1
|
Haddad A, Golan-Lev T, Benvenisty N, Goldberg M. Genome-wide screening in human embryonic stem cells identifies genes and pathways involved in the p53 pathway. Mol Med 2025; 31:97. [PMID: 40082762 PMCID: PMC11907909 DOI: 10.1186/s10020-025-01141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The tumor suppressor protein, p53, which is mutated in half of human tumors, plays a critical role in cellular responses to DNA damage and maintenance of genome stability. Therefore, increasing our understanding of the p53 pathway is essential for improving cancer treatment and diagnosis. METHODS This study, which aimed to identify genes and pathways that mediate resistance to p53 upregulation, used genome-wide CRISPR-Cas9 loss-of-function screening done with Nutlin-3a, which inhibits p53-MDM2 interaction, resulting in p53 accumulation and apoptotic cell death. We used bioinformatics analysis for the identification of genes and pathways that are involved in the p53 pathway and cell survival assays to validate specific genes. In addition, we used RNA-seq to identify differentially expressed p53 target genes in gene knockout (KO) cell lines. RESULTS Our screen revealed three significantly enriched pathways: The heparan sulfate glycosaminoglycan biosynthesis, diphthamide biosynthesis and Hippo pathway. Notably, TRIP12 was significantly enriched in our screen. We found that TRIP12 is required for the p53-dependent transcription of several pro-apoptotic genes. CONCLUSION Our study has identified two novel pathways that play a role in p53-mediated growth restriction. Moreover, we have highlighted the interaction between the Hippo and the p53 pathways. Interestingly, we have shown that TRIP12 plays an important function in the p53 pathway by selectively affecting its role as a transcription factor.
Collapse
Affiliation(s)
- Amir Haddad
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Tamar Golan-Lev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Michal Goldberg
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
2
|
Sako K, Furuichi K, Makiishi S, Yamamura Y, Okumura T, Le T, Kitajima S, Toyama T, Hara A, Iwata Y, Sakai N, Shimizu M, Niimura F, Matsusaka T, Kaneko S, Wada T. Cyclin-dependent kinase 4-related tubular epithelial cell proliferation is regulated by Paired box gene 2 in kidney ischemia-reperfusion injury. Kidney Int 2022; 102:45-57. [PMID: 35483529 DOI: 10.1016/j.kint.2022.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
Paired box 2 (Pax2) is a transcription factor essential for kidney development and is reactivated in proximal tubular epithelial cells (PTECs) during recovery from kidney injury. However, the role of Pax2 in this process is still unknown. Here the role of Pax2 reactivation during injury was examined in the proliferation of PTECs using an ischemia-reperfusion injury (IRI) mouse model. Kidney proximal tubule-specific Pax2 conditional knockout mice were generated by mating kidney androgen-regulated protein-Cre and Pax2 flox mice. The degree of cell proliferation and fibrosis was assessed and a Pax2 inhibitor (EG1) was used to evaluate the role of Pax2 in the hypoxic condition of cultured PTECs (O2 5%, 24 hours). The number of Pax2-positive cells and Pax2 mRNA increased after IRI. Sirius red staining indicated that the area of interstitial fibrosis was significantly larger in knockout mice 14 days after IRI. The number of Ki-67-positive cells (an index of proliferation) was significantly lower in knockout than in wild-type mice after IRI, whereas the number of TUNEL-positive cells (an index of apoptotic cells) was significantly higher in knockout mice four days after IRI. Expression analyses of cell cycle-related genes showed that cyclin-dependent kinase 4 (CDK4) was significantly less expressed in the Pax2 knockout mice. In vitro data showed that the increase in CDK4 mRNA and protein expression induced by hypoxia was attenuated by EG1. Thus, Pax2 reactivation may be involved in PTEC proliferation by activating CDK4, thereby limiting kidney fibrosis.
Collapse
Affiliation(s)
- Keisuke Sako
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- Department of Nephrology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shohei Makiishi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshiya Okumura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Thu Le
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Division of Infection Control, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Fumio Niimura
- Department of Pediatrics, School of Medicine, Tokai University, Isehara, Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, School of Medicine, Tokai University, Isehara, Japan; Institute of Medical Science, Tokai University, Isehara, Japan
| | - Shuichi Kaneko
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
3
|
Hou L, Wei Y, Lin Y, Wang X, Lai Y, Yin M, Chen Y, Guo X, Wu S, Zhu Y, Yuan J, Tariq M, Li N, Sun H, Wang H, Zhang X, Chen J, Bao X, Jauch R. Concurrent binding to DNA and RNA facilitates the pluripotency reprogramming activity of Sox2. Nucleic Acids Res 2020; 48:3869-3887. [PMID: 32016422 PMCID: PMC7144947 DOI: 10.1093/nar/gkaa067] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/03/2023] Open
Abstract
Some transcription factors that specifically bind double-stranded DNA appear to also function as RNA-binding proteins. Here, we demonstrate that the transcription factor Sox2 is able to directly bind RNA in vitro as well as in mouse and human cells. Sox2 targets RNA via a 60-amino-acid RNA binding motif (RBM) positioned C-terminally of the DNA binding high mobility group (HMG) box. Sox2 can associate with RNA and DNA simultaneously to form ternary RNA/Sox2/DNA complexes. Deletion of the RBM does not affect selection of target genes but mitigates binding to pluripotency related transcripts, switches exon usage and impairs the reprogramming of somatic cells to a pluripotent state. Our findings designate Sox2 as a multi-functional factor that associates with RNA whilst binding to cognate DNA sequences, suggesting that it may co-transcriptionally regulate RNA metabolism during somatic cell reprogramming.
Collapse
Affiliation(s)
- Linlin Hou
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanjie Wei
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiwei Wang
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yiwei Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Menghui Yin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China
| | - Yanpu Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Xiangpeng Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Senbin Wu
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Muqddas Tariq
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Na Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofei Zhang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,CAS Key Laboratory of Regenerative Biology, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xichen Bao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Fusée LTS, Marín M, Fåhraeus R, López I. Alternative Mechanisms of p53 Action During the Unfolded Protein Response. Cancers (Basel) 2020; 12:cancers12020401. [PMID: 32050651 PMCID: PMC7072472 DOI: 10.3390/cancers12020401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor protein p53 orchestrates cellular responses to a vast number of stresses, with DNA damage and oncogenic activation being some of the best described. The capacity of p53 to control cellular events such as cell cycle progression, DNA repair, and apoptosis, to mention some, has been mostly linked to its role as a transcription factor. However, how p53 integrates different signaling cascades to promote a particular pathway remains an open question. One way to broaden its capacity to respond to different stimuli is by the expression of isoforms that can modulate the activities of the full-length protein. One of these isoforms is p47 (p53/47, Δ40p53, p53ΔN40), an alternative translation initiation variant whose expression is specifically induced by the PERK kinase during the Unfolded Protein Response (UPR) following Endoplasmic Reticulum stress. Despite the increasing knowledge on the p53 pathway, its activity when the translation machinery is globally suppressed during the UPR remains poorly understood. Here, we focus on the expression of p47 and we propose that the alternative initiation of p53 mRNA translation offers a unique condition-dependent mechanism to differentiate p53 activity to control cell homeostasis during the UPR. We also discuss how the manipulation of these processes may influence cancer cell physiology in light of therapeutic approaches.
Collapse
Affiliation(s)
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Robin Fåhraeus
- INSERM U1162, 27 rue Juliette Dodu, 75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-25252095
| |
Collapse
|
5
|
Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, Lyu J, Li F, Peng C, Krylov SN, Xie Y, Zhang Y, He C, Wu N, Zhang C, Sdiri M, Dong J, Ma J, Gao C, Hibberd S, Yang BB. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 2018; 37:5829-5842. [PMID: 29973691 DOI: 10.1038/s41388-018-0369-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/29/2018] [Accepted: 05/26/2018] [Indexed: 11/08/2022]
Abstract
Circular RNAs are a large group of noncoding RNAs that are widely expressed in mammalian cells. Genome-wide analyses have revealed abundant and evolutionarily conserved circular RNAs across species, which suggest specific physiological roles of these species. Using a microarray approach, we detected increased expression of a circular RNA circ-Dnmt1 in eight breast cancer cell lines and in patients with breast carcinoma. Silencing circ-Dnmt1 inhibited cell proliferation and survival. Ectopic circ-Dnmt1 increased the proliferative and survival capacities of breast cancer cells by stimulating cellular autophagy. We found that circ-Dnmt1-mediated autophagy was essential in inhibiting cellular senescence and increasing tumor xenograft growth. We further found that ectopically expressed circ-Dnmt1 could interact with both p53 and AUF1, promoting the nuclear translocation of both proteins. Nuclear translocation of p53 induced cellular autophagy while AUF1 nuclear translocation reduced Dnmt1 mRNA instability, resulting in increased Dnmt1 translation. From here, functional Dnmt1 could then translocate into the nucleus, inhibiting p53 transcription. Computational algorithms revealed that both p53 and AUF1 could bind to different regions of circ-Dnmt1 RNA. Our results showed that the highly expressed circular RNA circ-Dnmt1 could bind to and regulate oncogenic proteins in breast cancer cells. Thus circ-Dnmt1 appears to be an oncogenic circular RNA with potential for further preclinical research.
