1
|
Erokhin M, Mogila V, Lomaev D, Chetverina D. Polycomb Recruiters Inside and Outside of the Repressed Domains. Int J Mol Sci 2023; 24:11394. [PMID: 37511153 PMCID: PMC10379775 DOI: 10.3390/ijms241411394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The establishment and stable inheritance of individual patterns of gene expression in different cell types are required for the development of multicellular organisms. The important epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements (PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs is well documented. However, there are examples where the PcG recruiters are also implicated in the active transcription and in the TrxG function. In addition, there is increasing evidence that the genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters significantly expanded our understanding that they have numerous interactors besides the PcG proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here, we summarize current data about the functions of the PcG recruiters.
Collapse
Affiliation(s)
- Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
2
|
Erokhin M, Brown JL, Lomaev D, Vorobyeva NE, Zhang L, Fab L, Mazina M, Kulakovskiy I, Ziganshin R, Schedl P, Georgiev P, Sun MA, Kassis J, Chetverina D. Crol contributes to PRE-mediated repression and Polycomb group proteins recruitment in Drosophila. Nucleic Acids Res 2023; 51:6087-6100. [PMID: 37140047 PMCID: PMC10325914 DOI: 10.1093/nar/gkad336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
The Polycomb group (PcG) proteins are fundamental epigenetic regulators that control the repressive state of target genes in multicellular organisms. One of the open questions is defining the mechanisms of PcG recruitment to chromatin. In Drosophila, the crucial role in PcG recruitment is thought to belong to DNA-binding proteins associated with Polycomb response elements (PREs). However, current data suggests that not all PRE-binding factors have been identified. Here, we report the identification of the transcription factor Crooked legs (Crol) as a novel PcG recruiter. Crol is a C2H2-type Zinc Finger protein that directly binds to poly(G)-rich DNA sequences. Mutation of Crol binding sites as well as crol CRISPR/Cas9 knockout diminish the repressive activity of PREs in transgenes. Like other PRE-DNA binding proteins, Crol co-localizes with PcG proteins inside and outside of H3K27me3 domains. Crol knockout impairs the recruitment of the PRC1 subunit Polyhomeotic and the PRE-binding protein Combgap at a subset of sites. The decreased binding of PcG proteins is accompanied by dysregulated transcription of target genes. Overall, our study identified Crol as a new important player in PcG recruitment and epigenetic regulation.
Collapse
Affiliation(s)
- Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - J Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of transcriptional complexes dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Marina Yu Mazina
- Group of hormone-dependent transcription regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow119991, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Paul Schedl
- Department of Molecular Biology Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
3
|
Li X, Tang X, Bing X, Catalano C, Li T, Dolsten G, Wu C, Levine M. GAGA-associated factor fosters loop formation in the Drosophila genome. Mol Cell 2023; 83:1519-1526.e4. [PMID: 37003261 PMCID: PMC10396332 DOI: 10.1016/j.molcel.2023.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
The impact of genome organization on the control of gene expression persists as a major challenge in regulatory biology. Most efforts have focused on the role of CTCF-enriched boundary elements and TADs, which enable long-range DNA-DNA associations via loop extrusion processes. However, there is increasing evidence for long-range chromatin loops between promoters and distal enhancers formed through specific DNA sequences, including tethering elements, which bind the GAGA-associated factor (GAF). Previous studies showed that GAF possesses amyloid properties in vitro, bridging separate DNA molecules. In this study, we investigated whether GAF functions as a looping factor in Drosophila development. We employed Micro-C assays to examine the impact of defined GAF mutants on genome topology. These studies suggest that the N-terminal POZ/BTB oligomerization domain is important for long-range associations of distant GAGA-rich tethering elements, particularly those responsible for promoter-promoter interactions that coordinate the activities of distant paralogous genes.
Collapse
Affiliation(s)
- Xiao Li
- Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Xiaona Tang
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xinyang Bing
- Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | | | - Taibo Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriel Dolsten
- Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael Levine
- Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Chetverina D, Vorobyeva NE, Mazina MY, Fab LV, Lomaev D, Golovnina A, Mogila V, Georgiev P, Ziganshin RH, Erokhin M. Comparative interactome analysis of the PRE DNA-binding factors: purification of the Combgap-, Zeste-, Psq-, and Adf1-associated proteins. Cell Mol Life Sci 2022; 79:353. [PMID: 35676368 PMCID: PMC11072172 DOI: 10.1007/s00018-022-04383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
The Polycomb group (PcG) and Trithorax group (TrxG) proteins are key epigenetic regulators controlling the silenced and active states of genes in multicellular organisms, respectively. In Drosophila, PcG/TrxG proteins are recruited to the chromatin via binding to specific DNA sequences termed polycomb response elements (PREs). While precise mechanisms of the PcG/TrxG protein recruitment remain unknown, the important role is suggested to belong to sequence-specific DNA-binding factors. At the same time, it was demonstrated that the PRE DNA-binding proteins are not exclusively localized to PREs but can bind other DNA regulatory elements, including enhancers, promoters, and boundaries. To gain an insight into the PRE DNA-binding protein regulatory network, here, using ChIP-seq and immuno-affinity purification coupled to the high-throughput mass spectrometry, we searched for differences in abundance of the Combgap, Zeste, Psq, and Adf1 PRE DNA-binding proteins. While there were no conspicuous differences in co-localization of these proteins with other functional transcription factors, we show that Combgap and Zeste are more tightly associated with the Polycomb repressive complex 1 (PRC1), while Psq interacts strongly with the TrxG proteins, including the BAP SWI/SNF complex. The Adf1 interactome contained Mediator subunits as the top interactors. In addition, Combgap efficiently interacted with AGO2, NELF, and TFIID. Combgap, Psq, and Adf1 have architectural proteins in their networks. We further investigated the existence of direct interactions between different PRE DNA-binding proteins and demonstrated that Combgap-Adf1, Psq-Dsp1, and Pho-Spps can interact in the yeast two-hybrid assay. Overall, our data suggest that Combgap, Psq, Zeste, and Adf1 are associated with the protein complexes implicated in different regulatory activities and indicate their potential multifunctional role in the regulation of transcription.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Mazina
- Group of Hormone-Dependent Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Alexandra Golovnina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Vladic Mogila
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
5
|
Chetverina D, Erokhin M, Schedl P. GAGA factor: a multifunctional pioneering chromatin protein. Cell Mol Life Sci 2021; 78:4125-4141. [PMID: 33528710 DOI: 10.1007/s00018-021-03776-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The Drosophila GAGA factor (GAF) is a multifunctional protein implicated in nucleosome organization and remodeling, activation and repression of gene expression, long distance enhancer-promoter communication, higher order chromosome structure, and mitosis. This broad range of activities poses questions about how a single protein can perform so many seemingly different and unrelated functions. Current studies argue that GAF acts as a "pioneer" factor, generating nucleosome-free regions of chromatin for different classes of regulatory elements. The removal of nucleosomes from regulatory elements in turn enables other factors to bind to these elements and carry out their specialized functions. Consistent with this view, GAF associates with a collection of chromatin remodelers and also interacts with proteins implicated in different regulatory functions. In this review, we summarize the known activities of GAF and the functions of its protein partners.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
6
|
Chammas P, Mocavini I, Di Croce L. Engaging chromatin: PRC2 structure meets function. Br J Cancer 2019; 122:315-328. [PMID: 31708574 PMCID: PMC7000746 DOI: 10.1038/s41416-019-0615-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a key epigenetic multiprotein complex involved in the regulation of gene expression in metazoans. PRC2 is formed by a tetrameric core that endows the complex with histone methyltransferase activity, allowing it to mono-, di- and tri-methylate histone H3 on lysine 27 (H3K27me1/2/3); H3K27me3 is a hallmark of facultative heterochromatin. The core complex of PRC2 is bound by several associated factors that are responsible for modulating its targeting specificity and enzymatic activity. Depletion and/or mutation of the subunits of this complex can result in severe developmental defects, or even lethality. Furthermore, mutations of these proteins in somatic cells can be drivers of tumorigenesis, by altering the transcriptional regulation of key tumour suppressors or oncogenes. In this review, we present the latest results from structural studies that have characterised PRC2 composition and function. We compare this information with data and literature for both gain-of function and loss-of-function missense mutations in cancers to provide an overview of the impact of these mutations on PRC2 activity.
