1
|
Meinan X, Yimeng W, Chao W, Tianli T, Li J, Peng Y, Xiangping N. Response of the Sirtuin/PXR signaling pathway in Mugilogobius chulae exposed to environmentally relevant concentration Paracetamol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106222. [PMID: 35728459 DOI: 10.1016/j.aquatox.2022.106222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Paracetamol (APAP) is one of the most widely used non-steroidal anti-inflammatory drugs, which is frequently detected in various water bodies. Studies are limited about its toxic effects and mechanisms on non-target aquatic organisms. In this study, an estuarine bottom-dwelling fish named Mugilogobius chulae, distributed in southern China, was selected as experimental species and the changes of PXR signaling pathway, a key signaling pathway of detoxification metabolic system in liver, were investigated under APAP exposure (0.5 μg·L-1, 5 μg·L-1, 50 μg·L-1 and 500 μg·L-1) for 24 h, 72 h and 168 h. Results showed that the key genes (e.g., P-gp, MRP1, CYP1A, CYP3A, GST and SULT) and the enzymatic activities of GST, EROD and ERND in PXR signaling pathway were induced to meet the requirements of detoxification metabolism. By up-regulating the expression of GCLC gene, the reductive small molecule GSH can be rapidly synthesized to counteract the attack of free radicals produced by APAP exposure. The expressions of SIRT1 and SIRT2 proteins decreased, while the expressions of most genes in PXR signaling pathway increased. It was speculated that the expression of PXR and its downstream target genes may be regulated epigenetically by SIRT1 and SIRT2. Studies showed that the exposure to environmental relevant concentrations of APAP can affect the detoxification metabolism of non-target organisms such as Mugilogobius chulae.
Collapse
Affiliation(s)
- Xie Meinan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Wang Yimeng
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Wang Chao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Tang Tianli
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Nie Xiangping
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Fischer J, Ardakani FB, Kattler K, Walter J, Schulz MH. CpG content-dependent associations between transcription factors and histone modifications. PLoS One 2021; 16:e0249985. [PMID: 33857234 PMCID: PMC8049299 DOI: 10.1371/journal.pone.0249985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the factors that underlie the epigenetic regulation of genes is crucial to understand the gene regulatory machinery as a whole. Several experimental and computational studies examined the relationship between different factors involved. Here we investigate the relationship between transcription factors (TFs) and histone modifications (HMs), based on ChIP-seq data in cell lines. As it was shown that gene regulation by TFs differs depending on the CpG class of a promoter, we study the impact of the CpG content in promoters on the associations between TFs and HMs. We suggest an approach based on sparse linear regression models to infer associations between TFs and HMs with respect to CpG content. A study of the partial correlation of HMs for the two classes of high and low CpG content reveals possible CpG dependence and potential candidates for confounding factors in our models. We show that the models are accurate, inferred associations reflect known biological relationships, and we give new insight into associations with respect to CpG content. Moreover, analysis of a ChIP-seq dataset in HepG2 cells of the HM H3K122ac, an HM about little is known, reveals novel TF associations and supports a previously established link to active transcription.
Collapse
Affiliation(s)
- Jonas Fischer
- Max Planck Institute for Informatics, Databases and Information Systems, Saarbrücken, Germany
- Cluster of Excellence for Multimodal Computing and Interaction, High Throughput Genomics and Systems Biology, Saarbrücken, Germany
- * E-mail:
| | - Fatemeh Behjati Ardakani
- Max Planck Institute for Informatics, Computational Biology and Applied Algorithmics, Saarbrücken, Germany
- Cluster of Excellence for Multimodal Computing and Interaction, High Throughput Genomics and Systems Biology, Saarbrücken, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Kathrin Kattler
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics, University of Saarland, Saarbrücken, Germany
| | - Marcel H. Schulz
- Max Planck Institute for Informatics, Computational Biology and Applied Algorithmics, Saarbrücken, Germany
- Cluster of Excellence for Multimodal Computing and Interaction, High Throughput Genomics and Systems Biology, Saarbrücken, Germany
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| |
Collapse
|
3
|
Xue J, Wu G, Ejaz U, Akhtar F, Wan X, Zhu Y, Geng A, Chen Y, He S. A novel histone deacetylase inhibitor LT-548-133-1 induces apoptosis by inhibiting HDAC and interfering with microtubule assembly in MCF-7 cells. Invest New Drugs 2021; 39:1222-1231. [PMID: 33788074 DOI: 10.1007/s10637-021-01102-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Many studies have indicated that histone deacetylase inhibitors (HDACis) have a significant antitumor effect in cancer. Here we report a compound named LT-548-133-1 that not only acts as an HDAC inhibitor but also interferes with microtubule assembly to inhibit MCF-7 cell proliferation and induce apoptosis. Consistent with Chidamide, LT-548-133-1 inhibited HDAC activity and increased histone H3 acetylation. But the difference is that it significantly induced cell cycle G2/M arrest while Chidamide caused G0/G1 arrest in MCF-7 cells. By Western blotting, we found the accumulation of CyclinB1 and phosphorylated histone H3 in LT-548-133-1 treated cells. Immunofluorescence based microtubule-repolymerization experiments and immunofluorescence staining of cell microtubules and nuclei showed that LT-548-133-1inhibited microtubule-repolymerization and induced mitotic abnormalities. The decreased expression of Bcl-2 and the increased expression of Bax, p53, p21, and cleaved-Caspase3 indicated the occurrence of apoptosis. Flow cytometry results also showed an increase in the proportion of apoptotic cells after administration of LT-548-133-1 or Chidamide. Therefore, we demonstrated that LT-548-133-1 could act as an HDAC inhibitor while inhibiting microtubule-repolymerization, causing mitosis to be arrested in G2/M. These two effects ultimately lead to proliferation inhibition and apoptosis of MCF-7 cells.
Collapse
Affiliation(s)
- Jinbing Xue
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Gang Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Umer Ejaz
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Fahad Akhtar
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building 2, West Beichan Road, Chaoyang District, Beijing, 100101, China.,School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Wan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Aixing Geng
- School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shuying He
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Ma L, Bai Y, Pu H, Gou F, Dai M, Wang H, He J, Zheng T, Cheng N. Histone Methylation in Nickel-Smelting Industrial Workers. PLoS One 2015. [PMID: 26474320 DOI: 10.1371/journal.pone.0140339]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nickel is an essential trace metal naturally found in the environment. It is also common in occupational settings, where it associates with various levels of both occupational and nonoccupational exposure In vitro studies have shown that nickel exposure can lead to intracellular accumulation of Ni2+, which has been associated with global decreases in DNA methylation, increases in chromatin condensation, reductions in H3K9me2, and elevated levels of H3K4me3. Histone modifications play an important role in modulating chromatin structure and gene expression. For example, tri-methylation of histone H3k4 has been found to be associated with transcriptional activation, and tri-methylation of H3k27 has been found to be associated with transcriptional repression. Aberrant histone modifications have been found to be associated with various human diseases, including cancer. The purpose of this work was to identify biomarkers for populations with occupational nickel exposure and to examine the relationship between histone methylation and nickel exposure. This may provide a scientific indicator of early health impairment and facilitate exploration of the molecular mechanism underlying cancer pathogenesis. METHODS One hundred and forty subjects with occupational exposure to Ni and 140 referents were recruited. H3K4 and H3K27 trimethylation levels were measured in subjects' blood cells. RESULTS H3K4me3 levels were found to be higher in nickel smelting workers (47.24±20.85) than in office workers (22.65±8.81; P = 0.000), while the opposite was found for levels of H3K27me3(nickel smelting workers, 13.88± 4.23; office workers, 20.67± 5.96; P = 0.000). H3K4me3 was positively (r = 0.267, P = 0.001) and H3K27 was negatively (r = -0.684, P = 0.000) associated with age and length of service in smelting workers. CONCLUSION This study indicated that occupational exposure to Ni is associated with alterations in levels of histone modification.
Collapse
Affiliation(s)
- Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Yana Bai
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Hongquan Pu
- Workers' Hospital of Jinchuan Company, Jinchuan Group CO., LTD, Jinchang, Gansu, P.R. China
| | - Faxiang Gou
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Min Dai
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Wang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Jie He
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Tongzhang Zheng
- School of Public Health, Yale University, 60 College Street, New Haven, Connecticut, United States of America
| | - Ning Cheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, P.R. China; College of Basic Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| |
Collapse
|
5
|
Histone Methylation in Nickel-Smelting Industrial Workers. PLoS One 2015; 10:e0140339. [PMID: 26474320 PMCID: PMC4608576 DOI: 10.1371/journal.pone.0140339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/24/2015] [Indexed: 11/23/2022] Open
Abstract
Background Nickel is an essential trace metal naturally found in the environment. It is also common in occupational settings, where it associates with various levels of both occupational and nonoccupational exposure In vitro studies have shown that nickel exposure can lead to intracellular accumulation of Ni2+, which has been associated with global decreases in DNA methylation, increases in chromatin condensation, reductions in H3K9me2, and elevated levels of H3K4me3. Histone modifications play an important role in modulating chromatin structure and gene expression. For example, tri-methylation of histone H3k4 has been found to be associated with transcriptional activation, and tri-methylation of H3k27 has been found to be associated with transcriptional repression. Aberrant histone modifications have been found to be associated with various human diseases, including cancer. The purpose of this work was to identify biomarkers for populations with occupational nickel exposure and to examine the relationship between histone methylation and nickel exposure. This may provide a scientific indicator of early health impairment and facilitate exploration of the molecular mechanism underlying cancer pathogenesis. Methods One hundred and forty subjects with occupational exposure to Ni and 140 referents were recruited. H3K4 and H3K27 trimethylation levels were measured in subjects’ blood cells. Results H3K4me3 levels were found to be higher in nickel smelting workers (47.24±20.85) than in office workers (22.65±8.81; P = 0.000), while the opposite was found for levels of H3K27me3(nickel smelting workers, 13.88± 4.23; office workers, 20.67± 5.96; P = 0.000). H3K4me3 was positively (r = 0.267, P = 0.001) and H3K27 was negatively (r = -0.684, P = 0.000) associated with age and length of service in smelting workers. Conclusion This study indicated that occupational exposure to Ni is associated with alterations in levels of histone modification.