Collapse
Affiliation(s)
- William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Weining Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Xiangmin Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, People's Republic of China
| | - Faryal Mehwish Awan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Zhenguo Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Ling Fang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- China-Japan Union Hospital of Jilin University, Jilin, China
| | - Juanjuan Lyu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Feiya Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, People's Republic of China
- Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Jilin, China
| | - Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chao Zhang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mouna Sdiri
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jun Dong
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jian Ma
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chunqi Gao
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Steven Hibberd
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Marcel V, Nguyen Van Long F, Diaz JJ. 40 Years of Research Put p53 in Translation. Cancers (Basel) 2018; 10:E152. [PMID: 29883412 PMCID: PMC5977125 DOI: 10.3390/cancers10050152] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.
Collapse
Affiliation(s)
- Virginie Marcel
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| | - Flora Nguyen Van Long
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| | - Jean-Jacques Diaz
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| |
Collapse
|
7
|
p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death Differ 2017. [PMID: 28622297 PMCID: PMC5596431 DOI: 10.1038/cdd.2017.96] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Physiological and pathological conditions that affect the folding capacity of the endoplasmic reticulum (ER) provoke ER stress and trigger the unfolded protein response (UPR). The UPR aims to either restore the balance between newly synthesized and misfolded proteins or if the damage is severe, to trigger cell death. However, the molecular events underlying the switch between repair and cell death are not well understood. The ER-resident chaperone BiP governs the UPR by sensing misfolded proteins and thereby releasing and activating the three mediators of the UPR: PERK, IRE1 and ATF6. PERK promotes G2 cell cycle arrest and cellular repair by inducing the alternative translated p53 isoform p53ΔN40 (p53/47), which activates 14-3-3σ via suppression of p21CDKN1A. Here we show that prolonged ER stress promotes apoptosis via a p53-dependent inhibition of BiP expression. This leads to the release of the pro-apoptotic BH3-only BIK from BiP and activation of apoptosis. Suppression of bip mRNA translation is mediated via the specific binding of p53 to the first 346-nt of the bip mRNA and via a p53 trans-suppression domain located within the first seven N-terminal amino acids of p53ΔN40. This work shows how p53 targets BiP to promote apoptosis during severe ER stress and further illustrates how regulation of mRNA translation has a key role in p53-mediated regulation of gene expression during the UPR.
Collapse
|
8
|
Tournillon AS, López I, Malbert-Colas L, Findakly S, Naski N, Olivares-Illana V, Karakostis K, Vojtesek B, Nylander K, Fåhraeus R. p53 binds the mdmx mRNA and controls its translation. Oncogene 2016; 36:723-730. [PMID: 27375027 DOI: 10.1038/onc.2016.236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/22/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
Abstract
MDMX and MDM2 are two nonredundant essential regulators of p53 tumor suppressor activity. MDM2 controls p53 expression levels, whereas MDMX is predominantly a negative regulator of p53 trans-activity. The feedback loops between MDM2 and p53 are well studied and involve both negative and positive regulation on transcriptional, translational and post-translational levels but little is known on the regulatory pathways between p53 and MDMX. Here we show that overexpression of p53 suppresses mdmx mRNA translation in vitro and in cell-based assays. The core domain of p53 binds the 5' untranslated region (UTR) of the mdmx mRNA in a zinc-dependent manner that together with a trans-suppression domain located in p53 N-terminus controls MDMX synthesis. This interaction can be visualized in the nuclear and cytoplasmic compartment. Fusion of the mdmx 5'UTR to the ovalbumin open reading frame leads to suppression of ovalbumin synthesis. Interestingly, the transcription inactive p53 mutant R273H has a different RNA-binding profile compared with the wild-type p53 and differentiates the synthesis of MDMX isoforms. This study describes p53 as a trans-suppressor of the mdmx mRNA and adds a further level to the intricate feedback system that exist between p53 and its key regulatory factors and emphasizes the important role of mRNA translation control in regulating protein expression in the p53 pathway.
Collapse
Affiliation(s)
- A-S Tournillon
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - I López
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - L Malbert-Colas
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - S Findakly
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - N Naski
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - V Olivares-Illana
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - K Karakostis
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - B Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - K Nylander
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - R Fåhraeus
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France.,RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Abstract
Tumor suppresser gene TP53 is one of the most frequently deleted
or mutated genes in gastrointestinal cancers. As a transcription factor, p53
regulates a number of important protein coding genes to control cell cycle, cell
death, DNA damage/repair, stemness, differentiation and other key cellular
functions. In addition, p53 is also able to activate the expression of a number
of small non-coding microRNAs (miRNAs) through direct binding to the promoter
region of these miRNAs. Many miRNAs have been identified to be potential tumor
suppressors by regulating key effecter target mRNAs. Our understanding of the
regulatory network of p53 has recently expanded to include long non-coding RNAs
(lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer
biology. With our increased understanding of the important functions of these
non-coding RNAs and their relationship with p53, we are gaining exciting new
insights into the biology and function of cells in response to various growth
environment changes. In this review we summarize the current understanding of
the ever expanding involvement of non-coding RNAs in the p53 regulatory network
and its implications for our understanding of gastrointestinal cancer.
Collapse
Affiliation(s)
- Andrew Fesler
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, USA
| | - Ning Zhang
- Department of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingfang Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, USA
| |
Collapse
|
10
|
Khan D, Chattopadhyay S, Das S. Influence of metabolic stress on translation of p53 isoforms. Mol Cell Oncol 2015; 3:e1039689. [PMID: 27308557 DOI: 10.1080/23723556.2015.1039689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
p53 and its isoforms are integral in modulating transcriptional gene expression programs and maintaining cellular homeostasis. We recently reported that glucose deprivation/caloric restriction induced translational control of p53 mRNA by scaffold/matrix attachment region binding-protein 1 (SMAR1), adding a cytoplasmic role of SMAR1 to its traditional nuclear role as a transcription factor.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Present address: Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4 and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | | | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
11
|
Marcel V, Catez F, Diaz JJ. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene 2015; 34:5513-23. [DOI: 10.1038/onc.2015.25] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
|
12
|
Reversible induction of translational isoforms of p53 in glucose deprivation. Cell Death Differ 2015; 22:1203-18. [PMID: 25721046 DOI: 10.1038/cdd.2014.220] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 02/01/2023] Open
Abstract
Tumor suppressor protein p53 is a master transcription regulator, indispensable for controlling several cellular pathways. Earlier work in our laboratory led to the identification of dual internal ribosome entry site (IRES) structure of p53 mRNA that regulates translation of full-length p53 and Δ40p53. IRES-mediated translation of both isoforms is enhanced under different stress conditions that induce DNA damage, ionizing radiation and endoplasmic reticulum stress, oncogene-induced senescence and cancer. In this study, we addressed nutrient-mediated translational regulation of p53 mRNA using glucose depletion. In cell lines, this nutrient-depletion stress relatively induced p53 IRES activities from bicistronic reporter constructs with concomitant increase in levels of p53 isoforms. Surprisingly, we found scaffold/matrix attachment region-binding protein 1 (SMAR1), a predominantly nuclear protein is abundant in the cytoplasm under glucose deprivation. Importantly under these conditions polypyrimidine-tract-binding protein, an established p53 ITAF did not show nuclear-cytoplasmic relocalization highlighting the novelty of SMAR1-mediated control in stress. In vivo studies in mice revealed starvation-induced increase in SMAR1, p53 and Δ40p53 levels that was reversible on dietary replenishment. SMAR1 associated with p53 IRES sequences ex vivo, with an increase in interaction on glucose starvation. RNAi-mediated-transient SMAR1 knockdown decreased p53 IRES activities in normal conditions and under glucose deprivation, this being reflected in changes in mRNAs in the p53 and Δ40p53 target genes involved in cell-cycle arrest, metabolism and apoptosis such as p21, TIGAR and Bax. This study provides a new physiological insight into the regulation of this critical tumor suppressor in nutrient starvation, also suggesting important functions of the p53 isoforms in these conditions as evident from the downstream transcriptional target activation.