Collapse
Affiliation(s)
- Paul Chammas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Pg Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
7
|
Shu J, Chen C, Thapa RK, Bian S, Nguyen V, Yu K, Yuan Z, Liu J, Kohalmi SE, Li C, Cui Y. Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings. PLANT DIRECT 2019; 3:e00100. [PMID: 31245749 PMCID: PMC6508855 DOI: 10.1002/pld3.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 05/25/2023]
Abstract
The Polycomb Group (PcG) proteins form two protein complexes, PcG Repressive Complex 1 (PRC1) and PRC2, which are key epigenetic regulators in eukaryotes. PRC2 represses gene expression by catalyzing the trimethylation of histone H3 lysine 27 (H3K27me3). In Arabidopsis (Arabidopsis thaliana), CURLY LEAF (CLF) and SWINGER (SWN) are two major H3K27 methyltransferases and core components of PRC2, playing essential roles in plant growth and development. Despite their importance, genome-wide binding profiles of CLF and SWN have not been determined and compared yet. In this study, we generated transgenic lines expressing GFP-tagged CLF/SWN under their respective native promoters and used them for ChIP-seq analyses to profile the genome-wide distributions of CLF and SWN in Arabidopsis seedlings. We also profiled and compared the global H3K27me3 levels in wild-type (WT) and PcG mutants (clf, swn, and clf swn). Our data show that CLF and SWN bind to almost the same set of genes, except that SWN has a few hundred more targets. Two short DNA sequences, the GAGA-like and Telo-box-like motifs, were found enriched in the CLF and SWN binding regions. The H3K27me3 levels in clf, but not in swn, were markedly reduced compared with WT; and the mark was undetectable in the clf swn double mutant. Further, we profiled the transcriptomes in clf, swn, and clf swn, and compared that with WT. Thus this work provides a useful resource for the plant epigenetics community for dissecting the functions of PRC2 in plant growth and development.
Collapse
Affiliation(s)
- Jie Shu
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Chen Chen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Raj Kumar Thapa
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Shaomin Bian
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- College of Plant ScienceJilin UniversityChangchunChina
| | - Vi Nguyen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Kangfu Yu
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Ze‐Chun Yuan
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Jun Liu
- Guangdong Academy of Agricultural SciencesGuangzhouChina
| | | | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yuhai Cui
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
8
|
Cameron SR, Nandi S, Kahn TG, Barrasa JI, Stenberg P, Schwartz YB. PTE, a novel module to target Polycomb Repressive Complex 1 to the human cyclin D2 ( CCND2) oncogene. J Biol Chem 2018; 293:14342-14358. [PMID: 30068546 DOI: 10.1074/jbc.ra118.005010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 11/06/2022] Open
Abstract
Polycomb group proteins are essential epigenetic repressors. They form multiple protein complexes of which two kinds, PRC1 and PRC2, are indispensable for repression. Although much is known about their biochemical properties, how mammalian PRC1 and PRC2 are targeted to specific genes is poorly understood. Here, we establish the cyclin D2 (CCND2) oncogene as a simple model to address this question. We provide the evidence that the targeting of PRC1 to CCND2 involves a dedicated PRC1-targeting element (PTE). The PTE appears to act in concert with an adjacent cytosine-phosphate-guanine (CpG) island to arrange for the robust binding of PRC1 and PRC2 to repressed CCND2 Our findings pave the way to identify sequence-specific DNA-binding proteins implicated in the targeting of mammalian PRC1 complexes and provide novel link between polycomb repression and cancer.
Collapse
Affiliation(s)
| | - Soumyadeep Nandi
- From the Department of Molecular Biology and.,the Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden and
| | | | | | - Per Stenberg
- From the Department of Molecular Biology and.,the Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden and.,the Division of Chemical, Biological, Radioactive and Nuclear (CBRN) Security and Defence, FOI-Swedish Defence Research Agency, 906 21 Umeå Sweden
| | | |
Collapse
|
9
|
Srivastava A, Kumar AS, Mishra RK. Vertebrate GAF/ThPOK: emerging functions in chromatin architecture and transcriptional regulation. Cell Mol Life Sci 2018; 75:623-633. [PMID: 28856379 PMCID: PMC11105447 DOI: 10.1007/s00018-017-2633-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
GAGA factor of Drosophila melanogaster (DmGAF) is a multifaceted transcription factor with diverse roles in chromatin regulation. Recently, ThPOK/c-Krox was identified as its vertebrate homologue (vGAF), which has a basic domain structure similar to DmGAF and is decorated with a number of post-translationally modified residues. In vertebrate genomes, vGAF associates with purine-rich GAGA sequences and performs diverse chromatin-mediated functions, viz., gene activation, repression and enhancer blocking. Expansion of regulatory chromatin proteins with the acquisition of PTMs appears to be the general trend that facilitated the evolution of complexity in vertebrates. Here, we compare the structural and functional features of vGAF with those of DmGAF and also assess the possible functional redundancy among paralogues of vGAF. We also discuss the underlying mechanisms which aid in the diverse and context-dependent functions of this protein.
Collapse
Affiliation(s)
- Avinash Srivastava
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Amitha Sampath Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
10
|
|
11
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Kumar S, Bhatia S. A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don. Sci Rep 2016; 6:33280. [PMID: 27623355 PMCID: PMC5020687 DOI: 10.1038/srep33280] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
Simple Sequence Repeats (SSRs) of polypurine-polypyrimidine type motifs occur very frequently in the 5' flanks of genes in plants and have recently been implicated to have a role in regulation of gene expression. In this study, 2 accessions of Catharanthus roseus having (CT)8 and (CT)21 varying motifs in the 5'UTR of Tryptophan decarboxylase (Tdc) gene, were investigated for its role in regulation of gene expression. Extensive Tdc gene expression analysis in the 2 accessions was carried out both at the level of transcription and translation. Transcript abundance was estimated using Northern analysis and qRT-PCR, whereas the rate of Tdc gene transcription was assessed using in-situ nuclear run-on transcription assay. Translation status of Tdc gene was monitored by quantification of polysome associated Tdc mRNA using qRT-PCR. These observations were validated through transient expression analysis using the fusion construct [CaM35S:(CT)8-21:GUS]. Our study demonstrated that not only does the length of (CT)n -SSRs influences the promoter activity, but the presence of SSRs per se in the 5'-UTR significantly enhances the level of gene expression. We termed this phenomenon as "microsatellite mediated enhancement" (MME) of gene expression. Results presented here will provide leads for engineering plants with enhanced amounts of medicinally important alkaloids.
Collapse
Affiliation(s)
- Santosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| |
Collapse
|
13
|
Transcriptional read-through is not sufficient to induce an epigenetic switch in the silencing activity of Polycomb response elements. Proc Natl Acad Sci U S A 2015; 112:14930-5. [PMID: 26504232 DOI: 10.1073/pnas.1515276112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, Polycomb (PcG) and Trithorax (TrxG) group proteins are assembled on Polycomb response elements (PREs) to maintain tissue and stage-specific patterns of gene expression. Critical to coordinating gene expression with the process of differentiation, the activity of PREs can be switched "on" and "off." When on, the PRE imposes a silenced state on the genes in the same domain that is stably inherited through multiple rounds of cell division. When the PRE is switched off, the domain is in a state permissive for gene expression that can be stably inherited. Previous studies have suggested that a burst of transcription through a PRE sequence displaces PcG proteins and provides a universal mechanism for inducing a heritable switch in PRE activity from on to off; however, the evidence favoring this model is indirect. Here, we have directly tested the transcriptional read-through mechanism. Contrary to previous suggestions, we show that transcription through the PRE is not sufficient for inducing an epigenetic switch in PRE activity. In fact, even high levels of continuous transcription through a PRE fails to dislodge the PcG proteins, nor does it remove repressive histone marks. Our results indicate that other mechanisms involving adjacent DNA regulatory elements must be implicated in heritable switch of PRE activity.
Collapse
|
14
|
The quest for mammalian Polycomb response elements: are we there yet? Chromosoma 2015; 125:471-96. [PMID: 26453572 PMCID: PMC4901126 DOI: 10.1007/s00412-015-0539-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
Abstract
A long-standing mystery in the field of Polycomb and Trithorax regulation is how these proteins, which are highly conserved between flies and mammals, can regulate several hundred equally highly conserved target genes, but recognise these targets via cis-regulatory elements that appear to show no conservation in their DNA sequence. These elements, termed Polycomb/Trithorax response elements (PRE/TREs or PREs), are relatively well characterised in flies, but their mammalian counterparts have proved to be extremely difficult to identify. Recent progress in this endeavour has generated a wealth of data and raised several intriguing questions. Here, we ask why and to what extent mammalian PREs are so different to those of the fly. We review recent advances, evaluate current models and identify open questions in the quest for mammalian PREs.
