1
|
Villa A, Notarangelo LD. RAG gene defects at the verge of immunodeficiency and immune dysregulation. Immunol Rev 2019; 287:73-90. [PMID: 30565244 PMCID: PMC6309314 DOI: 10.1111/imr.12713] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Abstract
V(D)J recombination, the mechanism responsible for generating antigen receptor diversity, has the potential to generate aberrant DNA rearrangements in developing lymphocytes. Indeed, the recombinase has been implicated in several different kinds of errors leading to oncogenic transformation. Here we review the basic aspects of V(D)J recombination, mechanisms underlying aberrant DNA rearrangements, and the types of aberrant events uncovered in recent genomewide analyses of lymphoid neoplasms.
Collapse
|
3
|
Zhang Y, Xu K, Deng A, Fu X, Xu A, Liu X. An amphioxus RAG1-like DNA fragment encodes a functional central domain of vertebrate core RAG1. Proc Natl Acad Sci U S A 2014; 111:397-402. [PMID: 24368847 PMCID: PMC3890805 DOI: 10.1073/pnas.1318843111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly diversified repertoire of antigen receptors in the vertebrate immune system is generated via proteins encoded by the recombination activating genes (RAGs) RAG1 and RAG2 by a process known as variable, diversity, and joining [V(D)J] gene recombination. Based on the study of vertebrate RAG proteins, many hypotheses have been proposed regarding the origin and evolution of RAG. This issue remains unresolved, leaving a significant gap in our understanding of the evolution of adaptive immunity. Here, we show that the amphioxus genome contains an ancient RAG1-like DNA fragment (bfRAG1L) that encodes a virus-related protein that is much shorter than vertebrate RAG1 and harbors a region homologous to the central domain of core RAG1 (cRAG1). bfRAG1L also contains an unexpected retroviral type II nuclease active site motif, DXN(D/E)XK, and is capable of degrading both DNA and RNA. Moreover, bfRAG1L shares important functional properties with the central domain of cRAG1, including interaction with RAG2 and localization to the nucleus. Remarkably, the reconstitution of bfRAG1L into a cRAG1-like protein yielded an enzyme capable of recognizing recombination signal sequences and performing V(D)J recombination in the presence of mouse RAG2. Moreover, this reconstituted cRAG1-like protein could mediate the assembly of antigen receptor genes in RAG1-deficient mice. Together, our results demonstrate that amphioxus bfRAG1L encodes a protein that is functionally equivalent to the central domain of cRAG1 and is well prepared for further evolution to mediate V(D)J recombination. Thus, our findings provide unique insights into the evolutionary origin of RAG1.
Collapse
Affiliation(s)
- Yanni Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Ke Xu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Anqi Deng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Xing Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 610275, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; and
| |
Collapse
|
4
|
Ji G, Yan L, Liu W, Huang C, Gu A, Wang X. Polymorphisms in double-strand breaks repair genes are associated with impaired fertility in Chinese population. Reproduction 2013; 145:463-70. [PMID: 23630330 DOI: 10.1530/rep-12-0370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The DNA double-strand breaks (DSBs) repair pathway plays a critical role in repairing double-strand breaks, and genetic variants in DSBs repair pathway genes are potential risk factors for various diseases. To test the hypothesis that polymorphisms in DSBs genes are associated with susceptibility to male infertility, we examined 11 single nucleotide polymorphisms in eight key DSBs genes (XRCC3, XRCC2, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in 580 infertility cases and 580 controls from a Chinese population-based case-control study (NJMU Infertility Study). Genotypes were determined using the OpenArray platform, and sperm DNA fragmentation was detected using the TUNEL assay. The adjusted odds ratio (OR) and 95% CI were estimated using logistic regression. The results indicate that LIG4 rs1805388 (Ex2+54C>T, Thr9Ile) T allele could increase the susceptibility to male infertility (adjusted OR=2.78; 95% CI, 1.77-4.36 for TT genotype; and adjusted OR=1.58; 95% CI, 1.77-4.36 for TC genotype respectively). In addition, the homozygous variant genotype GG of RAG1 rs2227973 (A>G, K820R) was associated with a significantly increased risk of male infertility (adjusted OR, 1.44; 95% CI, 1.01-2.04). Moreover, linear regression analysis revealed that carriers of LIG4 rs1805388 or RAG1 rs2227973 variants had a significantly higher level of sperm DNA fragmentation and that T allele carriers of LIG4 rs1805388 also had a lower level of sperm concentration when compared with common homozygous genotype carriers. This study demonstrates, for the first time, to our knowledge, that functional variants of RAG1 rs2227973 and LIG4 rs1805388 are associated with susceptibility to male infertility.
