1
|
Li M, Zhang Z, Geng Q, Lu Y, Miao S, Zhang X, Song W, Li K. A testis-specific long non-coding RNA, 1700052I22Rik, regulates spermatid chromatin condensation in mice. Int J Biochem Cell Biol 2025; 179:106725. [PMID: 39667612 DOI: 10.1016/j.biocel.2024.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Long non-coding RNAs (lncRNAs), serving as diverse functional regulators, are abundantly expressed in the testis. However, many testis-specific or preferentially expressed lncRNAs remain uncharacterized. Here, we report a testis-specific lncRNA, 1700052I22Rik, which exhibits a dynamic expression pattern during spermatogenesis. Our findings demonstrate that knockout of 1700052I22Rik in mice leads to reduced sperm counts and subfertility in males, as well as defective spermatid chromatin condensation. We further elucidate the underlying mechanism by which 1700052I22Rik modulates the translation of protamine 1 (PRM1) through interaction with Y-box binding protein 2 (YBX2). Collectively, our results uncover a crucial role for the testis-specific lncRNA 1700052I22Rik in regulating spermatid chromatin condensation in mice, providing novel insights into the functions of lncRNAs in spermatogenesis and potential targets for the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zexuan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Qi Geng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xingguang Zhang
- Department of Health Statistics, Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Zhao H, Cai Z, Rao J, Wu D, Ji L, Ye R, Wang D, Chen J, Cao C, Hu N, Shu T, Zhu P, Wang J, Zhou X, Xue Y. SARS-CoV-2 RNA stabilizes host mRNAs to elicit immunopathogenesis. Mol Cell 2024; 84:490-505.e9. [PMID: 38128540 DOI: 10.1016/j.molcel.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
SARS-CoV-2 RNA interacts with host factors to suppress interferon responses and simultaneously induces cytokine release to drive the development of severe coronavirus disease 2019 (COVID-19). However, how SARS-CoV-2 hijacks host RNAs to elicit such imbalanced immune responses remains elusive. Here, we analyzed SARS-CoV-2 RNA in situ structures and interactions in infected cells and patient lung samples using RIC-seq. We discovered that SARS-CoV-2 RNA forms 2,095 potential duplexes with the 3' UTRs of 205 host mRNAs to increase their stability by recruiting RNA-binding protein YBX3 in A549 cells. Disrupting the SARS-CoV-2-to-host RNA duplex or knocking down YBX3 decreased host mRNA stability and reduced viral replication. Among SARS-CoV-2-stabilized host targets, NFKBIZ was crucial for promoting cytokine production and reducing interferon responses, probably contributing to cytokine storm induction. Our study uncovers the crucial roles of RNA-RNA interactions in the immunopathogenesis of RNA viruses such as SARS-CoV-2 and provides valuable host targets for drug development.
Collapse
Affiliation(s)
- Hailian Zhao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Rao
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Di Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lei Ji
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Naijing Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou 510100, China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Chen F, Wang S, Zeng C, Tang S, Gu H, Wang Z, Li J, Feng P, Zhang Y, Wang P, Wu Y, Shen H. Silencing circSERPINE2 restrains mesenchymal stem cell senescence via the YBX3/PCNA/p21 axis. Cell Mol Life Sci 2023; 80:325. [PMID: 37831180 PMCID: PMC10575817 DOI: 10.1007/s00018-023-04975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Increasing evidence indicates that circular RNAs (circRNAs) accumulate in aging tissues and nonproliferating cells due to their high stability. However, whether upregulation of circRNA expression mediates stem cell senescence and whether circRNAs can be targeted to alleviate aging-related disorders remain unclear. Here, RNA sequencing analysis of differentially expressed circRNAs in long-term-cultured mesenchymal stem cells (MSCs) revealed that circSERPINE2 expression was significantly increased in late passages. CircSERPINE2 small interfering RNA delayed MSC senescence and rejuvenated MSCs, while circSERPINE2 overexpression had the opposite effect. RNA pulldown followed by mass spectrometry revealed an interaction between circSERPINE2 and YBX3. CircSERPINE2 increased the affinity of YBX3 for ZO-1 through the CCAUC motif, resulting in the sequestration of YBX3 in the cytoplasm, inhibiting the association of YBX3 with the PCNA promoter and eventually affecting p21 ubiquitin-mediated degradation. In addition, our results demonstrated that senescence-related downregulation of EIF4A3 gave rise to circSERPINE2. In vivo, intra-articular injection of si-circSerpine2 restrained native joint-resident MSC senescence and cartilage degeneration in mice with aging-related osteoarthritis. Taken together, our findings provide strong evidence for a regulatory role for the circSERPINE2/YBX3/PCNA/p21 axis in MSC senescence and the therapeutic potential of si-circSERPINE2 in alleviating aging-associated syndromes, such as osteoarthritis.
Collapse
Affiliation(s)
- Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Huimin Gu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Jinteng Li
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Pei Feng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Yunhui Zhang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
| |
Collapse
|
4
|
Zhou W, Melamed D, Banyai G, Meyer C, Tuschl T, Wickens M, Cao J, Fields S. Expanding the binding specificity for RNA recognition by a PUF domain. Nat Commun 2021; 12:5107. [PMID: 34429425 PMCID: PMC8384837 DOI: 10.1038/s41467-021-25433-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
The ability to design a protein to bind specifically to a target RNA enables numerous applications, with the modular architecture of the PUF domain lending itself to new RNA-binding specificities. For each repeat of the Pumilio-1 PUF domain, we generate a library that contains the 8,000 possible combinations of amino acid substitutions at residues critical for RNA contact. We carry out yeast three-hybrid selections with each library against the RNA recognition sequence for Pumilio-1, with any possible base present at the position recognized by the randomized repeat. We use sequencing to score the binding of each variant, identifying many variants with highly repeat-specific interactions. From these data, we generate an RNA binding code specific to each repeat and base. We use this code to design PUF domains against 16 RNAs, and find that some of these domains recognize RNAs with two, three or four changes from the wild type sequence.
Collapse
Affiliation(s)
- Wei Zhou
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, Washington, USA ,grid.34477.330000000122986657Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA ,grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Daniel Melamed
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, Washington, USA ,grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel ,grid.18098.380000 0004 1937 0562Institute of Evolution, University of Haifa, Haifa, Israel
| | - Gabor Banyai
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Cindy Meyer
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Thomas Tuschl
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Marvin Wickens
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Junyue Cao
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Stanley Fields
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, Washington, USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Heinemann U, Roske Y. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding. Cancers (Basel) 2021; 13:cancers13020190. [PMID: 33430354 PMCID: PMC7825780 DOI: 10.3390/cancers13020190] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Proteins are composed of compact domains, often of known three-dimensional structure, and natively unstructured polypeptide regions. The abundant cold-shock domain is among the set of canonical nucleic acid-binding domains and conserved from bacteria to man. Proteins containing cold-shock domains serve a large variety of biological functions, which are mostly linked to DNA or RNA binding. These functions include the regulation of transcription, RNA splicing, translation, stability and sequestration. Cold-shock domains have a simple architecture with a conserved surface ideally suited to bind single-stranded nucleic acids. Because the binding is mostly by non-specific molecular interactions which do not involve the sugar-phosphate backbone, cold-shock domains are not strictly sequence-specific and do not discriminate reliably between DNA and RNA. Many, but not all functions of cold shock-domain proteins in health and disease can be understood based of the physical and structural properties of their cold-shock domains. Abstract The cold-shock domain has a deceptively simple architecture but supports a complex biology. It is conserved from bacteria to man and has representatives in all kingdoms of life. Bacterial cold-shock proteins consist of a single cold-shock domain and some, but not all are induced by cold shock. Cold-shock domains in human proteins are often associated with natively unfolded protein segments and more rarely with other folded domains. Cold-shock proteins and domains share a five-stranded all-antiparallel β-barrel structure and a conserved surface that binds single-stranded nucleic acids, predominantly by stacking interactions between nucleobases and aromatic protein sidechains. This conserved binding mode explains the cold-shock domains’ ability to associate with both DNA and RNA strands and their limited sequence selectivity. The promiscuous DNA and RNA binding provides a rationale for the ability of cold-shock domain-containing proteins to function in transcription regulation and DNA-damage repair as well as in regulating splicing, translation, mRNA stability and RNA sequestration.
Collapse
|
6
|
Gao Y, Jian L, Lu W, Xue Y, Machaty Z, Luo H. Vitamin E can promote spermatogenesis by regulating the expression of proteins associated with the plasma membranes and protamine biosynthesis. Gene 2021; 773:145364. [PMID: 33359122 DOI: 10.1016/j.gene.2020.145364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/31/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022]
Abstract
Vitamin E is generally believed to promote the production of ovine sperm mainly through its antioxidant effect. Our previous studies have shown that some non-antioxidant genes may also be key in mediating this process. The objective of this study was to identify key candidate proteins that were differentially expressed in response to a treatment with Vitamin E. Prepubertal ovine testicular cells were isolated and divided into two groups. They were either treated with 800 μM Vitamin E (based on our previous results) or used as a non-treated control. After 24 h, all the cells were harvested for proteomic analysis. We found 115 differentially expressed proteins, 4 of which were up-regulated and 111 were down-regulated. A GO term enrichment analysis identified 127 Biological Process, 63 Cell Component and 26 Molecular Function terms that were enriched. Within those terms, 13, 11 and 26 terms were significantly enriched, respectively. Terms related to membrane and enzyme activity including the inner acrosomal membrane, signal peptidase complex, cysteine-type endopeptidase activity, etc., were also markedly enriched, while none of the KEGG pathways were enriched. We found that many of the differentially expressed proteins, such as CD46 (membrane cofactor protein), FLNA (Filamin A), DYSF (Dysferlin), IFT20 (Intraflagellar transport 20), SPCS1 (Signal peptidase complex subunit 1) and SPCS3 (Signal peptidase complex subunit 3) were related to the acrosomal and plasma membranes. A parallel reaction monitoring (PRM) analysis verified that Vitamin E improved spermatogenesis by regulating the expression of FLNA, SPCS3, YBX3 and RARS, proteins that are associated with the plasma membranes and protamine biosynthesis of the spermatozoa.
