1
|
Williams O, Hu L, Huang W, Patel P, Bartom ET, Bei L, Hjort E, Hijiya C, Eklund EA. Nore1 inhibits age-associated myeloid lineage skewing and clonal hematopoiesis but facilitates termination of emergency (stress) granulopoiesis. J Biol Chem 2023; 299:104867. [PMID: 37247756 PMCID: PMC10404618 DOI: 10.1016/j.jbc.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023] Open
Abstract
Age-associated bone marrow changes include myeloid skewing and mutations that lead to clonal hematopoiesis. Molecular mechanisms for these events are ill defined, but decreased expression of Irf8/Icsbp (interferon regulatory factor 8/interferon consensus sequence binding protein) in aging hematopoietic stem cells may contribute. Irf8 functions as a leukemia suppressor for chronic myeloid leukemia, and young Irf8-/- mice have neutrophilia with progression to acute myeloid leukemia (AML) with aging. Irf8 is also required to terminate emergency granulopoiesis during the innate immune response, suggesting this may be the physiologic counterpart to leukemia suppression by this transcription factor. Identifying Irf8 effectors may define mediators of both events and thus contributors to age-related bone marrow disorders. In this study, we identified RASSF5 (encoding Nore1) as an Irf8 target gene and investigated the role of Nore1 in hematopoiesis. We found Irf8 activates RASSF5 transcription and increases Nore1a expression during emergency granulopoiesis. Similar to Irf8-/- mice, we found that young Rassf5-/- mice had increased neutrophils and progressed to AML with aging. We identified enhanced DNA damage, excess clonal hematopoiesis, and a distinct mutation profile in hematopoietic stem cells from aging Rassf5-/- mice compared with wildtype. We found sustained emergency granulopoiesis in Rassf5-/- mice, with repeated episodes accelerating AML, also similar to Irf8-/- mice. Identifying Nore1a downstream from Irf8 defines a pathway involved in leukemia suppression and the innate immune response and suggests a novel molecular mechanism contributing to age-related clonal myeloid disorders.
Collapse
Affiliation(s)
- Olatundun Williams
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Liping Hu
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Weiqi Huang
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA; Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Priyam Patel
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth T Bartom
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Ling Bei
- RxD Nova Pharmaceuticals, Inc, Vacaville, California, USA
| | | | - Christina Hijiya
- Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Elizabeth A Eklund
- The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA; Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Huang X, Ma T, Zhu Y, Jiao B, Yu S, Wang K, Mi JQ, Ren R. IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia. Front Med 2021; 16:403-415. [PMID: 34331664 DOI: 10.1007/s11684-021-0858-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 01/17/2023]
Abstract
The morbidity and mortality of myeloproliferative neoplasms (MPNs) are primarily caused by arterial and venous complications, progression to myelofibrosis, and transformation to acute leukemia. However, identifying molecular-based biomarkers for risk stratification of patients with MPNs remains a challenge. We have previously shown that interferon regulatory factor-8 (IRF8) and IRF4 serve as tumor suppressors in myeloid cells. In this study, we evaluated the expression of IRF4 and IRF8 and the JAK2V617F mutant allele burden in patients with MPNs. Patients with decreased IRF4 expression were correlated with a more developed MPN phenotype in myelofibrosis (MF) and secondary AML (sAML) transformed from MPNs versus essential thrombocythemia (ET). Negative correlations between the JAK2V617F allele burden and the expression of IRF8 (P < 0.05) and IRF4 (P < 0.001) and between white blood cell (WBC) count and IRF4 expression (P < 0.05) were found in ET patients. IRF8 expression was negatively correlated with the JAK2V617F allele burden (P < 0.05) in polycythemia vera patients. Complete response (CR), partial response (PR), and no response (NR) were observed in 67.5%,10%, and 22.5% of ET patients treated with hydroxyurea (HU), respectively, in 12 months. At 3 months, patients in the CR group showed high IRF4 and IRF8 expression compared with patients in the PR and NR groups. In the 12-month therapy period, low IRF4 and IRF8 expression were independently associated with the unfavorable response to HU and high WBC count. Our data indicate that the expression of IRF4 and IRF8 was associated with the MPN phenotype, which may serve as biomarkers for the response to HU in ET.
Collapse
Affiliation(s)
- Xiao Huang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingting Ma
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongmei Zhu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shanhe Yu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Current Views on the Interplay between Tyrosine Kinases and Phosphatases in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13102311. [PMID: 34065882 PMCID: PMC8151247 DOI: 10.3390/cancers13102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The chromosomal alteration t(9;22) generating the BCR-ABL1 fusion protein represents the principal feature that distinguishes some types of leukemia. An increasing number of articles have focused the attention on the relevance of protein phosphatases and their potential role in the control of BCR-ABL1-dependent or -independent signaling in different areas related to the biology of chronic myeloid leukemia. Herein, we discuss how tyrosine and serine/threonine protein phosphatases may interact with protein kinases, in order to regulate proliferative signal cascades, quiescence and self-renewals on leukemic stem cells, and drug-resistance, indicating how BCR-ABL1 can (directly or indirectly) affect these critical cells behaviors. We provide an updated review of the literature on the function of protein phosphatases and their regulation mechanism in chronic myeloid leukemia. Abstract Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by BCR-ABL1 oncogene expression. This dysregulated protein-tyrosine kinase (PTK) is known as the principal driver of the disease and is targeted by tyrosine kinase inhibitors (TKIs). Extensive documentation has elucidated how the transformation of malignant cells is characterized by multiple genetic/epigenetic changes leading to the loss of tumor-suppressor genes function or proto-oncogenes expression. The impairment of adequate levels of substrates phosphorylation, thus affecting the balance PTKs and protein phosphatases (PPs), represents a well-established cellular mechanism to escape from self-limiting signals. In this review, we focus our attention on the characterization of and interactions between PTKs and PPs, emphasizing their biological roles in disease expansion, the regulation of LSCs and TKI resistance. We decided to separate those PPs that have been validated in primary cell models or leukemia mouse models from those whose studies have been performed only in cell lines (and, thus, require validation), as there may be differences in the manner that the associated pathways are modified under these two conditions. This review summarizes the roles of diverse PPs, with hope that better knowledge of the interplay among phosphatases and kinases will eventually result in a better understanding of this disease and contribute to its eradication.
Collapse
|
4
|
Liss F, Frech M, Wang Y, Giel G, Fischer S, Simon C, Weber LM, Nist A, Stiewe T, Neubauer A, Burchert A, Liefke R. IRF8 Is an AML-Specific Susceptibility Factor That Regulates Signaling Pathways and Proliferation of AML Cells. Cancers (Basel) 2021; 13:cancers13040764. [PMID: 33673123 PMCID: PMC7917770 DOI: 10.3390/cancers13040764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Despite progress, acute myeloid leukemia (AML) remains one of the deadliest cancer diseases. The identification of novel molecular targets may allow developing innovative and alternative treatment options for AML. Using public data from genome-edited cancer cells, we identified factors that are specifically essential for AML cell growth. We validated the critical role of the transcription factor IRF8 and demonstrated that it modulates the function of the cells by regulating important signaling molecules. These results support that IRF8 may be a suitable molecular target for the treatment of AML. Abstract Personalized treatment of acute myeloid leukemia (AML) that target individual aberrations strongly improved the survival of AML patients. However, AML is still one of the most lethal cancer diseases of the 21st century, demonstrating the need to find novel drug targets and to explore alternative treatment strategies. Upon investigation of public perturbation data, we identified the transcription factor IRF8 as a novel AML-specific susceptibility gene in humans. IRF8 is upregulated in a subset of AML cells and its deletion leads to impaired proliferation in those cells. Consistently, high IRF8 expression is associated with poorer patients’ prognoses. Combining gene expression changes upon IRF8 deletion and the genome-wide localization of IRF8 in the AML cell line MV4-11, we demonstrate that IRF8 directly regulates key signaling molecules, such as the kinases SRC and FAK, the transcription factors RUNX1 and IRF5, and the cell cycle regulator Cyclin D1. IRF8 loss impairs AML-driving signaling pathways, including the WNT, Chemokine, and VEGF signaling pathways. Additionally, many members of the focal adhesion pathway showed reduced expression, providing a putative link between high IRF8 expression and poor prognosis. Thus, this study suggests that IRF8 could serve as a biomarker and potential molecular target in a subset of human AMLs.
Collapse
Affiliation(s)
- Franziska Liss
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Miriam Frech
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Ying Wang
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Gavin Giel
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany; (A.N.); (T.S.)
| | - Andreas Neubauer
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Andreas Burchert
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany; (F.L.); (S.F.); (C.S.); (L.M.W.)
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, 35037 Marburg, Germany; (M.F.); (Y.W.); (G.G.); (A.N.); (A.B.)
- Correspondence: ; Tel.: +49-6421-28-66697
| |
Collapse
|
5
|
Yanai H, Negishi H, Taniguchi T. The IRF family of transcription factors: Inception, impact and implications in oncogenesis. Oncoimmunology 2021; 1:1376-1386. [PMID: 23243601 PMCID: PMC3518510 DOI: 10.4161/onci.22475] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the interferon-regulatory factor (IRF) proteins family were originally identified as transcriptional regulators of the Type I interferon system. Thanks to consistent advances made in our understanding of the immunobiology of innate receptors, it is now clear that several IRFs are critical for the elicitation of innate pattern recognition receptors, and—as a consequence—for adaptive immunity. In addition, IRFs have attracted great attentions as they modulate cellular responses that are involved in tumorigenesis. The regulation of oncogenesis by IRFs has important implications for understanding the host susceptibility to several Types of cancers, their progression, as well as the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Molecular Immunology; Institute of Industrial Science; The University of Tokyo; Tokyo, Japan ; Core Research for Evolution Science and Technology; Japan Science and Technology Agency; Chiyoda-ku, Tokyo, Japan
| | | | | |
Collapse
|
6
|
Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer. Biomolecules 2020; 10:biom10121659. [PMID: 33322542 PMCID: PMC7763032 DOI: 10.3390/biom10121659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
In this review article, we present the current knowledge on PTPN13, a class I non-receptor protein tyrosine phosphatase identified in 1994. We focus particularly on its role in cancer, where PTPN13 acts as an oncogenic protein and also a tumor suppressor. To try to understand these apparent contradictory functions, we discuss PTPN13 implication in the FAS and oncogenic tyrosine kinase signaling pathways and in the associated biological activities, as well as its post-transcriptional and epigenetic regulation. Then, we describe PTPN13 clinical significance as a prognostic marker in different cancer types and its impact on anti-cancer treatment sensitivity. Finally, we present future research axes following recent findings on its role in cell junction regulation that implicate PTPN13 in cell death and cell migration, two major hallmarks of tumor formation and progression.