Collapse
Affiliation(s)
- Guixiang Ji
- Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042, People's Republic of China
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
V(D)J recombination assembles immunoglobulin and T cell receptor genes during lymphocyte development through a series of carefully orchestrated DNA breakage and rejoining events. DNA cleavage requires a series of protein-DNA complexes containing the RAG1 and RAG2 proteins and recombination signals that flank the recombining gene segments. In this review, we discuss recent advances in our understanding of the function and domain organization of the RAG proteins, the composition and structure of RAG-DNA complexes, and the pathways that lead to the formation of these complexes. We also consider the functional significance of RAG-mediated histone recognition and ubiquitin ligase activities, and the role played by RAG in ensuring proper repair of DNA breaks made during V(D)J recombination. Finally, we propose a model for the formation of RAG-DNA complexes that involves anchoring of RAG1 at the recombination signal nonamer and RAG2-dependent surveillance of adjoining DNA for suitable spacer and heptamer sequences.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
6
|
Wong SY, Lu CP, Roth DB. A RAG1 mutation found in Omenn syndrome causes coding flank hypersensitivity: a novel mechanism for antigen receptor repertoire restriction. THE JOURNAL OF IMMUNOLOGY 2008; 181:4124-30. [PMID: 18768869 DOI: 10.4049/jimmunol.181.6.4124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypomorphic RAG mutants with severely reduced V(D)J recombination activity cause Omenn Syndrome (OS), an immunodeficiency with features of immune dysregulation and a restricted TCR repertoire. Precisely how RAG mutants produce autoimmune and allergic symptoms has been unclear. Current models posit that the severe recombination defect restricts the number of lymphocyte clones, a few of which are selected upon Ag exposure. We show that murine RAG1 R972Q, corresponding to an OS mutation, renders the recombinase hypersensitive to selected coding sequences at the hairpin formation step. Other RAG1 OS mutants tested do not manifest this sequence sensitivity. These new data support a novel mechanism for OS: by selectively impairing recombination at certain coding flanks, a RAG mutant can cause primary repertoire restriction, as opposed to a more random, limited repertoire that develops secondary to severely diminished recombination activity.
Collapse
Affiliation(s)
- Serre-Yu Wong
- Program in Molecular Pathogenesis, Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
7
|
Lu CP, Posey JE, Roth DB. Understanding how the V(D)J recombinase catalyzes transesterification: distinctions between DNA cleavage and transposition. Nucleic Acids Res 2008; 36:2864-73. [PMID: 18375979 PMCID: PMC2396405 DOI: 10.1093/nar/gkn128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Rag1 and Rag2 proteins initiate V(D)J recombination by introducing site-specific DNA double-strand breaks. Cleavage occurs by nicking one DNA strand, followed by a one-step transesterification reaction that forms a DNA hairpin structure. A similar reaction allows Rag transposition, in which the 3'-OH groups produced by Rag cleavage are joined to target DNA. The Rag1 active site DDE triad clearly plays a catalytic role in both cleavage and transposition, but no other residues in Rag1 responsible for transesterification have been identified. Furthermore, although Rag2 is essential for both cleavage and transposition, the nature of its involvement is unknown. Here, we identify basic amino acids in the catalytic core of Rag1 specifically important for transesterification. We also show that some Rag1 mutants with severe defects in hairpin formation nonetheless catalyze substantial levels of transposition. Lastly, we show that a catalytically defective Rag2 mutant is impaired in target capture and displays a novel form of coding flank sensitivity. These findings provide the first identification of components of Rag1 that are specifically required for transesterification and suggest an unexpected role for Rag2 in DNA cleavage and transposition.
