi HJ, Song JJ. High levels of Daxx due to low cellular levels of HSP25 in murine cancer cells result in inefficient adenovirus replication. Exp Mol Med 2019; 51:1-20. [PMID: 31615977 PMCID: PMC6802665 DOI: 10.1038/s12276-019-0321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/25/2022] Open
Abstract
When the adenoviral protein E1B55K binds death domain-associated protein (Daxx), the proteasome-dependent degradation of Daxx is initiated, and adenoviral replication is effectively maintained. Here, we show that the cellular levels of Daxx differ between human and mouse cancer cell lines. Specifically, we observed higher cellular Daxx levels and the diminished replication of oncolytic adenovirus in mouse cancer cell lines, suggesting that cellular Daxx levels limit the replication of oncolytic adenoviruses that lack E1B55K in murine cells. Indeed, the replication of oncolytic adenoviruses that lack E1B55K was significantly increased following infection with oncolytic adenovirus expressing Daxx-specific shRNA. Cellular Daxx levels were decreased in mouse cells expressing heat shock protein 25 (HSP25; homolog of human HSP27) following heat shock or stable transfection with HSP25-bearing plasmids. Furthermore, Daxx expression in murine cell lines was primarily regulated at the transcriptional level via HSP25-mediated inhibition of the nuclear translocation of the signal transducer and activator of transcription 3 (stat3) protein, which typically upregulates Daxx transcription. Conversely, human HSP27 enhanced stat3 activity to increase Daxx transcription. Interestingly, human Daxx, but not mouse Daxx, was degraded as normal by ubiquitin-dependent lysosomal degradation; however, HSP27 downregulation induced the ubiquitin-independent proteasomal degradation of Daxx. Cancer therapies that use a virus to kill tumor cells may get a boost by suppressing a common, ubiquitously expressed protein called Daxx. The relatively new field of virotherapy uses engineered adenoviruses, which usually cause fevers, coughs, or sore throats, to attack tumor cells, enabling treatment of advanced stage cancers, or those that have spread through the body. However, the immune system can attack the therapeutic virus, preventing it from replicating and reducing its effectiveness. Hye Jin Choi and Jae Song at Yonsei University, Seoul, South Korea, and coworkers have been investigating ways to maximize replication of the therapeutic virus. They found that suppressing Daxx improved viral replication; further testing showed that suppressing Daxx acted via different mechanisms in mouse and human cancer cells. These results will help develop more effective virus-based cancer therapies.
Collapse
Affiliation(s)
- Zhezhu Han
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, PR China
| | - Yeonsoo Joo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jihyun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Suwan Ko
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Rong Xu
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Geun-Hyeok Oh
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soojin Choi
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong A Hong
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
28
|
Reduced DAXX Expression Is Associated with Reduced CD24 Expression in Colorectal Cancer. Cells 2019; 8:cells8101242. [PMID: 31614769 PMCID: PMC6830082 DOI: 10.3390/cells8101242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
The presence of an activating mutation of the Wnt/β-catenin signaling pathway is found in ~90% of colorectal cancer (CRC) cases. Death domain-associated protein (DAXX), a nuclear protein, interacts with β-catenin in CRC cells. We investigated DAXX expression in 106 matched sample pairs of CRC and adjacent normal tissue by Western blotting. This study evaluated DAXX expression and its clinical implications in CRC. The results revealed that DAXX expression was significantly lower in the patients with the positive serum carcinoembryonic antigen (CEA) screening results compared to the patients with negative CEA screening levels (p < 0.001). It has been reported that CD24 is a Wnt target in CRC cells. Here, we further revealed that DAXX expression was significantly correlated with CD24 expression (rho = 0.360, p < 0.001) in 106 patients. Consistent with this, in the CEA-positive subgroup, of which the carcinomas expressed DAXX at low levels, they were significantly correlated with CD24 expression (rho = 0.461, p < 0.005). Therefore, reduced DAXX expression is associated with reduced CD24 expression in CRC. Notably, in the Hct116 cells, DAXX knockdown using short-hairpin RNA against DAXX (shDAXX) not only caused significant cell proliferation, but also promoted metastasis. The DAXX-knockdown cells also demonstrated significantly decreased CD24 expression, however the intracellular localization of CD24 did not change. Thus, DAXX might be considered as a potential regulator of CD24 or β-catenin expression, which might be correlated with proliferative and metastatic potential of CRC.