Collapse
|
15
|
Srivastava S, Dhawan J, Mishra RK. Epigenetic mechanisms and boundaries in the regulation of mammalian Hox clusters. Mech Dev 2015; 138 Pt 2:160-169. [PMID: 26254900 DOI: 10.1016/j.mod.2015.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023]
Abstract
Hox gene expression imparts segment identity to body structures along the anterior-posterior axis and is tightly governed by higher order chromatin mechanisms. Chromatin regulatory features of the homeotic complex are best defined in Drosophila melanogaster, where multiple cis-regulatory elements have been identified that ensure collinear Hox gene expression patterns in accordance with their genomic organization. Recent studies focused on delineating the epigenetic features of the vertebrate Hox clusters have helped reveal their dynamic chromatin organization and its impact on gene expression. Enrichment for the 'activating' H3K4me3 and 'repressive' H3K27me3 histone modifications is a particularly strong read-out for transcriptional status and correlates well with the evidence for chromatin loop domain structures and stage specific topological changes at these loci. However, it is not clear how such distinct domains are imposed and regulated independent of each other. Comparative analysis of the chromatin structure and organization of the homeotic gene clusters in fly and mammals is increasingly revealing the functional conservation of chromatin mediated mechanisms. Here we discuss the case for interspersed boundary elements existing within mammalian Hox clusters along with their possible roles and mechanisms of action. Recent studies suggest a role for factors other than the well characterized vertebrate boundary factor CTCF, such as the GAGA binding factor (GAF), in maintaining chromatin domains at the Hox loci. We also present data demonstrating how such regulatory elements may be involved in organizing higher order structure and demarcating active domains of gene expression at the mammalian Hox clusters.
Collapse
Affiliation(s)
- Surabhi Srivastava
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
16
|
Schwartz YB, Pirrotta V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet 2013; 14:853-64. [PMID: 24217316 DOI: 10.1038/nrg3603] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic repressors that are essential for the transcriptional control of cell differentiation and development. PcG-mediated repression is associated with specific post-translational histone modifications and is thought to involve both biochemical and physical modulation of chromatin structure. Recent advances show that PcG complexes comprise a multiplicity of variants and are far more biochemically diverse than previously thought. The importance of these new PcG complexes for normal development and disease, their targeting mechanisms and their shifting roles in the course of differentiation are now the subject of investigation and the focus of this Review.
Collapse
Affiliation(s)
- Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Byggnad 6L, Norrlands University Hospital, 901 87 Umeå, Sweden
| | | |
Collapse
|
17
|
Bengani H, Mendiratta S, Maini J, Vasanthi D, Sultana H, Ghasemi M, Ahluwalia J, Ramachandran S, Mishra RK, Brahmachari V. Identification and Validation of a Putative Polycomb Responsive Element in the Human Genome. PLoS One 2013; 8:e67217. [PMID: 23805300 PMCID: PMC3689693 DOI: 10.1371/journal.pone.0067217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/20/2013] [Indexed: 12/31/2022] Open
Abstract
Epigenetic cellular memory mechanisms that involve polycomb and trithorax group of proteins are well conserved across metazoans. The cis-acting elements interacting with these proteins, however, are poorly understood in mammals. In a directed search we identified a potential polycomb responsive element with 25 repeats of YY1 binding motifthatwe designate PRE-PIK3C2B as it occurs in the first intron of human PIK3C2B gene. It down regulates reporter gene expression in HEK cells and the repression is dependent on polycomb group of proteins (PcG). We demonstrate that PRE-PIK3C2B interacts directly with YY1 in vitro and recruits PRC2 complex in vivo. The localization of PcG proteins including YY1 to PRE-PIK3C2B in HEK cells is decreased on knock-down of either YY1 or SUZ12. Endogenous PRE-PIK3C2B shows bivalent marking having H3K27me3 and H3K4me3 for repressed and active state respectively. In transgenic Drosophila, PRE-PIK3C2B down regulates mini-white expression, exhibits variegation and pairing sensitive silencing (PSS), which has not been previously demonstrated for mammalian PRE. Taken together, our results strongly suggest that PRE-PIK3C2B functions as a site of interaction for polycomb proteins.
Collapse
Affiliation(s)
- Hemant Bengani
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Shweta Mendiratta
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Jayant Maini
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Dasari Vasanthi
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, Andhra Pradesh, India
| | - Hina Sultana
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, Andhra Pradesh, India
| | - Mohsen Ghasemi
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Jasmine Ahluwalia
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Sowmya Ramachandran
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Rakesh K. Mishra
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, Andhra Pradesh, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
18
|
Mason-Suares H, Tie F, Yan CM, Harte PJ. Polycomb silencing of the Drosophila 4E-BP gene regulates imaginal disc cell growth. Dev Biol 2013; 380:111-24. [PMID: 23523430 DOI: 10.1016/j.ydbio.2013.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/15/2013] [Accepted: 03/04/2013] [Indexed: 12/14/2022]
Abstract
Polycomb group (PcG) proteins are best known for their role in maintaining stable, mitotically heritable silencing of the homeotic (HOX) genes during development. In addition to loss of homeotic gene silencing, some PcG mutants also have small imaginal discs. These include mutations in E(z), Su(z)12, esc and escl, which encode Polycomb repressive complex 2 (PRC2) subunits. The cause of this phenotype is not known, but the human homologs of PRC2 subunits have been shown to play a role in cell proliferation, are over-expressed in many tumors, and appear to be required for tumor proliferation. Here we show that the small imaginal disc phenotype arises, at least in part, from a cell growth defect. In homozygous E(z) mutants, imaginal disc cells are smaller than cells in normally proliferating discs. We show that the Thor gene, which encodes eIF4E-binding protein (4E-BP), the evolutionarily conserved inhibitor of cap-dependent translation and potent inhibitor of cell growth, is involved in the development of this phenotype. The Thor promoter region contains DNA binding motifs for transcription factors found in well-characterized Polycomb response elements (PREs), including PHO/PHOL, GAGA factor, and others, suggesting that Thor may be a direct target of Polycomb silencing. We present chromatin immunoprecipitation evidence that PcG proteins are bound to the Thor 5' region in vivo. The Thor gene is normally repressed in imaginal discs, but Thor mRNA and 4E-BP protein levels are elevated in imaginal discs of PRC2 subunit mutant larvae. Deletion of the Thor gene in E(z) mutants partially restores imaginal disc size toward wild-type and results in an increase in the fraction of larvae that pupariate. These results thus suggest that PcG proteins can directly modulate cell growth in Drosophila, in part by regulating Thor expression.
Collapse
Affiliation(s)
- Heather Mason-Suares
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
19
|
Sharif J, Endo TA, Ito S, Ohara O, Koseki H. Embracing change to remain the same: conservation of polycomb functions despite divergence of binding motifs among species. Curr Opin Cell Biol 2013; 25:305-13. [PMID: 23478215 DOI: 10.1016/j.ceb.2013.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Polycomb-group (PcG) proteins are evolutionarily conserved developmental regulators among species. In flies, PcG factors bind discrete DNA motifs known as the PREs (polycomb response elements); while in mammals they exhibit a marked preference for CpG islands (CGIs) that are unmethylated CpG-rich stretches in the genome. In this review, we discuss that despite the lack of similarities in DNA sequence both PREs and CGIs share many common properties and suggest that these could play a role for recruitment of PcG molecules into these loci. Further, in light of the antagonistic relationship between polycomb and DNA methylation pathways in mammals, we construct a model by compartmentalizing the genome into several representative categories and propose that the polycomb factors are the most suited to regulate development associated genes because of the robust yet reversible nature of PcG mediated transcriptional repression.