Collapse
|
7
|
Huang W, Liu B, Eklund EA. Investigating the role of the innate immune response in relapse or blast crisis in chronic myeloid leukemia. Leukemia 2020; 34:2364-2374. [PMID: 32080344 PMCID: PMC7438233 DOI: 10.1038/s41375-020-0771-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 01/04/2023]
Abstract
Chronic myeloid leukemia (CML) is characterized by expression of the tyrosine kinase oncogene, Bcr–abl. Tyrosine kinase inhibitors (TKI) induce prolonged remission in CML, and therapy discontinuation is an accepted approach to patients with reduction in Bcr–abl transcripts of four logs or greater. Half such individuals sustain a therapy free remission, but molecular mechanisms predicting relapse are undefined. We found relative calpain inhibition in CML cells with stabilization of calpain substrates, including βcatenin and Xiap1. Since the Survivin gene is activated by βcatenin, this identified two apoptosis-resistance mechanisms. We found that Survivin impaired apoptosis in leukemia stem cells (LSCs) and Xiap1 in CML granulocytes. Consistent with this, we determined treatment with an inhibitor of Survivin, but not Xiap1, prevented relapse during TKI treatment and after therapy discontinuation in a murine CML model. By transcriptome profiling, we identified activation of innate immune response pathways in murine CML bone marrow progenitors. This was increased by TKI treatment alone, but normalized with addition of a Survivin inhibitor. We found that activation of the innate immune response induced rapid blast crisis in untreated CML mice, and chronic phase relapse during a TKI discontinuation attempt. These results suggest that extrinsic stress exerts adverse effects on CML-LSCs.
Collapse
Affiliation(s)
- Weiqi Huang
- The Feinberg School, Northwestern University, Chicago, IL, USA.,Jesse Brown Veterans Health Administration Medical Center, Chicago, IL, USA
| | - Bin Liu
- The Feinberg School, Northwestern University, Chicago, IL, USA
| | - Elizabeth A Eklund
- The Feinberg School, Northwestern University, Chicago, IL, USA. .,Jesse Brown Veterans Health Administration Medical Center, Chicago, IL, USA.
| |
Collapse
|
8
|
Inselmann S, Wang Y, Saussele S, Fritz L, Schütz C, Huber M, Liebler S, Ernst T, Cai D, Botschek S, Brendel C, Calogero RA, Pavlinic D, Benes V, Liu ET, Neubauer A, Hochhaus A, Burchert A. Development, Function, and Clinical Significance of Plasmacytoid Dendritic Cells in Chronic Myeloid Leukemia. Cancer Res 2018; 78:6223-6234. [PMID: 30166420 DOI: 10.1158/0008-5472.can-18-1477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/13/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022]
Abstract
Plasmacytoid dendritic cells (pDC) are the main producers of a key T-cell-stimulatory cytokine, IFNα, and critical regulators of antiviral immunity. Chronic myeloid leukemia (CML) is caused by BCR-ABL, which is an oncogenic tyrosine kinase that can be effectively inhibited with ABL-selective tyrosine kinase inhibitors (TKI). BCR-ABL-induced suppression of the transcription factor interferon regulatory factor 8 was previously proposed to block pDC development and compromise immune surveillance in CML. Here, we demonstrate that pDCs in newly diagnosed CML (CML-pDC) develop quantitatively normal and are frequently positive for the costimulatory antigen CD86. They originate from low-level BCR-ABL-expressing precursors. CML-pDCs also retain their competence to maturate and to secrete IFN. RNA sequencing reveals a strong inflammatory gene expression signature in CML-pDCs. Patients with high CML-pDC counts at diagnosis achieve inferior rates of deep molecular remission (MR) under nilotinib, unless nilotinib therapy is combined with IFN, which strongly suppresses circulating pDC counts. Although most pDCs are BCR-ABL-negative in MR, a substantial proportion of BCR-ABL + CML-pDCs persists under TKI treatment. This could be of relevance, because CML-pDCs elicit CD8+ T cells, which protect wild-type mice from CML. Together, pDCs are identified as novel functional DC population in CML, regulating antileukemic immunity and treatment outcome in CML.Significance: CML-pDC originates from low-level BCR-ABL expressing stem cells into a functional immunogenic DC-population regulating antileukemic immunity and treatment outcome in CML. Cancer Res; 78(21); 6223-34. ©2018 AACR.
Collapse
Affiliation(s)
- Sabrina Inselmann
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Ying Wang
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Susanne Saussele
- Department of Hematology/Oncology, University Hospital Mannheim, University Heidelberg, Mannheim, Germany
| | - Lea Fritz
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Christin Schütz
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Simone Liebler
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Thomas Ernst
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Jena, Germany
| | - Dali Cai
- Department of Hematology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Sarah Botschek
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | | | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Jena, Germany
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
9
|
Bcr-abl regulates Stat5 through Shp2, the interferon consensus sequence binding protein (Icsbp/Irf8), growth arrest specific 2 (Gas2) and calpain. Oncotarget 2018; 7:77635-77650. [PMID: 27769062 PMCID: PMC5363610 DOI: 10.18632/oncotarget.12749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/12/2016] [Indexed: 01/16/2023] Open
Abstract
Icsbp/Irf8 is an interferon regulatory transcription factor that functions as a suppressor of myeloid leukemias. Consistent with this activity, Icsbp represses a set of genes encoding proteins that promote cell proliferation/survival. One such gene encodes Gas2, a calpain inhibitor. We previously found that increased Gas2-expression in Bcr-abl+ cells stabilized βcatenin; a Calpain substrate. This was of interest, because βcatenin contributes to disease progression in chronic myeloid leukemia (CML). Calpain has additional substrates implicated in leukemogenesis, including Stat5. In the current study, we hypothesized that Stat5 activity in CML is regulated by Gas2/Calpain. We found that Bcr-abl-induced, Shp2-dependent dephosphorylation of Icsbp impaired repression of GAS2 by this transcription factor. The consequent decrease in Calpain activity stabilized Stat5 protein; increasing the absolute abundance of both phospho and total Stat5. This enhanced repression of the IRF8 promoter by Stat5 in a manner dependent on Icsbp, Gas2 and Calpain, but not Stat5 tyrosine phosphorylation. During normal myelopoiesis, increased expression and phosphorylation of Icsbp inhibits Calpain. In contrast, constitutive activation of Shp2 in Bcr-abl+ cells impairs regulation of Gas2/Calpain by Icsbp, aberrantly stabilizing Stat5 and enhancing IRF8 repression. This novel feedback mechanism enhances leukemogenesis by increasing Stat5 and decreasing Icsbp. Bcr-abl targeted tyrosine kinase inhibitors (TKIs) provide long term disease control, but CML is not cured by these agents. Our studies suggest targeting Calpain might be a rational therapeutic approach to decrease persistent leukemia stem cells (LSCs) during TKI-treatment.
Collapse
|
10
|
Shah CA, Broglie L, Hu L, Bei L, Huang W, Dressler DB, Eklund EA. Stat3 and CCAAT enhancer-binding protein β (C/ebpβ) activate Fanconi C gene transcription during emergency granulopoiesis. J Biol Chem 2018; 293:3937-3948. [PMID: 29382715 PMCID: PMC5857980 DOI: 10.1074/jbc.ra117.000528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Interferon consensus sequence–binding protein (Icsbp) is required for terminating emergency granulopoiesis, an episodic event responsible for granulocyte production in response to infections and a key component of the innate immune response. Icsbp inhibits the expression of Stat3 and C/ebpβ, transcription factors essential for initiating and sustaining granulopoiesis, and activates transcription of Fanconi C (FANCC), a DNA repair protein. In prior studies, we noted accelerated bone marrow failure in Fancc−/− mice undergoing multiple episodes of emergency granulopoiesis, associated with apoptosis of bone marrow cells with unrepaired DNA damage. Additionally, we found increased expression of Fanconi C and F proteins during emergency granulopoiesis. These findings suggest that Icsbp protects the bone marrow from DNA damage by increasing activity of the Fanconi DNA repair pathway, but the mechanisms for FANCC activation during initiation of emergency granulopoiesis are unclear. In this study, we observed that Stat3 and C/ebpβ activate FANCC transcription and contribute to DNA repair. Our findings indicate that FancC expression is increased during Stat3- and C/ebpβ-induced initiation of emergency granulopoiesis by these transcription factors and is maintained through termination by Icsbp. Our work reveals that Stat3- and C/ebpβ-mediated FancC expression is a critical component for initiating and sustaining key innate immune responses.