Collapse
Affiliation(s)
- Yuefeng Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Luyang Jian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Wei Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ying Xue
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Uhl M, Tran VD, Backofen R. Improving CLIP-seq data analysis by incorporating transcript information. BMC Genomics 2020; 21:894. [PMID: 33334306 PMCID: PMC7745353 DOI: 10.1186/s12864-020-07297-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Current peak callers for identifying RNA-binding protein (RBP) binding sites from CLIP-seq data take into account genomic read profiles, but they ignore the underlying transcript information, that is information regarding splicing events. So far, there are no studies available that closer observe this issue. RESULTS Here we show that current peak callers are susceptible to false peak calling near exon borders. We quantify its extent in publicly available datasets, which turns out to be substantial. By providing a tool called CLIPcontext for automatic transcript and genomic context sequence extraction, we further demonstrate that context choice affects the performances of RBP binding site prediction tools. Moreover, we show that known motifs of exon-binding RBPs are often enriched in transcript context sites, which should enable the recovery of more authentic binding sites. Finally, we discuss possible strategies on how to integrate transcript information into future workflows. CONCLUSIONS Our results demonstrate the importance of incorporating transcript information in CLIP-seq data analysis. Taking advantage of the underlying transcript information should therefore become an integral part of future peak calling and downstream analysis tools.
Collapse
Affiliation(s)
- Michael Uhl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany
| | - Van Dinh Tran
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany. .,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, Freiburg, 79104, Germany.
| |
Collapse
|
8
|
Elucidating the processes and pathways enriched in buffalo sperm proteome in regulating semen quality. Cell Tissue Res 2020; 383:881-903. [PMID: 33151454 DOI: 10.1007/s00441-020-03303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Sperm carries a reservoir of proteins regulating the molecular functions to attain functional competence. Semen samples collected from buffalo bulls were assessed for sperm functional attributes (n = 11) and proteome profiling (n = 6). Sperm proteins were extracted and profiled by employing LC-MS/MS. Overall, the buffalo sperm contained 1365 proteins, of which 458 were common between the groups. The unique proteins were 477 and 430 in good and poor quality semen, respectively. In the whole proteome of buffalo sperm, sexual reproduction with phosphatidylethanolamine-binding protein1 (PEBP1), fetuin-B (FETUB) and acrosin (ACR) was the most enriched (p = 8.44E-19) biological process, also with thermogenesis (p = 0.003), oocyte meiosis (p = 0.007) and vascular smooth muscle contraction (p = 0.009) apart from metabolic pathways. In good quality semen, mesenchyme migration (p = 1.24E-07) and morphogenesis (p = 0.001) were abundant biological processes. In good quality semen, the fluid shear stress (p = 0.01) and, in poor quality semen, valine, leucine and isoleucine degradation (p = 3.8E-05) pathways were enriched. In good quality semen, 7 proteins were significantly (p < 0.05) upregulated and 33 proteins were significantly (p < 0.05) downregulated. On validating the abundantly expressed sperm proteins, serine protease inhibitor Kazal-type 2-like (SPINK2; 2.17-fold) and neddylin (NEDD8; 1.13-fold) were upregulated and YBX2 was downregulated (0.41-fold) in good quality semen as compared with poor quality semen (1-fold). The present findings revealed the importance of sperm proteins in oocyte maturation, fertilization process and early embryonic development. The variations in the proteomic composition can be used as potential markers for the selection of breeding bulls.
Collapse
|
9
|
Y-Box Binding Proteins in mRNP Assembly, Translation, and Stability Control. Biomolecules 2020; 10:biom10040591. [PMID: 32290447 PMCID: PMC7226217 DOI: 10.3390/biom10040591] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Y-box binding proteins (YB proteins) are DNA/RNA-binding proteins belonging to a large family of proteins with the cold shock domain. Functionally, these proteins are known to be the most diverse, although the literature hardly offers any molecular mechanisms governing their activities in the cell, tissue, or the whole organism. This review describes the involvement of YB proteins in RNA-dependent processes, such as mRNA packaging into mRNPs, mRNA translation, and mRNA stabilization. In addition, recent data on the structural peculiarities of YB proteins underlying their interactions with nucleic acids are discussed.
Collapse
|
10
|
The RNA-Binding Protein YBX3 Controls Amino Acid Levels by Regulating SLC mRNA Abundance. Cell Rep 2019; 27:3097-3106.e5. [DOI: 10.1016/j.celrep.2019.05.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
|
11
|
Y-box proteins combine versatile cold shock domains and arginine-rich motifs (ARMs) for pleiotropic functions in RNA biology. Biochem J 2018; 475:2769-2784. [PMID: 30206185 DOI: 10.1042/bcj20170956] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
Abstract
Y-box proteins are single-strand DNA- and RNA-binding proteins distinguished by a conserved cold shock domain (CSD) and a variable C-terminal domain organized into alternating short modules rich in basic or acidic amino acids. A huge literature depicts Y-box proteins as highly abundant, staggeringly versatile proteins that interact with all mRNAs and function in most forms of mRNA-specific regulation. The mechanisms by which Y-box proteins recognize mRNAs are unclear, because their CSDs bind a jumble of diverse elements, and the basic modules in the C-terminal domain are considered to bind nonspecifically to phosphates in the RNA backbone. A survey of vertebrate Y-box proteins clarifies the confusing names for Y-box proteins, their domains, and RNA-binding motifs, and identifies several novel conserved sequences: first, the CSD is flanked by linkers that extend its binding surface or regulate co-operative binding of the CSD and N-terminal and C-terminal domains to proteins and RNA. Second, the basic modules in the C-terminal domain are bona fide arginine-rich motifs (ARMs), because arginine is the predominant amino acid and comprises 99% of basic residues. Third, conserved differences in AA (amino acid) sequences between isoforms probably affect RNA-binding specificity. C-terminal ARMs connect with many studies, demonstrating that ARMs avidly bind sites containing specific RNA structures. ARMs crystallize insights into the under-appreciated contributions of the C-terminal domain to site-specific binding by Y-box proteins and difficulties in identifying site-specific binding by the C-terminal domain. Validated structural biology techniques are available to elucidate the mechanisms by which YBXprot (Y-box element-binding protein) CSDs and ARMs identify targets.
Collapse
|
12
|
Kleene KC. Gordon Dixon, protamines, and the atypical patterns of gene expression in spermatogenic cells. Syst Biol Reprod Med 2018; 64:417-423. [PMID: 30129372 DOI: 10.1080/19396368.2018.1505973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Gordon Dixon's pioneering work on the replacement of histones by protamines during spermatogenesis inspired research as recombinant DNA became widely used to analyze gene expression in mammalian spermatogenic cells. The impact of recombinant DNA began immediately with the identification of mouse protamine 1 as a haploid-expressed mRNA, resolving a decades-long controversy whether gene expression in haploid spermatogenic cells distorts transmission of alleles to progeny. Numerous insights into the biology of spermatogenesis followed as the sequences of many mRNAs revealed that the patterns of gene expression in spermatogenic cells are astonishingly different from those in other cells in the mammalian body. Studies of these phenomena have generated fundamental insights across reproductive, molecular and evolutionary biology. Abbreviations: PRM1: protamine 1; PRM2: protamine 2; TCE: translation control element.