Collapse
Affiliation(s)
- Jafar Sharif
- Developmental Genetics Group, RIKEN Research Center for Allergy & Immunology (RCAI), 1-7-22 Suehiuro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
20
|
Prickaerts P, Niessen HE, Mouchel-Vielh E, Dahlmans VE, van den Akker GG, Geijselaers C, Adriaens ME, Spaapen F, Takihara Y, Rapp UR, Peronnet F, Voncken JW. MK3 controls Polycomb target gene expression via negative feedback on ERK. Epigenetics Chromatin 2012; 5:12. [PMID: 22870894 PMCID: PMC3499388 DOI: 10.1186/1756-8935-5-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/11/2012] [Indexed: 01/04/2023] Open
Abstract
Background Gene-environment interactions are mediated by epigenetic mechanisms. Polycomb Group proteins constitute part of an epigenetic cellular transcriptional memory system that is subject to dynamic modulation during differentiation. Molecular insight in processes that control dynamic chromatin association and dissociation of Polycomb repressive complexes during and beyond development is limited. We recently showed that MK3 interacts with Polycomb repressive complex 1 (PRC1). The functional relevance of this interaction, however, remained poorly understood. MK3 is activated downstream of mitogen- and stress-activated protein kinases (M/SAPKs), all of which fulfill crucial roles during development. We here use activation of the immediate-early response gene ATF3, a bona fide PRC1 target gene, as a model to study how MK3 and its effector kinases MAPK/ERK and SAPK/P38 are involved in regulation of PRC1-dependent ATF3 transcription. Results Our current data show that mitogenic signaling through ERK, P38 and MK3 regulates ATF3 expression by PRC1/chromatin dissociation and epigenetic modulation. Mitogenic stimulation results in transient P38-dependent H3S28 phosphorylation and ERK-driven PRC1/chromatin dissociation at PRC1 targets. H3S28 phosphorylation by itself appears not sufficient to induce PRC1/chromatin dissociation, nor ATF3 transcription, as inhibition of MEK/ERK signaling blocks BMI1/chromatin dissociation and ATF3 expression, despite induced H3S28 phosphorylation. In addition, we establish that concomitant loss of local H3K27me3 promoter marking is not required for ATF3 activation. We identify pERK as a novel signaling-induced binding partner of PRC1, and provide evidence that MK3 controls ATF3 expression in cultured cells via negative regulatory feedback on M/SAPKs. Dramatically increased ectopic wing vein formation in the absence of Drosophila MK in a Drosophila ERK gain-of-function wing vein patterning model, supports the existence of MK-mediated negative feedback regulation on pERK. Conclusion We here identify and characterize important actors in a PRC1-dependent epigenetic signal/response mechanism, some of which appear to be nonspecific global responses, whereas others provide modular specificity. Our findings provide novel insight into a Polycomb-mediated epigenetic mechanism that dynamically controls gene transcription and support a direct link between PRC1 and cellular responses to changes in the microenvironment.
Collapse
Affiliation(s)
- Peggy Prickaerts
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands.,Laboratoire de Biologie du Développement UMR 7622, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris 6, 9 Quai Saint-Bernard, 75005, Paris, France
| | - Hanneke Ec Niessen
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Emmanuèle Mouchel-Vielh
- Laboratoire de Biologie du Développement UMR 7622, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris 6, 9 Quai Saint-Bernard, 75005, Paris, France
| | - Vivian Eh Dahlmans
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Guus Gh van den Akker
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Claudia Geijselaers
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Michiel E Adriaens
- BiGCaT Bioinformatics, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Frank Spaapen
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Ulf R Rapp
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Frédérique Peronnet
- Laboratoire de Biologie du Développement UMR 7622, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris 6, 9 Quai Saint-Bernard, 75005, Paris, France
| | - Jan Willem Voncken
- Department of Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 50, 6229ER, Maastricht, The Netherlands
| |
Collapse
|
21
|
Zeng J, Kirk BD, Gou Y, Wang Q, Ma J. Genome-wide polycomb target gene prediction in Drosophila melanogaster. Nucleic Acids Res 2012; 40:5848-63. [PMID: 22416065 PMCID: PMC3401425 DOI: 10.1093/nar/gks209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
As key epigenetic regulators, polycomb group (PcG) proteins are responsible for the control of cell proliferation and differentiation as well as stem cell pluripotency and self-renewal. Aberrant epigenetic modification by PcG is strongly correlated with the severity and invasiveness of many types of cancers. Unfortunately, the molecular mechanism of PcG-mediated epigenetic regulation remained elusive, partly due to the extremely limited pool of experimentally confirmed PcG target genes. In order to facilitate experimental identification of PcG target genes, here we propose a novel computational method, EpiPredictor, that achieved significantly higher matching ratios with several recent chromatin immunoprecipitation studies than jPREdictor, an existing computational method. We further validated a subset of genes that were uniquely predicted by EpiPredictor by cross-referencing existing literature and by experimental means. Our data suggest that multiple transcription factor networking at the cis-regulatory elements is critical for PcG recruitment, while high GC content and high conservation level are also important features of PcG target genes. EpiPredictor should substantially expedite experimental discovery of PcG target genes by providing an effective initial screening tool. From a computational standpoint, our strategy of modelling transcription factor interaction with a non-linear kernel is original, effective and transferable to many other applications.
Collapse
Affiliation(s)
- Jia Zeng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
22
|
Berger N, Dubreucq B. Evolution goes GAGA: GAGA binding proteins across kingdoms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:863-8. [PMID: 22425673 DOI: 10.1016/j.bbagrm.2012.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 01/21/2023]
Abstract
Chromatin-associated proteins (CAP) play a crucial role in the regulation of gene expression and development in higher organisms. They are involved in the control of chromatin structure and dynamics. CAP have been extensively studied over the past years and are classified into two major groups: enzymes that modify histone stability and organization by post-translational modification of histone N-Terminal tails; and proteins that use ATP hydrolysis to modify chromatin structure. All of these proteins show a relatively high degree of sequence conservation across the animal and plant kingdoms. The essential Drosophila melanogaster GAGA factor (dGAF) interacts with these two types of CAP to regulate homeobox genes and thus contributes to a wide range of developmental events. Surprisingly, however, it is not conserved in plants. In this review, following an overview of fly GAF functions, we discuss the role of plant BBR/BPC proteins. These appear to functionally converge with dGAF despite a completely divergent amino acid sequence. Some suggestions are given for further investigation into the function of BPC proteins in plants.
Collapse
|
23
|
Park SY, Schwartz YB, Kahn TG, Asker D, Pirrotta V. Regulation of Polycomb group genes Psc and Su(z)2 in Drosophila melanogaster. Mech Dev 2012; 128:536-47. [PMID: 22289633 DOI: 10.1016/j.mod.2012.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Certain Polycomb group (PcG) genes are themselves targets of PcG complexes. Two of these constitute the Drosophila Psc-Su(z)2 locus, a region whose chromatin is enriched for H3K27me3 and contains several putative Polycomb response elements (PREs) that bind PcG proteins. To understand how PcG mechanisms regulate this region, the repressive function of the PcG protein binding sites was analyzed using reporter gene constructs. We find that at least two of these are functional PREs that can silence a reporter gene in a PcG-dependent manner. One of these two can also display anti-silencing activity, dependent on the context. A PcG protein binding site near the Psc promoter behaves not as a silencer but as a down-regulation module that is actually stimulated by the Pc gene product but not by other PcG products. Deletion of one of the PREs increases the expression level of Psc and Su(z)2 by twofold at late embryonic stages. We present evidence suggesting that the Psc-Su(z)2 locus is flanked by insulator elements that may protect neighboring genes from inappropriate silencing. Deletion of one of these regions results in extension of the domain of H3K27me3 into a region containing other genes, whose expression becomes silenced in the early embryo.
Collapse
Affiliation(s)
- Sung Yeon Park
- Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
24
|
Garcia M, Stathopoulos A. Lateral gene expression in Drosophila early embryos is supported by Grainyhead-mediated activation and tiers of dorsally-localized repression. PLoS One 2011; 6:e29172. [PMID: 22216201 PMCID: PMC3245246 DOI: 10.1371/journal.pone.0029172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022] Open
Abstract
The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence ("the A-box") present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a "switch-like" response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo.
Collapse
Affiliation(s)
- Mayra Garcia
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Angelike Stathopoulos
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
25
|
Okulski H, Druck B, Bhalerao S, Ringrose L. Quantitative analysis of polycomb response elements (PREs) at identical genomic locations distinguishes contributions of PRE sequence and genomic environment. Epigenetics Chromatin 2011; 4:4. [PMID: 21410956 PMCID: PMC3070613 DOI: 10.1186/1756-8935-4-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/16/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Polycomb/Trithorax response elements (PREs) are cis-regulatory elements essential for the regulation of several hundred developmentally important genes. However, the precise sequence requirements for PRE function are not fully understood, and it is also unclear whether these elements all function in a similar manner. Drosophila PRE reporter assays typically rely on random integration by P-element insertion, but PREs are extremely sensitive to genomic position. RESULTS We adapted the ΦC31 site-specific integration tool to enable systematic quantitative comparison of PREs and sequence variants at identical genomic locations. In this adaptation, a miniwhite (mw) reporter in combination with eye-pigment analysis gives a quantitative readout of PRE function. We compared the Hox PRE Frontabdominal-7 (Fab-7) with a PRE from the vestigial (vg) gene at four landing sites. The analysis revealed that the Fab-7 and vg PREs have fundamentally different properties, both in terms of their interaction with the genomic environment at each site and their inherent silencing abilities. Furthermore, we used the ΦC31 tool to examine the effect of deletions and mutations in the vg PRE, identifying a 106 bp region containing a previously predicted motif (GTGT) that is essential for silencing. CONCLUSIONS This analysis showed that different PREs have quantifiably different properties, and that changes in as few as four base pairs have profound effects on PRE function, thus illustrating the power and sensitivity of ΦC31 site-specific integration as a tool for the rapid and quantitative dissection of elements of PRE design.