Collapse
|
29
|
Signaling pathways involved in adaptive responses to cell membrane disruption. CURRENT TOPICS IN MEMBRANES 2019; 84:99-127. [PMID: 31610867 DOI: 10.1016/bs.ctm.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plasma membrane disruption occurs frequently in many animal tissues. Cell membrane disruption induces not only a rapid and massive influx of Ca2+ into the cytosol but also an efflux or release of various signaling molecules, such as ATP, from the cytosol; in turn, these signaling molecules stimulate a variety of pathways in both wounded and non-wounded neighboring cells. These signals first trigger cell membrane repair responses in the wounded cell but then induce an adaptive response, which results in faster membrane repair in the event of future wounds in both wounded and non-wounded neighboring cells. In addition, signaling pathways stimulated by membrane disruption induce other adaptive responses, including cell survival, regeneration, migration, and proliferation. This chapter summarizes the role of intra- and intercellular signaling pathways in adaptive responses triggered by cell membrane disruption.
Collapse
|
30
|
Abstract
In this Opinion article, we aim to address how cells adapt to stress and the repercussions chronic stress has on cellular function. We consider acute and chronic stress-induced changes at the cellular level, with a focus on a regulator of cellular stress, the chaperome, which is a protein assembly that encompasses molecular chaperones, co-chaperones and other co-factors. We discuss how the chaperome takes on distinct functions under conditions of stress that are executed in ways that differ from the one-on-one cyclic, dynamic functions exhibited by distinct molecular chaperones. We argue that through the formation of multimeric stable chaperome complexes, a state of chaperome hyperconnectivity, or networking, is gained. The role of these chaperome networks is to act as multimolecular scaffolds, a particularly important function in cancer, where they increase the efficacy and functional diversity of several cellular processes. We predict that these concepts will change how we develop and implement drugs targeting the chaperome to treat cancer.
Collapse
Affiliation(s)
- Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thaís L S Araujo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Liu M, Wei Y, Li X, Quek SY, Zhao J, Zhong H, Zhang D, Liu Y. Quantitative phosphoproteomic analysis of caprine muscle with high and low meat quality. Meat Sci 2018; 141:103-111. [DOI: 10.1016/j.meatsci.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022]
|
32
|
Huang H, Scheffler TL, Gerrard DE, Larsen MR, Lametsch R. Quantitative Proteomics and Phosphoproteomics Analysis Revealed Different Regulatory Mechanisms of Halothane and Rendement Napole Genes in Porcine Muscle Metabolism. J Proteome Res 2018; 17:2834-2849. [PMID: 29916714 DOI: 10.1021/acs.jproteome.8b00294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigs with the Halothane (HAL) or Rendement Napole (RN) gene mutations demonstrate abnormal muscle energy metabolism patterns and produce meat with poor quality, classified as pale, soft, and exudative (PSE) meat, but it is not well understood how HAL and RN mutations regulate glucose and energy metabolism in porcine muscle. To investigate the potential signaling pathways and phosphorylation events related to these mutations, muscle samples were collected from four genotypes of pigs, wild type, RN, HAL, and RN-HAL double mutations, and subjected to quantitative proteomic and phosphoproteomic analysis using the TiO2 enrichment strategy. The study led to the identification of 932 proteins from the nonmodified peptide fractions and 1885 phosphoproteins with 9619 phosphorylation sites from the enriched fractions. Among them, 128 proteins at total protein level and 323 phosphosites from 91 phosphoproteins were significantly regulated in mutant genotypes. The quantitative analysis revealed that the RN mutation mainly affected the protein expression abundance in muscle. Specifically, high expression was observed for proteins related to mitochondrial respiratory chain and energy metabolism, thereby enhancing the muscle oxidative capacity. The high content of UDP-glucose pyrophosphorylase 2 (UGP2) in RN mutant animals may contribute to high glycogen storage. However, the HAL mutation mainly contributes to the up-regulation of phosphorylation in proteins related to calcium signaling, muscle contraction, glycogen, glucose, and energy metabolism, and cellular stress. The increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CAMK2) in HAL mutation may act as a key regulator in these processes of muscle. Our findings indicate the different regulatory mechanisms of RN and HAL mutations in relation to porcine muscle energy metabolism and meat quality.
Collapse
Affiliation(s)
- Honggang Huang
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark.,Department of Food Science, Faculty of Science , University of Copenhagen , DK-1958 Frederiksberg , Denmark.,The Danish Diabetes Academy , 5000 Odense , Denmark.,Arla Foods Ingredients Group P/S , Soenderupvej 26 , 6920 Videbaek , Denmark
| | - Tracy L Scheffler
- Department of Animal Sciences , University of Florida , Gainesville , Florida 32608 , United States
| | - David E Gerrard
- Department of Animal and Poultry Sciences , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - René Lametsch
- Department of Food Science, Faculty of Science , University of Copenhagen , DK-1958 Frederiksberg , Denmark
| |
Collapse
|
33
|
Lee CM, Choi YJ, Park SH, Nam MJ. Indole-3-carbinol induces apoptosis in human hepatocellular carcinoma Huh-7 cells. Food Chem Toxicol 2018; 118:119-130. [PMID: 29746934 DOI: 10.1016/j.fct.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/19/2018] [Accepted: 05/06/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Chang Min Lee
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - Yong Jun Choi
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea.