Collapse
|
13
|
Wu Y, Xu K, Qi H. Domain-functional analyses of PIWIL1 and PABPC1 indicate their synergistic roles in protein translation via 3′-UTRs of meiotic mRNAs†. Biol Reprod 2018; 99:773-788. [DOI: 10.1093/biolre/ioy100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yaoyao Wu
- School of Life Science, University of Science and Technology of China, Hefei, China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kaibiao Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huayu Qi
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Kleene KC. Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay. Mol Reprod Dev 2016; 83:190-207. [PMID: 26773323 DOI: 10.1002/mrd.22616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
Many mRNAs encoding proteins needed for the construction of the specialized organelles of spermatozoa are stored as translationally repressed, free messenger ribonucleoproteins in round spermatids, to be actively translated in elongating and elongated spermatids. The factors that repress translation in round spermatids, however, have been elusive. Two lines of evidence implicate the highly abundant and well-known translational repressor, Y-box protein 2 (YBX2), as a critical factor: First, protamine 1 (Prm1) and sperm-mitochondria cysteine-rich protein (Smcp) mRNAs are prematurely recruited onto polysomes in Ybx2-knockout mouse round spermatids. Second, mutations in 3' untranslated region (3'UTR) cis-elements that abrogate YBX2 binding activate translation of Prm1 and Smcp mRNAs in round spermatids of transgenic mice. The abundance of YBX2 and its affinity for variable sequences, however, raise questions of how YBX2 targets specific mRNAs for repression. Mutations to the Prm1 and Smcp mRNAs in transgenic mice reveal that strong repression in round spermatids requires YBX2 binding sites located near the 3' ends of their 3'UTRs as locating the same sites in upstream positions produce negligible repression. This location-dependence implies that the assembly of repressive complexes is nucleated by adjacent cis-elements that enable cooperative interactions of YBX2 with co-factors. The available data suggest that, in vertebrates, YBX2 has the important role of coordinating the storage of translationally repressed mRNAs in round spermatids by inhibiting translational activity and the degradation of transcripts via translation-dependent deadenylation. These insights should facilitiate future experiments designed to unravel how YBX2 targets mRNAs for repression in round spermatids and how mutations in the YBX2 gene cause infertility in humans. Mol. Reprod. Dev. 83: 190-207, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kenneth C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
15
|
Yang R, Tsai-Morris CH, Kang JH, Dufau ML. Elucidation of RNA binding regions of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) to transcripts of a chromatin remodeling protein essential for spermatogenesis. Horm Mol Biol Clin Investig 2016; 22:119-30. [PMID: 25910401 DOI: 10.1515/hmbci-2015-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/23/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Gonadotropin-regulated testicular RNA helicase (GRTH) is a testis-specific member of the DEAD-box family of RNA helicases present in Leydig and germ cells. It is a transport protein of mRNAs from nucleus to cytoplasmic sites and is essential for posttranscriptional regulation and completion of spermatogenesis. Transition protein 2 (Tp2), which associates with GRTH and is required for spermatid elongation, failed to express in GRTH null mice with impaired mRNA nuclear export. The present study determines GRTH binding motifs/regions that associate with Tp2 mRNA transcripts. MATERIALS AND METHODS RNA-protein interaction was analyzed using biotin-labeled electrophoretic mobility gel shift assays (EMSA). 3'-biotin-labeled RNA (Tp2) was incubated with mGRTH protein (full length/sequential deletion of specific and conserved RNA helicase motifs of GRTH) expressed from in vitro TNT coupled reticulocyte lysate system. Binding specificity was further elucidated by mutagenesis and antibody supershift analysis. RESULTS RNA-EMSA revealed that the 3' UTR of Tp2 RNA (127 nt from TGA) was retarded in presence of full length GRTH. Nucleotide sequences downstream of TGA of the Tp2 transcript (1-47 and 78-127 nt) are important for binding to GRTH. Sequential deletions/point mutations in GRTH revealed region(s) of conserved binding motifs of RNA helicases (Ia and V) essential for GRTH binding to Tp2 mRNA. CONCLUSIONS Our studies provide insights into the association of Tp2 expression via binding to the conserved RNA binding motifs of GRTH protein and the basis for understanding GRTH in the regulation of the genes essential for germ cell elongation and completion of spermatogenesis.
Collapse
|
16
|
Licatalosi DD. Roles of RNA-binding Proteins and Post-transcriptional Regulation in Driving Male Germ Cell Development in the Mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:123-51. [PMID: 27256385 DOI: 10.1007/978-3-319-29073-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are dependent on highly regulated gene expression programs in which cell-specific combinations of regulatory factors determine which genes are expressed and the post-transcriptional fate of the resulting RNA transcripts. Post-transcriptional regulation of gene expression by RNA-binding proteins has critical roles in tissue development-allowing individual genes to generate multiple RNA and protein products, and the timing, location, and abundance of protein synthesis to be finely controlled. Extensive post-transcriptional regulation occurs during mammalian gametogenesis, including high levels of alternative mRNA expression, stage-specific expression of mRNA variants, broad translational repression, and stage-specific activation of mRNA translation. In this chapter, an overview of the roles of RNA-binding proteins and the importance of post-transcriptional regulation in male germ cell development in the mouse is presented.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Snyder E, Soundararajan R, Sharma M, Dearth A, Smith B, Braun RE. Compound Heterozygosity for Y Box Proteins Causes Sterility Due to Loss of Translational Repression. PLoS Genet 2015; 11:e1005690. [PMID: 26646932 PMCID: PMC4672889 DOI: 10.1371/journal.pgen.1005690] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
The Y-box proteins YBX2 and YBX3 bind RNA and DNA and are required for metazoan development and fertility. However, possible functional redundancy between YBX2 and YBX3 has prevented elucidation of their molecular function as RNA masking proteins and identification of their target RNAs. To investigate possible functional redundancy between YBX2 and YBX3, we attempted to construct Ybx2-/-;Ybx3-/- double mutants using a previously reported Ybx2-/- model and a newly generated global Ybx3-/- model. Loss of YBX3 resulted in reduced male fertility and defects in spermatid differentiation. However, homozygous double mutants could not be generated as haploinsufficiency of both Ybx2 and Ybx3 caused sterility characterized by extensive defects in spermatid differentiation. RNA sequence analysis of mRNP and polysome occupancy in single and compound Ybx2/3 heterozygotes revealed loss of translational repression almost exclusively in the compound Ybx2/3 heterozygotes. RNAseq analysis also demonstrated that Y-box protein dose-dependent loss of translational regulation was inversely correlated with the presence of a Y box recognition target sequence, suggesting that Y box proteins bind RNA hierarchically to modulate translation in a range of targets. The Y-box proteins are evolutionary conserved across eukaryotes. This study focused on two Y-box proteins, YBX2 and YBX3, expressed in testis and known be important for male fertility. Previous studies in male germ cells link YBX2 and YBX3 proteins to RNA masking, however, whether they function in translational repression or mRNA stability during spermatogenesis has not been resolved. Ybx2-null mice are known to be infertile due to post-meiotic spermatid defects. To assess the functional role of YBX3 during spermatogenesis, we generated Ybx3-null mice. These mice displayed reduced fertility and spermatid differentiation defects. To test if YBX2 and YBX3 are functionally redundant, we attempted to generate double knockout mice. Double mutants could not be generated due to unexpected infertility in the compound Ybx2/3 heterozygotes. Compound heterozygotes displayed multiple sperm defects indicative of failed post-meiotic germ cell differentiation. Analysis of translational repression in compound Ybx2/3 heterozygous testes demonstrated a loss of translation repression in mRNAs lacking the Y box recognition sequence. These findings suggest YBX2 and YBX3 function to repress translation through both sequence-specific and non-specific mechanisms in a hierarchical manner.
Collapse
Affiliation(s)
- Elizabeth Snyder
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Manju Sharma
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Andrea Dearth
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Benjamin Smith
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Robert E. Braun
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
18
|
Cullinane DL, Chowdhury TA, Kleene KC. Mechanisms of translational repression of the Smcp mRNA in round spermatids. Reproduction 2014; 149:43-54. [PMID: 25336347 DOI: 10.1530/rep-14-0394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The protamine 1 (Prm1) and sperm mitochondria-associated, cysteine-rich protein (Smcp) mRNAs exemplify a widespread pattern of mRNA-specific regulation of mRNA translation in post-meiotic spermatogenic cells, spermatids. Both mRNAs are transcribed and initially stored in free-mRNPs in early spermatids, and translated on polysomes in late spermatids. In this study, we demonstrate that the 5' and 3'-UTRs and the 3' terminus of the Smcp 3'-UTR are required for normal repression of the Smcp mRNA in transgenic mice. RNA affinity chromatography and mass spectrometry sequencing identified Y-box protein 2 (YBX2/MSY2) as the major protein that interacts with the 3' terminus of the Smcp 3'-UTR and a Y-box recognition sequence, GCCACCU, in the translation control element that is necessary for Prm1 mRNA repression. Depletion of YBX2 in Ybx2-null mice prematurely activates Prm1 and Smcp mRNA translation in early spermatids. Fluorescent in situ hybridization reveals that the Smcp intron, the Smcp mRNA, and both Smcp-Gfp transgenic mRNAs are strongly concentrated in the chromatoid body, and that theYbx2-null mutation does not eliminate the Smcp mRNA from the chromatoid body. This and previous findings suggest that the Smcp pre-mRNA is spliced and associates with YBX2 in the chromatoid body, and that repressed free-mRNPs are stored in the general cytoplasm. As YBX2 is the predominant protein in testis free-mRNPs, it likely represses many mRNAs in early spermatids. The mechanisms by which YBX2 represses the Smcp and Prm1 mRNAs are relevant to reproductive medicine because mutations in the human YBX2 gene correlate with abnormal protamine expression and male infertility.