Collapse
|
13
|
Chand HS, Montano G, Huang X, Randell SH, Mebratu Y, Petersen H, Tesfaigzi Y. A genetic variant of p53 restricts the mucous secretory phenotype by regulating SPDEF and Bcl-2 expression. Nat Commun 2014; 5:5567. [PMID: 25429397 PMCID: PMC4247165 DOI: 10.1038/ncomms6567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023] Open
Abstract
Despite implications for carcinogenesis and other chronic diseases, basic mechanisms of p53 and its variants in suppressing Bcl-2 levels are poorly understood. Bcl-2 sustains mucous cell metaplasia, whereas p53(-/-) mice display chronically increased mucous cells. Here we show that p53 decreases bcl-2 mRNA half-life by interacting with the 5' untranslated region (UTR). The p53-bcl-2 mRNA interaction is modified by the substitution of proline by arginine within the p53 proline-rich domain (PRD). Accordingly, more mucous cells are present in primary human airway cultures with p53(Arg) compared with p53(Pro). Also, the p53(Arg) compared with p53(Pro) displays higher affinity to and activates the promoter region of SAM-pointed domain-containing Ets-like factor (SPDEF), a driver of mucous differentiation. On two genetic backgrounds, mice with targeted replacement of prolines in p53 PRD show enhanced expression of SPDEF and Bcl-2 and mucous cell metaplasia. Together, these studies define the PRD of p53 as a determinant for chronic mucous hypersecretion.
Collapse
Affiliation(s)
- Hitendra S. Chand
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Gilbert Montano
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Xuesong Huang
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Scott H. Randell
- Department of Cell and Molecular Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yohannes Mebratu
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Hans Petersen
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| |
Collapse
|
14
|
Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, Cyanam D, Nair S, Fuqua SAW, Polyak K, Florea LD, Kumar R. RNA sequencing of cancer reveals novel splicing alterations. Sci Rep 2013; 3:1689. [PMID: 23604310 PMCID: PMC3631769 DOI: 10.1038/srep01689] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/01/2013] [Indexed: 12/30/2022] Open
Abstract
Breast cancer transcriptome acquires a myriad of regulation changes, and splicing is critical for the cell to “tailor-make” specific functional transcripts. We systematically revealed splicing signatures of the three most common types of breast tumors using RNA sequencing: TNBC, non-TNBC and HER2-positive breast cancer. We discovered subtype specific differentially spliced genes and splice isoforms not previously recognized in human transcriptome. Further, we showed that exon skip and intron retention are predominant splice events in breast cancer. In addition, we found that differential expression of primary transcripts and promoter switching are significantly deregulated in breast cancer compared to normal breast. We validated the presence of novel hybrid isoforms of critical molecules like CDK4, LARP1, ADD3, and PHLPP2. Our study provides the first comprehensive portrait of transcriptional and splicing signatures specific to breast cancer sub-types, as well as previously unknown transcripts that prompt the need for complete annotation of tissue and disease specific transcriptome.
Collapse
Affiliation(s)
- Jeyanthy Eswaran
- McCormick Genomic and Proteomics Center, The George Washington University, Washington, District of Columbia 20037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Autophagy is a catabolic process that allows cellular macromolecules to be broken down and recycled as metabolic precursors. The influence of non-coding microRNAs in autophagy has not been explored in colon cancer. In this study, we discover a novel mechanism of autophagy regulated by hsa-miR-502-5p (miR-502) by suppression of Rab1B, a critical mediator of autophagy. A number of other miR-502 suppressed mRNA targets (for example, dihydroorotate dehydrogenase) are also identified by microarray analysis. Ectopic expression of miR-502 inhibited autophagy, colon cancer cell growth and cell-cycle progression of colon cancer cells in vitro. miR-502 also inhibited in-vivo colon cancer growth in a mouse tumor xenografts model. In addition, the expression of miR-502 was regulated by p53 via a negative feedback regulatory mechanism. The expression of miR-502 was downregulated in colon cancer patient specimens compared with the paired normal control samples. These results suggest that miR-502 may function as a potential tumor suppressor and therefore be a novel candidate for developing miR-502-based therapeutic strategies.
Collapse
|
16
|
Derech-Haim S, Teiblum G, Kadosh R, Rahav G, Bonda E, Sredni B, Bakhanashvili M. Ribonuclease activity of p53 in cytoplasm in response to various stress signals. Cell Cycle 2012; 11:1400-13. [PMID: 22421154 DOI: 10.4161/cc.19812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The tumor suppressor p53 protein is expressed at low levels under normal conditions. The subcellular localization and functional activation of p53 are influenced by diverse stress signals. p53 in cytoplasm exerts intrinsic 3'→5' exonuclease activity with various RNA and DNA substrates. ssRNAs containing an adenosine and uridine-rich (ARE) element are permissive targets for p53-mediated degradation. The analysis of the exonuclease activity in cytoplasm with activated p53 induced by various drug treatments or following γ-irradiation revealed that the expression of p53 exonuclease activity in response to stress signals is heterogeneous. Various genotoxic and non-genotoxic agents upregulate p53 yet have different effects on expression of exonuclease activity with ARE RNA but not with DNA substrate. Ribonuclease activity is enhanced in cytoplasmic extracts of HCT116 (p53+/+) cells exposed to γ-irradiation or treated by the non-genotoxic drug AS101 but decreased following treatment by genotoxic (e.g., doxorubicin) or non-genotoxic (e.g., DFMO) agents, thus indicating that p53 exonuclease activity is dependent on the specific stress and nature of the substrate. Apparently, the disparity in expression of p53 ribonuclease activity after each treatment is attributable to the different post-treatment response and to two posttranscriptional events: the interaction of RNA-binding HuR protein with ARE RNA protects the substrate from degradation by p53 and/or decrease in p53 ARE RNA binding capacity due to phosphorylation at Ser392 leads to reduction in p5 ribonuclease activity. Our results provide new insights into p53 exonuclease function and into the mechanisms behind the regulation ARE-RNA degradation by p53 under different cellular conditions.
Collapse
Affiliation(s)
- Sanaz Derech-Haim
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Control of microRNA biogenesis and transcription by cell signaling pathways. Curr Opin Genet Dev 2011; 21:504-10. [PMID: 21592778 DOI: 10.1016/j.gde.2011.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/27/2011] [Indexed: 12/22/2022]
Abstract
A limited set of cell-cell signaling pathways presides over the vast majority of animal developmental events. The typical raison d'etre for signal transduction is to control the transcription of protein-coding genes. However, with the recent appreciation of microRNAs, growing attention has been paid towards understanding how signaling pathways intertwine with microRNA-mediated regulation. This review highlights recent studies that uncover unexpected modes of microRNA regulation by cell signaling pathways. Not only can miRNA transcription be positively or negatively regulated by cell signaling, the TGF-β/BMP pathways and Ras/MAPK pathways have now been shown to directly influence microRNA biogenesis to mediate substantial cellular phenotypes.
Collapse
|
18
|
Zhai H, Ju J. Implications of microRNAs in colorectal cancer development, diagnosis, prognosis, and therapeutics. Front Genet 2011; 2. [PMID: 22114584 PMCID: PMC3221387 DOI: 10.3389/fgene.2011.00078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs with critical regulatory functions as post-transcriptional regulators. Due to the fundamental importance and broad impact of miRNAs on multiple genes and pathways, dysregulated miRNAs have been associated with human diseases, including cancer. Colorectal cancer (CRC) is among the most deadly diseases, and miRNAs offer a new frontier for target discovery and novel biomarkers for both diagnosis and prognosis. In this review, we summarize the recent advancement of miRNA research in CRC, in particular, the roles of miRNAs in CRC stem cells, epithelial-to-mesenchymal transition, chemoresistance, therapeutics, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Haiyan Zhai
- Translational Research Laboratory, Department of Pathology, State University of New York at Stony Brook, Stony Brook, NY, USA
| | | |
Collapse
|
19
|
Lynch CJ, Shah ZH, Allison SJ, Ahmed SU, Ford J, Warnock LJ, Li H, Serrano M, Milner J. SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One 2010; 5:e13502. [PMID: 20975832 PMCID: PMC2958826 DOI: 10.1371/journal.pone.0013502] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/25/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-ΔExon8. We show that SIRT1-ΔExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-ΔExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1-ΔExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. CONCLUSIONS/SIGNIFICANCE We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed between SIRT1 isoforms, with important implications for SIRT1 functional studies and the current search for SIRT1-activating therapeutics to combat age-related decline.