Collapse
Affiliation(s)
- Chirag A Shah
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605.,the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| | - Larisa Broglie
- the Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin 53213
| | - Liping Hu
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605
| | - Ling Bei
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605.,the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| | - Weiqi Huang
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605.,the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| | - Danielle B Dressler
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605
| | - Elizabeth A Eklund
- From the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60605, .,the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| |
Collapse
|
11
|
Ali MAM. Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: An Evolving Paradigm of Molecularly Targeted Therapy. Mol Diagn Ther 2017; 20:315-33. [PMID: 27220498 DOI: 10.1007/s40291-016-0208-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the unrestrained expansion of pluripotent hematopoietic stem cells. CML was the first malignancy in which a unique chromosomal abnormality was identified and a pathophysiologic association was suggested. The hallmark of CML is a reciprocal chromosomal translocation between the long arms of chromosomes 9 and 22, t(9; 22)(q34; q11), creating a derivative 9q+ and a shortened 22q-. The latter, known as the Philadelphia (Ph) chromosome, harbors the breakpoint cluster region-abelson (BCR-ABL) fusion gene, encoding the constitutively active BCR-ABL tyrosine kinase that is necessary and sufficient for initiating CML. The successful implementation of tyrosine kinase inhibitors (TKIs) for the treatment of CML remains a flagship for molecularly targeted therapy in cancer. TKIs have changed the clinical course of CML; however, some patients nonetheless demonstrate primary or secondary resistance to such therapy and require an alternative therapeutic strategy. Therefore, the assessment of early response to treatment with TKIs has become an important tool in the clinical monitoring of CML patients. Although mutations in the BCR-ABL have proven to be the most prominent mechanism of resistance to TKIs, other mechanisms-either rendering the leukemic cells still dependent on BCR-ABL activity or supporting oncogenic properties of the leukemic cells independent of BCR-ABL signaling-have been identified. This article provides an overview of the current understanding of CML pathogenesis; recommendations for diagnostic tools, treatment strategies, and management guidelines; and highlights the BCR-ABL-dependent and -independent mechanisms that contribute to the development of resistance to TKIs.
Collapse
Affiliation(s)
- Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
12
|
Zhao F, Shi Y, Huang Y, Zhan Y, Zhou L, Li Y, Wan Y, Li H, Huang H, Ruan H, Luo L, Li L. Irf8 regulates the progression of myeloproliferative neoplasm-like syndrome via Mertk signaling in zebrafish. Leukemia 2017. [PMID: 28626217 DOI: 10.1038/leu.2017.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interferon regulatory factor (IRF)-8 is a critical transcription factor involved in the pathogenesis of myeloid neoplasia. However, the underlying mechanisms in vivo are not well known. Investigation of irf8-mutant zebrafish in this study indicated that Irf8 is evolutionarily conserved as an essential neoplastic suppressor through tight control of the proliferation and longevity of myeloid cells. Surviving irf8 mutants quickly developed a myeloproliferative neoplasm (MPN)-like disease with enhanced output of the myeloid precursors, which recurred after transplantation. Multiple molecules presented notable alteration and Mertk signaling was aberrantly activated in the hematopoietic cells in irf8 mutants. Transgenic mertk overexpression in Tg(coro1a:mertk) zebrafish recapitulated the myeloid neoplasia-like syndrome in irf8 mutants. Moreover, functional interference with Mertk, via morpholino knockdown or genetic disruption, attenuated the myeloid expansion phenotype caused by Irf8 deficiency. Therefore, Mertk signaling is a critical downstream player in the Irf8-mediated regulation of the progression of myeloid neoplasia. Our study extends the understanding of the mechanisms underlying leukemogenesis.
Collapse
Affiliation(s)
- F Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Y Shi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Y Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Y Zhan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - L Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Y Li
- Biomedical Analysis Center, Key Laboratory of Cytomics, The Third Military Medical University, Chongqing, China
| | - Y Wan
- Biomedical Analysis Center, Key Laboratory of Cytomics, The Third Military Medical University, Chongqing, China
| | - H Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - H Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - H Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - L Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - L Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Huang W, Bei L, Hjort EE, Eklund EA. Decreased calpain activity in chronic myeloid leukemia impairs apoptosis by increasing survivin in myeloid progenitors and xiap1 in differentiating granulocytes. Oncotarget 2017; 8:50629-50641. [PMID: 28881589 PMCID: PMC5584179 DOI: 10.18632/oncotarget.16884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/27/2017] [Indexed: 01/10/2023] Open
Abstract
Chronic Myeloid Leukemia (CML) is characterized by translocations between chromosomes 9 and 22, resulting in expression of Bcr-abl oncogenes. Although the clinical course of CML was revolutionized by development of Bcr-abl-directed tyrosine kinase inhibitors (TKIs), CML is not cured by these agents. Specifically, the majority of subjects relapsed in clinical trials attempting TKI discontinuation, suggesting persistence of leukemia stem cells (LSCs) even in molecular remission. Identifying mechanisms of CML-LSC persistence may suggest rationale therapeutic targets to augment TKI efficacy and lead to cure. Apoptosis resistance is one proposed mechanism. In prior studies, we identified increased expression of Growth Arrest Specific 2 (Gas2; a Calpain inhibitor) in Bcr-abl+ bone marrow progenitor cells. A number of previously described Calpain substrates might influence apoptosis in CML, including βcatenin and the X-linked Inhibitor of Apoptosis Protein 1 (Xiap1). We previously found Gas2/Calpain dependent stabilization of βcatenin in CML, and increased expression of βcatenin target genes, including Survivin (also an IAP). In the current work, we investigate contributions of Survivin and Xiap1 to Fas-resistance in Bcr-abl+ bone marrow cells. Inhibitors of these proteins are currently in clinical trials for other malignancies, but a role for either IAP in CML-LSC persistence is unknown.
Collapse
Affiliation(s)
- Weiqi Huang
- The Feinberg School at Northwestern University, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ling Bei
- The Feinberg School at Northwestern University, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Elizabeth E Hjort
- The Feinberg School at Northwestern University, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Elizabeth A Eklund
- The Feinberg School at Northwestern University, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
14
|
Clarke CJ, Holyoake TL. Preclinical approaches in chronic myeloid leukemia: from cells to systems. Exp Hematol 2017; 47:13-23. [PMID: 28017647 PMCID: PMC5333535 DOI: 10.1016/j.exphem.2016.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022]
Abstract
Advances in the design of targeted therapies for the treatment of chronic myeloid leukemia (CML) have transformed the prognosis for patients diagnosed with this disease. However, leukemic stem cell persistence, drug intolerance, drug resistance, and advanced-phase disease represent unmet clinical needs demanding the attention of CML investigators worldwide. The availability of appropriate preclinical models is essential to efficiently translate findings from the bench to the clinic. Here we review the current approaches taken to preclinical work in the CML field, including examples of commonly used in vivo models and recent successes from systems biology-based methodologies.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Line, Transformed
- Cell Transplantation
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Humans
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Transduction, Genetic
- Transgenes
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, UK
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Gartnavel General Hospital, Glasgow, UK.
| |
Collapse
|
15
|
Cesaro E, Sodaro G, Montano G, Grosso M, Lupo A, Costanzo P. The Complex Role of the ZNF224 Transcription Factor in Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:191-222. [PMID: 28215224 DOI: 10.1016/bs.apcsb.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ZNF224 is a member of the Kruppel-associated box zinc finger proteins (KRAB-ZFPs) family. It was originally identified as a transcriptional repressor involved in gene-specific silencing through the recruitment of the corepressor KAP1, chromatin-modifying activities, and the arginine methyltransferase PRMT5 on the promoter of its target genes. Recent findings indicate that ZNF224 can behave both as a tumor suppressor or an oncogene in different human cancers. The transcriptional regulatory properties of ZNF224 in these systems appear to be complex and influenced by specific sets of interactors. ZNF224 can also act as a transcription cofactor for other DNA-binding proteins. A role for ZNF224 in transcriptional activation has also emerged. Here, we review the state of the literature supporting both roles of ZNF224 in cancer. We also examine the functional activity of ZNF224 as a transcription factor and the influence of protein partners on its dual behavior. Increasing information on the mechanism through which ZNF224 can operate could lead to the identification of agents capable of modulating ZNF224 function, thus potentially paving the way to new therapeutic strategies for treatment of cancer.
Collapse
Affiliation(s)
- E Cesaro
- University of Naples Federico II, Naples, Italy
| | - G Sodaro
- University of Naples Federico II, Naples, Italy
| | - G Montano
- BioMedical Center, Lund University, Lund, Sweden
| | - M Grosso
- University of Naples Federico II, Naples, Italy
| | - A Lupo
- University of Sannio, Benevento, Italy
| | - P Costanzo
- University of Naples Federico II, Naples, Italy.
| |
Collapse
|
16
|
Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y, Du X, Li J, Li P, Ren R, Pan J. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest 2016; 126:3961-3980. [PMID: 27643437 DOI: 10.1172/jci85239] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
Imatinib-insensitive leukemia stem cells (LSCs) are believed to be responsible for resistance to BCR-ABL tyrosine kinase inhibitors and relapse of chronic myelogenous leukemia (CML). Identifying therapeutic targets to eradicate CML LSCs may be a strategy to cure CML. In the present study, we discovered a positive feedback loop between BCR-ABL and protein arginine methyltransferase 5 (PRMT5) in CML cells. Overexpression of PRMT5 was observed in human CML LSCs. Silencing PRMT5 with shRNA or blocking PRMT5 methyltransferase activity with the small-molecule inhibitor PJ-68 reduced survival, serial replating capacity, and long-term culture-initiating cells (LTC-ICs) in LSCs from CML patients. Further, PRMT5 knockdown or PJ-68 treatment dramatically prolonged survival in a murine model of retroviral BCR-ABL-driven CML and impaired the in vivo self-renewal capacity of transplanted CML LSCs. PJ-68 also inhibited long-term engraftment of human CML CD34+ cells in immunodeficient mice. Moreover, inhibition of PRMT5 abrogated the Wnt/β-catenin pathway in CML CD34+ cells by depleting dishevelled homolog 3 (DVL3). This study suggests that epigenetic methylation modification on histone protein arginine residues is a regulatory mechanism to control self-renewal of LSCs and indicates that PRMT5 may represent a potential therapeutic target against LSCs.