Collapse
Affiliation(s)
- Danielle L Cullinane
- Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
| | - Tamjid A Chowdhury
- Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
| | - Kenneth C Kleene
- Department of BiologyUniversity of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125-3393, USA
| |
Collapse
|
19
|
Sobinoff AP, Sutherland JM, Beckett EL, Stanger SJ, Johnson R, Jarnicki AG, McCluskey A, St John JC, Hansbro PM, McLaughlin EA. Damaging legacy: maternal cigarette smoking has long-term consequences for male offspring fertility. Hum Reprod 2014; 29:2719-35. [PMID: 25269568 DOI: 10.1093/humrep/deu235] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION What are the effects on fertility of cigarette smoke-induced toxicity on male offspring exposed during the gestational/weaning period? SUMMARY ANSWER Maternal cigarette smoke exposure during the gestational/weaning period causes long-term defects in male offspring fertility. WHAT IS KNOWN ALREADY Cigarette smoke is a well-known reproductive toxicant which is particularly harmful to both fetal and neonatal germ cells. However, recent studies suggest a significant portion of young mothers in the developed world still smoke during pregnancy. In the context of male reproductive health, our understanding of the effects of in utero exposure on offspring fertility is limited. STUDY DESIGN, SIZE, DURATION In this study, 27 C57BL/6 5-week-old female mice were exposed via the nose-only to cigarette smoke (treatment) or 27 were exposed to room air (control) for 6 weeks before being housed with stud males to produce litters. In the treatment group, smoke exposure continued throughout mating, pregnancy and lactation until weaning of pups at 21 days post birth. Male offspring were examined at post-natal days 3, 6, 12, 21 and 98 (adult). PARTICIPANTS/MATERIALS, SETTING, METHODS Approximately 108 maternal smoke-exposed C57BL/6 offspring and controls were examined. Spermatogenesis was examined using testicular histology and apoptosis/DNA damage was assessed using caspase immunohistochemistry and TUNEL. Sertoli cell morphology and fluctuations in the spermatogonial stem cell population were also examined using immunohistochemistry. Microarray and QPCR analysis were performed on adult testes to examine specific long-term transcriptomic alteration as a consequence of maternal smoke exposure. Sperm counts and motility, zona/oolemma binding assays, COMET analysis and mitochondrial genomic sequencing were also performed on spermatozoa obtained from adult treated and control mice. Fertility trials using exposed adult male offspring were also performed. MAIN RESULTS AND THE ROLE OF CHANCE Maternal cigarette smoke exposure caused increased gonocyte and meiotic spermatocyte apoptosis (P < 0.01) as well as germ cell depletion in the seminiferous tubules of neonatal and juvenile offspring. Aberrant testicular development characterized by abnormal Sertoli and germ cell organization, a depleted spermatogonial stem cell population (P < 0.01), atrophic seminiferous tubules and increased germ cell DNA damage (P < 0.01) persisted in adult offspring 11 weeks after exposure. Microarray analysis of adult offspring testes associated these defects with meiotic germ cell development, sex hormone metabolism, oxidative stress and Sertoli cell signalling. Next generation sequencing also revealed a high mitochondrial DNA mutational load in the testes of adult offspring (P < 0.01). Adult maternal smoke-exposed offspring also had reduced sperm counts with spermatozoa exhibiting morphological abnormalities (P < 0.01), affecting motility and fertilization potential. Odf2, a spermatozoa flagellum component required for coordinated ciliary beating, was also significantly down-regulated (P < 0.01) in maternal smoke-exposed adult offspring, with aberrant localization along the spermatozoa flagellum. Adult maternal smoke-exposed offspring took significantly longer to impregnate control females and had a slight but significant (P < 0.01) reduction in litter size. LIMITATIONS, REASONS FOR CAUTION This study examined only one species (mouse) using a smoking model which only simulates human cigarette smoke exposure. WIDER IMPLICATIONS OF THE FINDINGS This study represents the first comprehensive animal model of maternal smoking on male offspring reproductive function, suggesting that exposure during the gestational/weaning period causes long-term defects in male offspring fertility. This is due to a compromised spermatogonial stem cell population resulting from gonocyte apoptosis and impaired spermatogenic development. This results in significant germ cell damage and Sertoli cell dysfunction, impacting germ cell number, tubule organization, DNA damage and spermatozoa in adult offspring. This study strengthens the current literature suggesting that maternal exposure impairs male offspring fertility, which is currently debated due to conflicting studies. STUDY FUNDING/COMPETING INTERESTS This study was funded by the Australian Research Council, Hunter Medical Research Institute, National Health and Medical Research Council of Australia and the Newcastle Permanent Building Society Charitable Trust. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- A P Sobinoff
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - J M Sutherland
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - E L Beckett
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Callaghan, NSW 2308, Australia
| | - S J Stanger
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - R Johnson
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Callaghan, NSW 2308, Australia
| | - A G Jarnicki
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Callaghan, NSW 2308, Australia
| | - A McCluskey
- Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - J C St John
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton Vic 3168, Australia
| | - P M Hansbro
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Callaghan, NSW 2308, Australia
| | - E A McLaughlin
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia Priority Research Centre for Chemical Biology, University of Newcastle, Callaghan, NSW 2308, Australia Monash Medical Centre, Monash Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
20
|
Xu K, Yang L, Zhao D, Wu Y, Qi H. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis. Biol Reprod 2014; 90:119. [PMID: 24648398 DOI: 10.1095/biolreprod.113.116111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells, underscoring molecular mechanisms that regulate protein synthesis during mouse spermiogenesis.
Collapse
Affiliation(s)
- Kaibiao Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lele Yang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Danyun Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaoyao Wu
- Department of Biology, University of Science and Technology of China, Hefei, China
| | - Huayu Qi
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
21
|
Lindquist JA, Brandt S, Bernhardt A, Zhu C, Mertens PR. The role of cold shock domain proteins in inflammatory diseases. J Mol Med (Berl) 2014; 92:207-16. [PMID: 24562821 DOI: 10.1007/s00109-014-1136-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/17/2014] [Accepted: 02/10/2014] [Indexed: 12/15/2022]
Abstract
Cold shock domain proteins are characterized by the presence of one or more evolutionarily conserved cold shock domains, which each possess two nucleic acid-binding motifs. These proteins exert pleiotropic functions in cells via their ability to bind single-stranded RNA and/or DNA, thus allowing them to serve as transcriptional as well as translational regulators. Not only can they regulate their own expression, but they also regulate the expression of a number of pro- and anti-inflammatory cytokines, as well as cytokine receptors, making them key players in the orchestration of inflammatory processes and immune cell phenotypes. To add to their complexity, the expression of cold shock domain proteins is induced by cellular stress. At least one cold shock domain protein is actively secreted and binds to specific cell surface receptors, thereby influencing the proliferative and migratory capacity of the cell. The presence of cold shock domain proteins in the blood and/or urine of patients with cancer or inflammatory disease, as well as the identification of autoantibodies directed against these proteins make them potential targets of therapeutic interest.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Kleene KC. Connecting cis-elements and trans-factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells. Reproduction 2013; 146:R1-19. [DOI: 10.1530/rep-12-0362] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
mRNA-specific regulation of translational activity plays major roles in directing the development of meiotic and haploid spermatogenic cells in mammals. Although many RNA-binding proteins (RBPs) have been implicated in normal translational control and sperm development, little is known about the keystone of the mechanisms: the interactions of RBPs and microRNAs withcis-elements in mRNA targets. The problems in connecting factors and elements with translational control originate in the enormous complexity of post-transcriptional regulation in mammalian cells. This creates confusion as to whether factors have direct or indirect and large or small effects on the translation of specific mRNAs. This review argues that gene knockouts, heterologous systems, and overexpression of factors cannot provide convincing answers to these questions. As a result, the mechanisms involving well-studied mRNAs (Ddx4/Mvh,Prm1,Prm2, andSycp3) and factors (DICER1, CPEB1, DAZL, DDX4/MVH, DDX25/GRTH, translin, and ELAV1/HuR) are incompletely understood. By comparison, mutations in elements can be used to define the importance of specific pathways in regulating individual mRNAs. However, few elements have been studied, because the only reliable system to analyze mutations in elements, transgenic mice, is considered impractical. This review describes advances that may facilitate identification of the direct targets of RBPs and analysis of mutations incis-elements. The importance of upstream reading frames in the developmental regulation of mRNA translation in spermatogenic cells is also documented.
Collapse
|
23
|
Martin F. Fifteen years of the yeast three-hybrid system: RNA-protein interactions under investigation. Methods 2012; 58:367-75. [PMID: 22841566 DOI: 10.1016/j.ymeth.2012.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 01/14/2023] Open
Abstract
In 1996, the Wickens and the Kuhl labs developed the yeast three-hybrid system independently. By expressing two chimeric proteins and one chimeric RNA molecule in Saccharomyces cerevisiae, this method allows in vivo monitoring of RNA-protein interactions by measuring the expression levels of HIS3 and LacZ reporter genes. Specific RNA targets have been used to characterize unknown RNA binding proteins. Previously described RNA binding proteins have also been used as bait to select new RNA targets. Finally, this method has been widely used to investigate or confirm previously suspected RNA-protein interactions. However, this method falls short in some aspects, such as RNA display and selection of false positive molecules. This review will summarize the results obtained with this method from the past 15years, as well as on recent efforts to improve its specificity.
Collapse
Affiliation(s)
- Franck Martin
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg CEDEX, France.
| |
Collapse
|
24
|
Stress- and Rho-activated ZO-1-associated nucleic acid binding protein binding to p21 mRNA mediates stabilization, translation, and cell survival. Proc Natl Acad Sci U S A 2012; 109:10897-902. [PMID: 22711822 DOI: 10.1073/pnas.1118822109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A central component of the cellular stress response is p21(WAF1/CIP1), which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1-associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB's activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3'-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival.
Collapse
|
25
|
Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. Y-box-binding protein 1 (YB-1) and its functions. BIOCHEMISTRY (MOSCOW) 2012; 76:1402-33. [PMID: 22339596 DOI: 10.1134/s0006297911130049] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review describes the structure and functions of Y-box binding protein 1 (YB-1) and its homologs. Interactions of YB-1 with DNA, mRNAs, and proteins are considered. Data on the participation of YB-1 in DNA reparation and transcription, mRNA splicing and translation are systematized. Results on interactions of YB-1 with cytoskeleton components and its possible role in mRNA localization are discussed. Data on intracellular distribution of YB-1, its redistribution between the nucleus and the cytoplasm, and its secretion and extracellular functions are summarized. The effect of YB-1 on cell differentiation, its involvement in extra- and intracellular signaling pathways, and its role in early embryogenesis are described. The mechanisms of regulation of YB-1 expression in the cell are presented. Special attention is paid to the involvement of YB-1 in oncogenic cell transformation, multiple drug resistance, and dissemination of tumors. Both the oncogenic and antioncogenic activities of YB-1 are reviewed. The potential use of YB-1 in diagnostics and therapy as an early cancer marker and a molecular target is discussed.