Collapse
Affiliation(s)
- Helena Okulski
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Birgit Druck
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Roche Austria GmBH, Clinical Operations, Engelhorngasse 3, 1211 Vienna, Austria
| | - Sheetal Bhalerao
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Leonie Ringrose
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
26
|
Janssen R, Budd GE. Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda. EvoDevo 2010; 1:4. [PMID: 20849647 PMCID: PMC2938723 DOI: 10.1186/2041-9139-1-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/05/2010] [Indexed: 01/28/2023] Open
Abstract
Antisense transcripts of Ultrabithorax (aUbx) in the millipede Glomeris and the centipede Lithobius are expressed in patterns complementary to that of the Ubx sense transcripts. A similar complementary expression pattern has been described for non-coding RNAs (ncRNAs) of the bithoraxoid (bxd) locus in Drosophila, in which the transcription of bxd ncRNAs represses Ubx via transcriptional interference. We discuss our findings in the context of possibly conserved mechanisms of Ubx regulation in myriapods and the fly. Bicistronic transcription of Ubx and Antennapedia (Antp) has been reported previously for a myriapod and a number of crustaceans. In this paper, we show that Ubx/Antp bicistronic transcripts also occur in Glomeris and an onychophoran, suggesting further conserved mechanisms of Hox gene regulation in arthropods. Myriapod monophyly is supported by the expression of aUbx in all investigated myriapods, whereas in other arthropod classes, including the Onychophora, aUbx is not expressed. Of the two splice variants of Ubx/Antp only one could be isolated from myriapods, representing a possible further synapomorphy of the Myriapoda.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-75236 Uppsala, Sweden.
| | | |
Collapse
|
27
|
Kumar RP, Senthilkumar R, Singh V, Mishra RK. Repeat performance: how do genome packaging and regulation depend on simple sequence repeats? Bioessays 2010; 32:165-74. [PMID: 20091758 DOI: 10.1002/bies.200900111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-coding DNA has consistently increased during evolution of higher eukaryotes. Since the number of genes has remained relatively static during the evolution of complex organisms, it is believed that increased degree of sophisticated regulation of genes has contributed to the increased complexity. A higher proportion of non-coding DNA, including repeats, is likely to provide more complex regulatory potential. Here, we propose that repeats play a regulatory role by contributing to the packaging of the genome during cellular differentiation. Repeats, and in particular the simple sequence repeats, are proposed to serve as landmarks that can target regulatory mechanisms to a large number of genomic sites with the help of very few factors and regulate the linked loci in a coordinated manner. Repeats may, therefore, function as common target sites for regulatory mechanisms involved in the packaging and dynamic compartmentalization of the chromatin into active and inactive regions during cellular differentiation.
Collapse
Affiliation(s)
- Ram Parikshan Kumar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
28
|
Beck S, Faradji F, Brock H, Peronnet F. Maintenance of Hox Gene Expression Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:41-62. [DOI: 10.1007/978-1-4419-6673-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Niessen HEC, Demmers JA, Voncken JW. Talking to chromatin: post-translational modulation of polycomb group function. Epigenetics Chromatin 2009; 2:10. [PMID: 19723311 PMCID: PMC2745409 DOI: 10.1186/1756-8935-2-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 09/01/2009] [Indexed: 11/26/2022] Open
Abstract
Polycomb Group proteins are important epigenetic regulators of gene expression. Epigenetic control by polycomb Group proteins involves intrinsic as well as associated enzymatic activities. Polycomb target genes change with cellular context, lineage commitment and differentiation status, revealing dynamic regulation of polycomb function. It is currently unclear how this dynamic modulation is controlled and how signaling affects polycomb-mediated epigenetic processes at the molecular level. Experimental evidence on regulation of polycomb function by post-translational mechanisms is steadily emerging: Polycomb Group proteins are targeted for ubiquitylation, sumoylation and phosphorylation. In addition, specific Polycomb Group proteins modify other (chromatin) associated proteins via similar post-translational modifications. Such modifications affect protein function by affecting protein stability, protein-protein interactions and enzymatic activities. Here, we review current insights in covalent modification of Polycomb Group proteins in the context of protein function and present a tentative view of integrated signaling to chromatin in the context of phosphorylation. Clearly, the available literature reveals just the tip of the iceberg, and exact molecular mechanisms in, and the biological relevance of post-translational regulation of polycomb function await further elucidation. Our understanding of causes and consequences of post-translational modification of polycomb proteins will gain significantly from in vivo validation experiments. Impaired polycomb function has important repercussions for stem cell function, development and disease. Ultimately, increased understanding of signaling to chromatin and the mechanisms involved in epigenetic remodeling will contribute to the development of therapeutic interventions in cell fate decisions in development and disease.
Collapse
Affiliation(s)
- Hanneke E C Niessen
- Molecular Genetics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
30
|
Fujioka M, Yusibova GL, Zhou J, Jaynes JB. The DNA-binding Polycomb-group protein Pleiohomeotic maintains both active and repressed transcriptional states through a single site. Development 2008; 135:4131-9. [PMID: 19029043 PMCID: PMC2710970 DOI: 10.1242/dev.024554] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although epigenetic maintenance of either the active or repressed transcriptional state often involves overlapping regulatory elements, the underlying basis of this is not known. Epigenetic and pairing-sensitive silencing are related properties of Polycomb-group proteins, whereas their activities are generally opposed by the trithorax group. Both groups modify chromatin structure, but how their opposing activities are targeted to allow differential maintenance remains a mystery. Here, we identify a strong pairing-sensitive silencing (PSS) element at the 3' border of the Drosophila even skipped (eve) locus. This element can maintain repression during embryonic as well as adult eye development. Transgenic dissection revealed that silencing activity depends on a binding site for the Polycomb-group protein Pleiohomeotic (Pho) and on pho gene function. Binding sites for the trithorax-group protein GAGA factor also contribute, whereas sites for the known Polycomb response element binding factors Zeste and Dsp1 are dispensible. Normally, eve expression in the nervous system is maintained throughout larval stages. An enhancer that functions fully in embryos does not maintain expression, but the adjacent PSS element confers maintenance. This positive activity also depends on pho gene activity and on Pho binding. Thus, a DNA-binding complex requiring Pho is differentially regulated to facilitate epigenetic transcriptional memory of both the active and the repressed state.
Collapse
Affiliation(s)
- Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Galina L. Yusibova
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jian Zhou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James B. Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
31
|
Association of morphine-induced antinociception with variations in the 5′ flanking and 3′ untranslated regions of the μ opioid receptor gene in 10 inbred mouse strains. Pharmacogenet Genomics 2008; 18:927-36. [DOI: 10.1097/fpc.0b013e32830d0b9e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Petruk S, Smith ST, Sedkov Y, Mazo A. Association of trxG and PcG proteins with the bxd maintenance element depends on transcriptional activity. Development 2008; 135:2383-90. [PMID: 18550707 DOI: 10.1242/dev.023275] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins act in an epigenetic fashion to maintain active and repressive states of expression of the Hox and other target genes by altering their chromatin structure. Genetically, mutations in trxG and PcG genes can antagonize each other's function, whereas mutations of genes within each group have synergistic effects. Here, we show in Drosophila that multiple trxG and PcG proteins act through the same or juxtaposed sequences in the maintenance element (ME) of the homeotic gene Ultrabithorax. Surprisingly, trxG or PcG proteins, but not both, associate in vivo in any one cell in a salivary gland with the ME of an activated or repressed Ultrabithorax transgene, respectively. Among several trxG and PcG proteins, only Ash1 and Asx require Trithorax in order to bind to their target genes. Together, our data argue that at the single-cell level, association of repressors and activators correlates with gene silencing and activation, respectively. There is, however, no overall synergism or antagonism between and within the trxG and PcG proteins and, instead, only subsets of trxG proteins act synergistically.