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea.
| |
Collapse
|
34
|
Cai HQ, Wang PF, Zhang HP, Cheng ZJ, Li SW, He J, Zhang Y, Hao JJ, Wang MR, Yan CX, Wan JH. Phosphorylated Hsp27 is mutually exclusive with ATRX loss and the IDH1 R132H mutation and may predict better prognosis among glioblastomas without the IDH1 mutation and ATRX loss. J Clin Pathol 2018; 71:702-707. [PMID: 29550762 PMCID: PMC6204978 DOI: 10.1136/jclinpath-2018-205000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
Aim To identify biomarkers for accurate classification of glioma. Patients and methods We evaluated the heat shock protein 27 (Hsp27), phosphorylated Hsp27 (p-Hsp27), ATRX and IDH1R132Hproteins using immunohistochemistry in 421 glioma tissues. The χ2 test was used to assess the relationship between molecular alterations and clinico-pathological parameters. Kaplan-Meier survival curves were constructed, and differences were detected by the log-rank test. Results We found that Hsp27 and p-Hsp27 were mainly expressed in aggressive astrocytic gliomas. However, neither Hsp27 nor p-Hsp27 expression was related to survival time for any grade of glioma. Interestingly, p-Hsp27 was mutually exclusive with ATRX loss (ATRX−) and the IDH1R132H mutation, except for one case of anaplastic astrocytoma. We classified glioblastomas (GBMs) into three subtypes: ATRX−/IDH1R132H, high p-Hsp27 expression (p-Hsp27+) and none of these three markers. ATRX-/IDH1R132Hshowed the longest median survival (19.6 months). The prognostic difference between p-Hsp27+ and none of these three markers was significant (15.0 vs 13.1 months, P=0.045). Moreover, p-Hsp27+ predicted better sensitivity for standard therapy among GBMs without the IDH1 mutation and ATRX loss (26.3 vs 15.5 months, P=0.008). Conclusion p-Hsp27 is a novel biomarker of glioma and might have important clinical value for further classification of patients with wild-type IDH1 and normal ATRX expression, for evaluating prognosis and for guidance for adjuvant therapy.
Collapse
Affiliation(s)
- Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng-Fei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hai-Peng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi-Jian Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shou-Wei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jie He
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-Xiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing-Hai Wan
- Department of Neurosurgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Kim JH, Jung YJ, Choi B, Lee NL, Lee HJ, Kwak SY, Kwon Y, Na Y, Lee YS. Overcoming HSP27-mediated resistance by altered dimerization of HSP27 using small molecules. Oncotarget 2018; 7:53178-53190. [PMID: 27449291 PMCID: PMC5288177 DOI: 10.18632/oncotarget.10629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022] Open
Abstract
Heat shock protein 27 (HSP27, HSPB1) is an anti-apoptotic protein characterized for its tumorigenic and metastatic properties, and now referenced as a major therapeutic target in many types of cancer. The biochemical properties of HSP27 rely on a structural oligomeric and dynamic organization that is important for its chaperone activity. Down-regulation by small interfering RNA or inhibition with a dominant-negative mutant efficiently counteracts the anti-apoptotic and protective properties of HSP27. However, unlike other HSPs such as HSP90 and HSP70, small molecule approaches for neutralization of HSP27 are not well established because of the absence of an ATP binding domain. Previously, we found that a small molecule, zerumbone (ZER), induced altered dimerization of HSP27 by cross linking the cysteine residues required to build a large oligomer, led to sensitization in combination with radiation. In this study, we identified another small molecule, a xanthone compound, more capable of altering dimeric HSP27 than ZER and yielding sensitization in human lung cancer cells when combined with HSP90 inhibitors or standard anticancer modalities such as irradiation and cytotoxic anticancer drugs. Therefore, altered dimerization of HSP27 represents a good strategy for anticancer therapy in HSP27-overexpressing cancer cells.