Collapse
Affiliation(s)
- Cian J. Lynch
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail: (CJL); (JM)
| | - Zahid H. Shah
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Simon J. Allison
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Shafiq U. Ahmed
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Jack Ford
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Lorna J. Warnock
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Han Li
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jo Milner
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail: (CJL); (JM)
| |
Collapse
|
20
|
Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 2010; 39:373-84. [PMID: 20705240 DOI: 10.1016/j.molcel.2010.07.011] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 04/15/2010] [Accepted: 06/03/2010] [Indexed: 12/13/2022]
Abstract
The signal transducers of the transforming growth factor beta (TGFbeta)/bone morphogenetic protein (BMP), the Smads, promote the expression of a subset of miRNAs by facilitating the cleavage reaction by Drosha. The mechanism that limits Smad-mediated processing to a selective group of miRNAs remained hitherto unexplored. In this study, we expand the number of TGFbeta/BMP-regulated miRNAs (T/B-miRs) to 20. Of interest, a majority of T/B-miRs contain a consensus sequence (R-SBE) within the stem region of the primary transcripts of T/B-miRs (pri-T/B-miRs). Here, we demonstrate that Smads directly bind the R-SBE. Mutation of the R-SBE abrogates TGFbeta/BMP-induced recruitment of Smads, Drosha, and DGCR8 to pri-T/B-miRs and impairs their processing, whereas introduction of R-SBE to unregulated pri-miRNAs is sufficient to recruit Smads and to allow regulation by TGFbeta/BMP. Thus, Smads are multifunctional proteins that modulate gene expression transcriptionally through DNA binding and posttranscriptionally through pri-miRNA binding and regulation of miRNA processing.
Collapse
Affiliation(s)
- Brandi N Davis
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
21
|
Vilborg A, Wilhelm MT, Wiman KG. Regulation of tumor suppressor p53 at the RNA level. J Mol Med (Berl) 2010; 88:645-52. [PMID: 20306257 DOI: 10.1007/s00109-010-0609-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 01/07/2023]
Abstract
p53 is a key tumor suppressor that triggers cell cycle arrest, senescence, or apoptosis in response to cellular stress. Frequent p53 mutation in human tumors allows survival, sustained growth, and tumor progression. p53 is expressed at low levels under normal conditions, due to rapid protein turnover. Stress signaling induces p53 protein stabilization through phosphorylation and other post-translational modifications. However, recent studies have demonstrated critical regulation of p53 at the mRNA level, mediated via both the 5'UTR and the 3'UTR and affecting both the stability and the translation efficiency of the p53 mRNA. Both proteins and microRNAs have been implicated in such regulation. The p53 target gene Wig-1 encodes a zinc finger protein that binds to double-stranded RNA and enhances p53 mRNA stability by binding to the 3'UTR in a positive feedback loop. Here, we shall summarize current knowledge about regulation of the p53 mRNA and discuss possible implications for cancer therapy.
Collapse
Affiliation(s)
- Anna Vilborg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
22
|
Regulation of pri-miRNA Processing Through Smads. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 700:15-27. [PMID: 21755469 DOI: 10.1007/978-1-4419-7823-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
microRNAs (miRNAs) are small (∼22 nucleotides (nt)), noncoding RNAs that play a critical role in diverse biological functions by modulating mRNA stability and translational control. Numerous miRNA profiling studies have indicated that the levels of miRNAs are tightly controlled during developmental stages and various pathophysiological and physiological conditions. Following transcription, the long primary miRNA transcript undergoes a series of coordinated maturation steps to generate the mature miRNA. Signaling pathways that control miRNA biogenesis and the mechanisms of regulation, however, are not well understood. In this chapter, we will discuss the finding that signal transducers of the Transforming Growth Factor β (TGFβ) signaling pathway, the Smads, play a critical regulatory role in the nuclear processing of miRNAs by the RNase III-type protein Drosha.
Collapse
|
23
|
A novel function for p53: regulation of growth cone motility through interaction with Rho kinase. J Neurosci 2009; 29:5183-92. [PMID: 19386914 DOI: 10.1523/jneurosci.0420-09.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transcription factor p53 suppresses tumorgenesis by regulating cell proliferation and migration. We investigated whether p53 could also control cell motility in postmitotic neurons. p53 isoforms recognized by phospho-p53-specific (at Ser-15) or "mutant" conformation-specific antibodies were highly and specifically expressed in axons and axonal growth cones in primary hippocampal neurons. Inhibition of p53 function by inhibitors, small interfering RNAs, or by dominant-negative forms, induced axonal growth cone collapse, whereas p53 overexpression led to larger growth cones. Furthermore, deletion of the p53 nuclear export signal blocked its axonal distribution and induced growth cone collapse. p53 inhibition-induced axonal growth cone collapse was significantly reduced by the Rho kinase (ROCK) inhibitor, Y27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide]. Our results reveal a new function for p53 as a critical regulator of axonal growth cone behavior by suppressing ROCK activity.
Collapse
|
24
|
Horvilleur E, Bauer M, Goldschneider D, Mergui X, de la Motte A, Bénard J, Douc-Rasy S, Cappellen D. p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Res 2008; 36:4222-32. [PMID: 18583365 PMCID: PMC2490757 DOI: 10.1093/nar/gkn394] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MYCN activation, mainly by gene amplification, is one of the most frequent molecular events in neuroblastoma (NB) oncogenesis, and is associated with increased malignancy and decreased neuronal differentiation propensity. The frequency of concomitant loss of heterozygosity at the 1p36.3 locus, which harbours the p53 anti-oncogene homologue TP73, indicates that MYCN and p73 alterations may cooperate in the pathogenesis of NB. We have previously shown that p73 isoforms are deregulated in NB tumours and that TAp73 co-operates synergistically with p53 for apoptosis of NB cells, whereas ΔNp73 activates the expression of neuronal differentiation genes such as BTG2. Herein, using both ectopic expression and RNA interference-mediated silencing of p73 in MYCN amplified NB cells, we show that p73α isoforms inhibit MYCN expression at both transcript and protein levels, in spite of transactivator effects on MYCN promoter. To explain this paradox, we found that TAp73α exerts negative post-transcriptional effects leading to reduced MYCN mRNA stability. RNA immunoprecipitation experiments suggest that this dominant inhibitory post-transcriptional effect could be due to an interaction between the p73 protein and MYCN mRNA, a hypothesis also raised for the regulation of certain genes by the p53 protein.
Collapse
Affiliation(s)
- Emilie Horvilleur
- Interactions Molécularies et Cancer, Unité Mixte de Recherche 8126, Centre National de Recherche Scientifique-Université Paris Sud-11, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The p53 tumor suppressor protein is typically considered to be a sequence-specific DNA-binding transcription factor. However, reports over the last 15 years have described RNA binding by p53 in a variety of contexts, suggesting the possibility of new p53 functions. It is clear that p53-RNA interactions are mediated by a nucleic acid-binding domain of p53 independent of the sequence-specific core domain responsible for DNA recognition. Reports disagree on several aspects of the putative RNA interaction, including sequence specificity and biological relevance. Here we review the history and recent advances in the study of p53-RNA interactions. We argue that p53-RNA interactions are sequence nonspecific and depend on incomplete post-translational modification of the p53 C-terminal domain when the protein is expressed in heterologous systems. It is unknown what fraction of p53 protein exists in a state competent for RNA binding in vivo. Thus, potential physiological roles of p53-RNA interactions remain mysterious.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
26
|
Riley KJL, James Maher L. Analysis of p53-RNA interactions in cultured human cells. Biochem Biophys Res Commun 2007; 363:381-7. [PMID: 17869221 PMCID: PMC2211410 DOI: 10.1016/j.bbrc.2007.08.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
Abstract
Tumor suppressor p53 is a well-characterized transcription factor that binds DNA. More enigmatic are the RNA-binding properties of p53 and their physiological relevance. We used three sensitive co-immunoprecipitation methods in an attempt to detect RNAs that tightly associate with p53 in cultured human cells. Although recombinant p53 protein binds RNA in a sequence-nonspecific mode, we do not detect specific in vivo RNA binding by p53. These results suggest that RNA binding is prevented by post-translational p53 modifications. A ribonucleoprotein (not p53) is purified by multiple IgG monoclonal antibodies (including anti-p53 antibodies) from both p53 +/+ and p53 null cells. Caution is therefore required in interpreting RNA co-immunoprecipitation experiments. Though not formally excluded, these results do not support models in which p53 binds specific RNA partners in vivo.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
27
|
Bakhanashvili M, Gedelovich R, Grinberg S, Rahav G. Exonucleolytic degradation of RNA by p53 protein in cytoplasm. J Mol Med (Berl) 2007; 86:75-88. [PMID: 17701148 DOI: 10.1007/s00109-007-0247-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/04/2007] [Accepted: 07/09/2007] [Indexed: 12/28/2022]
Abstract
p53 in cytoplasm displays an intrinsic 3'-->5' exonuclease activity. To understand the significance of p53 exonuclease activity in cytoplasm, cytoplasmic extracts of various cell lines were examined for exonuclease activity with different single-stranded RNA (ssRNA) substrates. Using an in vitro RNA degradation assay, we observed in cytoplasmic extracts of LCC2 cells, expressing high levels of endogenous wtp53, an efficient 3'-->5' exonuclease activity with RNA substrates, removing the 3'-terminal nucleotides. Interestingly, RNA containing AU-rich sequences (ARE) is the permissive substrate for exonucleolytic degradation. Evidence that exonuclease function with RNA detected in cytoplasmic extracts is attributed to the p53 is supported by several facts: (1) this activity closely parallels with status and levels of endogenous cytoplasmic p53; (2) the endogenous exonuclease exerts identical RNA substrate specificity and excision profile characteristic for purified baculovirus-or bacterially-expressed wtp53s; (3) the exonuclease activity with ARE RNA is competed out by the presence of ss or double-stranded DNA substrate utilized by p53 protein in cytoplasm; (4) immunoprecipitation by specific anti-p53 antibodies markedly reduced the exonuclease activity with both RNA and DNA substrates; and (5) transfection of the wtp53, but not exonuclease-deficient mutant p53-R175H, into p53-null H1299 or HCT116 cells induced high levels of exonuclease activity with ARE RNA substrate in cytoplasm with characteristic excision profile. The efficient ARE RNA degradation correlates with the efficient binding of p53 to ARE RNA in cytoplasm. The possible role of p53 exonuclease activity in ARE-mRNA destabilization in cytoplasm, which may be important for expression of proteins that control cell growth and/or apoptosis is discussed.