Collapse
Affiliation(s)
- Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
33
|
Kozma G, Bender W, Sipos L. Replacement of a Drosophila Polycomb response element core, and in situ analysis of its DNA motifs. Mol Genet Genomics 2008; 279:595-603. [PMID: 18350319 DOI: 10.1007/s00438-008-0336-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
Abstract
Long-term repression of homeotic genes in the fruit fly is accomplished by proteins of the Polycomb Group, acting at Polycomb response elements (PREs). Here we use gene conversion to mutate specific DNA motifs within a PRE to test their relevance, and we exchange PREs to test their specificity. Previously we showed that removal of a 185 bp core sequence from the bithoraxoid PRE of the bithorax complex results in posteriorly directed segmental transformations. Mutating multiple binding sites for either the PHO or the GAF proteins separately in the core bithoraxoid PRE resulted in only rare and subtle transformations in adult flies. However, when both sets of sites were mutated, the transformations were similar in strength and penetrance to those caused by the deletion of the 185 bp core region. In contrast, mutating the singly occurring binding site of another DNA-binding protein, DSP1 (reportedly essential for PRE-activity), had no similar effect in combination with mutated PHO or GAF sites. Two minimal PREs from other segment-specific regulatory domains of the bithorax complex could substitute for the bithoraxoid PRE core. Our in situ analysis suggests that core PREs are interchangeable, and the cooperation between PHO and GAF binding sites is indispensable for silencing.
Collapse
Affiliation(s)
- Gabriella Kozma
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged 6701, Hungary
| | | | | |
Collapse
|
34
|
Sipos L, Kozma G, Molnár E, Bender W. In situ dissection of a Polycomb response element in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:12416-21. [PMID: 17640916 PMCID: PMC1941339 DOI: 10.1073/pnas.0703144104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genes of the Polycomb group maintain long-term, segment-specific repression of the homeotic genes in Drosophila. DNA targets of Polycomb group proteins, called Polycomb response elements (PREs), have been defined by several assays, but they have not been dissected in their original chromosomal context. An enhanced method of gene conversion was developed to generate a series of small, targeted deletions encompassing the best-studied PRE, upstream of the Ultrabithorax (Ubx) transcription unit in the bithorax complex. Deletions that removed an essential 185-bp core of the PRE caused anterior misexpression of Ubx and posterior segmental transformations, including the conversion of the third thoracic segment toward a duplicate first abdominal segment. These phenotypes were variable, suggesting some cooperation between this PRE and others in the bithorax complex. Larger deletions up to 3 kb were also created, which removed DNA sites reportedly needed for Ubx activation, including putative trithorax response elements. These deletions resulted in neither loss of Ubx expression nor loss-of-function phenotypes. Thus, the 3-kb region including the PRE is required for repression, but not for activation, of Ubx.
Collapse
Affiliation(s)
- László Sipos
- Institute of Genetics, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
35
|
Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 2007; 8:9-22. [PMID: 17173055 DOI: 10.1038/nrg1981] [Citation(s) in RCA: 662] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycomb group complexes, which are known to regulate homeotic genes, have now been found to control hundreds of other genes in mammals and insects. First believed to progressively assemble and package chromatin, they are now thought to be localized, but induce a methylation mark on histone H3 over a broad chromatin domain. Recent progress has changed our view of how these complexes are recruited, and how they affect chromatin and repress gene activity. Polycomb complexes function as global enforcers of epigenetically repressed states, balanced by an antagonistic state that is mediated by Trithorax. These epigenetic states must be reprogrammed when cells become committed to differentiation.
Collapse
Affiliation(s)
- Yuri B Schwartz
- Department of Molecular Biology and Biochemistry, Rutgers University, Nelson Laboratories, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
36
|
Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 2007; 134:223-32. [PMID: 17185323 DOI: 10.1242/dev.02723] [Citation(s) in RCA: 344] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycomb/Trithorax group response elements (PRE/TREs) are fascinating chromosomal pieces. Just a few hundred base pairs long, these elements can remember and maintain the active or silent transcriptional state of their associated genes for many cell generations, long after the initial determining activators and repressors have disappeared. Recently, substantial progress has been made towards understanding the nuts and bolts of PRE/TRE function at the molecular level and in experimentally mapping PRE/TRE sites across whole genomes. Here we examine the insights, controversies and new questions that have been generated by this recent flood of data.
Collapse
Affiliation(s)
- Leonie Ringrose
- IMBA - Institute of Molecular Biotechnology GmbH, Dr Bohr-Gasse 3, 1030 Vienna, Austria.
| | | |
Collapse
|
37
|
Breiling A, Sessa L, Orlando V. Biology of polycomb and trithorax group proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:83-136. [PMID: 17338920 DOI: 10.1016/s0074-7696(07)58002-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular phenotypes can be ascribed to different patterns of gene expression. Epigenetic mechanisms control the generation of different phenotypes from the same genotype. Thus differentiation is basically a process driven by changes in gene activity during development, often in response to transient factors or environmental stimuli. To keep the specific characteristics of cell types, tissue-specific gene expression patterns must be transmitted stably from one cell to the daughter cells, also in the absence of the early-acting determination factors. This heritability of patterns of active and inactive genes is enabled by epigenetic mechanisms that create a layer of information on top of the DNA sequence that ensures mitotic and sometimes also meiotic transmission of expression patterns. The proteins of the Polycomb and Trithorax group comprise such a cellular memory mechanism that preserves gene expression patterns through many rounds of cell division. This review provides an overview of the genetics and molecular biology of these maintenance proteins, concentrating mainly on mechanisms of Polycomb group-mediated repression.
Collapse
Affiliation(s)
- Achim Breiling
- Dulbecco Telethon Institute, Institute of Genetics and Biophysics, CNR, 80131 Naples, Italy
| | | | | |
Collapse
|
38
|
Petruk S, Sedkov Y, Riley KM, Hodgson J, Schweisguth F, Hirose S, Jaynes JB, Brock HW, Mazo A. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 2006; 127:1209-21. [PMID: 17174895 PMCID: PMC1866366 DOI: 10.1016/j.cell.2006.10.039] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 08/08/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
Much of the genome is transcribed into long noncoding RNAs (ncRNAs). Previous data suggested that bithoraxoid (bxd) ncRNAs of the Drosophila bithorax complex (BX-C) prevent silencing of Ultrabithorax (Ubx) and recruit activating proteins of the trithorax group (trxG) to their maintenance elements (MEs). We found that, surprisingly, Ubx and several bxd ncRNAs are expressed in nonoverlapping patterns in both embryos and imaginal discs, suggesting that transcription of these ncRNAs is associated with repression, not activation, of Ubx. Our data rule out siRNA or miRNA-based mechanisms for repression by bxd ncRNAs. Rather, ncRNA transcription itself, acting in cis, represses Ubx. The Trithorax complex TAC1 binds the Ubx coding region in nuclei expressing Ubx, and the bxd region in nuclei not expressing Ubx. We propose that TAC1 promotes the mosaic pattern of Ubx expression by facilitating transcriptional elongation of bxd ncRNAs, which represses Ubx transcription.
Collapse
Affiliation(s)
- Svetlana Petruk
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yurii Sedkov
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kristen M. Riley
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jacob Hodgson
- Department of Zoology, University of British Columbia, 6270 University Boulevard, V6T 1Z4, Vancouver, BC, Canada
| | | | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, and Graduate University for Advanced Studies, Mishima, Shizuoka-ken 411-8540, Japan
| | - James B. Jaynes
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hugh W. Brock
- Department of Zoology, University of British Columbia, 6270 University Boulevard, V6T 1Z4, Vancouver, BC, Canada
| | - Alexander Mazo
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
39
|
Calonje M, Sung ZR. Complexity beneath the silence. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:530-7. [PMID: 16979931 DOI: 10.1016/j.pbi.2006.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 07/18/2006] [Indexed: 05/11/2023]
Abstract
Polycomb group (PcG)-mediated silencing by proteins that are conserved across plants and animals is a key feature of eukaryotic gene regulation. Investigation of PcG-mediated gene silencing has revealed a surprising degree of complexity in the molecular mechanisms that recruit the protein complexes, repress expression, and maintain the epigenetic silent state of target genes. This review summarizes our current understanding of the mechanism of PcG-mediated gene silencing in animals and higher plants.
Collapse
Affiliation(s)
- Myriam Calonje
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
40
|
Müller J, Kassis JA. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev 2006; 16:476-84. [PMID: 16914306 DOI: 10.1016/j.gde.2006.08.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/03/2006] [Indexed: 01/02/2023]
Abstract
Polycomb group (PcG) proteins are conserved regulatory proteins that repress transcription of particular target genes in animals and plants. Studies over the past decade have established that most PcG proteins are not classic DNA binding factors but that they exist in multisubunit protein complexes that bind to and modify chromatin. Nevertheless, PcG repression of target genes in Drosophila requires specific cis-regulatory sequences, called Polycomb response elements (PREs), and chromatin immunoprecipitation studies have shown that, in vivo, most PcG proteins are specifically bound at the PREs of target genes. However, the mechanisms by which these PcG protein complexes are recruited to PREs and how they repress transcription are still poorly understood. Recent studies challenge earlier models that invoke covalent histone modifications and chromatin binding as the key steps in the recruitment of PcG proteins to PREs. The available evidence suggests that PREs are largely devoid of nucleosomes and that PRE DNA serves as an assembly platform for many different PcG protein complexes through DNA-protein and protein-protein interactions. The emerging picture suggests that the binding and modification of chromatin by PcG proteins is needed for interaction of PRE-tethered PcG protein complexes with nucleosomes in the flanking chromatin in order to maintain a Polycomb-repressed chromatin state at promoters and coding regions of target genes.