Collapse
Affiliation(s)
- Jee Hye Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Ye Jin Jung
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Byeol Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Na Lim Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Hae Jun Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Korea
| | - Soo Yeon Kwak
- College of Pharmacy, CHA University, Pocheon, 487-010, Korea
| | - Youngjoo Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 487-010, Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-720, Korea
| |
Collapse
|
36
|
Choi B, Choi SK, Park YN, Kwak SY, Lee HJ, Kwon Y, Na Y, Lee YS. Sensitization of lung cancer cells by altered dimerization of HSP27. Oncotarget 2017; 8:105372-105382. [PMID: 29285257 PMCID: PMC5739644 DOI: 10.18632/oncotarget.22192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/21/2017] [Indexed: 12/23/2022] Open
Abstract
Heat shock protein 27 (HSP27, HSPB1) induces resistance to anticancer drugs in various cancer types, including non-small cell lung cancer (NSCLC). Therefore, pharmacological inhibition of HSP27 in NSCLC may be a good strategy for anticancer therapy. Unlike other HSPs such as HSP90 and HSP70, small molecule approaches for neutralization of HSP27 are not well established because of the absence of an ATP binding domain. Previously, small molecules with altered cross linking activity of HSP27, were identified to inhibit building a large oligomer led to sensitization in combination with radiation and chemotherapeutic drugs. In this study, a chromene compound, J2 that exhibited better cross-linking activity of HSP27 than xanthone compound, SW15 which was previously identified, was yielding sensitization to NSCLC cells with high expression of HSP27 when combined with HSP90 inhibitor and standard anticancer modalities such as taxol and cisplatin. In vivo xenograft system also showed sensitization activity of J2, as well as in vitro cell viability, cell death or apoptosis detection assay. For better druggability, several quinolone compounds, an (bio) isostere of chromone and one of well-known core in many marketed medicine, was designed and synthesized by replacement of oxygen with nitrogen in 4-pyron structure of J2. However, the cross linking activity of HSP27 disappeared by quinolone compounds and the sensitizing effects on the anticancer drugs disappeared as well, suggesting oxygene moiety of 4-pyron structure of J2 may be a pharmacophore for induction of cross linking of HSP27 and sensitization to cancer cells. In conclusion, combination of chemotherapy with small molecules that induces altered cross-linking of HSP27 may be a good strategy to overcome the resistance of anticancer drugs in HSP27-over-expressing cancer cells.
Collapse
Affiliation(s)
- Byeol Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-720, Korea
| | - Seul-Ki Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-720, Korea
| | - You Na Park
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-720, Korea
| | - Soo-Yeon Kwak
- College of Pharmacy, CHA University, Pocheon 487-010, Korea
| | - Hwa Jeong Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-720, Korea
| | - Youngjoo Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-720, Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-720, Korea
| |
Collapse
|
37
|
Quiles JM, Narasimhan M, Mosbruger T, Shanmugam G, Crossman D, Rajasekaran NS. Identification of transcriptome signature for myocardial reductive stress. Redox Biol 2017; 13:568-580. [PMID: 28768233 PMCID: PMC5536881 DOI: 10.1016/j.redox.2017.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
The nuclear factor erythroid 2 like 2 (Nfe2l2/Nrf2) is a master regulator of antioxidant gene transcription. We recently identified that constitutive activation of Nrf2 (CaNrf2) caused reductive stress (RS) in the myocardium. Here we investigate how chronic Nrf2 activation alters myocardial mRNA transcriptome in the hearts of CaNrf2 transgenic (TG-low and TG-high) mice using an unbiased integrated systems approach and next generation RNA sequencing followed by qRT-PCR methods. A total of 246 and 1031 differentially expressed genes (DEGs) were identified in the heart of TGL and TGH in relation to NTG littermates at ~ 6 months of age. Notably, the expression and validation of the transcripts were gene-dosage dependent and statistically significant. Ingenuity Pathway Analysis identified enriched biological processes and canonical pathways associated with myocardial RS in the CaNrf2-TG mice. In addition, an overrepresentation of xenobiotic metabolic signaling, glutathione-mediated detoxification, unfolded protein response, and protein ubiquitination was observed. Other, non-canonical signaling pathways identified include: eNOS, integrin-linked kinase, glucocorticoid receptor, PI3/AKT, actin cytoskeleton, cardiac hypertrophy, and the endoplasmic reticulum stress response. In conclusion, this mRNA profiling identified a "biosignature" for pro-reductive (TGL) and reductive stress (TGH) that can predict the onset, rate of progression, and clinical outcome of Nrf2-dependent myocardial complications. We anticipate that this global sequencing analysis will illuminate the undesirable effect of chronic Nrf2 signaling leading to RS-mediated pathogenesis besides providing important guidance for the application of Nrf2 activation-based cytoprotective strategies.