Collapse
Affiliation(s)
- Catherine P Lu
- Program in Molecular Pathogenesis, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
8
|
Nishihara T, Nagawa F, Imai T, Sakano H. RAG-heptamer interaction in the synaptic complex is a crucial biochemical checkpoint for the 12/23 recombination rule. J Biol Chem 2007; 283:4877-85. [PMID: 18089566 DOI: 10.1074/jbc.m709890200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In V(D)J recombination, the RAG1 and RAG2 protein complex cleaves the recombination signal sequences (RSSs), generating a hairpin structure at the coding end. The cleavage occurs only between two RSSs with different spacer lengths of 12 and 23 bp. Here we report that in the synaptic complex, recombination-activating gene (RAG) proteins interact with the 7-mer and unstack the adjacent base in the coding region. We generated a RAG1 mutant that exhibits reduced RAG-7-mer interaction, unstacking of the coding base, and hairpin formation. Mutation of the 23-RSS at the first position of the 7-mer, which has been reported to impair the cleavage of the partner 12-RSS, demonstrated phenotypes similar to those of the RAG1 mutant; the RAG interaction and base unstacking in the partner 12-RSS are reduced. We propose that the RAG-7-mer interaction is a critical step for coding DNA distortion and hairpin formation in the context of the 12/23 rule.
Collapse
Affiliation(s)
- Tadashi Nishihara
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
9
|
Abstract
The rearrangement of antigen receptor genes is initiated by double-strand breaks catalyzed by the RAG1/2 complex at the junctions of recombination signal sequences and coding segments. As with some "cut-and-paste" transposases, such as Tn5 and Hermes, a DNA hairpin is formed at one end of the break via a nicked intermediate. By using abasic DNA substrates, we show that different base positions are important for the two steps of cleavage. Removal of one base in the coding flank enhances hairpin formation, bypassing a requirement for a paired complex of two signal sequences. Rescue by abasic substrates is consistent with a base-flip mechanism seen in the crystal structure of the Tn5 postcleavage complex and may mimic the DNA changes on paired complex formation. We have searched for a tryptophan residue in RAG1 that would be the functional equivalent of W298 in Tn5, which stabilizes the DNA interaction by stacking the flipped base on the indole ring. A W956A mutation in RAG1 had an inhibitory effect on both nicking and hairpin stages that could be rescued by abasic substrates. W956 is therefore a likely candidate for interacting with this base during hairpin formation.
Collapse
Affiliation(s)
- Gabrielle J. Grundy
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 241, Bethesda, MD 20892
| | - Joanne E. Hesse
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 241, Bethesda, MD 20892
| | - Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 241, Bethesda, MD 20892
- *To whom correspondence may be addressed. E-mail:
| |
Collapse
|
10
|
Posey JE, Pytlos MJ, Sinden RR, Roth DB. Target DNA structure plays a critical role in RAG transposition. PLoS Biol 2006; 4:e350. [PMID: 17105341 PMCID: PMC1618415 DOI: 10.1371/journal.pbio.0040350] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 08/22/2006] [Indexed: 11/19/2022] Open
Abstract
Antigen receptor gene rearrangements are initiated by the RAG1/2 protein complex, which recognizes specific DNA sequences termed RSS (recombination signal sequences). The RAG recombinase can also catalyze transposition: integration of a DNA segment bounded by RSS into an unrelated DNA target. For reasons that remain poorly understood, such events occur readily in vitro, but are rarely detected in vivo. Previous work showed that non-B DNA structures, particularly hairpins, stimulate transposition. Here we show that the sequence of the four nucleotides at a hairpin tip modulates transposition efficiency over a surprisingly wide (>100-fold) range. Some hairpin targets stimulate extraordinarily efficient transposition (up to 15%); one serves as a potent and specific transposition inhibitor, blocking capture of targets and destabilizing preformed target capture complexes. These findings suggest novel regulatory possibilities and may provide insight into the activities of other transposases.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Malgorzata J Pytlos
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, Houston, Texas, United States of America
| | - Richard R Sinden
- Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, Houston, Texas, United States of America
| | - David B Roth
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Lu CP, Sandoval H, Brandt VL, Rice PA, Roth DB. Amino acid residues in Rag1 crucial for DNA hairpin formation. Nat Struct Mol Biol 2006; 13:1010-5. [PMID: 17028591 DOI: 10.1038/nsmb1154] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 09/14/2006] [Indexed: 11/10/2022]
Abstract
The Rag proteins carry out V(D)J recombination through a process mechanistically similar to cut-and-paste transposition. Specifically, Rag complexes form DNA hairpins through direct transesterification, using a catalytic Asp-Asp-Glu (DDE) triad in Rag1. How is sufficient DNA distortion introduced to allow hairpin formation? We hypothesized that, like certain transposases, the Rag proteins might use aromatic amino acid residues to stabilize a flipped-out base. Through in vivo and in vitro experiments and structural predictions, we identified residues in Rag1 crucial for hairpin formation. One of these, a conserved tryptophan (Trp893), probably participates in base-stacking interactions near the cleavage site, as do Trp298, Trp265 and Trp319 in the Tn5, Tn10 and Hermes transposases, respectively. Other residues surrounding the catalytic glutamate (YKEFRK) may share functional similarities with the YREK motif in IS4 family transposases.