Collapse
|
6
|
Singh V, Kumari B, Maity B, Seth D, Das P. Direct observation of preferential processing of clustered abasic DNA damages with APE1 in TATA box and CpG island by reaction kinetics and fluorescence dynamics. Mutat Res 2014; 766-767:56-65. [PMID: 25847273 DOI: 10.1016/j.mrfmmm.2014.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 06/16/2014] [Indexed: 06/04/2023]
Abstract
Sequences like the core element of TATA box and CpG island are frequently encountered in the genome and related to transcription. The fate of repair of clustered abasic sites in such sequences of genomic importance is largely unknown. This prompted us to investigate the sequence dependence of cleavage efficiency of APE1 enzyme at abasic sites within the core sequences of TATA box and CpG island using fluorescence dynamics and reaction kinetics. Simultaneous molecular dynamics study through steady state and time resolved fluorescence spectroscopy using unique ethidium bromide dye release assay confirmed an elevated amount of abasic site cleavage of the TATA box sequence as compared to the core CpG island. Reaction kinetics showed that catalytic efficiency of APE1 for abasic site cleavage of core CpG island sequence was ∼4 times lower as compared to that of the TATA box. Higher value of Km was obtained from the core CpG island sequence than the TATA box sequence. This suggests a greater binding effect of APE1 enzyme on TATA sequence that signifies a prominent role of the sequence context of the DNA substrate. Evidently, a faster response from APE1 was obtained for clustered abasic damage repair of TATA box core sequences than CpG island consensus sequences. The neighboring bases of the abasic sites in the complementary DNA strand were found to have significant contribution in addition to the flanking bases in modulating APE1 activity. The repair refractivity of the bistranded clustered abasic sites arise from the slow processing of the second abasic site, consequently resulting in decreased overall production of potentially lethal double strand breaks.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Bhavini Kumari
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Banibrata Maity
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Govt. Polytechnic Campus, Patliputra Colony, Patna 800013, Bihar, India.
| |
Collapse
|
7
|
Hieb AR, Gansen A, Böhm V, Langowski J. The conformational state of the nucleosome entry-exit site modulates TATA box-specific TBP binding. Nucleic Acids Res 2014; 42:7561-76. [PMID: 24829456 PMCID: PMC4081063 DOI: 10.1093/nar/gku423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The TATA binding protein (TBP) is a critical transcription factor used for nucleating assembly of the RNA polymerase II machinery. TBP binds TATA box elements with high affinity and kinetic stability and in vivo is correlated with high levels of transcription activation. However, since most promoters use less stable TATA-less or TATA-like elements, while also competing with nucleosome occupancy, further mechanistic insight into TBP's DNA binding properties and ability to access chromatin is needed. Using bulk and single-molecule FRET, we find that TBP binds a minimal consensus TATA box as a two-state equilibrium process, showing no evidence for intermediate states. However, upon addition of flanking DNA sequence, we observe non-specific cooperative binding to multiple DNA sites that compete for TATA-box specificity. Thus, we conclude that TBP binding is defined by a branched pathway, wherein TBP initially binds with little sequence specificity and is thermodynamically positioned by its kinetic stability to the TATA box. Furthermore, we observed the real-time access of TBP binding to TATA box DNA located within the DNA entry–exit site of the nucleosome. From these data, we determined salt-dependent changes in the nucleosome conformation regulate TBP's access to the TATA box, where access is highly constrained under physiological conditions, but is alleviated by histone acetylation and TFIIA.
Collapse
Affiliation(s)
- Aaron R Hieb
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Alexander Gansen
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Vera Böhm
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer. Cell 2013; 152:859-72. [PMID: 23415232 DOI: 10.1016/j.cell.2013.01.032] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 11/25/2012] [Accepted: 01/22/2013] [Indexed: 12/11/2022]
Abstract
Histone modifications are key regulators of chromatin function. However, little is known to what extent histone modifications can directly impact on chromatin. Here, we address how a modification within the globular domain of histones regulates chromatin function. We demonstrate that H3K122ac can be sufficient to stimulate transcription and that mutation of H3K122 impairs transcriptional activation, which we attribute to a direct effect of H3K122ac on histone-DNA binding. In line with this, we find that H3K122ac defines genome-wide genetic elements and chromatin features associated with active transcription. Furthermore, H3K122ac is catalyzed by the coactivators p300/CBP and can be induced by nuclear hormone receptor signaling. Collectively, this suggests that transcriptional regulators elicit their effects not only via signaling to histone tails but also via direct structural perturbation of nucleosomes by directing acetylation to their lateral surface.
Collapse
|
9
|
Grimaldi P, Pucci M, Di Siena S, Di Giacomo D, Pirazzi V, Geremia R, Maccarrone M. The faah gene is the first direct target of estrogen in the testis: role of histone demethylase LSD1. Cell Mol Life Sci 2012; 69:4177-90. [PMID: 22802127 PMCID: PMC11114663 DOI: 10.1007/s00018-012-1074-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/21/2023]
Abstract
Estrogen (E(2)) regulates spermatogenesis, yet its direct target genes have not been identified in the testis. Here, we cloned the proximal 5' flanking region of the mouse fatty acid amide hydrolase (faah) gene upstream of the luciferase reporter gene, and demonstrated its promoter activity and E(2) inducibility in primary mouse Sertoli cells. Specific mutations in the E(2) response elements (ERE) of the faah gene showed that two proximal ERE sequences (ERE2/3) are essential for E(2)-induced transcription, and chromatin immunoprecipitation experiments showed that E(2) induced estrogen receptor β binding at ERE2/3 sites in the faah promoter in vivo. Moreover, the histone demethylase LSD1 was found to be associated with ERE2/3 sites and to play a role in mediating E(2) induction of FAAH expression. E(2) induced epigenetic modifications at the faah proximal promoter compatible with transcriptional activation by remarkably decreasing methylation of both DNA at CpG site and histone H3 at lysine 9. Finally, FAAH silencing abolished E(2) protection against apoptosis induced by the FAAH substrate anandamide. Taken together, our results identify FAAH as the first direct target of E(2).
Collapse
Affiliation(s)
- Paola Grimaldi
- Department of Public Health and Cellular Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Mariangela Pucci
- Present Address: Department of Biomedical Sciences, University of Teramo, Piazza A. Moro, 45, 64100 Teramo, Italy
| | - Sara Di Siena
- Department of Public Health and Cellular Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Daniele Di Giacomo
- Department of Public Health and Cellular Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Valentina Pirazzi
- Present Address: Department of Biomedical Sciences, University of Teramo, Piazza A. Moro, 45, 64100 Teramo, Italy
| | - Raffaele Geremia
- Department of Public Health and Cellular Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Mauro Maccarrone
- Present Address: Department of Biomedical Sciences, University of Teramo, Piazza A. Moro, 45, 64100 Teramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation, 00164 Rome, Italy
| |
Collapse
|
10
|
Li H, Gao Z, Zhang J, Ye X, Xu A, Ye J, Jia W. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes 2012; 61:797-806. [PMID: 22338096 PMCID: PMC3314370 DOI: 10.2337/db11-0846] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factor 21 (FGF21) stimulates fatty acid oxidation and ketone body production in animals. In this study, we investigated the role of FGF21 in the metabolic activity of sodium butyrate, a dietary histone deacetylase (HDAC) inhibitor. FGF21 expression was examined in serum and liver after injection of sodium butyrate into dietary obese C57BL/6J mice. The role of FGF21 was determined using antibody neutralization or knockout mice. FGF21 transcription was investigated in liver and HepG2 hepatocytes. Trichostatin A (TSA) was used in the control as an HDAC inhibitor. Butyrate was compared with bezafibrate and fenofibrate in the induction of FGF21 expression. Butyrate induced FGF21 in the serum, enhanced fatty acid oxidation in mice, and stimulated ketone body production in liver. The butyrate activity was significantly reduced by the FGF21 antibody or gene knockout. Butyrate induced FGF21 gene expression in liver and hepatocytes by inhibiting HDAC3, which suppresses peroxisome proliferator-activated receptor-α function. Butyrate enhanced bezafibrate activity in the induction of FGF21. TSA exhibited a similar set of activities to butyrate. FGF21 mediates the butyrate activity to increase fatty acid use and ketogenesis. Butyrate induces FGF21 transcription by inhibition of HDAC3.