Collapse
Affiliation(s)
- Justin M Quiles
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Timothy Mosbruger
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Gobinath Shanmugam
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David Crossman
- Heflin Center for Genomic Sciences, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; Center for Free Radical Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
38
|
Grimmig T, Moll EM, Kloos K, Thumm R, Moench R, Callies S, Kreckel J, Vetterlein M, Pelz J, Polat B, Tripathi S, Rehder R, Ribas CM, Chandraker A, Germer CT, Waaga-Gasser AM, Gasser M. Upregulated Heat Shock Proteins After Hyperthermic Chemotherapy Point to Induced Cell Survival Mechanisms in Affected Tumor Cells From Peritoneal Carcinomatosis. CANCER GROWTH AND METASTASIS 2017; 10:1179064417730559. [PMID: 29403306 PMCID: PMC5791678 DOI: 10.1177/1179064417730559] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
In patients with peritoneal carcinomatosis cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) represents a promising treatment strategy. Here, we studied the role of hyperthermic chemotherapy on heat shock protein (HSP) expression and induction of tumor cell death and survival. HSP27, HSP70, and HSP90 combined with effects on tumor cell proliferation and chemosensitivity were analyzed in human colon cancer. Hyperthermic chemotherapy resulted in significant HSP27/HSP70 and HSP90 gene/protein overexpression in analyzed HT-29/SW480/SW620 colon cancer cells and peritoneal metastases from patients displaying amplified expression of proliferation markers, proliferating cell nuclear antigen and antiapoptotic protein Bcl-xL. Moreover, functionally increased chemoresistance against 5-fluorouracil/mitomycin C and oxaliplatin after hyperthermic chemotherapy points to induced survival mechanisms in cancer cells. In conclusion, the results indicate that intracellular HSP-associated antiapoptotic and proliferative effects after hyperthermic chemotherapy negatively influence beneficial effects of hyperthermic chemotherapy-induced cell death. Therefore, blocking HSPs could be a promising strategy to further improve the rate of tumor cell death and outcome of patients undergoing HIPEC therapy.
Collapse
Affiliation(s)
- Tanja Grimmig
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Eva-Maria Moll
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Kloos
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Rebecca Thumm
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Romana Moench
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Simone Callies
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Jennifer Kreckel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University of Wuerzburg, Wuerzburg, Germany
| | - Malte Vetterlein
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Pelz
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| | - Buelent Polat
- Department of Radiation Oncology, University of Wuerzburg, Wuerzburg, Germany
| | - Sudipta Tripathi
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberta Rehder
- Evangelical Medical School, Faculty University of Parana, Curitiba, Brazil
| | - Carmen M Ribas
- Evangelical Medical School, Faculty University of Parana, Curitiba, Brazil
| | - Anil Chandraker
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany.,Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Gasser
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
39
|
San Gil R, Ooi L, Yerbury JJ, Ecroyd H. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 2017; 12:65. [PMID: 28923065 PMCID: PMC5604514 DOI: 10.1186/s13024-017-0208-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Protein inclusions are a predominant molecular pathology found in numerous neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease. Protein inclusions form in discrete areas of the brain characteristic to the type of neurodegenerative disease, and coincide with the death of neurons in that region (e.g. spinal cord motor neurons in amyotrophic lateral sclerosis). This suggests that the process of protein misfolding leading to inclusion formation is neurotoxic, and that cell-autonomous and non-cell autonomous mechanisms that maintain protein homeostasis (proteostasis) can, at times, be insufficient to prevent protein inclusion formation in the central nervous system. The heat shock response is a pro-survival pathway induced under conditions of cellular stress that acts to maintain proteostasis through the up-regulation of heat shock proteins, a superfamily of molecular chaperones, other co-chaperones and mitotic regulators. The kinetics and magnitude of the heat shock response varies in a stress- and cell-type dependent manner. It remains to be determined if and/or how the heat shock response is activated in the different cell-types that comprise the central nervous system (e.g. neurons and astroglia) in response to protein misfolding events that precede cellular dysfunctions in neurodegenerative diseases. This is particularly relevant considering emerging evidence demonstrating the non-cell autonomous nature of amyotrophic lateral sclerosis and Huntington's disease (and other neurodegenerative diseases) and the destructive role of astroglia in disease progression. This review highlights the complexity of heat shock response activation and addresses whether neurons and glia sense and respond to protein misfolding and aggregation associated with neurodegenerative diseases, in particular Huntington's disease and amyotrophic lateral sclerosis, by inducing a pro-survival heat shock response.