Collapse
|
28
|
Halaby MJ, Yang DQ. p53 translational control: a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics. Gene 2007; 395:1-7. [PMID: 17395405 DOI: 10.1016/j.gene.2007.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 01/09/2023]
Abstract
While posttranslational regulation of p53 levels by its interaction with the ubiquitin ligase MDM2 is widely accepted, it has recently become clear that regulation of p53 translation also contributes to p53 induction following DNA damage. However, the mechanisms underlying the translational control of p53 are still poorly understood. In this review, we will focus on the translational regulation of p53 through the 5'- and 3'-untranslated regions of its mRNA. We will also discuss in detail the recent discovery of the p53 internal ribosome entry site (IRES), its role in p53 translation in response to DNA damage, and how it might lead to a better understanding of the process of oncogenesis and provide new avenues for cancer therapeutics.
Collapse
Affiliation(s)
- Marie-Jo Halaby
- Sanford School of Medicine, The University of South Dakota, Division of Basic Biomedical Sciences, 414 East Clark Street, Lee Medicine Building, Vermillion, South Dakota 57069, USA
| | | |
Collapse
|
29
|
Abstract
The tumor suppressor protein p53 is mutated in over half of human cancers. Despite 25 years of study, the complex regulation of this protein remains unclear. After serendipitously detecting RNA binding by p53 in the yeast three-hybrid system (Y3H), we are exploring the specificity and function of this interaction. Electrophoretic mobility shift assays show that full-length p53 binds equally to RNAs that are strongly distinguished in the Y3H. RNA binding blocks sequence-specific DNA binding by p53. The C-terminus of p53 is necessary and sufficient for strong RNA interaction in vitro. Mouse and human C-terminal p53 peptides have different affinities for RNA, and an acetylated human p53 C-terminal peptide does not bind RNA. Circular dichroism spectroscopy of p53 peptides shows that RNA binding does not induce a structural change in the p53 C-terminal peptide, and C-terminal peptides do not detectably affect the structure of RNA. These results demonstrate that p53 binds RNA with little sequence specificity, RNA binding has the potential to regulate DNA binding, and RNA-p53 interactions can be regulated by acetylation of the p53 C-terminus.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
30
|
Nie M, Htun H. Different modes and potencies of translational repression by sequence-specific RNA-protein interaction at the 5'-UTR. Nucleic Acids Res 2006; 34:5528-40. [PMID: 17023487 PMCID: PMC1635260 DOI: 10.1093/nar/gkl584] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To determine whether sequence-specific RNA–protein interaction at the 5′-untranslated region (5′-UTR) can potently repress translation in mammalian cells, a bicistronic translational repression assay was developed to permit direct assessment of RNA–protein interaction and translational repression in transiently transfected living mammalian cells. Changes in cap-dependent yellow fluorescent protein (YFP) and internal ribosome entry sequence (IRES)-dependent cyan fluorescent protein (CFP) translation were monitored by fluorescence microscopy. Selective repression of YFP or coordinate repression of both YFP and CFP translation occurred, indicating two distinct modes by which RNA-binding proteins repress translation through the 5′-UTR. Interestingly, a single-stranded RNA-binding protein from Bacillus subtilis, tryptophan RNA-binding attenuation protein (TRAP), showed potent translational repression, dependent on the level of TRAP expression and position of its cognate binding site within the bicistronic reporter transcript. As the first of its class to be examined in mammalian cells, its potency in repression of translation through the 5′-UTR may be a general feature for this class of single-stranded RNA-binding proteins. Finally, a one-hybrid screen based on translational repression through the 5′-UTR identified linkers supporting full-translational repression as well as a range of partial repression by TRAP within the context of a fusion protein.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Obstetrics and Gynecology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- Department of Molecular and Medical Pharmacology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
| | - Han Htun
- Department of Obstetrics and Gynecology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- Department of Molecular and Medical Pharmacology, Molecular Biology InstituteUniversity of California Los Angeles-Jonsson Comprehensive Cancer Center, 22-168 CHS, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Box 951740, Los Angeles, CA 90095-1740, USA
- To whom correspondence should be addressed. Tel: +1 310 206 3015; Fax: +1 310 206 3670;
| |
Collapse
|
31
|
Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J. Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 2006; 12:2014-24. [PMID: 16609010 DOI: 10.1158/1078-0432.ccr-05-1853] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to investigate the role of p53 in regulating micro-RNA (miRNA) expression due to its function as a transcription factor. In addition, p53 may also affect other cellular mRNA gene expression at the translational level either via its mediated miRNAs or due to its RNA-binding function. EXPERIMENTAL DESIGN The possible interaction between p53 and miRNAs in regulating gene expression was investigated using human colon cancer HCT-116 (wt-p53) and HCT-116 (null-p53) cell lines. The effect of p53 on the expression of miRNAs was investigated using miRNA expression array and real-time quantitative reverse transcription-PCR analysis. RESULTS Our investigation indicated that the expression levels of a number of miRNAs were affected by wt-p53. Down-regulation of wt-p53 via small interfering RNA abolished the effect of wt-p53 in regulating miRNAs in HCT-116 (wt-p53) cells. Global sequence analysis revealed that over 46% of the 326 miRNA putative promoters contain potential p53-binding sites, suggesting that some of these miRNAs were potentially regulated directly by wt-p53. In addition, the expression levels of steady-state total mRNAs and actively translated mRNA transcripts were quantified by high-density microarray gene expression analysis. The results indicated that nearly 200 cellular mRNA transcripts were regulated at the posttranscriptional level, and sequence analysis revealed that some of these mRNAs may be potential targets of miRNAs, including translation initiation factor eIF-5A, eIF-4A, and protein phosphatase 1. CONCLUSION To the best of our knowledge, this is the first report demonstrating that wt-p53 and miRNAs interact in influencing gene expression and providing insights of how p53 regulates genes at multiple levels via unique mechanisms.
Collapse
Affiliation(s)
- Yaguang Xi
- University of South Alabama-Cancer Research Institute, Mobile, Alabama and Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
32
|
Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta Rev Cancer 2006; 1775:21-62. [PMID: 16904831 DOI: 10.1016/j.bbcan.2006.06.004] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 06/24/2006] [Accepted: 06/26/2006] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-beta inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-beta receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-beta receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-beta whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-beta induces epithelial-mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-beta acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-beta regulates angiogenesis. Finally, TGF-beta suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-beta pathway. In conclusion, TGF-beta signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.
Collapse
Affiliation(s)
- Katerina Pardali
- Ludwig Institute for Cancer Research, Box 595 Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
33
|
Shipman KL, Robinson PJ, King BR, Smith R, Nicholson RC. Identification of a family of DNA-binding proteins with homology to RNA splicing factors. Biochem Cell Biol 2006; 84:9-19. [PMID: 16462885 DOI: 10.1139/o05-139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe a unique family of human proteins that are capable of binding to the cAMP regulatory element (CRE) and that are homologous to RNA splicing proteins. A human cDNA was isolated that encodes a protein with a distinctive combination of modular domain structures: 2 leucine-zipper-like domains, a DNA-binding zinc-finger-like domain, an RNA-binding zinc-finger-like domain, and 2 coiled-coil protein-protein interaction domains. It also has a serine-arginine-rich domain, commonly found in proteins involved in RNA splicing. The protein was discovered using the CRE as bait in a yeast 1-hybrid assay. It was then shown to bind specifically to the CRE in vitro using gel shift assays. We have named the protein CRE-associated protein (CREAP). We show that it is widely expressed in human tissues but is highly expressed in several fetal tissues and in several regions of the adult brain. CREAP is closely related to 2 human proteins of unknown function. CREAP shows significant homology with a small nuclear ribonucleoprotein of yeast, Luc7p, involved in 5' splice site recognition. The 3 human CREAP proteins form a unique family with the potential to act as transcription factors that link to RNA processing.