Collapse
MESH Headings
- 1-Naphthylamine/analogs & derivatives
- 1-Naphthylamine/pharmacology
- Aminoquinolines/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Carbazoles/pharmacology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Enzyme Induction
- Female
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- HEK293 Cells
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Molecular Targeted Therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Protein-Arginine N-Methyltransferases/antagonists & inhibitors
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- STAT5 Transcription Factor/metabolism
- Xenograft Model Antitumor Assays
Collapse
|
17
|
Jin Y, Yao Y, Chen L, Zhu X, Jin B, Shen Y, Li J, Du X, Lu Y, Jiang S, Pan J. Depletion of γ-catenin by Histone Deacetylase Inhibition Confers Elimination of CML Stem Cells in Combination with Imatinib. Am J Cancer Res 2016; 6:1947-62. [PMID: 27570562 PMCID: PMC4997248 DOI: 10.7150/thno.16139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/12/2016] [Indexed: 01/05/2023] Open
Abstract
Quiescent leukemia stem cells (LSCs) that are insensitive to BCR-ABL tyrosine kinase inhibitors confer resistance to imatinib in chronic myelogenous leukemia (CML). Identifying proteins to regulate survival and stemness of LSCs is urgently needed. Although histone deacetylase inhibitors (HDACis) can eliminate quiescent LSCs in CML, little is known about the underlying mechanism that HDACis kill LSCs. By fishing with a biotin-labeled probe, we identified that HDACi JSL-1 bound to the protein γ-catenin. γ-Catenin expression was higher in LSCs from CML patients than normal hematopoietic stem cells. Silencing γ-catenin in human CML CD34(+) bone-marrow (BM) cells sufficiently eliminated LSCs, which suggests that γ-catenin is required for survival of CML LSCs. Pharmacological inhibition of γ-catenin thwarted survival and self-renewal of human CML CD34(+) cells in vitro, and of murine LSCs in BCR-ABL-driven CML mice. γ-Catenin inhibition reduced long-term engraftment of human CML CD34(+) cells in NOD.Cg-Prkdc (scid) II2rg (tm1Sug)/JicCrl (NOG) mice. Silencing γ-catenin by shRNA in human primary CD34(+) cells did not alter β-catenin, implying a β-catenin-independent role of γ-catenin in survival and self-renewal of CML LSCs. Taken together, our findings validate that γ-catenin may be a novel therapeutic target of LSCs, and suppression of γ-catenin by HDACi may explain elimination of CML LSCs.
Collapse
|
18
|
The role of Fas-associated phosphatase 1 in leukemia stem cell persistence during tyrosine kinase inhibitor treatment of chronic myeloid leukemia. Leukemia 2016; 30:1502-9. [PMID: 26984787 DOI: 10.1038/leu.2016.66] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 01/22/2023]
Abstract
Chronic myeloid leukemia (CML) is characterized by expression of Bcr-abl, a tyrosine kinase oncogene. Clinical outcomes in CML were revolutionized by development of Bcr-abl-targeted tyrosine kinase inhibitors (TKIs), but CML is not cured by these agents. CML leukemia stem cells (LSCs) are relatively TKI insensitive and persist even in remission. LSC persistence results in relapse upon TKI discontinuation, or drug resistance or blast crisis (BC) during prolonged treatment. We hypothesize that increased expression of Fas-associated phosphatase 1 (Fap1) in CML contributes to LSC persistence and BC. As Fap1 substrates include Fas and glycogen synthase kinase-3β (Gsk3β), increased Fap1 activity in CML is anticipated to induce Fas resistance and stabilization of β-catenin protein. Resistance to Fas-induced apoptosis may contribute to CML LSC persistence, and β-catenin activity increases during BC. In the current study, we directly tested the role of Fap1 in CML LSC persistence using in an in vivo murine model. In TKI-treated mice, we found that inhibiting Fap1, using a tripeptide or small molecule, prevented TKI resistance, BC and relapse after TKI discontinuation; all events observed with TKI alone. In addition, Fap1 inhibition increased Fas sensitivity and decreased β-catenin activity in CD34(+) bone marrow cells from human subjects with CML. Therapeutic Fap1 inhibition may permit TKI discontinuation and delay in progression in CML.
Collapse
|
19
|
Hu L, Huang W, Hjort EE, Bei L, Platanias LC, Eklund EA. The Interferon Consensus Sequence Binding Protein (Icsbp/Irf8) Is Required for Termination of Emergency Granulopoiesis. J Biol Chem 2015; 291:4107-20. [PMID: 26683374 DOI: 10.1074/jbc.m115.681361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
Emergency granulopoiesis occurs in response to infectious or inflammatory challenge and is a component of the innate immune response. Some molecular events involved in initiating emergency granulopoiesis are known, but termination of this process is less well defined. In this study, we found that the interferon consensus sequence binding protein (Icsbp/Irf8) was required to terminate emergency granulopoiesis. Icsbp is an interferon regulatory transcription factor with leukemia suppressor activity. Expression of Icsbp is decreased in chronic myeloid leukemia, and Icsbp(-/-) mice exhibit progressive granulocytosis with evolution to blast crisis, similar to the course of human chronic myeloid leukemia. In this study, we found aberrantly sustained granulocyte production in Icsbp(-/-) mice after stimulation of an emergency granulopoiesis response. Icsbp represses transcription of the genes encoding Fas-associated phosphatase 1 (Fap1) and growth arrest-specific 2 (Gas2) and activates genes encoding Fanconi C and F. After stimulation of emergency granulopoiesis, we found increased and sustained expression of Fap1 and Gas2 in bone marrow myeloid progenitor cells from Icsbp(-/-) mice in comparison with the wild type. This was associated with resistance to Fas-induced apoptosis and increased β-catenin activity in these cells. We also found that repeated episodes of emergency granulopoiesis accelerated progression to acute myeloid leukemia in Icsbp(-/-) mice. This was associated with impaired Fanconi C and F expression and increased sensitivity to DNA damage in bone marrow myeloid progenitors. Our results suggest that impaired Icsbp expression enhances leukemogenesis by deregulating processes that normally limit granulocyte expansion during the innate immune response.
Collapse
Affiliation(s)
- Liping Hu
- From the Feinberg School of Medicine and
| | - Weiqi Huang
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | | | - Ling Bei
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Leonidas C Platanias
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612 Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Elizabeth A Eklund
- From the Feinberg School of Medicine and the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612 Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| |
Collapse
|
20
|
Montano G, Ullmark T, Jernmark-Nilsson H, Sodaro G, Drott K, Costanzo P, Vidovic K, Gullberg U. The hematopoietic tumor suppressor interferon regulatory factor 8 (IRF8) is upregulated by the antimetabolite cytarabine in leukemic cells involving the zinc finger protein ZNF224, acting as a cofactor of the Wilms' tumor gene 1 (WT1) protein. Leuk Res 2015; 40:60-7. [PMID: 26563595 DOI: 10.1016/j.leukres.2015.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/29/2023]
Abstract
The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter.
Collapse
Affiliation(s)
- Giorgia Montano
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Tove Ullmark
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Helena Jernmark-Nilsson
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Gaetano Sodaro
- Department of Molecular Medicine, and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Kristina Drott
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Paola Costanzo
- Department of Molecular Medicine, and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Karina Vidovic
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| | - Urban Gullberg
- Department of Hematology and Transfusion Medicine, Medical Faculty, University of Lund, Lund, Sweden.
| |
Collapse
|
21
|
Talpaz M, Mercer J, Hehlmann R. The interferon-alpha revival in CML. Ann Hematol 2015; 94 Suppl 2:S195-207. [PMID: 25814086 DOI: 10.1007/s00277-015-2326-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/29/2015] [Indexed: 01/22/2023]
Abstract
Interferon-alpha (IFNα) was once the standard of frontline treatment for chronic myeloid leukemia (CML). Its pleiotropic mechanism of action in CML includes immune activation and specific targeting of CML stem cells. Early studies of IFNα in CML demonstrated that patients in chronic phase could attain extremely stable remissions, which correlated with long-term survival. Some patients even sustained their remission after discontinuing therapy, but the mechanism underlying this phenomenon is not well understood. Today, BCR-ABL tyrosine kinase inhibitors (TKIs), such as imatinib, induce remarkable responses in CML patients and have become the mainstay of CML therapy. Although TKIs target the pathogenic BCR-ABL protein in CML, they cannot fully eradicate CML stem cells. Some of the clinical trials testing IFNα plus imatinib combination therapy suggest that addition of IFNα increases the speed and rate of responses with imatinib therapy. However, the undesirable side effects of IFNα can make this therapy difficult to deliver, and the optimal therapeutic window for using IFNα in combination therapy is unknown. Further studies are needed to clarify the best niche for IFNα use in CML.
Collapse
Affiliation(s)
- Moshe Talpaz
- Department of Internal Medicine, Division of Hematology Oncology, University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Comprehensive Cancer Center Room 4302, Ann Arbor, MI, 48109-5936, USA,
| | | | | |
Collapse
|
22
|
Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol 2015; 94 Suppl 2:S107-21. [PMID: 25814077 DOI: 10.1007/s00277-015-2325-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Chronic myeloid leukaemia (CML) is a myeloproliferative disorder arising in the haemopoietic stem cell (HSC) compartment. This disease is characterised by a reciprocal t(9;22) chromosomal translocation, resulting in the formation of the Philadelphia (Ph) chromosome containing the BCR-ABL1 gene. As such, diagnosis and monitoring of disease involves detection of BCR-ABL1. It is the BCR-ABL1 protein, in particular its constitutively active tyrosine kinase activity, that forges the pathogenesis of CML. This aberrant kinase signalling activates downstream targets that reprogram the cell to cause uncontrolled proliferation and results in myeloid hyperplasia and 'indolent' symptoms of chronic phase (CP) CML. Without successful intervention, the disease will progress into blast crisis (BC), resembling an acute leukaemia. This advanced disease stage takes on an aggressive phenotype and is almost always fatal. The cell biology of CML is also centred on BCR-ABL1. The presence of BCR-ABL1 can explain virtually all the cellular features of the leukaemia (enhanced cell growth, inhibition of apoptosis, altered cell adhesion, growth factor independence, impaired genomic surveillance and differentiation). This article provides an overview of the clinical and cell biology of CML, and highlights key findings and unanswered questions essential for understanding this disease.