Collapse
Affiliation(s)
- Rebecca San Gil
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| |
Collapse
|
40
|
Ge H, He X, Guo L, Yang X. Clinicopathological significance of HSP27 in gastric cancer: a meta-analysis. Onco Targets Ther 2017; 10:4543-4551. [PMID: 28979146 PMCID: PMC5602475 DOI: 10.2147/ott.s146590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Many studies have provided increasing evidence to demonstrate that HSP27 has been involved in the development of gastric cancer; however, they all include few patients and the results remain controversial. Hence, we conducted a meta-analysis to evaluate correlations between HSP27 and the clinicopathological characteristics of gastric cancer. Methods An electronic search for relevant articles was conducted in PubMed, Cochrane Library, Web of Science, EMBASE database, Chinese CNKI, and Wan Fang. Data on the relationship between HSP27 expression and lymph node metastasis, serosal invasion, gender, tumor size, differentiation, and TNM stage were extracted. Pooled odds ratios and 95% confidence intervals were estimated by forest plot. Results The pooled analyses suggested that HSP27 expression was significantly associated with the incidence of gastric cancer. However, HSP27 expression had no significant relationship with lymph node metastasis, serosal invasion, gender, tumor size, differentiation, and TNM stage. Conclusion Our meta-analysis demonstrated that HSP27 may play vital roles in tumorigenesis and deterioration of gastric cancer. However, further high-quality studies are needed to provide more reliable evidence.
Collapse
Affiliation(s)
- Hua Ge
- Department of Gastrointestinal Surgery, The First People's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Xueyan He
- Department of Gastrointestinal Surgery, The First People's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Lingfei Guo
- Department of Gastrointestinal Surgery, The First People's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Xianzhi Yang
- Department of Gastrointestinal Surgery, The First People's Hospital of Zunyi, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| |
Collapse
|
41
|
Su YJ, Chen CT, Tsai NW, Huang CC, Wang HC, Kung CT, Lin WC, Cheng BC, Su CM, Hsiao SY, Lu CH. The Role of Monocyte Percentage in Osteoporosis in Male Rheumatic Diseases. Am J Mens Health 2017; 11:1772-1780. [PMID: 28901203 PMCID: PMC5675259 DOI: 10.1177/1557988317721642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is easily overlooked in male patients, especially in the field of rheumatic diseases mostly prevalent with female patients, and its link to pathogenesis is still lacking. Attenuated monocyte apoptosis from a transcriptome-wide expression study illustrates the role of monocytes in osteoporosis. This study tested the hypothesis that the monocyte percentage among leukocytes could be a biomarker of osteoporosis in rheumatic diseases. Eighty-seven males with rheumatic diseases were evaluated in rheumatology outpatient clinics for bone mineral density (BMD) and surrogate markers, such as routine peripheral blood parameters and autoantibodies. From the total number of 87 patients included in this study, only 15 met the criteria for diagnosis of osteoporosis. Both age and monocyte percentage remained independently associated with the presence of osteoporosis. Steroid dose (equivalent prednisolone dose) was negatively associated with BMD of the hip area and platelet counts were negatively associated with BMD and T score of the spine area. Besides age, monocyte percentage meets the major requirements for osteoporosis in male rheumatic diseases. A higher monocyte percentage in male rheumatic disease patients, aged over 50 years in this study, and BMD study should be considered in order to reduce the risk of osteoporosis-related fractures.
Collapse
Affiliation(s)
- Yu-Jih Su
- 1 Department of Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao Tung Chen
- 2 Department of Family Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Wen Tsai
- 3 Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Huang
- 3 Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Chen Wang
- 4 Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- 5 Department of Emergency Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Che Lin
- 6 Department of Radiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ben-Chung Cheng
- 1 Department of Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,7 Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Min Su
- 5 Department of Emergency Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Yuan Hsiao
- 5 Department of Emergency Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,7 Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- 3 Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,7 Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.,8 Department of Neurology, Xiamen Chang Gung Memorial Hospital, Xiamen, China
| |
Collapse
|
42
|
HSPB1 mutations causing hereditary neuropathy in humans disrupt non-cell autonomous protection of motor neurons. Exp Neurol 2017; 297:101-109. [PMID: 28797631 DOI: 10.1016/j.expneurol.2017.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/22/2017] [Accepted: 08/06/2017] [Indexed: 12/12/2022]
Abstract
Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance.
Collapse
|
43
|
Arrigo AP. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperones 2017; 22:517-529. [PMID: 28144778 PMCID: PMC5465029 DOI: 10.1007/s12192-017-0765-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 12/11/2022] Open
Abstract
Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, 28 rue Laennec, Lyon, 69008, France.