Collapse
Affiliation(s)
- Kristy L Shipman
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Australia
| | | | | | | | | |
Collapse
|
34
|
Riley KJL, Cassiday LA, Kumar A, Maher LJ. Recognition of RNA by the p53 tumor suppressor protein in the yeast three-hybrid system. RNA (NEW YORK, N.Y.) 2006; 12:620-30. [PMID: 16581806 PMCID: PMC1421098 DOI: 10.1261/rna.2286706] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The p53 tumor suppressor protein is a homotetrameric transcription factor whose gene is mutated in nearly half of all human cancers. In an unrelated screen of RNA/protein interactions using the yeast three-hybrid system, we inadvertently detected p53 interactions with several different RNAs. A literature review revealed previous reports of both sequence-specific and -non-specific interactions between p53 and RNA. Using yeast three-hybrid selections to identify preferred RNA partners for p53, we failed to identify primary RNA sequences or obvious secondary structures required for p53 binding. The cationic p53 C-terminus was shown to be required for RNA binding in yeast. We show that while p53 strongly discriminates between certain RNAs in the yeast three-hybrid assay, the same RNAs are bound equally by p53 in vitro. We further show that the p53 RNA-binding preferences in yeast are mirrored almost exactly by a recombinant tetrameric form of the HIV-1 nucleocapsid (NC) protein thought to be a sequence-nonspecific RNA-binding protein. However, the possibility of specific RNA binding by p53 could not be ruled out because p53 and HIV-1 NC displayed certain differences in RNA-binding preference. We conclude that (1) p53 binds RNA in vivo, (2) RNA binding by p53 is largely sequence-nonspecific in the yeast nucleus, (3) some structure-specific RNA binding by p53 cannot be ruled out, and (4) caution is required when interpreting results of RNA screens in the yeast three-hybrid system because sequence-dependent differences in RNA folding and display can masquerade as sequence-dependent differences in protein recognition.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Guggenheim 16, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Kwang Youl Lee
- Department of Biochemistry, School of Medicine, and Medical Research Institute, Chungbuk National University, Chungju 361-763, South Korea
| | | |
Collapse
|
36
|
Meng Z, King PH, Nabors LB, Jackson NL, Chen CY, Emanuel PD, Blume SW. The ELAV RNA-stability factor HuR binds the 5'-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation. Nucleic Acids Res 2005; 33:2962-79. [PMID: 15914670 PMCID: PMC1140080 DOI: 10.1093/nar/gki603] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The type I insulin-like growth factor receptor (IGF-IR) is an integral component in the control of cell proliferation, differentiation and apoptosis. The IGF-IR mRNA contains an extraordinarily long (1038 nt) 5'-untranslated region (5'-UTR), and we have characterized a diverse series of proteins interacting with this RNA sequence which may provide for intricate regulation of IGF-IR gene expression at the translational level. Here, we report the purification and identification of one of these IGF-IR 5'-UTR-binding proteins as HuR, using a novel RNA crosslinking/RNase elution strategy. Because HuR has been predominantly characterized as a 3'-UTR-binding protein, enhancing mRNA stability and generally increasing gene expression, we sought to determine whether HuR might serve a different function in the context of its binding the IGF-IR 5'-UTR. We found that HuR consistently repressed translation initiation through the IGF-IR 5'-UTR. The inhibition of translation by HuR was concentration dependent, and could be reversed in trans by addition of a fragment of the IGF-IR 5'-UTR containing the HuR binding sites as a specific competitor, or abrogated by deletion of the third RNA recognition motif of HuR. We determined that HuR repressed translation initiation through the IGF-IR 5'-UTR in cells as well, and that siRNA knockdown of HuR markedly increased IGF-IR protein levels. Interestingly, we also found that HuR potently inhibited IGF-IR translation mediated through internal ribosome entry. Kinetic assays were performed to investigate the mechanism of translation repression by HuR and the dynamic interplay between HuR and the translation apparatus. We found that HuR, occupying a cap-distal position, significantly delayed translation initiation mediated by cap-dependent scanning, but was eventually displaced from its binding site, directly or indirectly, as a consequence of ribosomal scanning. However, HuR perpetually blocked the activity of the IGF-IR IRES, apparently arresting the IRES-associated translation pre-initiation complex in an inactive state. This function of HuR as a 5'-UTR-binding protein and dual-purpose translation repressor may be critical for the precise regulation of IGF-IR expression essential to normal cellular homeostasis.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at BirminghamBirmingham, AL, USA
- Birmingham Veterans Affairs Medical CenterBirmingham, AL 35294, USA
| | - L. Burt Nabors
- Department of Neurology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Nateka L. Jackson
- Department of Medicine, University of Alabama at BirminghamBirmingham, AL, USA
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
| | - Peter D. Emanuel
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
- Department of Medicine, University of Alabama at BirminghamBirmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
| | - Scott W. Blume
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
- Department of Medicine, University of Alabama at BirminghamBirmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
- To whom correspondence should be addressed at 1824 6th Avenue South, Wallace Tumor Institute, Room 508, University of Alabama at Birmingham, Birmingham, AL 35294, USA. Tel: +1 205 975 2409; Fax: +1 205 975 6911;
| |
Collapse
|
37
|
Freedman DA, Folkman J. CDK2 translational down-regulation during endothelial senescence. Exp Cell Res 2005; 307:118-30. [PMID: 15922732 DOI: 10.1016/j.yexcr.2005.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 03/22/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Here we report for the first time that loss of CDK2 activity, by translational inhibition and through CDK2 inhibition by p21(Cip1/Waf1), may be responsible for endothelial senescence. We show that expression of dominant-negative p53 extends human umbilical vein endothelial cell (HUVEC) lifespan past senescence. HUVEC expressing telomerase can completely bypass senescence and become immortal (i-HUVEC). Surprisingly, early passage i-HUVEC, like senescent HUVEC, express high levels of the CDK inhibitors p16(INK4a) and p21(Cip1/Waf1). Expression of p16(INK4a) can persist for over 280 population doublings, while p21(Cip1/Waf1) expression was eventually lost in five of six i-HUVEC lines. Senescent HUVEC contain undetectable CDK2 activity, which results from a dramatic reduction of CDK2 protein levels and inhibition of remaining CDK2 by p21(Cip1/Waf1). The decreased CDK2 levels in senescent HUVEC are not due to decreased transcription or protein stability; rather, CDK2 translation declines during senescence. Bypass of endothelial senescence by telomerase entails the restoration of CDK2 translation and activity. These results suggest that p16(INK4a) does not play a role in endothelial senescence. Rather, CDK2 translational down-regulation may be a key regulatory event in replicative senescence of endothelial cells. Understanding the mechanisms regulating endothelial senescence will be critical in determining the role of endothelial senescence in tumor growth.
Collapse
Affiliation(s)
- Deborah A Freedman
- Vascular Biology Program, Department of Surgery, Children's Hospital, 1 Blackfan Circle, Harvard University Medical School, Karp Family Research Laboratories, Floor 12, Boston, MA 02115, USA
| | | |
Collapse
|
38
|
Abstract
Many kinds of multifunctional regulatory proteins have been identified that perform distinct biochemical functions in the nucleus, the cytoplasm, or both. Here we describe the recent discovery by Hall et al. (2004) of a new type of multifunctional protein: a metabolic enzyme that doubles as a transcription factor. This enzyme, Arg5,6, functions as a catalytic enzyme in ornithine biosynthesis and also binds and regulates the promoters of nuclear and mitochondrial genes. It may also regulate precursor mRNA metabolism. We discuss how proteins that serve as both metabolic enzymes and transcription factors might have evolved.