Collapse
Affiliation(s)
- Jürg Müller
- European Molecular Biology Laboratory, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
41
|
Mandell KE, Vallone PM, Owczarzy R, Riccelli PV, Benight AS. Studies of DNA dumbbells VIII. Melting analysis of DNA dumbbells with dinucleotide repeat stem sequences. Biopolymers 2006; 82:199-221. [PMID: 16345003 DOI: 10.1002/bip.20425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melting curves and circular dichroism spectra were measured for a number of DNA dumbbell and linear molecules containing dinucleotide repeat sequences of different lengths. To study effects of different sequences on the melting and spectroscopic properties, six DNA dumbbells whose stems contain the central sequences (AA)(10), (AC)(10), (AG)(10), (AT)(10), (GC)(10), and (GG)(10) were prepared. These represent the minimal set of 10 possible dinucleotide repeats. To study effects of dinucleotide repeat length, dumbbells with the central sequences (AG)(n), n = 5 and 20, were prepared. Control molecules, dumbbells with a random central sequence, (RN)(n), n = 5, 10, and 20, were also prepared. The central sequence of each dumbbell was flanked on both sides by the same 12 base pairs and T(4) end-loops. Melting curves were measured by optical absorbance and differential scanning calorimetry in solvents containing 25, 55, 85, and 115 mM Na(+). CD spectra were collected from 20 to 45 degrees C and [Na(+)] from 25 to 115 mM. The spectral database did not reveal any apparent temperature dependence in the pretransition region. Analysis of the melting thermodynamics evaluated as a function of Na(+) provided a means for quantitatively estimating the counterion release with melting for the different sequences. Results show a very definite sequence dependence, indicating the salt-dependent properties of duplex DNA are also sequence dependent. Linear DNA molecules containing the (AG)(n) and (RN)(n), sequences, n = 5, 10, 20, and 30, were also prepared and studied. The linear DNA molecules had the exact sequences of the dumbbell stems. That is, the central repeat sequence in each linear duplex was flanked on both sides by the same 12-bp sequence. Melting and CD studies were also performed on the linear DNA molecules. Comparison of results obtained for the same sequences in dumbbell and linear molecular environments reveals several interesting features of the interplay between sequence-dependent structural variability, sequence length, and the unconstrained (linear) or constrained (dumbbell) molecular environments.
Collapse
Affiliation(s)
- Kathleen E Mandell
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, 60607, USA
| | | | | | | | | |
Collapse
|
42
|
Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono KI, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125:301-13. [PMID: 16630818 PMCID: PMC3773330 DOI: 10.1016/j.cell.2006.02.043] [Citation(s) in RCA: 1771] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/20/2006] [Accepted: 02/23/2006] [Indexed: 12/31/2022]
Abstract
Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of over two hundred genes encoding key developmental regulators. These genes are occupied by nucleosomes trimethylated at histone H3K27, are transcriptionally repressed, and contain some of the most highly conserved noncoding elements in the genome. We found that PRC2 target genes are preferentially activated during ES cell differentiation and that the ES cell regulators OCT4, SOX2, and NANOG cooccupy a significant subset of these genes. These results indicate that PRC2 occupies a special set of developmental genes in ES cells that must be repressed to maintain pluripotency and that are poised for activation during ES cell differentiation.
Collapse
Affiliation(s)
- Tong Ihn Lee
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Richard G. Jenner
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Laurie A. Boyer
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Matthew G. Guenther
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Stuart S. Levine
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Roshan M. Kumar
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Brett Chevalier
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Sarah E. Johnstone
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Megan F. Cole
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyo-ichi Isono
- Developmental Genetics Group, RIKEN Center for Allergy and Immunology, 1-7-22, Suehiro, Tsurumiku, Yokohama, Kanagawa 230-0045, Japan
| | - Haruhiko Koseki
- Developmental Genetics Group, RIKEN Center for Allergy and Immunology, 1-7-22, Suehiro, Tsurumiku, Yokohama, Kanagawa 230-0045, Japan
| | - Takuya Fuchikami
- Technology and Development Team for Mammalian Cellular Dynamics, BioResource Center, RIKEN Tsukuba Institute, 3-1-1, Koyadai, Tsukuba, Ibaraki 230-0045, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Cellular Dynamics, BioResource Center, RIKEN Tsukuba Institute, 3-1-1, Koyadai, Tsukuba, Ibaraki 230-0045, Japan
| | - Heather L. Murray
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Jacob P. Zucker
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - George W. Bell
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | - Nancy M. Hannett
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Kaiming Sun
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Duncan T. Odom
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Arie P. Otte
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands
| | - Thomas L. Volkert
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David P. Bartel
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A. Melton
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - David K. Gifford
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Blastyák A, Mishra RK, Karch F, Gyurkovics H. Efficient and specific targeting of Polycomb group proteins requires cooperative interaction between Grainyhead and Pleiohomeotic. Mol Cell Biol 2006; 26:1434-44. [PMID: 16449654 PMCID: PMC1367177 DOI: 10.1128/mcb.26.4.1434-1444.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/06/2005] [Accepted: 12/02/2005] [Indexed: 11/20/2022] Open
Abstract
Specific targeting of the protein complexes formed by the Polycomb group of proteins is critically required to maintain the inactive state of a group of developmentally regulated genes. Although the role of DNA binding proteins in this process has been well established, it is still not understood how these proteins target the Polycomb complexes specifically to their response elements. Here we show that the grainyhead gene, which encodes a DNA binding protein, interacts with one such Polycomb response element of the bithorax complex. Grainyhead binds to this element in vitro. Moreover, grainyhead interacts genetically with pleiohomeotic in a transgene-based, pairing-dependent silencing assay. Grainyhead also interacts with Pleiohomeotic in vitro, which facilitates the binding of both proteins to their respective target DNAs. Such interactions between two DNA binding proteins could provide the basis for the cooperative assembly of a nucleoprotein complex formed in vitro. Based on these results and the available data, we propose that the role of DNA binding proteins in Polycomb group-dependent silencing could be described by a model very similar to that of an enhanceosome, wherein the unique arrangement of protein-protein interaction modules exposed by the cooperatively interacting DNA binding proteins provides targeting specificity.
Collapse
Affiliation(s)
- András Blastyák
- Hungarian Academy of Sciences, Biological Research Center, Institute of Genetics, Temesvari krt. 62, P.O.B. 521, H-6701 Szeged, Hungary.
| | | | | | | |
Collapse
|
44
|
Andreyeva EN, Belyaeva ES, Semeshin VF, Pokholkova GV, Zhimulev IF. Three distinct chromatin domains in telomere ends of polytene chromosomes in Drosophila melanogaster Tel mutants. J Cell Sci 2005; 118:5465-77. [PMID: 16278293 DOI: 10.1242/jcs.02654] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drosophila melanogaster telomeric DNA is known to comprise two domains: the terminal tract of retrotransposons (HeT-A, TART and TAHRE) and telomere-associated sequences (TAS). Chromosome tips are capped by a protein complex, which is assembled on the chromosome ends independently of the underlying terminal DNA sequences. To investigate the properties of these domains in salivary gland polytene chromosomes, we made use of Tel mutants. Telomeres in this background are elongated owing to the amplification of a block of terminal retroelements. Supercompact heterochromatin is absent from the telomeres of polytene chromosomes: electron microscopy analysis identifies the telomeric cap and the tract of retroelements as a reticular material, having no discernible banding pattern, whereas TAS repeats appear as faint bands. According to the pattern of bound proteins, the cap, tract of retroelements and TAS constitute distinct and non-overlapping domains in telomeres. SUUR, HP2, SU(VAR)3-7 and H3Me3K27 localize to the cap region, as has been demonstrated for HP1. All these proteins are also found in pericentric heterochromatin. The tract of retroelements is associated with proteins characteristic for both heterochromatin (H3Me3K9) and euchromatin (H3Me3K4, JIL-1, Z4). The TAS region is enriched for H3Me3K27. PC and E(Z) are detected both in TAS and many intercalary heterochromatin regions. Telomeres complete replication earlier than heterochromatic regions. The frequency of telomeric associations in salivary gland polytene chromosomes does not depend on the SuUR gene dosage, rather it appears to be defined by the telomere length.