Collapse
Affiliation(s)
- I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
26
|
Idler RK, Hennig GW, Yan W. Bioinformatic identification of novel elements potentially involved in messenger RNA fate control during spermatogenesis. Biol Reprod 2012; 87:138. [PMID: 23053435 PMCID: PMC4435427 DOI: 10.1095/biolreprod.112.102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/25/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022] Open
Abstract
In eukaryotic cells, 3' untranslated regions (3' UTRs) of mRNA transcripts contain conserved sequence elements (motifs), which, once bound by RNA-binding proteins, can affect mRNA stability and translational efficacy. Despite abundant sequences contained within the 3' UTRs, only a limited number of motifs are known to interact with RNA-binding proteins and have a role in mRNA fate control. Spermatogenesis represents an excellent in vivo model for studying posttranscriptional regulation of gene expression because numerous mRNAs are transcribed in late pachytene spermatocytes and/or round spermatids, but their translation will not occur until many hours or even days later, when they have developed into elongated spermatids, in which transcription has long been shut off because of the increasingly condensed chromatin. Translationally suppressed mRNAs are sequestered and confined to ribonuclear protein particles, and their loading onto the ribosomes marks their translation. By bioinformatic sequence analyses of the 3' UTRs of translationally suppressed mRNAs during spermatogenesis, we identified numerous novel sequence elements overrepresented in the transcripts subject to posttranscriptional regulation than in the unregulated transcripts. These include AU(U/A)(U/A)UGAGU and (A/U)AUUA(U/C/G) for genes translationally upregulated in early spermiogenesis, and (G/A)GUACG(U/C/A)(A/U)(A/U) and UGUAGC for genes translationally upregulated in late spermiogenesis. The bioinformatic approach reported in this study can be adapted for rapid discovery of novel regulatory elements involved in mRNA fate control in a wide range of tissues or organs.
Collapse
Affiliation(s)
| | | | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
27
|
Chauvin TR, Herndon MK, Nilson JH. Cold-shock-domain protein A (CSDA) contributes posttranscriptionally to gonadotropin-releasing hormone-regulated expression of Egr1 and indirectly to Lhb. Biol Reprod 2012; 86:53. [PMID: 22053098 DOI: 10.1095/biolreprod.111.093658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH), a hypothalamic neurohormone, regulates transcription of Lhb in gonadotrophs indirectly through transient induction and accumulation of EGR1, a zinc finger transcription factor. AlphaT3 and LbetaT2 cell lines model gonadotrophs at two distinct stages of development, prenatal and postnatal expression of Lhb. Although GnRH induces EGR1 in both cell lines, the levels of the DNA-binding protein are lower and disappear more quickly in alphaT3 than in LbetaT2 cells. Herein we show that overexpression of Egr1 in alphaT3 cells rescues activity of a transfected LHB promoter-reporter, suggesting that its transcription is dependent on EGR1 crossing a critical concentration threshold. We also show that Csda, a gene that encodes an RNA-binding protein and is a member of the cold-shock-domain (CSD) family, is expressed at higher levels in LbetaT2 compared to alphaT3 cells. Transient expression studies indicate that at least one Csd element, residing in the 3' untranslated region of Egr1 mRNA, increases activity of a chimeric pGL3 luciferase reporter vector in LbetaT2 cells. Additional experiments indicate that CSDA physically interacts with Egr1 mRNA. Furthermore, siRNA-mediated reduction of endogenous Csda mRNA attenuates GnRH regulation of a transiently transfected LHB reporter vector. Taken together, these studies suggest that CSDA contributes posttranscriptionally to GnRH-regulated expression of Egr1, thereby enabling the transcription factor to cross a critical concentration threshold necessary for maximal accumulation of Lhb mRNA in response to the neurohormone.
Collapse
Affiliation(s)
- Theodore R Chauvin
- School of Molecular Biosciences, Washington State University, Pullman, 99164-7520, USA
| | | | | |
Collapse
|
28
|
Kleene KC, Cullinane DL. Maybe repressed mRNAs are not stored in the chromatoid body in mammalian spermatids. Reproduction 2011; 142:383-8. [DOI: 10.1530/rep-11-0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromatoid body is a dynamic organelle that is thought to coordinate the cytoplasmic regulation of mRNA translation and degradation in mammalian spermatids. The chromatoid body is also postulated to function in repression of mRNA translation by sequestering dormant mRNAs where they are inaccessible to the translational apparatus. This review finds no convincing evidence that dormant mRNAs are localized exclusively in the chromatoid body. This discrepancy can be explained by two hypotheses. First, experimental artifacts, possibly related to peculiarities of the structure and function of the chromatoid body, preclude obtaining an accurate indication of mRNA localization. Second, mRNA is not stored in the chromatoid body, because, like perinuclear P granules in Caenorhabditis elegans, the chromatoid body functions as a center for mRNP remodeling and export to other cytoplasmic sites.
Collapse
|
29
|
Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. ACTA ACUST UNITED AC 2011; 33:309-37. [PMID: 21757510 DOI: 10.2164/jandrol.111.014167] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Posttranscriptional status of messenger RNAs (mRNA) can be affected by many factors, most of which are RNA-binding proteins (RBP) that either bind mRNA in a nonspecific manner or through specific motifs, usually located in the 3' untranslated regions. RBPs can also be recruited by small noncoding RNAs (sncRNA), which have been shown to be involved in posttranscriptional regulations and transposon repression (eg, microRNAs or P-element-induced wimpy testis-interacting RNA) as components of the sncRNA effector complex. Non-sncRNA-binding RBPs have much more diverse effects on their target mRNAs. Some can cause degradation of their target transcripts and/or repression of translation, whereas others can stabilize and/or activate translation. The splicing and exportation of transcripts from the nucleus to the cytoplasm are often mediated by sequence-specific RBPs. The mechanisms by which RBPs regulate mRNA transcripts involve manipulating the 3' poly(A) tail, targeting the transcript to polysomes or to other ribonuclear protein particles, recruiting regulatory proteins, or competing with other RBPs. Here, we briefly review the known mechanisms of posttranscriptional regulation mediated by RBPs, with an emphasis on how these mechanisms might control spermatogenesis in general.
Collapse
Affiliation(s)
- R Keegan Idler
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
30
|
Atsapkina AA, Golubkova EV, Kasatkina VV, Avanesyan EO, Ivankova NA, Mamon LA. Peculiarities of spermatogenesis in Drosophila melanogaster: Role of main transport receptor of mRNA (Dm NXF1). ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1990519x10050044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Bagarova J, Chowdhury TA, Kimura M, Kleene KC. Identification of elements in the Smcp 5' and 3' UTR that repress translation and promote the formation of heavy inactive mRNPs in spermatids by analysis of mutations in transgenic mice. Reproduction 2010; 140:853-64. [PMID: 20876225 DOI: 10.1530/rep-10-0323] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sperm mitochondria-associated cysteine-rich protein (Smcp) mRNA is transcribed in step 3 spermatids, and is stored in free mRNPs until translation begins ∼6 days later in step 11. To identify sequences that control the timing of Smcp mRNA translation, mutations in both UTRs were analyzed in transgenic mice using green fluorescent protein (GFP), squashes of seminiferous tubules, and quantification of polysomal loading in adult and 21 dpp testes in sucrose and Nycodenz gradients. GFP fluorescence is first detected in step 9 spermatids in lines harboring a transgene containing the Gfp 5' UTR and Smcp 3' UTR. Unexpectedly, this mRNA is stored in large, inactive mRNPs in early spermatids that sediment with polysomes in sucrose gradients, but equilibrate with the density of free mRNPs in Nycodenz gradients. Randomization of the segment 6-38 nt upstream of the first Smcp poly(A) signal results in early detection of GFP, a small increase in polysomal loading in 21 dpp testis, inactivation of the formation of heavy mRNPs, and loss of binding of a Y-box protein. GFP is first detected in step 5 spermatids in a transgene containing the Smcp 5' UTR and Gfp 3' UTR. Mutations in the start codons in the upstream reading frames eliminate translational delay by the Smcp 5' UTR. Collectively, these findings demonstrate that Smcp mRNA translation is regulated by multiple elements in the 5' UTR and 3' UTR. In addition, differences in regulation between Smcp-Gfp mRNAs containing one Smcp UTR and the natural Smcp mRNA suggest that interactions between the Smcp 5' UTR and 3' UTR may be required for regulation of the Smcp mRNA.
Collapse
Affiliation(s)
- Jana Bagarova
- Cardiovascular Research Center, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
32
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
33
|
Suzuki H, Saba R, Sada A, Saga Y. The Nanos3-3'UTR is required for germ cell specific NANOS3 expression in mouse embryos. PLoS One 2010; 5:e9300. [PMID: 20174582 PMCID: PMC2823788 DOI: 10.1371/journal.pone.0009300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 01/25/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.