Collapse
Affiliation(s)
- Catherine P Lu
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
12
|
Kriatchko AN, Anderson DK, Swanson PC. Identification and characterization of a gain-of-function RAG-1 mutant. Mol Cell Biol 2006; 26:4712-28. [PMID: 16738334 PMCID: PMC1489120 DOI: 10.1128/mcb.02487-05] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RAG-1 and RAG-2 initiate V(D)J recombination by cleaving DNA at recombination signal sequences through sequential nicking and transesterification reactions to yield blunt signal ends and coding ends terminating in a DNA hairpin structure. Ubiquitous DNA repair factors then mediate the rejoining of broken DNA. V(D)J recombination adheres to the 12/23 rule, which limits rearrangement to signal sequences bearing different lengths of DNA (12 or 23 base pairs) between the conserved heptamer and nonamer sequences to which the RAG proteins bind. Both RAG proteins have been subjected to extensive mutagenesis, revealing residues required for one or both cleavage steps or involved in the DNA end-joining process. Gain-of-function RAG mutants remain unidentified. Here, we report a novel RAG-1 mutation, E649A, that supports elevated cleavage activity in vitro by preferentially enhancing hairpin formation. DNA binding activity and the catalysis of other DNA strand transfer reactions, such as transposition, are not substantially affected by the RAG-1 mutation. However, 12/23-regulated synapsis does not strongly stimulate the cleavage activity of a RAG complex containing E649A RAG-1, unlike its wild-type counterpart. Interestingly, wild-type and E649A RAG-1 support similar levels of cleavage and recombination of plasmid substrates containing a 12/23 pair of signal sequences in cell culture; however, E649A RAG-1 supports about threefold more cleavage and recombination than wild-type RAG-1 on 12/12 plasmid substrates. These data suggest that the E649A RAG-1 mutation may interfere with the RAG proteins' ability to sense 12/23-regulated synapsis.
Collapse
Affiliation(s)
- Aleksei N Kriatchko
- Dept. of Medical Microbiology and Immunology, Creighton University Medical Center, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
13
|
de Villartay JP. V(D)J recombination and DNA repair: lessons from human immune deficiencies and other animal models. Curr Opin Allergy Clin Immunol 2002; 2:473-9. [PMID: 14752329 DOI: 10.1097/00130832-200212000-00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW V(D)J recombination not only represents the main mechanism for the diversification of the immune system, it also constitutes a critical checkpoint in the development of both B and T lymphocytes. While a defect in V(D)J recombination leads to severe combined immune deficiency, a deregulation of this process can participate in the onset of lymphoid malignancies. RECENT FINDINGS The careful analysis of human severe combined immune deficiency patients as well as engineered murine models provided several new interesting insights into the physiopathology of the V(D)J recombination process. A new factor of the V(D)J recombination/DNA repair machinery, Artemis, was identified based on its deficiency in human severe combined immune deficiency patients. It also became evident from knockout mouse studies that DNA repair factors that participate in V(D)J recombination can be considered as genomic caretakers. SUMMARY While V(D)J recombination was first recognized as a critical checkpoint in the development of the immune system, the discovery of several DNA repair factors that participate in this reaction shed light on more general aspects of genomic stability and cancer predisposition.