Collapse
MESH Headings
- Animals
- Disease Progression
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mutation
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
Collapse
Affiliation(s)
- Bradley Chereda
- Departments of Genetics and Molecular Pathology, and Haematology, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, 5000, Australia,
| | | |
Collapse
|
23
|
Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 2015; 101:342-51. [DOI: 10.1007/s12185-015-1761-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
24
|
Sharma A, Yun H, Jyotsana N, Chaturvedi A, Schwarzer A, Yung E, Lai CK, Kuchenbauer F, Argiropoulos B, Görlich K, Ganser A, Humphries RK, Heuser M. Constitutive IRF8 expression inhibits AML by activation of repressed immune response signaling. Leukemia 2014; 29:157-68. [PMID: 24957708 DOI: 10.1038/leu.2014.162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 01/07/2023]
Abstract
Myeloid differentiation is blocked in acute myeloid leukemia (AML), but the molecular mechanisms are not well characterized. Meningioma 1 (MN1) is overexpressed in AML patients and confers resistance to all-trans retinoic acid-induced differentiation. To understand the role of MN1 as a transcriptional regulator in myeloid differentiation, we fused transcriptional activation (VP16) or repression (M33) domains with MN1 and characterized these cells in vivo. Transcriptional activation of MN1 target genes induced myeloproliferative disease with long latency and differentiation potential to mature neutrophils. A large proportion of differentially expressed genes between leukemic MN1 and differentiation-permissive MN1VP16 cells belonged to the immune response pathway like interferon-response factor (Irf) 8 and Ccl9. As MN1 is a cofactor of MEIS1 and retinoic acid receptor alpha (RARA), we compared chromatin occupancy between these genes. Immune response genes that were upregulated in MN1VP16 cells were co-targeted by MN1 and MEIS1, but not RARA, suggesting that myeloid differentiation is blocked through transcriptional repression of shared target genes of MN1 and MEIS1. Constitutive expression of Irf8 or its target gene Ccl9 identified these genes as potent inhibitors of murine and human leukemias in vivo. Our data show that MN1 prevents activation of the immune response pathway, and suggest restoration of IRF8 signaling as therapeutic target in AML.
Collapse
Affiliation(s)
- A Sharma
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - H Yun
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - N Jyotsana
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - A Chaturvedi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - A Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - E Yung
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - C K Lai
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - F Kuchenbauer
- Department of Internal Medicine III, University Hospital Medical Center, Ulm, Germany
| | - B Argiropoulos
- Department of Medical Genetics, HSC, University of Calgary, Calgary, Alberta, Canada
| | - K Görlich
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - A Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - R K Humphries
- 1] Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada [2] Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Waight JD, Banik D, Griffiths EA, Nemeth MJ, Abrams SI. Regulation of the interferon regulatory factor-8 (IRF-8) tumor suppressor gene by the signal transducer and activator of transcription 5 (STAT5) transcription factor in chronic myeloid leukemia. J Biol Chem 2014; 289:15642-52. [PMID: 24753251 DOI: 10.1074/jbc.m113.544320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase inhibitors such as imatinib can effectively target the BCR-ABL oncoprotein in a majority of patients with chronic myeloid leukemia (CML). Unfortunately, some patients are resistant primarily to imatinib and others develop drug resistance, prompting interest in the discovery of new drug targets. Although much of this resistance can be explained by the presence of mutations within the tyrosine kinase domain of BCR-ABL, such mutations are not universally identified. Interferon regulatory factor-8 (IRF-8) is a transcription factor that is essential for myelopoiesis. Depressed IRF-8 levels are observed in a majority of CML patients and Irf-8(-/-) mice exhibit a CML-like disease. The underlying mechanisms of IRF-8 loss in CML are unknown. We hypothesized that BCR-ABL suppresses transcription of IRF-8 through STAT5, a proximal BCR-ABL target. Treatment of primary cells from newly diagnosed CML patients in chronic phase as well as BCR-ABL(+) cell lines with imatinib increased IRF-8 transcription. Furthermore, IRF-8 expression in cell line models was necessary for imatinib-induced antitumor responses. We have demonstrated that IRF-8 is a direct target of STAT5 and that silencing of STAT5 induced IRF-8 expression. Conversely, activating STAT5 suppressed IRF-8 transcription. Finally, we showed that STAT5 blockade using a recently discovered antagonist increased IRF-8 expression in patient samples. These data reveal a previously unrecognized BCR-ABL-STAT5-IRF-8 network, which widens the repertoire of potentially new anti-CML targets.
Collapse
Affiliation(s)
| | | | - Elizabeth A Griffiths
- Pharmacology and Therapeutics, and Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Michael J Nemeth
- From the Departments of Immunology, Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|
26
|
Serine and proline-rich ligands enriched via phage-display technology show preferential binding to BCR/ABL expressing cells. Hematol Oncol Stem Cell Ther 2014; 7:32-40. [DOI: 10.1016/j.hemonc.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/04/2014] [Indexed: 02/04/2023] Open
|
27
|
Watanabe T, Hotta C, Koizumi SI, Miyashita K, Nakabayashi J, Kurotaki D, Sato GR, Yamamoto M, Nakazawa M, Fujita H, Sakai R, Fujisawa S, Nishiyama A, Ikezawa Z, Aihara M, Ishigatsubo Y, Tamura T. The Transcription Factor IRF8 Counteracts BCR-ABL to Rescue Dendritic Cell Development in Chronic Myelogenous Leukemia. Cancer Res 2013; 73:6642-53. [DOI: 10.1158/0008-5472.can-13-0802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Jaiswal H, Kaushik M, Sougrat R, Gupta M, Dey A, Verma R, Ozato K, Tailor P. Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development. THE JOURNAL OF IMMUNOLOGY 2013; 191:5993-6001. [PMID: 24227775 DOI: 10.4049/jimmunol.1203541] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions. Recent studies identified transcription factors essential for the development of different DC subtypes, yet molecular mechanisms for the developmental program and functions remain poorly understood. In this study, we developed and characterized a mouse DC progenitor-like cell line, designated DC9, from Irf8(-/-) bone marrow cells as a model for DC development and function. Expression of Irf8 in DC9 cells led to plasmacytoid DCs and CD8α(+) DC-like cells, with a concomitant increase in plasmacytoid DC- and CD8α(+) DC-specific gene transcripts and induction of type I IFNs and IL12p40 following TLR ligand stimulation. Irf8 expression in DC9 cells led to an increase in Id2 and Batf3 transcript levels, transcription factors shown to be important for the development of CD8α(+) DCs. We show that, without Irf8, expression of Id2 and Batf3 was not sufficient for directing classical CD8α(+) DC development. When coexpressed with Irf8, Batf3 and Id2 had a synergistic effect on classical CD8α(+) DC development. We demonstrate that Irf8 is upstream of Batf3 and Id2 in the classical CD8α(+) DC developmental program and define the hierarchical relationship of transcription factors important for classical CD8α(+) DC development.
Collapse
Affiliation(s)
- Hemant Jaiswal
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Scheller M, Schönheit J, Zimmermann K, Leser U, Rosenbauer F, Leutz A. Cross talk between Wnt/β-catenin and Irf8 in leukemia progression and drug resistance. ACTA ACUST UNITED AC 2013; 210:2239-56. [PMID: 24101380 PMCID: PMC3804946 DOI: 10.1084/jem.20130706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross talk between Wnt and IFN signaling determines the development of CML-leukemia–initiating cells and represents a mechanism for the acquisition of resistance to Imatinib at later stages of CML. Progression and disease relapse of chronic myeloid leukemia (CML) depends on leukemia-initiating cells (LIC) that resist treatment. Using mouse genetics and a BCR-ABL model of CML, we observed cross talk between Wnt/β-catenin signaling and the interferon-regulatory factor 8 (Irf8). In normal hematopoiesis, activation of β-catenin results in up-regulation of Irf8, which in turn limits oncogenic β-catenin functions. Self-renewal and myeloproliferation become dependent on β-catenin in Irf8-deficient animals that develop a CML-like disease. Combined Irf8 deletion and constitutive β-catenin activation result in progression of CML into fatal blast crisis, elevated leukemic potential of BCR-ABL–induced LICs, and Imatinib resistance. Interestingly, activated β-catenin enhances a preexisting Irf8-deficient gene signature, identifying β-catenin as an amplifier of progression-specific gene regulation in the shift of CML to blast crisis. Collectively, our data uncover Irf8 as a roadblock for β-catenin–driven leukemia and imply both factors as targets in combinatorial therapy.
Collapse
Affiliation(s)
- Marina Scheller
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Huang W, Bei L, Eklund EA. Fas-associated phosphatase 1 (Fap1) influences βcatenin activity in myeloid progenitor cells expressing the Bcr-abl oncogene. J Biol Chem 2013; 288:12766-76. [PMID: 23519466 DOI: 10.1074/jbc.m112.429696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Increased βcatenin activity correlates with leukemia stem cell expansion and disease progression in chronic myeloid leukemia (CML). We found previously that expression of the CML-related Bcr-abl oncoprotein in myeloid progenitor cells increases expression of Fas-associated phosphatase 1 (Fap1). This resulted in Fap1-dependent resistance to Fas-induced apoptosis in these cells. Fap1 also interacts with the adenomatous polyposis coli (Apc) protein, but the functional significance of this interaction is unknown. Apc participates in a complex that includes glycogen synthase kinase β (Gsk3β) and βcatenin. Assembly of this complex results in phosphorylation of βcatenin by Gsk3β, which facilitates βcatenin ubiquitination and degradation by the proteasome. In this study, we found increased association of Fap1 with the Apc complex in Bcr-abl(+) myeloid progenitor cells. We also found Fap1-dependent inactivation of Gsk3β and consequent stabilization of βcatenin in these cells. Consistent with this, Bcr-abl(+) cells exhibited a Fap1-dependent increase in βcatenin activity. Our studies identified Fap1-dependent Gsk3β inactivation as a molecular mechanism for increased βcatenin activity in CML.