Collapse
Affiliation(s)
- Hitomi Suzuki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Rie Saba
- Division of Mammalian Development, National Institute of Genetics, Shizuoka, Japan
| | - Aiko Sada
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Shizuoka, Japan
| | - Yumiko Saga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Division of Mammalian Development, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Shizuoka, Japan
| |
Collapse
|
34
|
Dev A, Nayernia K, Meins M, Adham I, Lacone F, Engel W. Mice deficient for RNA-binding protein brunol1 show reduction of spermatogenesis but are fertile. Mol Reprod Dev 2007; 74:1456-64. [PMID: 17393433 DOI: 10.1002/mrd.20742] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RNA-binding proteins are involved in post-transcriptional processes like mRNA stabilization, alternative splicing, and transport. Brunol1 is a novel mouse gene related to elav/Bruno family of genes encoding for RNA-binding proteins. We report here the expression and functional analysis of murine Brunol1. Expression analysis of Brunol1 during embryogenesis by RT-PCR showed that Brunol1 expression starts at 9.5 dpc and continues to the later stages of embryonic development. In adult mice, the Brunol1 expression is restricted to brain and testis. We also analyzed the Brunol1 expression in testes of different mutants with spermatogenesis defects: W/W(V), Tfm/y, Leyl(-/-), olt/olt, and qk/qk. Brunol1 transcript was detectable in Leyl(-/-), olt/olt, and qk/qk mutant but not in W/W(V) and Tfm/y mutants. We also showed by transfection of a fusion protein of green fluorescent protein and Brunol1 protein into NIH3T3 cells, that Brunol1 is localized in cytoplasm and nucleus. In order to elucidate the function of the Brunol1 protein in spermatogenesis, we disrupted the Brunol1 locus in mouse by homologous recombination, which resulted in a complete loss of the Brunol1 transcript. Male and female Brunol1(+/-) and Brunol1(-/-) mice from genetic backgrounds C57BL/6J x 129/Sv hybrid and 129X1/SvJ when inbred exhibited normal phenotype and are fertile, although the number and motility of sperms are significantly reduced. An intensive phenotypic analysis showed no gross abnormalities in testis morphology. Collectively our results demonstrate that Brunol1 might be nonessential protein for mouse embryonic development and spermatogenesis.
Collapse
Affiliation(s)
- Arvind Dev
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Zhou XW, Mudannayake M, Green M, Gigena MS, Wang G, Shen RF, Rogers TB. Proteomic Studies of PP2A-B56γ1 Phosphatase Complexes Reveal Phosphorylation-Regulated Partners in Cardiac Local Signaling. J Proteome Res 2007; 6:3433-42. [PMID: 17663574 DOI: 10.1021/pr060619l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Defects of kinase-phosphatase signaling in cardiac myocytes contribute to human heart disease. The activity of one phosphatase, PP2A, is governed by B targeting subunits, including B56gamma1, expressed in heart cells. As the role of PP2A/B56gamma1 on the heart function remains largely unknown, this study sought to identify protein partners through unbiased, affinity purification-based proteomics combined with the functional validation. The results reveal multiple interactors that are localized in strategic cardiac sites to participate in Ca2+ homeostasis and gene expression, exemplified by the Ca pump, SERCA2a, and the splicing factor ASF/SF2. These results are corroborated by confocal imaging where adenovirally overexpressed B56gamma1 is found in z-line/t-tubule region and nuclear speckles. Importantly, overexpression of B56gamma1 in cultured myocytes dramatically impairs cell contractility. These results provide a global view of B56gamma1-regulated local signaling and heart function.
Collapse
Affiliation(s)
- Xing Wang Zhou
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Ravel C, Chantot-Bastaraud S, El Houate B, Berthaut I, Verstraete L, De Larouziere V, Lourenço D, Dumaine A, Antoine JM, Mandelbaum J, Siffroi JP, McElreavey K. Mutations in the protamine 1 gene associated with male infertility. ACTA ACUST UNITED AC 2007; 13:461-4. [PMID: 17494104 DOI: 10.1093/molehr/gam031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In elongating spermatids, human sperm chromatin undergoes a complex compaction in which the transition proteins are extensively replaced by the protamine proteins. Several human studies demonstrate that expression of the protamine proteins is altered in some men with male infertility. For this study, we screened the PRM1 (protamine 1) gene for mutations in a large cohort of 281 men seeking infertility treatment. We identified the c.102G>T transversion that results in an p.Arg34Ser amino acid change in two men. One of these patients presented with oligozoospermia associated with increased sperm DNA fragmentation. The second individual was normospermic but together with his partner sought treatment for idiopathic couple infertility. We also identified a novel missense mutation (c.119G>A, p.Cys40Tyr) in a man with oligoasthenozoospermia. These mutations were not observed in control populations. Interestingly, we also detected variants both 5' and 3' to the PRM1 open-reading frame specifically in infertile individuals. Four individuals with unexplained severe oligozoospermia were heterozygote for a c.-107G>C change that is located at -15 bp from the transcription initiation site of the gene. This mutation may influence PRM1 expression. In addition, a c.*51G>C variant was detected in the 3'UTR of PRM1 specifically in a man with severe oligoasthenozoospermia.
Collapse
Affiliation(s)
- C Ravel
- Université Pierre et Marie Curie Paris-6, EA1533, AP-HP, Hôpital Tenon, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nashchekin D, Masich S, Soop T, Kukalev A, Kovrigina E, Nashchekina O, Daneholt B. Two splicing isoforms of the Y-box protein ctYB-1 appear on the same mRNA molecule. FEBS J 2007; 274:202-11. [PMID: 17222182 DOI: 10.1111/j.1742-4658.2006.05576.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Y-box proteins constitute an evolutionarily conserved family of DNA- and RNA-binding proteins involved in the regulation of transcription and translation. In the dipteran Chironomus tentans, a homologue to the vertebrate Y-box protein YB-1 was recently characterized and designated ctYB-1. It is transferred from nucleus to cytoplasm bound to mRNA and is likely to affect translation. It appears in two size variants, p40 and p50. We further analysed the two size variants and their interaction with mRNA. Southern blot analysis, in situ hybridization and RT-PCR analysis suggested that there is just one YB-1 gene, and that the two size variants represent splicing isoforms. In a C. tentans epithelial cell line, only p40 is present, whereas both variants appear together in eight tissues from fourth-instar larvae, although in somewhat different proportions. Furthermore, the appearance of the two isoforms was studied in relation to a specific 35-40 kb mRNA transcript in the salivary glands, the Balbiani ring mRNA. Because of their exceptional size, Balbiani ring messenger ribonucleoprotein particles in nucleoplasm and Balbiani ring polysomes in cytoplasm could be identified and selectively studied. We were able to establish that both isoforms are associated with both nuclear and cytoplasmic Balbiani ring mRNA. In addition, a p50-specific antibody coimmunoprecipitated p40 from Balbiani ring polysomes, suggesting that the two splicing isoforms are located along the same Balbiani ring mRNA molecule. The functional significance of the two isoforms is being discussed.
Collapse
Affiliation(s)
- Dmitry Nashchekin
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
38
|
Miwa A, Higuchi T, Kobayashi S. Expression and polysome association of YB-1 in various tissues at different stages in the lifespan of mice. Biochim Biophys Acta Gen Subj 2006; 1760:1675-81. [PMID: 17045744 DOI: 10.1016/j.bbagen.2006.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 07/29/2006] [Accepted: 08/28/2006] [Indexed: 11/29/2022]
Abstract
Tissue-specific translational regulation is important for gene expression. YB-1 binds to mRNAs to form mRNPs and affects translation. In this study we investigated expression and polysome association of YB-1 in various tissues at different stages in the lifespan of mice. YB-1 levels decreased markedly with growth in brain, heart and muscle, but increased in the spleen. In lung, kidney and testis, the levels of YB-1 diminished with aging. In liver, no significant change in the level of YB-1 was observed throughout life. We further showed that the distribution pattern of YB-1 on a sucrose gradient differed according to tissue. Moreover, the distribution pattern of YB-1 changed drastically with growth in the liver. In 5-day-old liver, YB-1 was distributed almost exclusively in nonpolysomal fractions, whereas in 4-week-old liver, it was associated with heavy-sedimenting polysomes, as was the case in 5-day-old brain. Immunohistochemical analysis revealed that YB-1 is mainly a cytoplasmic protein in these tissues. Our results indicate that the expression and polysome association of YB-1 are regulated with growth or aging in a tissue-specific manner, presumably to control gene expression at the translational level in each tissue.
Collapse
Affiliation(s)
- Arisa Miwa
- Department of Biochemistry, College of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | | | | |
Collapse
|
39
|
Lu ZH, Books JT, Ley TJ. Cold shock domain family members YB-1 and MSY4 share essential functions during murine embryogenesis. Mol Cell Biol 2006; 26:8410-7. [PMID: 16954378 PMCID: PMC1636768 DOI: 10.1128/mcb.01196-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three cold shock domain (CSD) family members (YB-1, MSY2, and MSY4) exist in vertebrate species ranging from frogs to humans. YB-1 is expressed throughout embryogenesis and is ubiquitously expressed in adult animals; it protects cells from senescence during periods of proliferative stress. YB-1-deficient embryos die unexpectedly late in embryogenesis (embryonic day 18.5 [E18.5] to postnatal day 1) with a runting phenotype. We have now determined that MSY4, but not MSY2, is also expressed during embryogenesis; its abundance declines substantially from E9.5 to E17.5 and is undetectable on postnatal day 1(adult mice express MSY4 in testes only). Whole-mount analysis revealed similar patterns of YB-1 and MSY4 RNA expression in E11.5 embryos. To determine whether MSY4 delays the death of YB-1-deficient embryos, we created and analyzed MSY4-deficient mice and then generated YB-1 and MSY4 double-knockout embryos. MSY4 is dispensable for normal development and survival, but the testes of adult mice have excessive spermatocyte apoptosis and seminiferous tubule degeneration. Embryos doubly deficient for YB-1 and MSY4 are severely runted and die much earlier (E8.5 to E11.5) than YB-1-deficient embryos, suggesting that MSY4 indeed shares critical cellular functions with YB-1 in the embryonic tissues where they are coexpressed.