Collapse
Affiliation(s)
- Jean-Pierre de Villartay
- Developpement Normal et Pathologie du système Immunataire, INSERM U429, Hôpital Necker Enfants-Malades, Paris, France.
| |
Collapse
|
14
|
Abstract
V(D)J recombination is the specialized DNA rearrangement used by cells of the immune system to assemble immunoglobulin and T-cell receptor genes from the preexisting gene segments. Because there is a large choice of segments to join, this process accounts for much of the diversity of the immune response. Recombination is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to make double-strand breaks at specific recognition sequences (recombination signal sequences, RSSs). The neighboring coding DNA is converted to a hairpin during breakage. Broken ends are then processed and joined with the help of several factors also involved in repair of radiation-damaged DNA, including the DNA-dependent protein kinase (DNA-PK) and the Ku, Artemis, DNA ligase IV, and Xrcc4 proteins, and possibly histone H2AX and the Mre11/Rad50/Nbs1 complex. There may be other factors not yet known. V(D)J recombination is strongly regulated by limiting access to RSS sites within chromatin, so that particular sites are available only in certain cell types and developmental stages. The roles of enhancers, histone acetylation, and chromatin remodeling factors in controlling accessibility are discussed. The RAG proteins are also capable of transposing RSS-ended fragments into new DNA sites. This transposition helps to explain the mechanism of RAG action and supports earlier proposals that V(D)J recombination evolved from an ancient mobile DNA element.
Collapse
Affiliation(s)
- Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892-0540, USA.
| |
Collapse
|
15
|
Huye LE, Purugganan MM, Jiang MM, Roth DB. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol Cell Biol 2002; 22:3460-73. [PMID: 11971977 PMCID: PMC133788 DOI: 10.1128/mcb.22.10.3460-3473.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although both RAG-1 and RAG-2 are required for all steps of V(D)J recombination, little is known about the specific contribution of either protein to these steps. RAG-1 contains three acidic active-site amino acids that are thought to coordinate catalytic metal ions. To search for additional catalytic amino acids and to better define the functional anatomy of RAG-1, we mutated all 86 conserved basic amino acids to alanine and evaluated the mutant proteins for DNA binding, nicking, hairpin formation, and joining. We found several amino acids outside of the canonical nonamer-binding domain that are critical for DNA binding, several step arrest mutants with defects in nicking or hairpin formation, and four RAG-1 mutants defective specifically for joining. Analysis of coding joints formed by some of these mutants revealed excessive deletions, frequent use of short sequence homologies, and unusually long palindromic junctional inserts, known as P nucleotides, that result from aberrant hairpin opening. These features characterize junctions found in scid mice, which are deficient for the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), suggesting that the RAG proteins and DNA-PKcs perform overlapping functions in coding joint formation. Interestingly, the amino acids that are altered in 12 of our mutants are also mutated in human inherited immunodeficiency syndromes. Our analysis of these mutants provides insights into the molecular mechanisms underlying these disorders.
Collapse
Affiliation(s)
- Leslie E Huye
- Department of Immunolog, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The RAG proteins were long thought to serve merely as a nuclease, initiating recombination by cleaving DNA. Recent work has shown, however, that these proteins are essential for many steps in the recombination pathway, such as opening hairpins and joining broken DNA ends, and that they can also act as a transposase, targeting distorted DNA structures such as hairpins.
Collapse
Affiliation(s)
- Vicky L Brandt
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
17
|
Abstract
Cleavage by the V(D)J recombinase at a pair of recombination signal sequences creates two coding ends and two signal ends. The RAG proteins can integrate these signal ends, without sequence specificity, into an unrelated target DNA molecule. Here we demonstrate that such transposition events are greatly stimulated by--and specifically targeted to--hairpins and other distorted DNA structures. The mechanism of target selection by the RAG proteins thus appears to involve recognition of distorted DNA. These data also suggest a novel mechanism for the formation of alternative recombination products termed hybrid joints, in which a signal end is joined to a hairpin coding end. We suggest that hybrid joints may arise by transposition in vivo and propose a new model to account for some recurrent chromosome translocations found in human lymphomas. According to this model, transposition can join antigen receptor loci to partner sites that lack recombination signal sequence elements but bear particular structural features. The RAG proteins are capable of mediating all necessary breakage and joining events on both partner chromosomes; thus, the V(D)J recombinase may be far more culpable for oncogenic translocations than has been suspected.