Collapse
Affiliation(s)
- Anjana Bhardwaj
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | |
Collapse
|
39
|
Mishra R, Das BR. Early overexpression of Cdk4 and possible role of KRF and c-myc in chewing tobacco mediated oral cancer development. Mol Biol Rep 2004; 30:207-13. [PMID: 14672406 DOI: 10.1023/a:1026384402585] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclin Dependent Kinase 4 (Cdk4) is known to be an oncogene and is involved in various cancers. It is over-expressed either by genomic amplification or by c-myc dependent manner. Our preliminary results indicate high expression of protein and mRNA as well as absence of genomic amplification in early oral cancer development. One transcription factor (TF) binding site has been detected from -281 to -298 by using DNase I foot printing and confirmed by electrophoretic mobility shift assay. This is a novel DNA sequence. The recruitment of this new TF as well as the earlier reported c-myc was analyzed in various stage of oral cancer development. The binding activity of the new TF is present in normal tissues and observed more in initial stage samples whereas c-myc expression was absent in normal and more in higher stage of oral cancer development. On the basis of these findings we propose the new TF to be a possible CdK4 Regulating Factor (KRF). This might maintain the basal level transcription in normal and activates Cdk4 transcription in the initial stage, where as the same role is carried by c-myc in higher stage of chewing tobacco mediated oral cancer development.
Collapse
Affiliation(s)
- Rajakishore Mishra
- Molecular Oncology and Medical Biotechnology Division, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar-751 023, India
| | | |
Collapse
|
40
|
Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Yoshida T, Itoh H, Kohno K. Binding of RNA to p53 regulates its oligomerization and DNA-binding activity. Oncogene 2004; 23:4371-9. [PMID: 15064727 DOI: 10.1038/sj.onc.1207583] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The C-terminus of p53 is responsible for maintaining the latent, non-DNA-binding form of p53. However, the mechanism by which the C-terminus regulates DNA binding is not yet fully understood. We show here that p53 interacts with RNA via its C-terminal domain and that disruption of this interaction, by RNase A treatment, truncation or phosphorylation of the C-terminus, restores DNA-binding activity. Furthermore, the oligomerization of p53 is significantly enhanced by disrupting the interaction between p53 and RNA. These findings suggest that binding of RNA to p53 is involved in the mechanism of p53 latency.
Collapse
Affiliation(s)
- Yoichiro Yoshida
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 2004; 23:3180-8. [PMID: 15094767 DOI: 10.1038/sj.onc.1207544] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is increasing evidence that deregulation of gene expression at the level of mRNA translation can contribute to cell transformation and the malignant phenotype. Two steps in the pathway of polypeptide chain initiation, viz. the assembly of the 43S initiation complex catalysed by polypeptide chain initiation factor eIF2 and the binding of eIF4E to eIF4G during the recruitment of mRNA to the ribosome, have been shown to be likely targets for changes associated with tumorigenesis. The activity of eIF2 is controlled by changes in phosphorylation of the alpha subunit of this factor. The availability of eIF4E for binding to eIF4G is regulated by the phosphorylation of a small family of eIF4E-binding proteins (the 4E-BPs). The activities of the protein kinases and/or phosphatases responsible for the (de)phosphorylation of these substrates may in turn be controlled by cellular and viral oncogenes and tumour-suppressor genes. This review will describe recent aspects of the mechanisms involved, with particular emphasis on the regulation of the eIF2 alpha kinase PKR and the control of 4E-BP phosphorylation by viral gene products, growth-inhibitory cytokines and the tumour-suppressor protein p53.
Collapse
Affiliation(s)
- Michael J Clemens
- Translational Control Group, Biochemistry and Immunology, Department of Basic Medical Sciences, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
42
|
Rajasekhar VK, Holland EC. Postgenomic global analysis of translational control induced by oncogenic signaling. Oncogene 2004; 23:3248-64. [PMID: 15094774 DOI: 10.1038/sj.onc.1207546] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is commonly assumed that developmental and oncogenic signaling achieve their phenotypic effects primarily by directly regulating the transcriptional profile of cells. However, there is growing evidence that the direct effect on transcription may be overshadowed by differential effects on the translational efficiency of specific existing mRNA species. Global analysis of this effect using microarrays indicates that this mechanism of controlling protein production provides a highly specific, robust, and rapid response to oncogenic and developmental stimuli. The mRNAs so affected encode proteins involved in cell-cell interaction, signal transduction, and growth control. Furthermore, a large number of transcription factors capable of secondarily rearranging the transcriptional profile of the cell are controlled at this level as well. To what degree this translational control is either necessary or sufficient for tumor formation or maintenance remains to be determined.
Collapse
Affiliation(s)
- Vinagolu K Rajasekhar
- Department of Surgery (Neurosurgery), Neurology, Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA.
| | | |
Collapse
|
43
|
Fukuda T, Ashizuka M, Nakamura T, Shibahara K, Maeda K, Izumi H, Kohno K, Kuwano M, Uchiumi T. Characterization of the 5'-untranslated region of YB-1 mRNA and autoregulation of translation by YB-1 protein. Nucleic Acids Res 2004; 32:611-22. [PMID: 14752049 PMCID: PMC373347 DOI: 10.1093/nar/gkh223] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2003] [Revised: 11/06/2003] [Accepted: 12/17/2003] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic Y-box binding protein YB-1 is involved in various biological processes, including DNA repair, cell proliferation and the regulation of transcription and translation. YB-1 protein is abundant and expressed ubiquitously in human cells, functioning in cell proliferation and transformation. Its concentration is thought to be highly regulated at both the levels of transcription and translation. Therefore, we investigated whether or not the 5'-UTR of YB-1 mRNA affects the translation of YB-1 protein, thus influencing expression levels. Luciferase mRNA ligated to the YB-1 mRNA 5'-UTR was used as a reporter construct. Ligation of the full-length YB-1 5'-UTR (331 bases) enhanced translation as assessed by in vitro and in vivo translation assays. Deletion constructs of the YB-1 5'-UTR also resulted in a higher efficiency of translation, especially in the region mapped to +197 to +331 from the major transcription start site. RNA gel shift assays revealed that the affinity of YB-1 for various 5'-UTR probe sequences was higher for the full-length 5'-UTR than for deleted 5'-UTR sequences. An in vitro translation assay was used to demonstrate that recombinant YB-1 protein inhibited translation of the full-length 5'-UTR of YB-1 mRNA. Thus, our findings provide evidence for the autoregulation of YB-1 mRNA translation via the 5'-UTR.
Collapse
Affiliation(s)
- Takao Fukuda
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Itoh T, O'Shea C, Linn S. Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48(DDB2) and p53. Mol Cell Biol 2003; 23:7540-53. [PMID: 14560002 PMCID: PMC207631 DOI: 10.1128/mcb.23.21.7540-7553.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tumor suppressor p53 controls cell cycle progression and apoptosis following DNA damage, thus minimizing carcinogenesis. Mutations in the human DDB2 gene generate the E subgroup of xeroderma pigmentosum (XP-E). We report here that XP-E strains are defective in UV irradiation-induced apoptosis due to severely reduced basal and UV-induced p53 levels. These defects are restored by infection with a p53 cDNA expression construct or with a DDB2 expression construct if and only if it contains intron 4, which includes a nonmutated p53 consensus-binding site. We propose that both before and after UV irradiation, DDB2 directly regulates p53 levels, while DDB2 expression is itself regulated by p53.
Collapse
Affiliation(s)
- Toshiki Itoh
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
45
|
Parker MA, Deane NG, Thompson EA, Whitehead RH, Mithani SK, Washington MK, Datta PK, Dixon DA, Beauchamp RD. Over-expression of cyclin D1 regulates Cdk4 protein synthesis. Cell Prolif 2003; 36:347-60. [PMID: 14710852 PMCID: PMC6496860 DOI: 10.1046/j.1365-2184.2003.00290.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 10/06/2003] [Indexed: 11/20/2022] Open
Abstract
Increased Cdk4 expression occurs coincident with over-expression of cyclin D1 in many human tumours and tumourigenic mouse models. Here, we investigate both in vivo and in vitro the mechanism by which Cdk4 expression is regulated in the context of cyclin D1 over-expression. Cdk4 mRNA levels in cyclin D1-over-expressing tissue and cultured cells were unchanged compared with controls. In contrast, Cdk4 protein levels were increased in cyclin D1-over-expressing tissue and cells versus their respective controls. This increase was not due to altered protein stability, but appeared to be due to an increase in Cdk4 protein synthesis. We also performed immunoprecipitation and in vitro kinase assays to demonstrate an increase in cyclin D1-Cdk4 complex formation and associated kinase activity. Blocking cyclin D1 expression resulted in diminished Cdk4 protein but not mRNA levels. These findings suggest a mechanism by which Cdk4 expression is increased in the context of cyclin D1 over-expression during tumourigenesis.