Collapse
Affiliation(s)
- Huating Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Diabetes Institute; Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanguo Gao
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Jin Zhang
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Xin Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Aimin Xu
- Departments of Medicine and Pharmacology, University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, University of Hong Kong, Hong Kong, China
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
- Corresponding author: Weiping Jia, , or Jianping Ye,
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Diabetes Institute; Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
- Corresponding author: Weiping Jia, , or Jianping Ye,
| |
Collapse
|
11
|
A functional role for the histone demethylase UTX in normal and malignant hematopoietic cells. Exp Hematol 2012; 40:487-98.e3. [PMID: 22306297 DOI: 10.1016/j.exphem.2012.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 11/22/2022]
Abstract
Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), an H3K27Me2/3 demethylase, has been implicated in development, self-renewal, and differentiation of various organs and embryonic stem cells through chromatin modifications and transcriptional regulation of important developmentally related genes, such as Hox genes. However, the function of UTX in hematopoiesis is not well understood. To study the role of UTX in the mammalian hematopoietic system, we used lentiviral short hairpin RNA constructs to knockdown UTX in the murine hematopoietic progenitor cell line EML, in primary murine bone marrow cells and in leukemic cell lines. We report that Utx is highly expressed in the hematopoietic compartment and that it plays an important role in cell proliferation and homeostasis of hematopoietic cells in vitro. Knockdown of UTX in EML and primary murine bone marrow cells impairs their colony-forming ability. Moreover, knockdown of UTX affects expression of key genes that regulate hematopoietic differentiation such as Mll1, Runx1, and Scl in primary murine bone marrow cells. And we further demonstrate that UTX directly associates with the promoters of the Mll1, Runx1, and Scl genes and modulate their transcription by controlling H3K27me3 marks on respective promoter regions. In addition, UTX depletion severely impaired proliferation of several human leukemia cell lines. Together, these data demonstrate a functional role for UTX in normal and malignant hematopoiesis.
Collapse
|
12
|
Inhibition of protein deacetylation augments herpes simplex virus type 1-activated transcription of host fucosyltransferase genes associated with virus-induced sLex expression. Arch Virol 2009; 155:305-13. [DOI: 10.1007/s00705-009-0580-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/02/2009] [Indexed: 02/03/2023]
|
13
|
Travaglini L, Vian L, Billi M, Grignani F, Nervi C. Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int J Biochem Cell Biol 2008; 41:225-34. [PMID: 18789398 DOI: 10.1016/j.biocel.2008.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/09/2008] [Accepted: 08/11/2008] [Indexed: 01/10/2023]
Abstract
Estrogen receptors (ERs) are a recognized prognostic factor and therapeutic target in breast cancer. The loss of ER expression relates to poor prognosis, poor clinical outcome and impairs the use of anti-estrogenic treatment. Histone deacetylase inhibitors are candidate drugs for cancer therapy. Among them, valproic acid (VPA) is a long used and safe anti-epileptic drug. We studied the biological consequences of the chromatin remodeling action of VPA in a normal human mammary epithelial cell line and in ERalpha-positive and ERalpha-negative breast cancer cell lines. In these cells and regardless of their ER status, VPA-induced cell differentiation, as shown by increased milk lipids production, decreased expression of the CD44 antigen and growth arrest in the G(0)-G(1) phase of the cell cycle. These effects were accompanied by decreased Rb phosphorylation, hyperacetylation of the p21(WAF1/CIP1) gene promoter and increased p21 protein expression. Only in breast cancer cells, cyclin B1 expression was decreased and the cells accumulated also in G(2). ERalpha expression decreased in ERalpha-positive, increased in ERalpha-negative and was unchanged in normal mammary epithelial cells, as did the expression of progesterone receptor, a physiological ERalpha target. VPA decreased the expression of the invasiveness marker pS2 in ERalpha-positive breast cancer cells, but did not cause its re-expression in ERalpha-negative cells. Overall, these data suggest that in both ERalpha-positive and -negative malignant mammary epithelial cells VPA reprograms the cells to a more differentiated and "physiologic" phenotype that may improve the sensitivity to endocrine therapy and/or chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Lorena Travaglini
- Department of Histology & Medical Embryology, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
14
|
Oduro AK, Fritsch MK, Murdoch FE. Chromatin context dominates estrogen regulation of pS2 gene expression. Exp Cell Res 2008; 314:2796-810. [PMID: 18662686 DOI: 10.1016/j.yexcr.2008.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 12/29/2022]
Abstract
Chromatin structure and transcription factor activity collaborate to set the transcription level of a gene. Our understanding of the relative contributions of each of these factors at a specific gene is limited. We studied the effects of an altered chromatin environment on the activity of the estrogen-responsive pS2 promoter. We created stable cell lines with the pS2 promoter situated in an alternative chromatin site in addition to it being in its native site. Both promoters were estrogen-responsive for estrogen receptor alpha (ERalpha) recruitment, but transcription was inducible only at the native site. At the recombinant site, transcription was high and constitutive. Higher histone H3 and H4 acetylation (acH3 and acH4), as well as trimethylated lysine 4 on histone H3 levels, was observed at the recombinant site compared to the native site in vehicle treated cells. Inhibition of histone deacetylases (HDACs) resulted in increased acH4, but only modest increases in acH3, ERalpha binding and basal transcription at the native pS2 site. Inhibiting HDACs had no effect on transcription from the recombinant site. These data suggest that highly active chromatin is not only permissive for transcription, but can override the requirement for the transcription factor at an inducible promoter.
Collapse
Affiliation(s)
- Akua K Oduro
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, MSC 5250, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
15
|
HMGN1 modulates estrogen-mediated transcriptional activation through interactions with specific DNA-binding transcription factors. Mol Cell Biol 2007; 27:8859-73. [PMID: 17938209 DOI: 10.1128/mcb.01724-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HMGN1, an abundant nucleosomal binding protein, can affect both the chromatin higher order structure and the modification of nucleosomal histones, but it alters the expression of only a subset of genes. We investigated specific gene targeting by HMGN1 in the context of estrogen induction of gene expression. Knockdown and overexpression experiments indicated that HMGN1 limits the induction of several estrogen-regulated genes, including TFF1 and FOS, which are induced by estrogen through entirely distinct mechanisms. HMGN1 specifically interacts with estrogen receptor alpha (ER alpha), both in vitro and in vivo. At the TFF1 promoter, estrogen increases HMGN1 association through recruitment by the ER alpha. HMGN1 S20E/S24E, although deficient in binding nucleosomal DNA, still interacts with ER alpha and, strikingly, still represses estrogen-driven activation of the TFF1 gene. On the FOS promoter, which lacks the ER alpha binding sites, constitutively bound serum response factor (SRF) mediates estrogen stimulation. HMGN1 also interacts specifically with SRF, but HMGN1 S20E/S24E does not. Consistent with the protein interactions, only wild-type HMGN1 significantly inhibits the estrogen-driven activation of the FOS gene. Mechanistically, the inhibition of estrogen induction of several ER alpha-associated genes, including TFF1, by HMGN1 correlates with decreased levels of acetylation of Lys9 on histone H3. Together, these findings indicate that HMGN1 regulates the expression of particular genes via specific protein-protein interactions with transcription factors at target gene regulatory regions.
Collapse
|
16
|
Green KA, Carroll JS. Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 2007; 7:713-22. [PMID: 17721435 DOI: 10.1038/nrc2211] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oestrogen receptor-alpha (ERalpha)-regulated transcription in breast cancer cells involves protein co-factors that contribute to the regulation of chromatin structure. These include co-factors with the potential to regulate histone modifications such as acetylation or methylation, and therefore the transcriptional state of target genes. Although much of the information regarding the interaction of specific co-factors with ER has been generated by studying specific promoter regions, we now have an improved understanding of the nature of these interactions and are better placed to relate these with ER activity and potentially with the activity of breast cancer drugs, including tamoxifen.