Collapse
Affiliation(s)
- Gregory S Lee
- Department of Immunology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
18
|
Arbuckle JL, Fauss LA, Simpson R, Ptaszek LM, Rodgers KK. Identification of two topologically independent domains in RAG1 and their role in macromolecular interactions relevant to V(D)J recombination. J Biol Chem 2001; 276:37093-101. [PMID: 11479318 DOI: 10.1074/jbc.m105988200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V(D)J recombination is instigated by the recombination-activating proteins RAG1 and RAG2, which catalyze site-specific DNA cleavage at the border of the recombination signal sequence (RSS). Although both proteins are required for activity, core RAG1 (the catalytically active region containing residues 384-1008 of 1040) alone displays binding specificity for the conserved heptamer and nonamer sequences of the RSS. The nonamer-binding region lies near the N terminus of core RAG1, whereas the heptamer-binding region has not been identified. Here, potential domains within core RAG1 were identified using limited proteolysis studies. An iterative procedure of DNA cloning, protein expression, and characterization revealed the presence of two topologically independent domains within core RAG1, referred to as the central domain (residues 528-760) and the C-terminal domain (residues 761-980). The domains do not include the nonamer-binding region but rather largely span the remaining relatively uncharacterized region of core RAG1. Characterization of macromolecular interactions revealed that the central domain bound to the RSS with specificity for the heptamer and contained the predominant binding site for RAG2. The C-terminal domain bound DNA cooperatively but did not show specificity for either conserved RSS element. This domain was also found to self-associate, implicating it as a dimerization domain within RAG1.
Collapse
Affiliation(s)
- J L Arbuckle
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | | | |
Collapse
|
19
|
Katz RA, DiCandeloro P, Kukolj G, Skalka AM. Role of DNA end distortion in catalysis by avian sarcoma virus integrase. J Biol Chem 2001; 276:34213-20. [PMID: 11441016 DOI: 10.1074/jbc.m104632200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviral integrase (IN) recognizes linear viral DNA ends and introduces nicks adjacent to a highly conserved CA dinucleotide usually located two base pairs from the 3'-ends of viral DNA (the "processing" reaction). In a second step, the same IN active site catalyzes the insertion of these ends into host DNA (the "joining" reaction). Both DNA sequence and DNA structure contribute to specific recognition of viral DNA ends by IN. Here we used potassium permanganate modification to show that the avian sarcoma virus IN catalytic domain is able to distort viral DNA ends in vitro. This distortion activity is consistent with both unpairing and unstacking of the three terminal base pairs, including the processing site adjacent to the conserved CA. Furthermore, the introduction of mismatch mutations that destabilize the viral DNA ends were found to stimulate the IN processing reaction as well as IN-mediated distortion. End-distortion activity was also observed with mutant or heterologous DNA substrates. However, further analyses showed that using Mn(2+) as a cofactor, processing site specificity of these substrates was also maintained. Our results support a model whereby unpairing and unstacking of the terminal base pairs is a required step in the processing reaction. Furthermore, these results are consistent with our previous observations indicating that unpairing of target DNA promotes the joining reaction.
Collapse
Affiliation(s)
- R A Katz
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | |
Collapse
|
20
|
Li W, Chang FC, Desiderio S. Rag-1 mutations associated with B-cell-negative scid dissociate the nicking and transesterification steps of V(D)J recombination. Mol Cell Biol 2001; 21:3935-46. [PMID: 11359901 PMCID: PMC87056 DOI: 10.1128/mcb.21.12.3935-3946.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some patients with B-cell-negative severe combined immune deficiency (SCID) carry mutations in RAG-1 or RAG-2 that impair V(D)J recombination. Two recessive RAG-1 mutations responsible for B-cell-negative SCID, R621H and E719K, impair V(D)J recombination without affecting formation of single-site recombination signal sequence complexes, specific DNA contacts, or perturbation of DNA structure at the heptamer-coding junction. The E719K mutation impairs DNA cleavage by the RAG complex, with a greater effect on nicking than on transesterification; a conservative glutamine substitution exhibits a similar effect. When cysteine is substituted for E719, RAG-1 activity is enhanced in Mn(2+) but remains impaired in Mg(2+), suggesting an interaction between this residue and an essential metal ion. The R621H mutation partially impairs nicking, with little effect on transesterification. The residual nicking activity of the R621H mutant is reduced at least 10-fold upon a change from pH 7.0 to pH 8.4. Site-specific nicking is severely impaired by an alanine substitution at R621 but is spared by substitution with lysine. These observations are consistent with involvement of a positively charged residue at position 621 in the nicking step of the RAG-mediated cleavage reaction. Our data provide a mechanistic explanation for one form of hereditary SCID. Moreover, while RAG-1 is directly involved in catalysis of both nicking and transesterification, our observations indicate that these two steps have distinct catalytic requirements.