Collapse
Affiliation(s)
- Evgenia N Andreyeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | |
Collapse
|
45
|
Brown JL, Grau DJ, DeVido SK, Kassis JA. An Sp1/KLF binding site is important for the activity of a Polycomb group response element from the Drosophila engrailed gene. Nucleic Acids Res 2005; 33:5181-9. [PMID: 16155187 PMCID: PMC1214548 DOI: 10.1093/nar/gki827] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polycomb-group response elements (PREs) are DNA elements through which the Polycomb-group (PcG) of transcriptional repressors act. Many of the PcG proteins are associated with two protein complexes that repress gene expression by modifying chromatin. Both of these protein complexes specifically associate with PREs in vivo, however, it is not known how they are recruited or held at the PRE. PREs are complex elements, made up of binding sites for many proteins. Our laboratory has been working to define all the sequences and DNA binding proteins required for the activity of a 181 bp PRE from the Drosophila engrailed gene. Here we show that one of the sites necessary for PRE activity, Site 2, can be bound by members of the Sp1/KLF family of zinc finger proteins. There are 10 Sp1/KLF family members in Drosophila, and nine of them bind to Site 2. We derive a consensus binding site for the Sp1/KLF Drosophila family members and show that this consensus sequence is present in most of the molecularly characterized PREs. These data suggest that one or more Sp1/KLF family members play a role in PRE function in Drosophila.
Collapse
Affiliation(s)
| | | | | | - Judith A. Kassis
- To whom correspondence should be addressed. Tel: +1 301 496 7879; Fax: +1 301 496 0243;
| |
Collapse
|
46
|
Canudas S, Pérez S, Fanti L, Pimpinelli S, Singh N, Hanes SD, Azorín F, Espinás ML. dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element. Nucleic Acids Res 2005; 33:4857-64. [PMID: 16135462 PMCID: PMC1196206 DOI: 10.1093/nar/gki776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
It was described earlier that the Drosophila GAGA factor [Trithorax-like (Trl)] interacts with dSAP18, which, in mammals, was reported to be a component of the Sin3–HDAC co-repressor complex. GAGA–dSAP18 interaction was proposed to contribute to the functional regulation of the bithorax complex (BX-C). Here, we show that mutant alleles of Trl, dsap18 and drpd3/hdac1 enhance A6-to-A5 transformation indicating a contribution to the regulation of Abd-B expression at A6. In A6, expression of Abd-B is driven by the iab-6 enhancer, which is insulated from iab-7 by the Fab-7 element. Here, we report that GAGA, dSAP18 and dRPD3/HDAC1 co-localize to ectopic Fab-7 sites in polytene chromosomes and that mutant Trl, dsap18 and drpd3/hdac1 alleles affect Fab-7-dependent silencing. Consistent with these findings, chromatin immunoprecipitation analysis shows that, in Drosophila embryos, the endogenous Fab-7 element is hypoacetylated at histones H3 and H4. These results indicate a contribution of GAGA, dSAP18 and dRPD3/HDAC1 to the regulation of Fab-7 function.
Collapse
Affiliation(s)
| | | | - Laura Fanti
- Dipartimento di Genetica e Biologia Molecolare, Università ‘La Sapienza’00185 Rome, Italy
| | - Sergio Pimpinelli
- Dipartimento di Genetica e Biologia Molecolare, Università ‘La Sapienza’00185 Rome, Italy
| | - Navjot Singh
- New York State Department of Health, Wadsworth Center, State University of New YorkAlbany, NY 12208, USA
| | - Steven D. Hanes
- New York State Department of Health, Wadsworth Center, State University of New YorkAlbany, NY 12208, USA
| | - Fernando Azorín
- To whom correspondence should be addressed. Tel: +34 93 4034958; Fax: +34 93 4034979;
| | | |
Collapse
|
47
|
Abstract
There are clear theoretical reasons and many well-documented examples which show that repetitive, DNA is essential for genome function. Generic repeated signals in the DNA are necessary to format expression of unique coding sequence files and to organise additional functions essential for genome replication and accurate transmission to progeny cells. Repetitive DNA sequence elements are also fundamental to the cooperative molecular interactions forming nucleoprotein complexes. Here, we review the surprising abundance of repetitive DNA in many genomes, describe its structural diversity, and discuss dozens of cases where the functional importance of repetitive elements has been studied in molecular detail. In particular, the fact that repeat elements serve either as initiators or boundaries for heterochromatin domains and provide a significant fraction of scaffolding/matrix attachment regions (S/MARs) suggests that the repetitive component of the genome plays a major architectonic role in higher order physical structuring. Employing an information science model, the 'functionalist' perspective on repetitive DNA leads to new ways of thinking about the systemic organisation of cellular genomes and provides several novel possibilities involving repeat elements in evolutionarily significant genome reorganisation. These ideas may facilitate the interpretation of comparisons between sequenced genomes, where the repetitive DNA component is often greater than the coding sequence component.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
48
|
Bonet C, Fernández I, Aran X, Bernués J, Giralt E, Azorín F. The GAGA Protein of Drosophila is Phosphorylated by CK2. J Mol Biol 2005; 351:562-72. [PMID: 16023138 DOI: 10.1016/j.jmb.2005.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 06/02/2005] [Accepted: 06/14/2005] [Indexed: 11/29/2022]
Abstract
The GAGA factor of Drosophila is a sequence-specific DNA-binding protein that contributes to multiple processes from the regulation of gene expression to the structural organisation of heterochromatin and chromatin remodelling. GAGA is known to interact with various other proteins (tramtrack, pipsqueak, batman and dSAP18) and protein complexes (PRC1, NURF and FACT). GAGA functions are likely regulated at the level of post-translational modifications. Little is known, however, about its actual pattern of modification. It was proposed that GAGA can be O-glycosylated. Here, we report that GAGA519 isoform is a phosphoprotein that is phosphorylated by CK2 at the region of the DNA-binding domain. Our results indicate that phosphorylation occurs at S388 and, to a lesser extent, at S378. These two residues are located in a region of the DNA-binding domain that makes no direct contact with DNA, being dispensable for sequence-specific recognition. Phosphorylation at these sites does not abolish DNA binding but reduces the affinity of the interaction. These results are discussed in the context of the various functions and interactions that GAGA supports.
Collapse
Affiliation(s)
- Carles Bonet
- Departament de Biologia Molecular i Cel.lular, Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Parc Científic de Barcelona, Josep Samitier, 1-5. 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 2005; 38:413-43. [PMID: 15568982 DOI: 10.1146/annurev.genet.38.072902.091907] [Citation(s) in RCA: 786] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the development of multicellular organisms, cells become different from one another by changing their genetic program in response to transient stimuli. Long after the stimulus is gone, "cellular memory" mechanisms enable cells to remember their chosen fate over many cell divisions. The Polycomb and Trithorax groups of proteins, respectively, work to maintain repressed or active transcription states of developmentally important genes through many rounds of cell division. Here we review current ideas on the protein and DNA components of this transcriptional memory system and how they interact dynamically with each other to orchestrate cellular memory for several hundred genes.
Collapse
|
50
|
Palsson A, Gibson G. Association between nucleotide variation in Egfr and wing shape in Drosophila melanogaster. Genetics 2005; 167:1187-98. [PMID: 15280234 PMCID: PMC1470961 DOI: 10.1534/genetics.103.021766] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As part of an effort to dissect quantitative trait locus effects to the nucleotide level, association was assessed between 238 single-nucleotide and 20 indel polymorphisms spread over 11 kb of the Drosophila melanogaster Egfr locus and nine relative warp measures of wing shape. One SNP in a conserved potential regulatory site for a GAGA factor in the promoter of alternate first exon 2 approaches conservative experiment-wise significance (P < 0.00003) in the sample of 207 lines for association with the location of the crossveins in the central region of the wing. Several other sites indicate marginal association with one or more other aspects of shape. No strong effects of sex or population of origin were detected with measures of shape, but two different sites were strongly associated with overall wing size in interaction with these fixed factors. Whole-gene sequencing in very large samples, rather than selective genotyping, would appear to be the only strategy likely to be successful for detecting subtle associations in species with high polymorphism and little haplotype structure. However, these features severely limit the ability of linkage disequilibrium mapping in Drosophila to resolve quantitative effects to single nucleotides.
Collapse
Affiliation(s)
- Arnar Palsson
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|