| |
Collapse
|
44
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
45
|
Caruso Bavisotto C, Nikolic D, Marino Gammazza A, Barone R, Lo Cascio F, Mocciaro E, Zummo G, Conway de Macario E, Macario AJL, Cappello F, Giacalone V, Pace A, Barone G, Palumbo Piccionello A, Campanella C. The dissociation of the Hsp60/pro-Caspase-3 complex by bis(pyridyl)oxadiazole copper complex ( CubipyOXA ) leads to cell death in NCI-H292 cancer cells. J Inorg Biochem 2017; 170:8-16. [DOI: 10.1016/j.jinorgbio.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 11/24/2022]
|
46
|
Xu EG, Mager EM, Grosell M, Hazard ES, Hardiman G, Schlenk D. Novel transcriptome assembly and comparative toxicity pathway analysis in mahi-mahi (Coryphaena hippurus) embryos and larvae exposed to Deepwater Horizon oil. Sci Rep 2017; 7:44546. [PMID: 28295044 PMCID: PMC5353654 DOI: 10.1038/srep44546] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
The impacts of Deepwater Horizon (DWH) oil on morphology and function during embryonic development have been documented for a number of fish species, including the economically and ecologically important pelagic species, mahi-mahi (Coryphaena hippurus). However, further investigations on molecular events and pathways responsible for developmental toxicity have been largely restricted due to the limited molecular data available for this species. We sought to establish the de novo transcriptomic database from the embryos and larvae of mahi-mahi exposed to water accommodated fractions (HEWAFs) of two DWH oil types (weathered and source oil), in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses. By high throughput sequencing (HTS), we obtained the first de novo transcriptome of mahi-mahi, with 60,842 assembled transcripts and 30,518 BLAST hits. Among them, 2,345 genes were significantly regulated in 96hpf larvae after exposure to weathered oil. With comparative analysis to a reference-transcriptome-guided approach on gene ontology and tox-pathways, we confirmed the novel approach effective for exploring tox-pathways in non-model species, and also identified a list of co-expressed genes as potential biomarkers which will provide information for the construction of an Adverse Outcome Pathway which could be useful in Ecological Risk Assessments.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Edward M Mager
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Miami, FL 33149, USA
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC 29403, USA.,Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC 29403, USA.,Departments of Medicine &Public Health Sciences, Medical University of South Carolina, Charleston, SC 29403, USA.,Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
47
|
Kaigorodova EV, Zavyalova MV, Bychkov VA, Perelmuter VM, Choynzonov EL. Functional state of the Hsp27 chaperone as a molecular marker of an unfavorable course of larynx cancer. Cancer Biomark 2017; 17:145-53. [PMID: 27540972 DOI: 10.3233/cbm-160625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The small heat shock protein 27 kDA (Hsp27) acts as an ATP-independent chaperone in protein folding, but is also implicated in architecture of the cytoskeleton, cell migration, metabolism, cell survival, growth/differentiation, mRNA stabilization, and tumor progression. OBJECTIVE To study the intracellular localization of phosphorylated and non-phosphorylated forms of Hsp27 in squamous cell carcinoma of the larynx (SCCL) and to evaluate their relationship with regional lymphatic metastasis and overall five-year survival. METHODS Tumor biopsies of larynx tissue were collected from 50 patients who were between the ages of 30 to 80 years and had a confirmed diagnosis of squamous cell carcinoma of the larynx. Immunohistochemistry was used to determine the intracellular localization of the phosphorylated and non-phosphorylated forms of Hsp27. RESULTS The study revealed that the Hsp27 chaperone was expressed in both the cytoplasm and the nucleus of tumor cells in SCCL. The biopsies of patients with lymph node metastases showed significantly higher expression of the phosphorylated and unphosphorylated forms of Hsp27 in the nucleus compared to those of patients without lymph node metastases. At the same time, the cytoplasmic expression of Hsp27 in these patients did not differ statistically. Analysis of the overall five-year survival rates showed that negative Hsp27 expression in the nucleus of tumor cells is associated with the survival rate of patients with SCCL. CONCLUSION The nuclear expression of phosphorylated and unphosphorylated forms of Hsp27 is a molecular marker of unfavorable squamous cell carcinoma of the larynx associated with lymphogenous metastasis and decreased total five-year survival.