Collapse
Affiliation(s)
- Kelly A Green
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | | |
Collapse
|
17
|
Appanah R, Dickerson DR, Goyal P, Groudine M, Lorincz MC. An unmethylated 3' promoter-proximal region is required for efficient transcription initiation. PLoS Genet 2007; 3:e27. [PMID: 17305432 PMCID: PMC1797817 DOI: 10.1371/journal.pgen.0030027] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 12/28/2006] [Indexed: 11/30/2022] Open
Abstract
The promoter regions of approximately 40% of genes in the human genome are embedded in CpG islands, CpG-rich regions that frequently extend on the order of one kb 3′ of the transcription start site (TSS) region. CpGs 3′ of the TSS of actively transcribed CpG island promoters typically remain methylation-free, indicating that maintaining promoter-proximal CpGs in an unmethylated state may be important for efficient transcription. Here we utilize recombinase-mediated cassette exchange to introduce a Moloney Murine Leukemia Virus (MoMuLV)-based reporter, in vitro methylated 1 kb downstream of the TSS, into a defined genomic site. In a subset of clones, methylation spreads to within ∼320 bp of the TSS, yielding a dramatic decrease in transcript level, even though the promoter/TSS region remains unmethylated. Chromatin immunoprecipitation analyses reveal that such promoter-proximal methylation results in loss of RNA polymerase II and TATA-box-binding protein (TBP) binding in the promoter region, suggesting that repression occurs at the level of transcription initiation. While DNA methylation-dependent trimethylation of H3 lysine (K)9 is confined to the intragenic methylated region, the promoter and downstream regions are hypo-acetylated on H3K9/K14. Furthermore, DNase I hypersensitivity and methylase-based single promoter analysis (M-SPA) experiments reveal that a nucleosome is positioned over the unmethylated TATA-box in these clones, indicating that dense DNA methylation downstream of the promoter region is sufficient to alter the chromatin structure of an unmethylated promoter. Based on these observations, we propose that a DNA methylation-free region extending several hundred bases downstream of the TSS may be a prerequisite for efficient transcription initiation. This model provides a biochemical explanation for the typical positioning of TSSs well upstream of the 3′ end of the CpG islands in which they are embedded. Genes, the functional units of heredity, are made up of DNA, which is packaged inside the nuclei of eukaryotic cells in association with a number of proteins in a structure called chromatin. In order for transcription, the process of transferring genetic information from DNA to RNA, to take place, chromatin must be decondensed to allow the transcription machinery to bind the genes that are to be transcribed. In mammals, promoters, the starting position of genes, are frequently embedded in “CpG islands,” regions with a relatively high density of the CpG dinucleotide. Paradoxically, while cytosines in the context of the CpG dinucleotide are generally methylated, CpGs flanking the start sites of genes typically remain methylation-free. As CpG methylation is associated with condensed chromatin, it is generally believed that promoter regions must remain free of methylation to allow for binding of the transcription machinery. Here, using a novel method for introducing methylated DNA into a defined genomic site, we demonstrate that DNA methylation in the promoter-proximal region of a gene is sufficient to block transcription via the generation of a chromatin structure that inhibits binding of the transcription machinery. Thus, methylation may inhibit transcription even when present outside the promoter region.
Collapse
Affiliation(s)
- Ruth Appanah
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - David R Dickerson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Preeti Goyal
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Groudine
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Matthew C Lorincz
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
19
|
Calestagne-Morelli A, Ausió J. Long-range histone acetylation: biological significance, structural implications, and mechanismsThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:518-27. [PMID: 16936824 DOI: 10.1139/o06-067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genomic characterization of various euchromatic regions in higher eukaryotes has revealed that domain-wide hyperacetylation (over several kb) occurs at a range of loci, including individual genes, gene family clusters, compound clusters, and more general clusters of unrelated genes. Patterns of long-range histone hyperacetylation are strictly conserved within each unique cellular system studied and they reflect biological variability in gene regulation. Domain-wide histone acetylation consists generally of nonuniform peaks of enriched hyperacetylation of specific core histones, histone isoforms, and (or) histone variants against a backdrop of nonspecific acetylation across the domain in question. Here we review the characteristics of long-range histone acetylation in some higher eukaryotes and draw special attention to recent literature on the multiple effects that histone hyperacetylation has on chromatin’s structural integrity and how they affect transcription. These include the thermal, ionic, cumulative, and isoform-specific (H4 K16) consequences of acetylation that result in a more dynamic core complex and chromatin fiber.
Collapse
Affiliation(s)
- Alison Calestagne-Morelli
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 220, Victoria, BC V8W 3P6, Canada
| | | |
Collapse
|
20
|
Imoberdorf RM, Topalidou I, Strubin M. A role for gcn5-mediated global histone acetylation in transcriptional regulation. Mol Cell Biol 2006; 26:1610-6. [PMID: 16478983 PMCID: PMC1430249 DOI: 10.1128/mcb.26.5.1610-1616.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activators often require histone acetyltransferases (HATs) for full activity. The common explanation is that activators directly recruit HATs to gene promoters to locally hyperacetylate histones and thereby facilitate transcription complex formation. However, in addition to being targeted to specific loci, HATs such as Gcn5 also modify histones genome-wide. Here we provide evidence for a role of this global HAT activity in regulated transcription. We show that activation by direct recruitment of the transcriptional machinery neither recruits Gcn5 nor induces changes in histone acetylation yet can strongly depend on Gcn5 at promoters showing a high basal state of Gcn5-mediated histone acetylation. We also show that Gcn5 dependency varies among core promoters and is influenced by the strength of interaction used to recruit the machinery and by the affinity of the latter for the core promoter. These data support a role for global Gcn5 HAT activity in modulating transcription independently of its known coactivator function.
Collapse
Affiliation(s)
- Rachel Maria Imoberdorf
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
21
|
Rao B, Shibata Y, Strahl BD, Lieb JD. Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol Cell Biol 2005; 25:9447-59. [PMID: 16227595 PMCID: PMC1265832 DOI: 10.1128/mcb.25.21.9447-9459.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Set2p, which mediates histone H3 lysine 36 dimethylation (H3K36me2) in Saccharomyces cerevisiae, has been shown to associate with RNA polymerase II (RNAP II) at individual loci. Here, chromatin immunoprecipitation-microarray experiments normalized to general nucleosome occupancy reveal that nucleosomes within open reading frames (ORFs) and downstream noncoding chromatin were highly dimethylated at H3K36 and that Set2p activity begins at a stereotypic distance from the initiation of transcription genome-wide. H3K36me2 is scarce in regions upstream of divergently transcribed genes, telomeres, silenced mating loci, and regions transcribed by RNA polymerase III, providing evidence that the enzymatic activity of Set2p is restricted to its association with RNAP II. The presence of H3K36me2 within ORFs correlated with the "on" or "off" state of transcription, but the degree of H3K36 dimethylation within ORFs did not correlate with transcription frequency. This provides evidence that H3K36me2 is established during the initial instances of gene transcription, with subsequent transcription having at most a maintenance role. Accordingly, newly activated genes acquire H3K36me2 in a manner that does not correlate with gene transcript levels. Finally, nucleosomes dimethylated at H3K36 appear to be refractory to loss from highly transcribed chromatin. Thus, H3K36me2, which is highly conserved throughout eukaryotic evolution, provides a stable molecular mechanism for establishing chromatin context throughout the genome by distinguishing potential regulatory regions from transcribed chromatin.
Collapse
Affiliation(s)
- Bhargavi Rao
- Department of Biology, CB no. 3280, 203 Fordham Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
22
|
Talasz H, Lindner HH, Sarg B, Helliger W. Histone H4-Lysine 20 Monomethylation Is Increased in Promoter and Coding Regions of Active Genes and Correlates with Hyperacetylation. J Biol Chem 2005; 280:38814-22. [PMID: 16166085 DOI: 10.1074/jbc.m505563200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation and acetylation of position-specific lysine residues in the N-terminal tail of histones H3 and H4 play an important role in regulating chromatin structure and function. In the case of H3-Lys(4), H3-Lys(9), H3-Lys(27), and H4-Lys(20), the degree of methylation was variable from the mono- to the di- or trimethylated state, each of which was presumed to be involved in the organization of chromatin and the activation or repression of genes. Here we investigated the interplay between histone H4-Lys(20) mono- and trim-ethylation and H4 acetylation at induced (beta-major/beta-minor glo-bin), repressed (c-myc), and silent (embryonic beta-globin) genes during in vitro differentiation of mouse erythroleukemia cells. By using chromatin immunoprecipitation, we found that the beta-major and beta-minor promoter and the beta-globin coding regions as well as the promoter and the transcribed exon 2 regions of the highly expressed c-myc gene were hyperacetylated and monomethylated at H4-Lys(20). Although activation of the beta-globin gene resulted in an increase in hyperacetylated, monomethylated H4, down-regulation of the c-myc gene did not cause a decrease in hyperacetylated, monomethylated H4-Lys(20), thus showing a stable pattern of histone modifications. Immunofluorescence microscopy studies revealed that monomethylated H4-Lys(20) mainly overlaps with RNA pol II-stained euchromatic regions, thus indicating an association with transcriptionally engaged chromatin. Our chromatin immunoprecipitation results demonstrated that in contrast to trimethylated H4-Lys(20), which was found to inversely correlate with H4 hyper-acetylation, H4-Lys(20) monomethylation is compatible with histone H4 hyperacetylation and correlates with the transcriptionally active or competent chromatin state.