Collapse
Affiliation(s)
- Weiqi Huang
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
31
|
Huang W, Bei L, Eklund EA. Fas-associated phosphatase 1 mediates Fas resistance in myeloid progenitor cells expressing the Bcr-abl oncogene. Leuk Lymphoma 2012; 54:619-30. [PMID: 22891763 DOI: 10.3109/10428194.2012.720979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interferon consensus sequence binding protein (Icsbp) is a transcription factor that influences multiple aspects of myelopoiesis. Expression of Icsbp is decreased in the bone marrow of human subjects with chronic myeloid leukemia (CML), and studies in murine models suggest that Icsbp functions as an anti-oncogene for CML. We previously identified a set of Icsbp target genes that may contribute to this anti-oncogene effect. The set includes PTPN13, the gene encoding Fas-associated phosphatase 1 (Fap1, a Fas antagonist). We previously demonstrated that myeloid progenitor cells from Icsbp-knockout mice exhibit Fap1-dependent Fas resistance. In the present study, we determined that the Fas resistance of Bcr-abl+cells is Icsbp- and Fap1-dependent. We also found that treatment of Bcr-abl bone marrow cells with a Fap1-blocking peptide prevents in vitro selection of a tyrosine kinase inhibitor (TKI)-resistant population. Therefore, these results have implications for therapeutic targeting of the Fas-resistant leukemia stem cell population and addressing TKI resistance in CML.
Collapse
Affiliation(s)
- Weiqi Huang
- The Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
32
|
Döring Y, Soehnlein O, Drechsler M, Shagdarsuren E, Chaudhari SM, Meiler S, Hartwig H, Hristov M, Koenen RR, Hieronymus T, Zenke M, Weber C, Zernecke A. Hematopoietic Interferon Regulatory Factor 8-Deficiency Accelerates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2012; 32:1613-23. [DOI: 10.1161/atvbaha.111.236539] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective—
Inflammatory leukocyte accumulation drives atherosclerosis. Although monocytes/macrophages and polymorphonuclear neutrophilic leukocytes (PMN) contribute to lesion formation, sequelae of myeloproliferative disease remain to be elucidated.
Methods and Results—
We used mice deficient in interferon regulatory factor 8 (IRF8
−/−
) in hematopoietic cells that develop a chronic myelogenous leukemia-like phenotype. Apolipoprotein E-deficient mice reconstituted with IRF8
−/−
or IRF8
−/−
apolipoprotein E-deficient bone marrow displayed an exacerbated atherosclerotic lesion formation compared with controls. The chronic myelogenous leukemia-like phenotype in mice with IRF8
−/−
bone marrow, reflected by an expansion of PMN in the circulation, was associated with an increased lesional accumulation and apoptosis of PMN, and enlarged necrotic cores. IRF8
−/−
compared with IRF8
+/+
PMN displayed unaffected reactive oxygen species formation and discharge of PMN granule components. In contrast, accumulating in equal numbers at sites of inflammation, IRF8
−/−
macrophages were defective in efferocytosis, lipid uptake, and interleukin-10 cytokine production. Importantly, depletion of PMN in low-density lipoprotein receptor or apolipoprotein E-deficient mice with IRF8
−/−
or IRF8
−/−
apolipoprotein E-deficient bone marrow abrogated increased lesion formation.
Conclusion—
These findings indicate that a chronic myelogenous leukemia-like phenotype contributes to accelerated atherosclerosis in mice. Among proatherosclerotic effects of other cell types, this, in part, is linked to an expansion of functionally intact PMN.
Collapse
Affiliation(s)
- Yvonne Döring
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Maik Drechsler
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Erdenechimeg Shagdarsuren
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Sweena M. Chaudhari
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Svenja Meiler
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Helene Hartwig
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Mihail Hristov
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Rory R. Koenen
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Thomas Hieronymus
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Martin Zenke
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| | - Alma Zernecke
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich (Y.D., O.S., M.D., H.H., M.H., R.R.K., C.W.); Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University (Y.D., T.H., M.Z.); Institute for Molecular Cardiovascular Research, University Hospital Aachen, Aachen (O.S., E.S., S.M., H.H., A.Z.); Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany (M.D., S.M.C., A.Z.)
| |
Collapse
|
33
|
Peng C, Chen Y, Shan Y, Zhang H, Guo Z, Li D, Li S. LSK derived LSK- cells have a high apoptotic rate related to survival regulation of hematopoietic and leukemic stem cells. PLoS One 2012; 7:e38614. [PMID: 22675576 PMCID: PMC3366951 DOI: 10.1371/journal.pone.0038614] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
A balanced pool of hematopoietic stem cells (HSCs) in bone marrow is tightly regulated, and this regulation is disturbed in hematopoietic malignancies such as chronic myeloid leukemia (CML). The underlying mechanisms are largely unknown. Here we show that the Lin−Sca-1+c-Kit- (LSK−) cell population derived from HSC-containing Lin−Sca-1+c-Kit+ (LSK) cells has significantly higher numbers of apoptotic cells. Depletion of LSK cells by radiation or the cytotoxic chemical 5-fluorouracil results in an expansion of the LSK− population. In contrast, the LSK− population is reduced in CML mice, and depletion of leukemia stem cells (LSCs; BCR-ABL-expressing HSCs) by deleting Alox5 or by inhibiting heat shock protein 90 causes an increase in this LSK− population. The transition of LSK to LSK− cells is controlled by the Icsbp gene and its downstream gene Lyn, and regulation of this cellular transition is critical for the survival of normal LSK cells and LSCs. These results indicate a potential function of the LSK− cells in the regulation of LSK cells and LSCs.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Ly/metabolism
- Apoptosis/drug effects
- Apoptosis/radiation effects
- Arachidonate 5-Lipoxygenase/metabolism
- Benzamides
- Cell Lineage/drug effects
- Cell Lineage/radiation effects
- Cell Survival/drug effects
- Cell Survival/radiation effects
- Fluorouracil/pharmacology
- Fusion Proteins, bcr-abl/metabolism
- Gamma Rays
- HSP90 Heat-Shock Proteins/metabolism
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Hematopoietic Stem Cells/radiation effects
- Imatinib Mesylate
- Interferon Regulatory Factors/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Proteins/metabolism
- Mice
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/radiation effects
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Proto-Oncogene Proteins c-kit/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Receptors, Cell Surface/metabolism
- Signal Transduction/drug effects
- Signal Transduction/radiation effects
- Signaling Lymphocytic Activation Molecule Family Member 1
- Time Factors
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Cong Peng
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yaoyu Chen
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Yi Shan
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Haojian Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zhiru Guo
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dongguang Li
- School of Computer and Security Science, Edith Cowan University, Mount Lawley, Western Australia, Australia
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Huang W, Hu L, Bei L, Hjort E, Eklund EA. The leukemia-associated fusion protein Tel-platelet-derived growth factor receptor β (Tel-PdgfRβ) inhibits transcriptional repression of PTPN13 gene by interferon consensus sequence binding protein (Icsbp). J Biol Chem 2012; 287:8110-25. [PMID: 22262849 PMCID: PMC3318728 DOI: 10.1074/jbc.m111.294884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/16/2012] [Indexed: 11/06/2022] Open
Abstract
Icsbp is an interferon regulatory transcription factor with leukemia suppressor activity. In previous studies, we identified the gene encoding Fas-associated phosphatase 1 (Fap1; the PTPN13 gene) as an Icsbp target. In the current study, we determine that repression of PTPN13 by Icsbp requires cooperation with Tel and histone deacetylase 3 (Hdac3). These factors form a multiprotein complex that requires pre-binding of Tel to the PTPN13 cis element with subsequent recruitment of Icsbp and Hdac3. We found that knockdown of Tel or Hdac3 in myeloid cells increases Fap1 expression and results in Fap1-dependent resistance to Fas-induced apoptosis. The TEL gene was initially identified due to involvement in leukemia-associated chromosomal translocations. The first identified TEL translocation partner was the gene encoding platelet-derived growth factor receptor β (PdgfRβ). The resulting Tel-PdgfRβ fusion protein exhibits constitutive tyrosine kinase activity and influences cellular proliferation. In the current studies, we find that Tel-PdgfRβ influences apoptosis in a manner that is independent of tyrosine kinase activity. We found that Tel-PdgfRβ expressing myeloid cells have increased Fap1 expression and Fap1-dependent Fas resistance. We determined that interaction between Tel and Tel-PdgfRβ decreases Tel/Icsbp/Hdac3 binding to the PTPN13 cis element, resulting in increased transcription. Therefore, these studies identify a novel mechanism by which the Tel-PdgfRβ oncoprotein may contribute to leukemogenesis.
Collapse
Affiliation(s)
- Weiqi Huang
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Liping Hu
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Ling Bei
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
| | - Elizabeth Hjort
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Elizabeth A. Eklund
- From the Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611 and
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
35
|
Jo SH, Ren R. IRF-4 suppresses BCR/ABL transformation of myeloid cells in a DNA binding-independent manner. J Biol Chem 2011; 287:1770-8. [PMID: 22110133 DOI: 10.1074/jbc.m111.289728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interferon regulatory factor 4 (IRF-4) is essential for B and T cell development and immune response regulation, and has both nuclear and cytoplasmic functions. IRF-4 was originally identified as a proto-oncogene resulting from a t(6;14) chromosomal translocation in multiple myeloma and its expression was shown to be essential for multiple myeloma cell survival. However, we have previously shown that IRF-4 functions as a tumor suppressor in the myeloid lineage and in early stages of B cell development. In this study, we found that IRF-4 suppresses BCR/ABL transformation of myeloid cells. To gain insight into the molecular pathways that mediate IRF-4 tumor suppressor function, we performed a structure-function analysis of IRF-4 as a suppressor of BCR/ABL transformation. We found that the DNA binding domain deletion mutant of IRF-4, which is localized only in the cytoplasm, is still able to inhibit BCR/ABL transformation of myeloid cells. IRF-4 also functions as a tumor suppressor in bone marrow cells deficient in MyD88, an IRF-4-interacting protein found in the cytoplasm. However, IRF-4 tumor suppressor activity is lost in IRF association domain (IAD) deletion mutants. These results demonstrate that IRF-4 suppresses BCR/ABL transformation by a novel cytoplasmic function involving its IAD domain.