Collapse
Affiliation(s)
- W Li
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
21
|
Sadofsky MJ. The RAG proteins in V(D)J recombination: more than just a nuclease. Nucleic Acids Res 2001; 29:1399-409. [PMID: 11266539 PMCID: PMC31291 DOI: 10.1093/nar/29.7.1399] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Revised: 02/09/2001] [Accepted: 02/09/2001] [Indexed: 11/12/2022] Open
Abstract
V(D)J recombination is the process that generates the diversity among T cell receptors and is one of three mechanisms that contribute to the diversity of antibodies in the vertebrate immune system. The mechanism requires precise cutting of the DNA at segment boundaries followed by rejoining of particular pairs of the resulting termini. The imprecision of aspects of the joining reaction contributes significantly to increasing the variability of the resulting functional genes. Signal sequences target DNA recombination and must participate in a highly ordered protein-DNA complex in order to limit recombination to appropriate partners. Two proteins, RAG1 and RAG2, together form the nuclease that cleaves the DNA at the border of the signal sequences. Additional roles of these proteins in organizing the reaction complex for subsequent steps are explored.
Collapse
Affiliation(s)
- M J Sadofsky
- Medical College of Georgia, Institute of Molecular Medicine and Genetics, CB-2803, Augusta, GA 30912, USA.
| |
Collapse
|
22
|
Qiu JX, Kale SB, Yarnell Schultz H, Roth DB. Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol Cell 2001; 7:77-87. [PMID: 11172713 DOI: 10.1016/s1097-2765(01)00156-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The only established physiological function of the V(D)J recombinase, comprising RAG1 and RAG2, is to perform DNA cleavage. The molecular roles of RAG2 in cleavage, the mechanisms used to join the broken DNA ends, and the identity of nuclease(s) that open the hairpin coding ends have been unknown. Site-directed mutagenesis targeting each conserved basic amino acid in RAG2 revealed several separation-of-function mutants that address these questions. Analysis of these mutants reveals that RAG2 helps recognize or cleave distorted DNA intermediates and plays an essential role in the joining step of V(D)J recombination. Moreover, the discovery that some mutants block RAG-mediated hairpin opening in vitro provides a critical link between this biochemical activity and coding joint formation in vivo.
Collapse
Affiliation(s)
- J X Qiu
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Yeo TC, Xia D, Hassouneh S, Yang XO, Sabath DE, Sperling K, Gatti RA, Concannon P, Willerford DM. V(D)J rearrangement in Nijmegen breakage syndrome. Mol Immunol 2000; 37:1131-9. [PMID: 11451418 DOI: 10.1016/s0161-5890(01)00026-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Repair of DNA double-strand breaks is essential for maintenance of genomic stability, and is specifically required for rearrangement of immunoglobulin (Ig) and T cell receptor (TCR) loci during development of the immune system. Abnormalities in these repair processes also contribute to oncogenic chromosomal rearrangements that underlie many lymphoid malignancies. Nijmegen breakage syndrome (NBS) is a rare autosomal recessive condition characterized by immunodeficiency, radiation sensitivity, and increased predisposition to lymphoid cancers bearing oncogenic Ig and TCR locus translocations. NBS patients fail to produce nibrin, a protein required for the nuclear localization and function of a DNA repair complex that includes Mre11 and Rad50. Mre11 has biochemical properties that suggest a potential role in V(D)J recombination. We studied V(D)J recombination in NBS cells in vitro and in vivo, using cell lines and peripheral blood leukocyte DNA from NBS patients. We found that NBS cells were competent to rejoin signal substrates with normal efficiency and high fidelity. Coding substrates were similarly rejoined efficiently, and coding end structures appeared normal. In B cells from NBS patients, the spectrums of IgH CDR3 regions were diverse and normally distributed. Moreover, the lengths and composition of Igkappa VJ joins and IgH VDJ joins derived from NBS and normal subjects were indistinguishable. Our data indicate that nibrin plays no essential role in V(D)J recombination and is not required for the generation of an apparently diverse B cell repertoire.
Collapse
Affiliation(s)
- T C Yeo
- Molecular Genetics Program, Virginia Mason Research Center, 1201 Ninth Avenue, Seattle, WA 98101-2795, USA
| | | | | | | | | | | | | | | | | |
Collapse
|