Collapse
Affiliation(s)
- Heribert Talasz
- Biocenter, Division of Clinical Biochemistry, Innsbruck Medical University, A-6020, Innsbruck, Austria.
| | | | | | | |
Collapse
|
23
|
Biswas D, Yu Y, Prall M, Formosa T, Stillman DJ. The yeast FACT complex has a role in transcriptional initiation. Mol Cell Biol 2005; 25:5812-22. [PMID: 15987999 PMCID: PMC1168812 DOI: 10.1128/mcb.25.14.5812-5822.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A crucial step in eukaryotic transcriptional initiation is recognition of the promoter TATA by the TATA-binding protein (TBP), which then allows TFIIA and TFIIB to be recruited. However, nucleosomes block the interaction between TBP and DNA. We show that the yeast FACT complex (yFACT) promotes TBP binding to a TATA box in chromatin both in vivo and in vitro. The SPT16 gene encodes a subunit of yFACT, and we show that certain spt16 mutations are synthetically lethal with TBP mutants. Some of these genetic defects can be suppressed by TFIIA overexpression, strongly suggesting a role for yFACT in TBP-TFIIA complex formation in vivo. Mutations in the TOA2 subunit of TFIIA that disrupt TBP-TFIIA complex formation in vitro are also synthetically lethal with spt16. In some cases this spt16 toa2 lethality is suppressed by overexpression of TBP or the Nhp6 architectural transcription factor that is also a component of yFACT. The Spt3 protein in the SAGA complex has been shown to regulate TBP binding at certain promoters, and we show that some spt16 phenotypes can be suppressed by spt3 mutations. Chromatin immunoprecipitations show TBP binding to promoters is reduced in single spt16 and spt3 mutants but increases in the spt16 spt3 double mutant, reflecting the mutual suppression seen in the genetic assays. Finally, in vitro studies show that yFACT promotes TBP binding to a TATA sequence within a reconstituted nucleosome in a TFIIA-dependent manner. Thus, yFACT functions in establishing transcription initiation complexes in addition to the previously described role in elongation.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, 30 North 1900 East, Salt Lake City, Utah 84132-2501, USA
| | | | | | | | | |
Collapse
|
24
|
Sekinger EA, Moqtaderi Z, Struhl K. Intrinsic Histone-DNA Interactions and Low Nucleosome Density Are Important for Preferential Accessibility of Promoter Regions in Yeast. Mol Cell 2005; 18:735-48. [PMID: 15949447 DOI: 10.1016/j.molcel.2005.05.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/27/2005] [Accepted: 05/05/2005] [Indexed: 01/16/2023]
Abstract
In yeast cells, preferential accessibility of the HIS3-PET56 promoter region is determined by a general property of the DNA sequence, not by defined sequence elements. In vivo, this region is largely devoid of nucleosomes, and accessibility is directly related to reduced histone density. The HIS3-PET56 and DED1 promoter regions associate poorly with histones in vitro, indicating that intrinsic nucleosome stability is a major determinant of preferential accessibility. Specific and genome-wide analyses indicate that low nucleosome density is a very common feature of yeast promoter regions that correlates poorly with transcriptional activation. Thus, the yeast genome is organized into structurally distinct promoter and nonpromoter regions whose DNA sequences inherently differ with respect to nucleosome formation. This organization ensures that transcription factors bind preferentially to appropriate sites in promoters, rather than to the excess of irrelevant sites in nonpromoter regions.
Collapse
Affiliation(s)
- Edward A Sekinger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
25
|
Biswas D, Imbalzano AN, Eriksson P, Yu Y, Stillman DJ. Role for Nhp6, Gcn5, and the Swi/Snf complex in stimulating formation of the TATA-binding protein-TFIIA-DNA complex. Mol Cell Biol 2004; 24:8312-21. [PMID: 15340090 PMCID: PMC515044 DOI: 10.1128/mcb.24.18.8312-8321.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TATA-binding protein (TBP), TFIIA, and TFIIB interact with promoter DNA to form a complex required for transcriptional initiation, and many transcriptional regulators function by either stimulating or inhibiting formation of this complex. We have recently identified TBP mutants that are viable in wild-type cells but lethal in the absence of the Nhp6 architectural transcription factor. Here we show that many of these TBP mutants were also lethal in strains with disruptions of either GCN5, encoding the histone acetyltransferase in the SAGA complex, or SWI2, encoding the catalytic subunit of the Swi/Snf chromatin remodeling complex. These synthetic lethalities could be suppressed by overexpression of TOA1 and TOA2, the genes encoding TFIIA. We also used TFIIA mutants that eliminated in vitro interactions with TBP. These viable TFIIA mutants were lethal in strains lacking Gcn5, Swi2, or Nhp6. These lethalities could be suppressed by overexpression of TBP or Nhp6, suggesting that these coactivators stimulate formation of the TBP-TFIIA-DNA complex. In vitro studies have previously shown that TBP binds very poorly to a TATA sequence within a nucleosome but that Swi/Snf stimulates binding of TBP and TFIIA. In vitro binding experiments presented here show that histone acetylation facilitates TBP binding to a nucleosomal binding site and that Nhp6 stimulates formation of a TBP-TFIIA-DNA complex. Consistent with the idea that Nhp6, Gcn5, and Swi/Snf have overlapping functions in vivo, nhp6a nhp6b gcn5 mutants had a severe growth defect, and mutations in both nhp6a nhp6b swi2 and gcn5 swi2 strains were lethal.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, USA
| | | | | | | | | |
Collapse
|
26
|
Xu X, Murdoch FE, Curran EM, Welshons WV, Fritsch MK. Transcription factor accessibility and histone acetylation of the progesterone receptor gene differs between parental MCF-7 cells and a subline that has lost progesterone receptor expression. Gene 2004; 328:143-51. [PMID: 15019994 DOI: 10.1016/j.gene.2003.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 11/17/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
The human progesterone receptor (PgR) gene has a complex promoter that produces alternate mRNAs encoding the PgRA (94 kDa) and PgRB (120 kDa) protein isoforms. Expression of PgR is induced by estradiol (E(2)) in the breast, reproductive tract and many cell lines despite the lack of a classical estrogen responsive element (ERE) in the promoter regions. We employed chromatin immunoprecipitation (ChIP) to analyze the sites of estrogen receptor alpha (ERalpha) and Sp1 occupancy of the PgR promoters in vivo. We also assessed the functional relevance of histone acetylation levels on the accessibility of transcription factors to the promoter and subsequent hormone-induced transcription. We utilized MCF-7 human breast cancer cells that express PgR in response to E(2) and the MCF-7 derived C4 cell strain that has lost PgR expression as a model system. We found that promoter-wide levels of histone acetylation were not decreased in C4 cells, but that access was partially blocked for Sp1 and completely blocked for ERalpha. The basal level of histone acetylation at six localized regions of the promoter did show some differences between cell lines, but it did not correlate with transcription factor binding. Furthermore, we found only a modest and highly localized change in histone acetylation levels in response to E(2) at only one of three sites of ERalpha binding in MCF-7 cells. This was at the B1 site at the distal 5' end of the promoter. This site also showed a significant decrease in basal histone acetylation in C4 compared to MCF-7 cells. We speculate that the histone acetylation level at this site may be a marker for chromatin structure that affects the access of transcription factors to the whole promoter.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1300 University Avenue, MSC 5250, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
27
|
Kinyamu HK, Archer TK. Modifying chromatin to permit steroid hormone receptor-dependent transcription. ACTA ACUST UNITED AC 2004; 1677:30-45. [PMID: 15020043 DOI: 10.1016/j.bbaexp.2003.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 02/07/2023]
Abstract
Lipophilic hormones, including steroids, exert their physiological effects through binding to high-affinity superfamily of steroid hormone receptor (SR) proteins that function as ligand-dependent DNA binding transcription factors. To date, SR proteins are among a few transcription factors shown to directly interact with higher order chromatin structures to regulate gene expression. To perturb chromatin, SRs employ enzymatic multicomplexes that can either remodel or modify chromatin. Here we examine the current state of knowledge concerning multicomplex chromatin remodeling/modification machines and SR-dependent transcription. We will focus on the role of these protein-protein and chromatin-protein interactions in vivo with the MMTV promoter as a primary model. In addition, we discuss emerging evidence implicating chaperone proteins and proteasome degradation machinery in SR-mediated gene regulation within chromatin.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, PO Box 12233 (MD E4-06), Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
28
|
Nordentoft I, Jørgensen P. The acetyltransferase 60 kDa trans-acting regulatory protein of HIV type 1-interacting protein (Tip60) interacts with the translocation E26 transforming-specific leukaemia gene (TEL) and functions as a transcriptional co-repressor. Biochem J 2003; 374:165-73. [PMID: 12737628 PMCID: PMC1223570 DOI: 10.1042/bj20030087] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 05/07/2003] [Accepted: 05/09/2003] [Indexed: 11/17/2022]
Abstract
The translocation E26 transforming-specific (ETS) leukaemia (TEL), alias the ETS variant (ETV6), gene is expressed in most human tissues and encodes a transcriptional repressor. The TEL gene is involved in more than 40 different chromosomal translocations associated with haematological malignancies. As little is known about the function of intact TEL, we searched for TEL-interacting proteins by yeast two-hybrid screening. Among the interacting partners, we identified the histone acetyltransferase protein Tip60 [60 kDa trans-acting regulatory protein of HIV type 1 (Tat)-interacting protein]. The interaction was reproduced in vitro, and in mammalian cells we mapped the interaction regions in TEL to the ETS domain and those in Tip60 to the MYST ('MOZ, Ybf2/Sas3, SAS2 and Tip60', where MOZ stands for male absent on the first, SAS for something about silencing and Ybf2 for identical with SAS2) region. Detailed analysis of the Tip60 MYST domain by introduction of point mutations revealed that an N-terminal C2HC zinc finger was essential for interaction with TEL. Finally, we showed that Tip60 functions in a reporter system as a co-repressor in TEL-mediated transcription repression.