Collapse
Affiliation(s)
- Zhi Hong Lu
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
40
|
Grivna ST, Pyhtila B, Lin H. MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci U S A 2006; 103:13415-20. [PMID: 16938833 PMCID: PMC1569178 DOI: 10.1073/pnas.0605506103] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncoding small RNAs have emerged as important regulators of gene expression at both transcriptional and posttranscriptional levels. Particularly, microRNA (miRNA)-mediated translational repression involving PIWI/Argonaute family proteins has been widely recognized as a novel mechanism of gene regulation. We previously reported that MIWI, a murine PIWI family member, is required for initiating spermiogenesis, a process that transforms round spermatids into mature sperm. MIWI is a cytoplasmic protein present in spermatocytes and round spermatids, and it is required for the expression of its target mRNAs involved in spermiogenesis. Most recently, we discovered a class of noncoding small RNAs called PIWI-interacting RNAs (piRNAs) that are abundantly expressed during spermiogenesis in a MIWI-dependent fashion. Here, we show that MIWI associates with both piRNAs and mRNAs in cytosolic ribonucleoprotein and polysomal fractions. As polysomes increase in early spermiogenesis, MIWI increases in polysome fractions. Moreover, MIWI associates with the mRNA cap-binding complex. Interestingly, MIWI is required for the expression of not only piRNAs but also a subset of miRNAs, despite the presence of Dicer. These results suggest that MIWI has a complicated role in the biogenesis and/or maintenance of two distinct types of small RNAs. Together, our results indicate that MIWI, a PIWI subfamily protein, uses piRNA as the major, but not exclusive, binding partner, and it is associated with translational machinery.
Collapse
Affiliation(s)
- Shane T. Grivna
- Departments of *Cell Biology and
- Pharmacology and Molecular Cancer Biology, Duke University Medical School, Durham, NC 27710
| | | | - Haifan Lin
- Departments of *Cell Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Skabkin MA, Lyabin DN, Ovchinnikov LP. Nonspecific and specific interactions of Y-box-binding protein 1 (YB-1) with mRNA and posttranscriptional regulation of protein synthesis in animal cells. Mol Biol 2006. [DOI: 10.1134/s0026893306040078] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Ciolofan C, Li XB, Olson C, Kamasawa N, Gebhardt BR, Yasumura T, Morita M, Rash JE, Nagy JI. Association of connexin36 and zonula occludens-1 with zonula occludens-2 and the transcription factor zonula occludens-1-associated nucleic acid-binding protein at neuronal gap junctions in rodent retina. Neuroscience 2006; 140:433-51. [PMID: 16650609 PMCID: PMC1819557 DOI: 10.1016/j.neuroscience.2006.02.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/21/2006] [Accepted: 02/08/2006] [Indexed: 11/16/2022]
Abstract
Most gap junctions between neurons in mammalian retina contain abundant connexin36, often in association with the scaffolding protein zonula occludens-1. We now investigate co-association of connexin36, zonula occludens-1, zonula occludens-2 and Y-box transcription factor 3 (zonula occludens-1-associated nucleic acid-binding protein) in mouse and rat retina. By immunoblotting, zonula occludens-1-associated nucleic acid-binding protein and zonula occludens-2 were both detected in retina, and zonula occludens-2 in retina was found to co-immunoprecipitate with connexin36. By immunofluorescence, the four proteins appeared as puncta distributed in the plexiform layers. In the inner plexiform layer, most connexin36-puncta were co-localized with zonula occludens-1, and many were co-localized with zonula occludens-1-associated nucleic acid-binding protein. Moreover, zonula occludens-1-associated nucleic acid-binding protein was often co-localized with zonula occludens-1. Nearly all zonula occludens-2-puncta were positive for connexin36, zonula occludens-1 and zonula occludens-1-associated nucleic acid-binding protein. In the outer plexiform layer, connexin36 was also often co-localized with zonula occludens-1-associated nucleic acid-binding protein. In connexin36 knockout mice, labeling of zonula occludens-1 was slightly reduced in the inner plexiform layer, zonula occludens-1-associated nucleic acid-binding protein was decreased in the outer plexiform layer, and both zonula occludens-1-associated nucleic acid-binding protein and zonula occludens-2 were markedly decreased in the inner sublamina of the inner plexiform layer, whereas zonula occludens-1, zonula occludens-2 and zonula occludens-1-associated nucleic acid-binding protein puncta persisted and remained co-localized in the outer sublamina of the inner plexiform layer. By freeze-fracture replica immunogold labeling, connexin36 was found to be co-localized with zonula occludens-2 within individual neuronal gap junctions. In addition, zonula occludens-1-associated nucleic acid-binding protein was abundant in a portion of ultrastructurally-defined gap junctions throughout the inner plexiform layer, and some of these junctions contained both connexin36 and zonula occludens-1-associated nucleic acid-binding protein. These distinct patterns of connexin36 association with zonula occludens-1, zonula occludens-2 and zonula occludens-1-associated nucleic acid-binding protein in different sublaminae of retina, and differential responses of these proteins to connexin36 gene deletion suggest differential regulatory and scaffolding roles of these gap junction accessory proteins. Further, the persistence of a subpopulation of zonula occludens-1/zonula occludens-2/zonula occludens-1-associated nucleic acid-binding protein co-localized puncta in the outer part of the inner plexiform layer of connexin36 knockout mice suggests close association of these proteins with other structures in retina, possibly including gap junctions composed of an as-yet-unidentified connexin.
Collapse
Affiliation(s)
- C Ciolofan
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hawthorne SK, Busanelli RR, Kleene KC. The 5' UTR and 3' UTR of the sperm mitochondria-associated cysteine-rich protein mRNA regulate translation in spermatids by multiple mechanisms in transgenic mice. Dev Biol 2006; 297:118-26. [PMID: 16759650 DOI: 10.1016/j.ydbio.2006.04.468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 04/28/2006] [Indexed: 01/09/2023]
Abstract
The Smcp mRNA encoding the sperm mitochondria-associated cysteine-rich protein is translationally repressed in round spermatids and translationally active in elongated spermatids. The patterns of transcription and translation of fusions of the Smcp promoter, the green fluorescent protein coding region (Gfp) and various combination of the Smcp and Gfp 5' UTR and 3' UTR have been studied in transgenic mice. 518 nt of Smcp 5' flanking region and 8 nt of 5' UTR drive transcription of mRNAs containing the Gfp coding region in early round spermatids at the same transcription start site as the natural Smcp gene. Transcripts containing both the Gfp 5' and 3' UTRs are translationally active in step 2 spermatids as detected by GFP fluorescence in squashes of living seminiferous tubules from adult testes, and the presence of polysomal mRNAs in sucrose gradient analyses of testes from 21-day-old prepubertal mice, which contain early round spermatids and lack elongated spermatids. By comparison, expression of GFP is delayed until steps 5 and 10, respectively, in transcripts containing the Smcp 5' UTR and Gfp 3' UTR and the Gfp 5' UTR and the Smcp 3' UTR. Sucrose gradient analysis of 21-day-old testes demonstrates that transcripts containing the Smcp 3' UTR exhibit a bimodal distribution in free-mRNPs and polysomes, indicating that the 3' UTR blocks the expression of GFP after the transcripts have entered the elongation phase, a mechanism that may involve microRNAs. The Smcp 5' UTR reduces the levels and size of polysomes in adult testis. In addition, the natural Smcp mRNA contains a positive control element that counteracts the inhibition of translation by the Smcp 5' UTR in adult testis, and the Smcp 3' UTR strongly localizes GFP fluorescence in step 10 spermatids.
Collapse
Affiliation(s)
- Sabrina K Hawthorne
- Department of Biology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | | | | |
Collapse
|
44
|
Abstract
Protamines are the major nuclear sperm proteins. The human sperm nucleus contains two types of protamine: protamine 1 (P1) encoded by a single-copy gene and the family of protamine 2 (P2) proteins (P2, P3 and P4), all also encoded by a single gene that is transcribed and translated into a precursor protein. The protamines were discovered more than a century ago, but their function is not yet fully understood. In fact, different hypotheses have been proposed: condensation of the sperm nucleus into a compact hydrodynamic shape, protection of the genetic message delivered by the spermatozoa, involvement in the processes maintaining the integrity and repair of DNA during or after the nucleohistone-nucleoprotamine transition and involvement in the epigenetic imprinting of the spermatozoa. Protamines are also one of the most variable proteins found in nature, with data supporting a positive Darwinian selection. Changes in the expression of P1 and P2 protamines have been found to be associated with infertility in man. Mutations in the protamine genes have also been found in some infertile patients. Transgenic mice defective in the expression of protamines also present several structural defects in the sperm nucleus and have variable degrees of infertility. There is also evidence that altered levels of protamines may result in an increased susceptibility to injury in the spermatozoan DNA causing infertility or poor outcomes in assisted reproduction. The present work reviews the articles published to date on the relationship between protamines and infertility.