Collapse
Affiliation(s)
- Seung-Hee Jo
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
36
|
Hu X, Yang D, Zimmerman M, Liu F, Yang J, Kannan S, Burchert A, Szulc Z, Bielawska A, Ozato K, Bhalla K, Liu K. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res 2011; 71:2882-91. [PMID: 21487040 PMCID: PMC3078194 DOI: 10.1158/0008-5472.can-10-2493] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFN regulatory factor 8 (IRF8) is a key transcription factor for myeloid cell differentiation and its expression is frequently lost in hematopoietic cells of human myeloid leukemia patients. IRF8-deficient mice exhibit uncontrolled clonal expansion of undifferentiated myeloid cells that can progress to a fatal blast crisis, thereby resembling human chronic myelogeneous leukemia (CML). Therefore, IRF8 is a myeloid leukemia suppressor. Whereas the understanding of IRF8 function in CML has recently improved, the molecular mechanisms underlying IRF8 function in CML are still largely unknown. In this study, we identified acid ceramidase (A-CDase) as a general transcription target of IRF8. We demonstrated that IRF8 expression is regulated by IRF8 promoter DNA methylation in myeloid leukemia cells. Restoration of IRF8 expression repressed A-CDase expression, resulting in C16 ceramide accumulation and increased sensitivity of CML cells to FasL-induced apoptosis. In myeloid cells derived from IRF8-deficient mice, A-CDase protein level was dramatically increased. Furthermore, we demonstrated that IRF8 directly binds to the A-CDase promoter. At the functional level, inhibition of A-CDase activity, silencing A-CDase expression, or application of exogenous C16 ceramide sensitized CML cells to FasL-induced apoptosis, whereas overexpression of A-CDase decreased CML cells' sensitivity to FasL-induced apoptosis. Consequently, restoration of IRF8 expression suppressed CML development in vivo at least partially through a Fas-dependent mechanism. In summary, our findings determine the mechanism of IRF8 downregulation in CML cells and they determine a primary pathway of resistance to Fas-mediated apoptosis and disease progression.
Collapse
MESH Headings
- Acid Ceramidase/biosynthesis
- Animals
- Apoptosis/physiology
- Cell Line, Tumor
- Ceramides/metabolism
- DNA Methylation
- Fas Ligand Protein/immunology
- Fas Ligand Protein/pharmacology
- HT29 Cells
- Humans
- Interferon Regulatory Factors/biosynthesis
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myeloid Cells/enzymology
- Myeloid Cells/metabolism
- Promoter Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Xiaolin Hu
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Mary Zimmerman
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Feiyan Liu
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Jine Yang
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Swati Kannan
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Andreas Burchert
- Klinik für Hämatologie, Onkologie und Immunologie, Universitätsklinikum Marburg, D-35043 Marburg, Germany
| | - Zdzislaw Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Keiko Ozato
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kapil Bhalla
- Cancer Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| |
Collapse
|
37
|
Huang W, Zhou W, Saberwal G, Konieczna I, Horvath E, Katsoulidis E, Platanias LC, Eklund EA. Interferon consensus sequence binding protein (ICSBP) decreases beta-catenin activity in myeloid cells by repressing GAS2 transcription. Mol Cell Biol 2010; 30:4575-94. [PMID: 20679491 PMCID: PMC2950519 DOI: 10.1128/mcb.01595-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/11/2010] [Accepted: 07/20/2010] [Indexed: 11/20/2022] Open
Abstract
The interferon consensus sequence binding protein (ICSBP) is an interferon regulatory transcription factor, also referred to as IRF8. ICSBP acts as a suppressor of myeloid leukemia, although few target genes explaining this effect have been identified. In the current studies, we identified the gene encoding growth arrest specific 2 (GAS2) as an ICSBP target gene relevant to leukemia suppression. We find that ICSBP, Tel, and histone deacetylase 3 (HDAC3) bind to a cis element in the GAS2 promoter and repress transcription in myeloid progenitor cells. Gas2 inhibits calpain protease activity, and beta-catenin is a calpain substrate in these cells. Consistent with this, ICSBP decreases beta-catenin protein and activity in a Gas2- and calpain-dependent manner. Conversely, decreased ICSBP expression increases beta-catenin protein and activity by the same mechanism. This is of interest, because decreased ICSBP expression and increased beta-catenin activity are associated with poor prognosis and blast crisis in chronic myeloid leukemia (CML). We find that the expression of Bcr/abl (the CML oncoprotein) increases Gas2 expression in an ICSBP-dependent manner. This results in decreased calpain activity and a consequent increase in beta-catenin activity in Bcr/abl-positive (Bcr/abl(+)) cells. Therefore, these studies have identified a Gas2/calpain-dependent mechanism by which ICSBP influences beta-catenin activity in myeloid leukemia.
Collapse
Affiliation(s)
- Weiqi Huang
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Wei Zhou
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Gurveen Saberwal
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Iwona Konieczna
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Elizabeth Horvath
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Efstratios Katsoulidis
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Leonidas C. Platanias
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| | - Elizabeth A. Eklund
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois
| |
Collapse
|
38
|
Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis. Blood 2010; 116:2759-67. [PMID: 20585039 DOI: 10.1182/blood-2009-07-234559] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interferon regulatory factor 4 (IRF-4) plays important functions in B- and T-cell development and immune response regulation and was originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. Although IRF-4 is expressed in myeloid cells, its function in that lineage is not known. The closely related family member IRF-8 is a critical regulator of myelopoiesis, which when deleted in mice results in a syndrome highly similar to human chronic myelogenous leukemia. In early lymphoid development, we have shown previously that IRF-4 and IRF-8 can function redundantly. We therefore investigated the effects of a combined loss of IRF-4 and IRF-8 on hematologic tumorigenesis. We found that mice deficient in both IRF-4 and IRF-8 develop from a very early age a more aggressive chronic myelogenous leukemia-like disease than mice deficient in IRF-8 alone, correlating with a greater expansion of granulocyte-monocyte progenitors. Although these results demonstrate, for the first time, that IRF-4 can function as tumor suppressor in myeloid cells, interestingly, all mice deficient in both IRF-4 and IRF-8 eventually develop and die of a B-lymphoblastic leukemia/lymphoma. Combined losses of IRF-4 and IRF-8 therefore can cooperate in the development of both myeloid and lymphoid tumors.
Collapse
|
39
|
Kalvakolanu DV, Nallar SC, Kalakonda S. Cytokine-induced tumor suppressors: a GRIM story. Cytokine 2010; 52:128-42. [PMID: 20382543 DOI: 10.1016/j.cyto.2010.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/16/2010] [Indexed: 12/18/2022]
Abstract
Cytokines belonging to the IFN family are potent growth suppressors. In a number of clinical and preclinical studies, vitamin A and its derivatives like retinoic acid (RA) have been shown to exert synergistic growth-suppressive effects on several tumor cells. We have employed a genome-wide expression-knockout approach to identify the genes critical for IFN/RA-induced growth suppression. A number of novel genes associated with Retinoid-Interferon-induced Mortality (GRIM) were isolated. In this review, we will describe the molecular mechanisms of actions of one, GRIM-19, which participates in multiple pathways for exerting growth control and/or cell death. This protein is emerging as a new tumor suppressor. In addition, GRIM-19 appears to participate in innate immune responses as its activity is modulated by several viruses and bacteria. Thus, GRIMs seem to couple with multiple biological responses by acting at critical nodes.
Collapse
Affiliation(s)
- Dhan V Kalvakolanu
- Department of Microbiology & Immunology, Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
40
|
Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 2010; 59:489-510. [PMID: 20049431 PMCID: PMC11030943 DOI: 10.1007/s00262-009-0804-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/01/2009] [Indexed: 02/06/2023]
Abstract
Nine interferon regulatory factors (IRFs) compose a family of transcription factors in mammals. Although this family was originally identified in the context of the type I interferon system, subsequent studies have revealed much broader functions performed by IRF members in host defense. In this review, we provide an update on the current knowledge of their roles in immune responses, immune cell development, and regulation of oncogenesis.
Collapse
Affiliation(s)
- David Savitsky
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomohiko Tamura
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hideyuki Yanai
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tadatsugu Taniguchi
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
41
|
Vidovic K, Svensson E, Nilsson B, Thuresson B, Olofsson T, Lennartsson A, Gullberg U. Wilms' tumor gene 1 protein represses the expression of the tumor suppressor interferon regulatory factor 8 in human hematopoietic progenitors and in leukemic cells. Leukemia 2010; 24:992-1000. [PMID: 20237505 DOI: 10.1038/leu.2010.33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wilms' tumor gene 1 (WT1) is a transcription factor involved in developmental processes. In adult hematopoiesis, only a small portion of early progenitor cells express WT1, whereas most leukemias show persistently high levels, suggesting an oncogenic role. We have previously characterized oncogenic BCR/ABL1 tyrosine kinase signaling pathways for increased WT1 expression. In this study, we show that overexpression of BCR/ABL1 in CD34+ progenitor cells leads to reduced expression of interferon regulatory factor 8 (IRF8), in addition to increased WT1 expression. Interestingly, IRF8 is known as a tumor suppressor in some leukemias and we investigated whether WT1 might repress IRF8 expression. When analyzed in four leukemia mRNA expression data sets, WT1 and IRF8 were anticorrelated. Upon overexpression in CD34+ progenitors, as well as in U937 cells, WT1 strongly downregulated IRF8 expression. All four major WT1 splice variants induced repression, but not the zinc-finger-deleted WT1 mutant, indicating dependence on DNA binding. A reporter construct with the IRF8 promoter was repressed by WT1, dependent on a putative WT1-response element. Binding of WT1 to the IRF8 promoter was demonstrated by chromatin immunoprecipitation. Our results identify IRF8 as a direct target gene for WT1 and provide a possible mechanism for oncogenic effects of WT1 in leukemia.