Collapse
Affiliation(s)
- Iver Nordentoft
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé 130, DK 8000 Aarhus C, Denmark
| | | |
Collapse
|
29
|
Mulholland NM, Soeth E, Smith CL. Inhibition of MMTV transcription by HDAC inhibitors occurs independent of changes in chromatin remodeling and increased histone acetylation. Oncogene 2003; 22:4807-18. [PMID: 12894222 DOI: 10.1038/sj.onc.1206722] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased histone acetylation has been associated with activated gene transcription and decreased acetylation with repression. However, there is a growing number of genes known, which are downregulated by histone deacetylase (HDAC) inhibitors through unknown mechanisms. This study examines the mechanism by which the mouse mammary tumor virus (MMTV) promoter is repressed by the HDAC inhibitor, trichostatin A (TSA). We find that this repression is transcriptional in nature and that it occurs in the presence and absence of glucocorticoids. TSA decreases MMTV transcription at a rapid rate, reaching maximum in 30-60 min. In contrast with previous reports, the repression does not correlate with an inhibition of glucocorticoid-induced nuclease hypersensitivity or NF1-binding at the MMTV promoter. Surprisingly, TSA does not induce sizable increases in histone acetylation at the MMTV promoter nor does it inhibit histone deacetylation, which accompanies deactivation of the glucocorticoid-activated MMTV promoter. Repression of MMTV transcription by TSA does not depend on the chromatin organization of the promoter because a transiently transfected MMTV promoter construct with a disorganized nucleoprotein structure was also repressed by TSA treatment. Mutational analysis of the MMTV promoter indicates that repression by TSA is mediated through the TATA box region. These results suggest a novel mechanism that involves acetylation of nonhistone proteins necessary for basal transcription.
Collapse
Affiliation(s)
- Niveen M Mulholland
- Department of Genetics, George Washington University, Washington, DC 20052, USA
| | | | | |
Collapse
|
30
|
Masumi A, Yamakawa Y, Fukazawa H, Ozato K, Komuro K. Interferon regulatory factor-2 regulates cell growth through its acetylation. J Biol Chem 2003; 278:25401-7. [PMID: 12738767 DOI: 10.1074/jbc.m213037200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that interferon regulatory factor-2 (IRF-2) is acetylated by p300 and PCAF in vivo and in vitro. In this study we identified, by mass spectrometry, two lysine residues in the DNA binding domain (DBD), Lys-75 and Lys-78, to be the major acetylation sites in IRF-2. Although acetylation of IRF-2 did not alter DNA binding activity in vitro, mutation of Lys-75 diminished the IRF-2-dependent activation of histone H4 promoter activity. Acetylation of IRF-2 and IRF-2-stimulated H4 promoter activity were inhibited by the adenovirus E1A, indicating the involvement of p300/CBP. Mutation of Lys-78, a residue conserved throughout the IRF family members, led to the abrogation of DNA binding activity independently of acetylation. H4 is transcribed only in rapidly growing cells and its promoter activity is dependent on cell growth. Consistent with a role for acetylated IRF-2 in cell growth control, IRF-2 was acetylated only in growing NIH 3T3 cells, but not in growth-arrested counterparts. Chromatin immunoprecipitation assays showed that IRF-2 interacted with p300 and bound to the endogenous H4 promoter only in growing cells, although the levels of total IRF-2 were comparable in both growing and growth-arrested cells. These results indicate that IRF-2 is acetylated in a cell growth-dependent manner, which enables it to contribute to transcription of cell growth-regulated promoters.
Collapse
Affiliation(s)
- Atsuko Masumi
- Department of Safety Research on Biologics, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
31
|
Shimizu M, Takahashi K, Lamb TM, Shindo H, Mitchell AP. Yeast Ume6p repressor permits activator binding but restricts TBP binding at the HOP1 promoter. Nucleic Acids Res 2003; 31:3033-7. [PMID: 12799429 PMCID: PMC162329 DOI: 10.1093/nar/gkg425] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ume6p plays essential roles in the regulation of early meiotic genes in Saccharomyces cerevisiae. Ume6p exerts repression via recruitment of the Sin3p-Rpd3p histone deacetylase and Isw2p chromatin remodeling complexes. The transcriptional step that is ultimately inhibited by Ume6p is unknown. Here, in vivo footprinting shows that transcriptional activators Hap1p and Abf1p occupy upstream sites in repressed and derepressed promoters. In contrast, chromatin immunoprecipitation shows that TATA box-binding protein (TBP)- promoter binding is reduced upon repression of HOP1. Fusion of TBP to a zinc cluster DNA binding domain relieves repression at a HOP1 promoter modified to include the zinc cluster target site. We suggest that TBP binding is inhibited through chromatin modification by the Sin3p-Rpd3p and Isw2p complexes recruited by Ume6p.
Collapse
Affiliation(s)
- Mitsuhiro Shimizu
- Department of Chemistry, Meisei University, Hino, Tokyo 191-8506, Japan.
| | | | | | | | | |
Collapse
|
32
|
Lambert JR, Nordeen SK. CBP recruitment and histone acetylation in differential gene induction by glucocorticoids and progestins. Mol Endocrinol 2003; 17:1085-94. [PMID: 12637584 DOI: 10.1210/me.2001-0183] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have analyzed histone acetylation at the steroid-responsive mouse mammary tumor virus (MMTV) promoter in five separate cell lines that express functional glucocorticoid and/or progesterone receptors. Chromatin immunoprecipitation assays reveal that glucocorticoid and progesterone receptors bind the MMTV promoter after hormone addition but that receptor binding is not associated with an increase in acetylation of histone H3 or H4. We have, however, found one exception to this rule. Previously we described a cell line [T47D(C&L)] that displayed a remarkable differential induction of MMTV by glucocorticoids and progestins. At one chromosomal locus (MMTV-luciferase), MMTV is preferentially induced by glucocorticoids, whereas at another locus within the same cell (MMTV-CAT), MMTV is activated by both glucocorticoids and progestins. Here we show that the glucocorticoid-mediated induction of MMTV-luciferase is accompanied by increased recruitment of CBP to the promoter and increased histone H3 and H4 acetylation, whereas the hormonal induction of MMTV-CAT in the same cell exhibits a more modest CBP recruitment without any increase in histone acetylation. These studies suggest that increased histone acetylation may serve a potentiating function for MMTV promoter activation at certain loci. However, increased histone acetylation is not requisite for steroid-mediated induction of transcription at all genes.
Collapse
Affiliation(s)
- James R Lambert
- Department of Pathology and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
33
|
Yu Y, Eriksson P, Bhoite LT, Stillman DJ. Regulation of TATA-binding protein binding by the SAGA complex and the Nhp6 high-mobility group protein. Mol Cell Biol 2003; 23:1910-21. [PMID: 12612066 PMCID: PMC149471 DOI: 10.1128/mcb.23.6.1910-1921.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation of the yeast HO gene involves the sequential action of DNA-binding and chromatin-modifying factors. Here we examine the role of the SAGA complex and the Nhp6 architectural transcription factor in HO regulation. Our data suggest that these factors regulate binding of the TATA-binding protein (TBP) to the promoter. A gcn5 mutation, eliminating the histone acetyltransferase present in SAGA, reduces the transcription of HO, but expression is restored in a gcn5 spt3 double mutant. We conclude that the major role of Gcn5 in HO activation is to overcome repression by Spt3. Spt3 is also part of SAGA, and thus two proteins in the same regulatory complex can have opposing roles in transcriptional regulation. Chromatin immunoprecipitation experiments show that TBP binding to HO is very weak in wild-type cells but markedly increased in an spt3 mutant, indicating that Spt3 reduces HO expression by inhibiting TBP binding. In contrast, it has been shown previously that Spt3 stimulates TBP binding to the GAL1 promoter as well as GAL1 expression, and thus, Spt3 regulates these promoters differently. We also find genetic interactions between TBP and either Gcn5 or the high-mobility-group protein Nhp6, including multicopy suppression and synthetic lethality. These results suggest that, while Spt3 acts to inhibit TBP interaction with the HO promoter, Gcn5 and Nhp6 act to promote TBP binding. The result of these interactions is to limit TBP binding and HO expression to a short period within the cell cycle. Furthermore, the synthetic lethality resulting from combining a gcn5 mutation with specific TBP point mutations can be suppressed by the overexpression of transcription factor IIA (TFIIA), suggesting that histone acetylation by Gcn5 can stimulate transcription by promoting the formation of a TBP/TFIIA complex.