Collapse
Affiliation(s)
- M A Parker
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2730, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Constantinou C, Bushell M, Jeffrey IW, Tilleray V, West M, Frost V, Hensold J, Clemens MJ. p53-induced inhibition of protein synthesis is independent of apoptosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3122-32. [PMID: 12869187 DOI: 10.1046/j.1432-1033.2003.03687.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of a temperature-sensitive form of p53 in murine erythroleukaemia cells results in a rapid impairment of protein synthesis that precedes inhibition of cell proliferation and loss of cell viability by several hours. The inhibition of translation is associated with specific cleavages of polypeptide chain initiation factors eIF4GI and eIF4B, a phenomenon previously observed in cells induced to undergo apoptosis in response to other stimuli. Although caspase activity is enhanced in the cells in which p53 is activated, both the effects on translation and the cleavages of the initiation factors are completely resistant to inhibition of caspase activity. Moreover, exposure of the cells to a combination of the caspase inhibitor z-VAD.FMK and the survival factor erythropoietin prevents p53-induced cell death but does not reverse the inhibition of protein synthesis. We conclude that the p53-regulated cleavages of eIF4GI and eIF4B, as well as the overall inhibition of protein synthesis, are caspase-independent events that can be dissociated from the induction of apoptosis per se.
Collapse
Affiliation(s)
- Constantina Constantinou
- Translational Control Group, Department of Basic Medical Sciences, St George's Hospital Medical School, Cranmer Terrace, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Yazawa M, Setoguchi A, Hong SH, Uyama R, Nakagawa T, Kanaya N, Nishimura R, Sasaki N, Masuda K, Ohno K, Tsujimoto H. Effect of an adenoviral vector that expresses the canine p53 gene on cell growth of canine osteosarcoma and mammary adenocarcinoma cell lines. Am J Vet Res 2003; 64:880-8. [PMID: 12856773 DOI: 10.2460/ajvr.2003.64.880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To generate an adenoviral vector that expressed the canine p53 gene and investigate its growth-inhibiting effect on canine osteosarcoma and mammary adenocarcinoma cell lines. SAMPLE POPULATION 2 canine osteosarcoma cell lines (HOS, OOS) and 3 canine mammary adenocarcinoma cell lines (CHMp, CIPm, and CNMm). PROCEDURE An adenoviral vector that expressed the canine p53 gene (AxCA-cp53) was generated. p53 gene expression was examined by use of reverse transcription (RT)-polymerase chain reaction (PCR) assay and immunohistochemistry. Susceptibility of cell lines to the adenoviral vector was determined by infection with an adenoviral vector that expresses beta-galactosidase (AxCA-LacZ) and 3-indolyl-beta-D-galactopyranoside staining. Growth inhibitory effects were examined by monitoring the numbers of cells after infection with mock (PBS) solution, AxCA-LacZ, or AxCA-cp53. The DNA contents per cell were measured by flow cytometry analysis. Apoptotic DNA fragmentation was detected by use of a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. RESULTS AxCA-cp53-derived p53 gene mRNA and P53 protein were detected by RT-PCR analysis and immunohistochemistry, respectively. Multiplicity of infection at which 50% of cells had positive 3-indolyl-beta-D-galactopyranoside staining results ranged from 10 to 50. AxCA-cp53 induced growth inhibition in a dose-dependent manner. Arrest of the G1-phase population and apoptotic DNA fragmentation were observed in cells infected with AxCA-cp53. CONCLUSIONS AND CLINICAL RELEVANCE AxCA-cp53 inhibits cell growth via induction of cell cycle arrest and apoptosis in canine osteosarcoma and mammary adenocarcinoma cell lines that lack a functional p53 gene. AxCA-cp53 may be useful to target the p53 gene in the treatment of dogs with tumors.
Collapse
Affiliation(s)
- Mitsuhiro Yazawa
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tardif G, Dupuis M, Reboul P, Geng CS, Pelletier JP, Ranger P, Martel-Pelletier J. Identification and differential expression of human collagenase-3 mRNA species derived from internal deletion, alternative splicing, and different polyadenylation and transcription initiation sites. Osteoarthritis Cartilage 2003; 11:524-37. [PMID: 12814616 DOI: 10.1016/s1063-4584(03)00079-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Collagenase-3 is a metalloprotease that plays a role in tissue remodeling and pathological processes including arthritis. The human gene is transcribed into major (3.0 and 2.5 kb) and minor (2.2/2.0 kb) transcripts, as seen in Northern blot assays. We investigated the possibility that other transcripts, not detectable by Northern blot, were synthesized as either coding or regulatory RNAs that would modulate collagenase-3 expression and function/activity. DESIGN We screened a cDNA library and total RNA from human chondrocytes by plaque hybridization and RT-PCR, and expressed the transcripts in a cellular environment. The levels of expression of each transcript in normal and osteoarthritic joint cells and cartilage were monitored by RT-PCR. RESULTS We identified five different collagenase-3 RNA species derived from alternative polyadenylation sites (COL3-APS), internal deletion (COL3-DEL), alternative splicing (COL3-9B/COL3-9B-2), and different transcription initiation site (COL3-ATS and COL3-ATS-INT). Each transcript could be translated in a cellular environment. Interestingly, the proteins translated from the COL3-DEL and COL3-9B-2 transcripts had a modified hemopexin-like domain, suggesting altered collagenolytic activities. The transcript types COL3-APS, COL3-9B-2, and COL3-ATS were up-regulated in the osteoarthritic samples and expressed in the chondrosarcoma cell line SW1353. CONCLUSION Our data show that the human collagenase-3 gene is subjected to different levels of regulation and constitutes a more complex system than was originally thought.
Collapse
Affiliation(s)
- G Tardif
- Osteoarthritis Research Unit, Hôpital Notre-Dame, Centre Hospitalier de l'Université de Montreal, 1560 Sherbrooke Street East, Quebec, H2L 4M1, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Gingras B, Rodier G, Giasson E, Coulombe P, Chassagne C, Meloche S. Expression of angiotensin type II receptor downregulates Cdk4 synthesis and inhibits cell-cycle progression. Oncogene 2003; 22:2633-42. [PMID: 12730677 DOI: 10.1038/sj.onc.1206346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Accumulating evidence suggests that angiotensin II type II (AT(2)) receptor subtype negatively regulates cell proliferation in pathophysiological conditions associated with tissue remodeling. However, the mechanisms through which AT(2) receptor achieves this effect remain poorly understood. In this study, we demonstrate that expression of AT(2) receptor inhibits the proliferation of rat fibroblasts in a ligand-independent manner. The antiproliferative action of AT(2) is dependent on the density of surface receptors. We show that AT(2) receptor expression negatively regulates G1 phase progression in both cycling cells and G0-arrested cells stimulated to re-enter the cell cycle, but has no detectable effect on apoptosis. The delay in cell-cycle progression of AT(2)-expressing cells is associated with downregulation of cyclin E expression, decreased assembly of cyclin E-Cdk2 complexes, and the resulting attenuation of Cdk2 activation. The induction of Cdk4 expression and activity is also markedly attenuated, which likely contributes to the inhibition of cyclin E expression. Ectopic expression of Cdk4 alleviates the proliferation defect of AT(2)-expressing cells. These findings suggest that the growth-inhibitory effects of the AT(2) receptor are attributable in part to its spontaneous inhibitory action on the cell cycle machinery.
Collapse
Affiliation(s)
- Bruno Gingras
- Institut de recherches cliniques de Montréal and Department of Pharmacology, Université de Montréal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | | | |
Collapse
|
50
|
Abriss B, Hollweg G, Gressner AM, Weiskirchen R. Adenoviral-mediated transfer of p53 or retinoblastoma protein blocks cell proliferation and induces apoptosis in culture-activated hepatic stellate cells. J Hepatol 2003; 38:169-78. [PMID: 12547405 DOI: 10.1016/s0168-8278(02)00361-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND/AIMS The principal cellular effectors of fibrosis in liver are hepatic stellate cells (HSC). In response to liver injury these quiescent cells undergo a phenotypic change to a myofibroblastic cell type, proliferate and secrete matrix components. Thus, removal of activated HSC should be beneficial for the prognosis of hepatic fibrogenesis and preserve organ function. METHODS The purpose of this study was to investigate whether administration of adenoviruses constitutively expressing the p53 tumor suppressor or the retinoblastoma protein (pRb) is sufficient to induce cell arrest or apoptosis in culture-activated HSC. The expression of the transgenes was confirmed by Western blot analysis and immunohistochemistry. RESULTS Both proteins were expressed mainly in the nucleus and their expression was associated with a marked inhibition of cell proliferation and induction of apoptosis as determined by measurement of phosphatidylserine exposed at the surface, proliferation assay, induction of the p21 cyclin-dependent kinase inhibitor, and an increase of caspase-3 activity. Additionally, electron microscopic analysis confirmed that activation of the p53-mediated pathway in HSC results in chromatin and cytoplasmic condensation, typical features of ongoing apoptosis. CONCLUSIONS Our results indicate that transduction of p53 or pRb offers a feasible approach to induce apoptosis in activated HSC. Thus, targeted transfer of these proteins into HSC may be potentially useful for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Bärbel Abriss
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, D-52074, Aachen, Germany
| | | | | | | |
Collapse
|