Collapse
Affiliation(s)
- K Vidovic
- Department of Hematology, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The tumor suppressor gene phosphatase and tensin homolog (PTEN) is inactivated in many human cancers. However, it is unknown whether PTEN functions as a tumor suppressor in human Philadelphia chromosome-positive leukemia that includes chronic myeloid leukemia (CML) and B-cell acute lymphoblastic leukemia (B-ALL) and is induced by the BCR-ABL oncogene. By using our mouse model of BCR-ABL-induced leukemias, we show that Pten is down-regulated by BCR-ABL in leukemia stem cells in CML and that PTEN deletion causes acceleration of CML development. In addition, overexpression of PTEN delays the development of CML and B-ALL and prolongs survival of leukemia mice. PTEN suppresses leukemia stem cells and induces cell-cycle arrest of leukemia cells. Moreover, PTEN suppresses B-ALL development through regulating its downstream gene Akt1. These results demonstrate a critical role of PTEN in BCR-ABL-induced leukemias and suggest a potential strategy for the treatment of Philadelphia chromosome-positive leukemia.
Collapse
|
43
|
Saberwal G, Horvath E, Hu L, Zhu C, Hjort E, Eklund EA. The interferon consensus sequence binding protein (ICSBP/IRF8) activates transcription of the FANCF gene during myeloid differentiation. J Biol Chem 2009; 284:33242-54. [PMID: 19801548 DOI: 10.1074/jbc.m109.010231] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon consensus sequence binding protein (ICSBP) is an interferon regulatory transcription factor with leukemia-suppressor activity. ICSBP regulates genes that are involved in phagocyte function, proliferation, and apoptosis. In murine models ICSBP deficiency results in a myeloproliferative disorder (MPD) with increased mature neutrophils. Over time this MPD progresses to acute myeloid leukemia (AML), suggesting that ICSBP deficiency is adequate for MPD, but additional genetic lesions are required for AML. The hypothesis of these studies is that dysregulation of key target genes predisposes to disease progression under conditions of decreased ICSBP expression. To investigate this hypothesis, we used chromatin co-immunoprecipitation to identify genes involved the ICSBP-leukemia suppressor effect. In the current studies, we identify the gene encoding Fanconi F (FANCF) as an ICSBP target gene. FancF participates in a repair of cross-linked DNA. We identify a FANCF promoter cis element, which is activated by ICSBP in differentiating myeloid cells. We also determine that DNA cross-link repair is impaired in ICSBP-deficient myeloid cells in a FancF-dependent manner. This effect is observed in differentiating cells, suggesting that ICSBP protects against the genotoxic stress of myelopoiesis. Decreased ICSBP expression is found in human AML and chronic myeloid leukemia during blast crisis (CML-BC). Our studies suggest that ICSBP deficiency may be functionally important for accumulation of chromosomal abnormalities during disease progression in these myeloid malignancies.
Collapse
Affiliation(s)
- Gurveen Saberwal
- The Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
44
|
Guilhot F, Roy L, Saulnier PJ, Guilhot J. Interferon in chronic myeloid leukaemia: past and future. Best Pract Res Clin Haematol 2009; 22:315-29. [DOI: 10.1016/j.beha.2009.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Kobayashi S, Kimura F, Ikeda T, Osawa Y, Torikai H, Kobayashi A, Sato K, Motoyoshi K. BCR-ABL promotes neutrophil differentiation in the chronic phase of chronic myeloid leukemia by downregulating c-Jun expression. Leukemia 2009; 23:1622-1627. [PMID: 19357699 DOI: 10.1038/leu.2009.74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 02/18/2009] [Accepted: 03/03/2009] [Indexed: 01/27/2023]
Abstract
The mechanism that is responsible for mature neutrophil overproduction in the chronic phase (CP) of chronic myeloid leukemia (CML), a neoplastic disease of hematopoietic stem cells carrying a constitutively active tyrosine kinase BCR-ABL, remains obscure. In this study, microarray analysis revealed that c-Jun, a monopoiesis-promoting transcription factor, was downregulated in CML neutrophils. BCR-ABL directly inhibited c-Jun expression, as c-Jun downregulation in primary CML neutrophils and in the CML blast cell lines, KCL22 and K562, was reversed by the tyrosine kinase inhibitor imatinib. We established a myeloid differentiation model in KCL22 cells using zinc-inducible CCAAT/enhancer-binding protein (C/EBP)alpha (KCL22/alpha). Myeloid differentiation was observed in C/EBP-induced KCL22/alpha cells. Imatinib-induced c-Jun upregulation promoted the monocytic differentiation of KCL22/alpha cells. c-Jun knockdown in KCL22/alpha cells by a short interfering RNA redirected their differentiation from the monocytic to the neutrophilic lineage, even after imatinib treatment. A blockade of PI3K-Akt signaling with an Akt inhibitor upregulated c-Jun and induced the monocytic differentiation of KCL22, K562, and C/EBP-induced KCL22/alpha cells. Thus, BCR-ABL downregulates c-Jun expression by activating the PI3K-Akt pathway during CML-CP, thereby allowing C/EBPs to promote neutrophil differentiation.
Collapse
Affiliation(s)
- S Kobayashi
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Guilhot F, Roy L, Saulnier PJ, Guilhot J, Barra A, Gombert JM, Turhan A. Immunotherapeutic approaches in chronic myelogenous leukemia. Leuk Lymphoma 2009; 49:629-34. [DOI: 10.1080/10428190801927510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Abstract
Loss of neurofibromin or interferon consensus sequence binding protein (Icsbp) leads to a myeloproliferative disorder. Transcription of NF1 is directly controlled by ICSBP. It has been postulated that loss of NF1 expression resulting from loss of transcriptional activation by ICSBP contributes to human hematologic malignancies. To investigate the functional cooperation of these 2 proteins, we have established Icsbp-deficient mice with Nf1 haploinsufficiency. We here demonstrate that loss of Icsbp and Nf1 haploinsufficiency synergize to induce a forced myeloproliferation in Icsbp-deficient mice because of an expansion of a mature myeloid progenitor cell. Furthermore, Nf1 haploinsufficiency and loss of Icsbp contribute synergistically to progression of the myeloproliferative disorder toward transplantable leukemias. Leukemias are characterized by distinct phenotypes, which correlate with progressive genetic abnormalities. Loss of Nf1 heterozygosity is not mandatory for disease progression, but its occurrence with other genetic abnormalities indicates progressive genetic alterations in a defined subset of leukemias. These data show that loss of the 2 tumor suppressor genes Nf1 and Icsbp synergize in the induction of leukemias.
Collapse
|
48
|
Abstract
Chronic myeloid leukemia (CML) has been regarded as the paradigmatic example of a malignancy defined by a unique molecular event, the BCR-ABL1 oncogene. Decades of research zeroing in on the role of BCR-ABL1 kinase in the pathogenesis of CML have culminated in the development of highly efficacious therapeutics that, like imatinib mesylate, target the oncogenic kinase activity of BCR-ABL1. In recent years, most research efforts in CML have been devoted to developing novel tyrosine kinase inhibitors (TKIs) as well as to elucidating the mechanisms of resistance to imatinib and other TKIs. Nonetheless, primordial aspects of the pathogenesis of CML, such as the mechanisms responsible for the transition from chronic phase to blast crisis, the causes of genomic instability and faulty DNA repair, the phenomenon of stem cell quiescence, the role of tumor suppressors in TKI resistance and CML progression, or the cross-talk between BCR-ABL1 and other oncogenic signaling pathways, still remain poorly understood. Herein, we synthesize the most relevant and current knowledge on such areas of the pathogenesis of CML.
Collapse
|
49
|
ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines. Blood 2009; 113:3813-20. [PMID: 19171873 DOI: 10.1182/blood-2008-07-167189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN) is effective at inducing complete remissions in patients with chronic myelogenous leukemia (CML), and evidence supports an immune mechanism. Here we show that the type I IFNs (alpha and beta) regulate expression of the IFN consensus sequence-binding protein (ICSBP) in BCR-ABL-transformed cells and as shown previously for ICSBP, induce a vaccine-like immunoprotective effect in a murine model of BCR-ABL-induced leukemia. We identify the chemokines CCL6 and CCL9 as genes prominently induced by the type I IFNs and ICSBP, and demonstrate that these immunomodulators are required for the immunoprotective effect of ICSBP expression. Insights into the role of these chemokines in the antileukemic response of IFNs suggest new strategies for immunotherapy of CML.
Collapse
|
50
|
Birnberg T, Bar-On L, Sapoznikov A, Caton ML, Cervantes-Barragán L, Makia D, Krauthgamer R, Brenner O, Ludewig B, Brockschnieder D, Riethmacher D, Reizis B, Jung S. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 2008; 29:986-97. [PMID: 19062318 DOI: 10.1016/j.immuni.2008.10.012] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 07/31/2008] [Accepted: 10/13/2008] [Indexed: 12/23/2022]
Abstract
Dendritic cells are critically involved in the promotion and regulation of T cell responses. Here, we report a mouse strain that lacks conventional CD11c(hi) dendritic cells (cDCs) because of constitutive cell-type specific expression of a suicide gene. As expected, cDC-less mice failed to mount effective T cell responses resulting in impaired viral clearance. In contrast, neither thymic negative selection nor T regulatory cell generation or T cell homeostasis were markedly affected. Unexpectedly, cDC-less mice developed a progressive myeloproliferative disorder characterized by prominent extramedullary hematopoiesis and increased serum amounts of the cytokine Flt3 ligand. Our data identify a critical role of cDCs in the control of steady-state hematopoiesis, revealing a feedback loop that links peripheral cDCs to myelogenesis through soluble growth factors, such as Flt3 ligand.
Collapse
Affiliation(s)
- Tal Birnberg
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|