Collapse
Affiliation(s)
- Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, 30 North 1900 East, Salt Lake City, UT 84132-2501, USA
| | | | | | | |
Collapse
|
34
|
Urnov FD. A feel for the template: zinc finger protein transcription factors and chromatin. Biochem Cell Biol 2003; 80:321-33. [PMID: 12123285 DOI: 10.1139/o02-084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transcription factors and chromatin collaborate in bringing the eukaryotic genome to life. An important, and poorly understood, aspect of this collaboration involves targeting the regulators to correct binding sites in vivo. An implicit and insufficiently tested assumption in the field has been that chromatin simply obstructs most sites and leaves only a few functionally relevant ones accessible. The major class of transcription factors in all metazoa, zinc finger proteins (ZFPs), can bind to chromatin in vitro (as clearly shown for Spl, GATA-1 and -4, and the nuclear hormone receptors, for example). Data on the accessibility of DNA within heterochromatin to nonhistone regulators (E.A. Sekinger and D.S. Gross. 2001. Mol. Cell 105: 403-414; C. Jolly et al. 2002. J. Cell. Biol. 156: 775-781) and the ability of the basal transcription machinery to reside within highly condensed chromatin (most recently, R. Christova and T. Oelgeschlaeger. 2002. Nat. Cell Biol. 4: 79-82) further weaken the argument that chromatin acts as an across-the-board deterrent to ZFP binding. These proteins, however, do not bind promiscuously in vivo, and recent data on human cells (C.E. Horak et al. 2002. Proc. Natl. Acad. Sci. U.S.A. 99: 2924-2929) confirm earlier data on budding yeast (B. Ren et al. 2000. Science (Washington, D.C.), 290: 2306-2309) that primary DNA sequence, i.e., density of binding sites per unit DNA length, is not the primary determinant of where a ZFP transcription factor will bind in vivo. This article reviews these data and uses ZFP transcription factors as a model system to compare in vitro binding to chromatin by transcription factors with their in vivo behavior in gene regulation. DNA binding domain structure, nonrandom nucleoprotein organization of chromatin at target promoters, and cooperativity of regulator action may all contribute to target site selection in vivo.
Collapse
Affiliation(s)
- Fyodor D Urnov
- Sangamo Biosciences, Pt Richmond Tech Centre, Richmond, CA 94804, USA.
| |
Collapse
|
35
|
Affiliation(s)
- Andrew J Bannister
- Wellcome Trust/Cancer Research, United Kingdom Institute, Department of Pathology, University of Cambridge, United Kingdom
| | | |
Collapse
|
36
|
Daujat S, Bauer UM, Shah V, Turner B, Berger S, Kouzarides T. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 2002; 12:2090-7. [PMID: 12498683 DOI: 10.1016/s0960-9822(02)01387-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dynamic changes in the modification pattern of histones, such as acetylation, phosphorylation, methylation, and ubiquitination, are thought to provide a code for the correct regulation of gene expression mostly by affecting chromatin structure and interactions of non-histone regulatory factors with chromatin. Recent studies have suggested the existence of an interplay between histone modifications during transcription. The CBP/p300 acetylase and the CARM1 methyltransferase can positively regulate the expression of estrogen-responsive genes, but the existence of a crosstalk between lysine acetylation and arginine methylation on chromatin has not yet been established in vivo. RESULTS By following the in vivo pattern of modifications on histone H3, following estrogen stimulation of the pS2 promoter, we show that arginine methylation follows prior acetylation of H3. Within 15 min after estrogen stimulation, CBP is bound to chromatin, and acetylation of K18 takes place. Following these events, K23 is acetylated, CARM1 associates with chromatin, and methylation at R17 takes place. Exogenous expression of CBP is sufficient to drive the association of CARM1 with chromatin and methylation of R17 in vivo, whereas an acetylase-deficient CBP mutant is unable to induce these events. A mechanism for the observed cooperation between acetylation and arginine methylation comes from the finding that acetylation at K18 and K23, but not K14, tethers recombinant CARM1 to the H3 tail and allows it to act as a more efficient arginine methyltransferase. CONCLUSION These results reveal an ordered and interdependent deposition of acetylation and arginine methylation during estrogen-regulated transcription and provide support for a combinatorial role of histone modifications in gene expression.
Collapse
Affiliation(s)
- Sylvain Daujat
- Wellcome/Cancer Research UK Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Kang Z, Pirskanen A, Jänne OA, Palvimo JJ. Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex. J Biol Chem 2002; 277:48366-71. [PMID: 12376534 DOI: 10.1074/jbc.m209074200] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used the chromatin immunoprecipitation technique to analyze the formation of the androgen receptor (AR) transcription complex onto prostate-specific antigen (PSA) and kallikrein 2 promoters in LNCaP cells. Our results show that loading of holo-AR and recruitment of RNA polymerase II to the promoters occur transiently. The cyclic nature of AR transcription complex assembly is also illustrated by transient association of coactivators GRIP1 and CREB-binding protein and acetylated histone H3 with the PSA promoter. Treatment of cells with the pure antiandrogen bicalutamide also elicits occupancy of the promoter by AR. In contrast to the agonist-liganded AR, bicalutamide-bound receptor is not capable of recruiting polymerase II, GRIP1, or CREB-binding protein, indicating that the conformation of AR bound to anti-androgen is not competent to assemble transcription complexes. Proteasome is involved in the regulation of AR-dependent transcription, as a proteasome inhibitor, MG-132, prevents the release of the receptor from the PSA promoter, and it also blocks the androgen-induced PSA mRNA accumulation. Furthermore, occupancy of the PSA promoter by the 19 S proteasome subcomplex parallels that by AR. Collectively, formation of the AR transcription complex, encompassing AR, polymerase II, and coactivators, on a regulated promoter is a cyclic process involving proteasome function.
Collapse
Affiliation(s)
- Zhigang Kang
- Biomedicum Helsinki, Institute of Biomedicine (Physiology), University of Helsinki and Helsinki University Central Hospital, Finland
| | | | | | | |
Collapse
|
38
|
Kristjuhan A, Walker J, Suka N, Grunstein M, Roberts D, Cairns BR, Svejstrup JQ. Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region. Mol Cell 2002; 10:925-33. [PMID: 12419235 PMCID: PMC9035295 DOI: 10.1016/s1097-2765(02)00647-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Changes in histone acetylation at promoters correlate with transcriptional activation and repression, but whether acetylation of histones in the coding region of genes is important for transcription is less clear. Here, we show that cells lacking the histone acetyltransferases Gcn5 and Elp3 have widespread and severe histone H3 hypoacetylation in chromatin. Surprisingly, severe hypoacetylation in the promoter does not invariably affect the ability of TBP to bind the TATA element, or transcription of the gene. By contrast, similar hypoacetylation of the coding region correlates with inhibition of transcription, and inhibition correlates better with the overall charge of the histone H3 tail than with hypoacetylation of specific lysine residues. These data provide insights into the effects of histone H3 hypoacetylation in vivo and underscore the importance of the overall charge of the histone tail for transcription.
Collapse
Affiliation(s)
- Arnold Kristjuhan
- Mechanisms of Transcription Laboratory Cancer Research UK London Research Institute Clare Hall Laboratories South Mimms Hertfordshire, EN6 3LD United Kingdom
| | - Jane Walker
- Mechanisms of Transcription Laboratory Cancer Research UK London Research Institute Clare Hall Laboratories South Mimms Hertfordshire, EN6 3LD United Kingdom
| | - Noriyuki Suka
- Department of Biological Chemistry UCLA School of Medicine and The Molecular Biology Institute University of California, Los Angeles Los Angeles, California 90095
| | - Michael Grunstein
- Department of Biological Chemistry UCLA School of Medicine and The Molecular Biology Institute University of California, Los Angeles Los Angeles, California 90095
| | - Douglas Roberts
- Howard Hughes Medical Institute and Department of Oncological Science Huntsman Cancer Institute University of Utah Salt Lake City, Utah 84112
| | - Bradley R. Cairns
- Howard Hughes Medical Institute and Department of Oncological Science Huntsman Cancer Institute University of Utah Salt Lake City, Utah 84112
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory Cancer Research UK London Research Institute Clare Hall Laboratories South Mimms Hertfordshire, EN6 3LD United Kingdom
- Correspondence:
| |
Collapse
|
39
|
Deckert J, Struhl K. Targeted recruitment of Rpd3 histone deacetylase represses transcription by inhibiting recruitment of Swi/Snf, SAGA, and TATA binding protein. Mol Cell Biol 2002; 22:6458-70. [PMID: 12192044 PMCID: PMC135627 DOI: 10.1128/mcb.22.18.6458-6470.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Certain DNA-binding repressors inhibit transcription by recruiting Rpd3 histone deacetylase complexes to promoters and generating domains of histone deacetylation that extend over a limited number of nucleosomes. Here, we show that the degree of Rpd3-dependent repression depends on the activator and the level of activation, not the extent of histone deacetylation. In all cases tested, activator binding is unaffected by histone deacetylation. In contrast, Rpd3-dependent repression is associated with decreased occupancy by TATA binding protein (TBP), the Swi/Snf nucleosome-remodeling complex, and the SAGA histone acetylase complex. Transcriptional repression is bypassed by direct recruitment of TBP and several TBP-associated factors, but not by natural activation domains or direct recruitment of polymerase II holoenzyme components. These results suggest that the domain of localized histone deacetylation generated by recruitment of Rpd3 mediates repression by inhibiting recruitment of chromatin-modifying activities and TBP.