Collapse
Affiliation(s)
- Evgeniya V Kaigorodova
- Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Marina V Zavyalova
- Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | | | - Vladimir M Perelmuter
- Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| | - Evgenii L Choynzonov
- Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
48
|
Hwang YS, Ko MH, Kim YM, Park YH, Ono T, Han JY. The avian-specific small heat shock protein HSP25 is a constitutive protector against environmental stresses during blastoderm dormancy. Sci Rep 2016; 6:36704. [PMID: 27827412 PMCID: PMC5101479 DOI: 10.1038/srep36704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022] Open
Abstract
Small heat shock proteins (sHSPs) range in size from 12 to 42 kDa and contain an α-crystalline domain. They have been proposed to play roles in the first line of defence against various stresses in an ATP-independent manner. In birds, a newly oviposited blastoderm can survive several weeks in a dormant state in low-temperature storage suggesting that blastoderm cells are basically tolerant of environmental stress. However, sHSPs in the stress-tolerant blastoderm have yet to be investigated. Thus, we characterised the expression and function of sHSPs in the chicken blastoderm. We found that chicken HSP25 was expressed especially in the blastoderm and was highly upregulated during low-temperature storage. Multiple alignments, phylogenetic trees, and expression in the blastoderms of Japanese quail and zebra finch showed homologues of HSP25 were conserved in other avian species. After knockdown of chicken HSP25, the expression of pluripotency marker genes decreased significantly. Furthermore, loss of function studies demonstrated that chicken HSP25 is associated with anti-apoptotic, anti-oxidant, and pro-autophagic effects in chicken blastoderm cells. Collectively, these results suggest avian HSP25 could play an important role in association with the first line of cellular defences against environmental stress and the protection of future embryonic cells in the avian blastoderm.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Mee Hyun Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Tamao Ono
- Division of Animal Science, Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
49
|
Owen S, Zhao H, Dart A, Wang Y, Ruge F, Gao Y, Wei C, Wu Y, Jiang WG. Heat shock protein 27 is a potential indicator for response to YangZheng XiaoJi and chemotherapy agents in cancer cells. Int J Oncol 2016; 49:1839-1847. [PMID: 27600495 PMCID: PMC5063420 DOI: 10.3892/ijo.2016.3685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 27 (HSP27) is a member of the heat shock protein family which has been linked to tumour progression and, most interestingly, to chemotherapy resistance in cancer patients. The present study examined the potential interplay between HSP27 and YangZheng XiaoJi, a traditional Chinese medicine used in cancer treatment. A range of cell lines from different tumour types including pancreatic, lung, gastric, colorectal, breast, prostate and ovarian cancer (both wild-type and resistant) were used. Levels and activation of HSP27 and its potential associated signalling pathways were evaluated by protein array and western blotting. Knockdown of HSP27 in cancer cells was achieved using siRNA. Localisation and co-localisation of HSP27 and other proteins were carried out by immunofluorescence. Cell growth and migration were evaluated in their response to a range of chemotherapeutic agents. The present study first identified, by way of protein array, that YangZheng XiaoJi was able to inhibit the phosphorylation of HSP27 protein in cancer cells. We further demonstrated that HSP27, which is co-localised with caspase-9, can be blocked from localising in focal adhesions and co-localising with caspase-9 by YangZheng XiaoJi. The study also demonstrated that YangZheng XiaoJi was able to sensitise cancer cells including those cells that were resistant to chemotherapy, to chemotherapeutic agents. Finally, knocking down HSP27 markedly reduced the migration of cancer cells and increased the sensitivity of cancer cells to the inhibitory effect on cellular migration by YangZheng XiaoJi. YangZheng XiaoJi can act as an agent in first sensitising cancer cells to chemotherapy and secondly to overcome, to some degree, chemoresistance when used in an appropriate fashion in patients who have active HSP27.
Collapse
Affiliation(s)
- Sioned Owen
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - Huishan Zhao
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - Yamei Wang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - Yong Gao
- Yiling Medical Research Institute, Shijiazhuang, Hebei, P.R. China
| | - Cong Wei
- Yiling Medical Research Institute, Shijiazhuang, Hebei, P.R. China
| | - Yiling Wu
- Yiling Medical Research Institute, Shijiazhuang, Hebei, P.R. China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
50
|
Mo XM, Li L, Zhu P, Dai YJ, Zhao TT, Liao LY, Chen GG, Liu ZM. Up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis in human papillary thyroid cancer cells. Mol Cell Endocrinol 2016; 431:71-87. [PMID: 27179757 DOI: 10.1016/j.mce.2016.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/15/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
17β-estradiol (E2) has been suggested to play a role in the development and progression of papillary thyroid cancer. Heat shock protein 27 (Hsp27) is a member of the Hsp family that is responsible for cell survival under stressful conditions. Previous studies have shown that the 5'-promoter region of Hsp27 gene contains a specificity protein-1 (Spl) and estrogen response element half-site (ERE-half), which contributes to Hsp27 induction by E2 in breast cancer cells. However, it is unclear whether Hsp27 can be up-regulated by E2 and which estrogen receptor (ER) isoform and tethered transcription factor are involved in this regulation in papillary thyroid cancer cells. In the present study, we demonstrated that Hsp27 can be effectively up-regulated by E2 at mRNA and protein levels in human K1 and BCPAP papillary thyroid cancer cells which have more than two times higher level of ERα than that of ERβ. The up-regulation of Hsp27 by E2 is mediated by ERα/Sp1 and ERβ has repressive effect on this ERα/Sp1-mediated up-regulation of Hsp27. Moreover, we showed that the up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis through interaction with procaspase-3. Targeting this pathway may be a potential strategy for therapy of papillary thyroid cancer.
Collapse
Affiliation(s)
- Xiao-Mei Mo
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Li Li
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yu-Jie Dai
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ting-Ting Zhao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ling-Yao Liao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
| | - Zhi-Min Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|