Collapse
Affiliation(s)
- Rafael Oliva
- Human Genetics Laboratory, Genetics Unit, Department of Ciències Fisiològiques I, Faculty of Medicine, University of Barcelona and Hospital Clínic, IDIBAPS, Casanova 143, 08036 Barcelona, Spain.
| |
Collapse
|
45
|
Godmann M, Kromberg I, Mayer J, Behr R. The mouse Krüppel-like Factor 4 (Klf4) gene: four functional polyadenylation sites which are used in a cell-specific manner as revealed by testicular transcript analysis and multiple processed pseudogenes. Gene 2005; 361:149-56. [PMID: 16185820 DOI: 10.1016/j.gene.2005.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 06/01/2005] [Accepted: 07/25/2005] [Indexed: 01/30/2023]
Abstract
The transcription factor Krüppel-like factor 4 (Klf4) is involved in cell cycle arrest and terminal differentiation of many epithelial cell types. We have recently shown that Northern blot analysis of RNA from adult mouse testis revealed multiple Klf4 transcripts. In order to characterize these transcripts, we tested for alternative splicing events and looked for alternative transcriptional initiation and usage of different polyadenylation signals. We neither obtained evidence for alternative splicing nor found transcripts with novel 5' ends. However, we found striking differences in the 3' ends by RACE-PCR. These differences were, interestingly, due to the usage of four alternatively used polyadenylation signals (PAS). This high number of PAS is found in less than 1% of all genes. We show that testicular Sertoli cells exclusively use the first PAS, which is, notably, not canonical, while haploid germ cells rather use the more 3' located PAS-II-IV. The longer transcripts present in germ cells exhibit highly conserved putative binding motifs for proteins known to be important for translational regulation in germ cells. Moreover, we experimentally confirm an intron which was not described in a previous report on the Klf4 gene structure. Finally, we document six Klf4 pseudogenes most likely formed by L1-mediated retrotransposition, indicating germ line expression of Klf4. In summary, we show that mouse testicular cells make intensive use of alternative polyadenylation of Klf4 mRNA strongly suggesting translational regulation of the Klf4 message in spermatids.
Collapse
Affiliation(s)
- Maren Godmann
- Institute of Anatomy, Developmental Biology, Hufelandstrasse 55, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | | | | | | |
Collapse
|
46
|
Skabkina OV, Lyabin DN, Skabkin MA, Ovchinnikov LP. YB-1 autoregulates translation of its own mRNA at or prior to the step of 40S ribosomal subunit joining. Mol Cell Biol 2005; 25:3317-23. [PMID: 15798215 PMCID: PMC1069629 DOI: 10.1128/mcb.25.8.3317-3323.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YB-1 is a member of the numerous families of proteins with an evolutionary ancient cold-shock domain. It is involved in many DNA- and RNA-dependent events and regulates gene expression at different levels. Previously, we found a regulatory element within the 3' untranslated region (UTR) of YB-1 mRNA that specifically interacted with YB-1 and poly(A)-binding protein (PABP); we also showed that PABP positively affected YB-1 mRNA translation in a poly(A) tail-independent manner (O. V. Skabkina, M. A. Skabkin, N. V. Popova, D. N. Lyabin, L. O. Penalva, and L. P. Ovchinnikov, J. Biol. Chem. 278:18191-18198, 2003). Here, YB-1 is shown to strongly and specifically inhibit its own synthesis at the stage of initiation, with accumulation of its mRNA in the form of free mRNPs. YB-1 and PABP binding sites have been mapped on the YB-1 mRNA regulatory element. These were UCCAG/ACAA for YB-1 and a approximately 50-nucleotide A-rich sequence for PABP that overlapped each other. PABP competes with YB-1 for binding to the YB-1 mRNA regulatory element and restores translational activity of YB-1 mRNA that has been inhibited by YB-1. Thus, YB-1 negatively regulates its own synthesis, presumably by specific interaction with the 3'UTR regulatory element, whereas PABP restores translational activity of YB-1 mRNA by displacing YB-1 from this element.
Collapse
Affiliation(s)
- Olga V Skabkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | | | | | | |
Collapse
|
47
|
Iida H, Ichinose J, Kaneko T, Mōri T, Shibata Y. Complementary DNA cloning of rat spetex-1, a spermatid-expressing gene-1, encoding a 63 kDa cytoplasmic protein of elongate spermatids. Mol Reprod Dev 2005; 68:385-93. [PMID: 15236321 DOI: 10.1002/mrd.20101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We used differential display in combination with complementary DNA (cDNA) cloning approach to isolate a novel rat gene designated as spetex-1, which had an open reading frame of 1,668-length nucleotides encoding a protein of 556 amino acids. Spetex-1 mRNA was highly expressed in testis, and weekly expressed in lung, intestine, and spleen. Spetex-1 expression in the rat testes was detected first at 3 weeks in postnatal development and continued to be detected up to adulthood. A search in the databases showed that the amino acid sequence of spetex-1 was 82% identical to that of its mouse homologue found in the databases. Both rat spetex-1 and the mouse homologue contained Ser-X (X = His, Arg, or Asn) repeats in the middle portion of the proteins. In situ hybridization revealed that spetex-1 mRNA was expressed in haploid spermatids of step 7-18 within the seminiferous epithelium. Immunohistochemical analysis with confocal laser-scanning microscopy demonstrated that spetex-1 protein was not expressed in spermatogonia, spermatocytes, and round spermatids in adult rat testis, but was specifically detected in the residual cytoplasm of elongate spermatids of step 15-18 as well as in residual bodies engulfed by Sertoli cells. We interpreted these data as a potential role of spetex-1 in spermatogenesis, especially in cell differentiation from late elongate spermatids to mature spermatozoa.
Collapse
Affiliation(s)
- Hiroshi Iida
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
48
|
Yang J, Medvedev S, Yu J, Tang LC, Agno JE, Matzuk MM, Schultz RM, Hecht NB. Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc Natl Acad Sci U S A 2005; 102:5755-60. [PMID: 15824319 PMCID: PMC556278 DOI: 10.1073/pnas.0408718102] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MSY2, a germ-cell-specific member of the Y-box family of DNA-/RNA-binding proteins, is proposed to function as a coactivator of transcription in the nucleus and to stabilize and store maternal and paternal mRNAs in the cytoplasm. In mice lacking Msy2, a normal Mendelian ratio is observed after matings between heterozygotes with equal numbers of phenotypically normal but sterile male and female homozygotes (Msy2-/-). Spermatogenesis is disrupted in postmeiotic null germ cells with many misshapen and multinucleated spermatids, and no spermatozoa are detected in the epididymis. Apoptosis is increased in the testes of homozygotes, and real-time RT-PCR assays reveal large reductions in the mRNA levels of postmeiotic male germ cell mRNAs and smaller reductions of meiotic germ cell transcripts. In females, there is no apparent decrease in either the number of follicles or their morphology in ovaries obtained from 2- and 8-day-old Msy2-/- mice. In contrast, follicle number and progression are reduced in 21-day-old Msy2-/- ovaries. In adult Msy2-/- females, oocyte loss increases, anovulation is observed, and multiple oocyte and follicle defects are seen. Thus, Msy2 represents one of a small number of germ-cell-specific genes whose deletion leads to the disruption of both spermatogenesis and oogenesis.
Collapse
Affiliation(s)
- Juxiang Yang
- Center for Research on Reproduction and Women's Health and Department of Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yang J, Medvedev S, Reddi PP, Schultz RM, Hecht NB. The DNA/RNA-binding protein MSY2 marks specific transcripts for cytoplasmic storage in mouse male germ cells. Proc Natl Acad Sci U S A 2005; 102:1513-8. [PMID: 15665108 PMCID: PMC547816 DOI: 10.1073/pnas.0404685102] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 12/20/2004] [Indexed: 11/18/2022] Open
Abstract
During spermatogenesis, male germ cells temporally synthesize many proteins as they differentiate through meiosis and become spermatozoa. The germ cell Y-box protein, MSY2, constituting approximately 0.7% of total protein in male germ cells, binds to a consensus promoter element, and shows a general lack of RNA-binding specificity. Combining immunoprecipitation and suppressive subtractive hybridization, we identified populations of germ cell mRNAs that are not bound or bound by MSY2. The former population is enriched in cell growth and ubiquitously expressed mRNAs, whereas the latter population is enriched for stored or translationally delayed, male gamete-specific transcripts. Chromatin precipitation assays reveal that most of the MSY2 target mRNAs are transcribed from genes containing the Y-box DNA-binding motif in their promoters. In transgenic mice, mRNAs encoding exogenous GFP are directed or not directed into the MSY2-bound fraction by promoters containing or lacking the Y-box motif, respectively. We propose that MSY2 marks specific mRNAs in the nucleus for cytoplasmic storage, thereby linking transcription and mRNA storage/translational delay in meiotic and postmeiotic male germ cells of the mouse.
Collapse
Affiliation(s)
- Juxiang Yang
- Center for Research on Reproduction and Women's Health and Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Post-transcriptional mechanisms play an important role in the biology of germ cells, where they control key developmental decisions in cell division, differentiation and death. Because these post-transcriptional controls are cell-type-specific, and often utilize germ-cell-specific RNA-binding proteins, they provide useful diagnostic markers for male infertility and testicular cancer. Investigation of the genetics of male infertility in men and model organisms suggests that disruption of post-transcriptional control mechanisms can cause specific germ cell pathologies, and these studies point to future possible therapeutic routes for restoring spermatogenesis.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK
| | | |
Collapse
|