Collapse
Affiliation(s)
- Jutta Deckert
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
40
|
Shen CH, Leblanc BP, Neal C, Akhavan R, Clark DJ. Targeted histone acetylation at the yeast CUP1 promoter requires the transcriptional activator, the TATA boxes, and the putative histone acetylase encoded by SPT10. Mol Cell Biol 2002; 22:6406-16. [PMID: 12192040 PMCID: PMC135642 DOI: 10.1128/mcb.22.18.6406-6416.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between chromatin remodeling and histone acetylation at the yeast CUP1 gene was addressed. CUP1 encodes a metallothionein required for cell growth at high copper concentrations. Induction of CUP1 with copper resulted in targeted acetylation of both H3 and H4 at the CUP1 promoter. Nucleosomes containing upstream activating sequences and sequences farther upstream were the targets for H3 acetylation. Targeted acetylation of H3 and H4 required the transcriptional activator (Ace1p) and the TATA boxes, suggesting that targeted acetylation occurs when TATA-binding protein binds to the TATA box or at a later stage in initiation. We have shown previously that induction results in nucleosome repositioning over the entire CUP1 gene, which requires Ace1p but not the TATA boxes. Therefore, the movement of nucleosomes occurring on CUP1 induction is independent of targeted acetylation. Targeted acetylation of both H3 and H4 also required the product of the SPT10 gene, which encodes a putative histone acetylase implicated in regulation at core promoters. Disruption of SPT10 was lethal at high copper concentrations and correlated with slower induction and reduced maximum levels of CUP1 mRNA. These observations constitute evidence for a novel mechanism of chromatin activation at CUP1, with a major role for the TATA box.
Collapse
Affiliation(s)
- Chang-Hui Shen
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-8028, USA
| | | | | | | | | |
Collapse
|
41
|
Lu H, Pise-Masison CA, Fletcher TM, Schiltz RL, Nagaich AK, Radonovich M, Hager G, Cole PA, Brady JN. Acetylation of nucleosomal histones by p300 facilitates transcription from tax-responsive human T-cell leukemia virus type 1 chromatin template. Mol Cell Biol 2002; 22:4450-62. [PMID: 12052856 PMCID: PMC133924 DOI: 10.1128/mcb.22.13.4450-4462.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expression of human T-cell leukemia virus type 1 (HTLV-1) is regulated by the viral transcriptional activator Tax. Tax activates viral transcription through interaction with the cellular transcription factor CREB and the coactivators CBP/p300. One key property of the coactivators is the presence of histone acetyltransferase (HAT) activity, which enables p300/CBP to modify nucleosome structure. The data presented in this manuscript demonstrate that full-length p300 and CBP facilitate transcription of a reconstituted chromatin template in the presence of Tax and CREB. The ability of p300 and CBP to activate transcription from the chromatin template is dependent upon the HAT activity. Moreover, the coactivator HAT activity must be tethered to the template by Tax and CREB, since a p300 mutant that fails to interact with Tax did not facilitate transcription or acetylate histones. p300 acetylates histones H3 and H4 within nucleosomes located in the promoter and 5' proximal regions of the template. Nucleosome acetylation is accompanied by an increase in the level of binding of RNA polymerase II transcription factor TFIID and RNA polymerase II to the promoter. Interestingly, we found distinct transcriptional activities between CBP and p300. CBP, but not p300, possesses an N-terminal activation domain which directly activates Tax-mediated HTLV-1 transcription from a naked DNA template. Finally, using the chromatin immunoprecipitation assay, we provide the first direct experimental evidence that p300 and CBP are associated with the HTLV-1 long terminal repeat in vivo.
Collapse
Affiliation(s)
- Hanxin Lu
- Virus Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Legube G, Linares LK, Lemercier C, Scheffner M, Khochbin S, Trouche D. Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J 2002; 21:1704-12. [PMID: 11927554 PMCID: PMC125958 DOI: 10.1093/emboj/21.7.1704] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acetylation is a prominent post-translational modification of nucleosomal histone N-terminal tails, which regulates chromatin accessibility. Accordingly, histone acetyltransferases (HATs) play major roles in processes such as transcription. Here, we show that the HAT Tip60, which is involved in DNA repair and apoptosis following gamma irradiation, is subjected to proteasome-dependent proteolysis. Furthermore, we provide evidence that Mdm2, the ubiquitin ligase of the p53 tumour suppressor, interacts physically with Tip60 and induces its ubiquitylation and proteasome-dependent degradation. Moreover, a ubiquitin ligase-defective mutant of Mdm2 had no effect on Tip60 stability. Our results indicate that Mdm2 targets both p53 and Tip60, suggesting that these two proteins could be co-regulated with respect to protein stability. Consistent with this hypothesis, Tip60 levels increased significantly upon UV irradiation of Jurkat cells. Collectively, our results suggest that degradation of Tip60 could be part of the mechanism leading to cell transformation by Mdm2.
Collapse
Affiliation(s)
| | - Laetitia K. Linares
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| | - Claudie Lemercier
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| | - Martin Scheffner
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| | - Saadi Khochbin
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| | - Didier Trouche
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS UMR 5099, 118 Route de Narbonne, Université Paul Sabatier, 31062 Toulouse, France,
Institut für Biochemie, Universität zu Köln, D-50931 Köln, Germany and INSERM U309, Institut Albert Bonniot, 38706 La Tronche Cedex, France Corresponding author e-mail:
| |
Collapse
|
43
|
Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 2002; 3:224-9. [PMID: 11882541 PMCID: PMC1084017 DOI: 10.1093/embo-reports/kvf053] [Citation(s) in RCA: 679] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The organization of eukaryotic chromatin has a major impact on all nuclear processes involving DNA substrates. Gene expression is affected by the positioning of individual nucleosomes relative to regulatory sequence elements, by the folding of the nucleosomal fiber into higher-order structures and by the compartmentalization of functional domains within the nucleus. Because site-specific acetylation of nucleosomal histones influences all three aspects of chromatin organization, it is central to the switch between permissive and repressive chromatin structure. The targeting of enzymes that modulate the histone acetylation status of chromatin, in synergy with the effects mediated by other chromatin remodeling factors, is central to gene regulation.
Collapse
Affiliation(s)
- Anton Eberharter
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität, Schillerstrasse 44, D-80336 München, Germany
| | | |
Collapse
|
44
|
Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell 2002; 108:475-87. [PMID: 11909519 DOI: 10.1016/s0092-8674(02)00654-2] [Citation(s) in RCA: 1082] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromatin structure creates barriers for each step in eukaryotic transcription. Here we discuss how the activities of two major classes of chromatin-modifying complexes, ATP-dependent remodeling complexes and HAT or HDAC complexes, might be coordinated to create a DNA template that is accessible to the general transcription apparatus.
Collapse
Affiliation(s)
- Geeta J Narlikar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
45
|
Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 2002; 3:39-44. [PMID: 11751582 PMCID: PMC1083932 DOI: 10.1093/embo-reports/kvf013] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear hormone receptor co-activator CARM1 has the potential to methylate histone H3 at arginine residues in vitro. The methyltransferase activity of CARM1 is necessary for its co-activator functions in transient transfection assays. However, the role of this methyltransferase in vivo is unclear, given that methylation of arginines is not easily detectable on histones. We have raised an antibody that specifically recognizes methylated arginine 17 (R17) of histone H3, the major site of methylation by CARM1. Using this antibody we show that methylated R17 exists in vivo. Chromatin immunoprecipitation analysis shows that R17 methylation on histone H3 is dramatically upregulated when the estrogen receptor-regulated pS2 gene is activated. Coincident with the appearance of methylated R17, CARM1 is found associated with the histones on the pS2 gene. Together these results demonstrate that CARM1 is recruited to an active promoter and that CARM1-mediated R17 methylation on histone H3 takes place in vivo during this active state.
Collapse
Affiliation(s)
- Uta-Maria Bauer
- Wellcome/CRC Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | | | |
Collapse
|
46
|
Johnson KD, Bresnick EH. Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods 2002; 26:27-36. [PMID: 12054902 DOI: 10.1016/s1046-2023(02)00005-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Analysis of physiological mechanisms that control transcription often requires extrapolation of in vitro measurements into in vivo mechanisms. This extrapolation is complex, as mammalian genes are commonly organized into broad chromosomal domains, and such domains cannot be readily reconstituted in vitro. Thus, the nucleoprotein structure of chromosomes constitutes a considerable impediment to elucidating transcriptional mechanisms. The development of assays to measure protein-DNA interactions and chromatin structure in living cells has greatly facilitated progress in understanding physiological transcriptional mechanisms. Chromatin immunoprecipitation (ChIP) is a powerful approach that allows one to define the interaction of factors with specific chromosomal sites in living cells, thereby providing a snapshot of the native chromatin structure and factors bound to genes in different functional states. ChIP involves treating cells or tissue briefly with formaldehyde to crosslink proteins to DNA. An antibody against a protein suspected of binding a given cis-element is then used to immunoprecipitate chromatin fragments. Polymerase chain reaction analysis of the immunoprecipitate with primers flanking the cis-element reveals whether a specific DNA sequence is recovered in an immune-specific manner and therefore whether the protein contacted the site in living cells. The central focus of this review is the use of ChIP to study transcriptional activation over long distances on chromosomes.
Collapse
Affiliation(s)
- Kirby D Johnson
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin Medical School, 387 Medical Sciences Center,1300 University Avenue, Madison 53706, USA
| | | |
Collapse
|
47
|
Ausió J, Abbott DW, Wang X, Moore SC. Histone variants and histone modifications: A structural perspective. Biochem Cell Biol 2001. [DOI: 10.1139/o01-147] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review, we briefly analyze the current state of knowledge on histone variants and their posttranslational modifications. We place special emphasis on the description of the structural component(s) defining and determining their functional role. The information available indicates that this histone "variability" may operate at different levels: short-range "local" or long-range "global", with different functional implications. Recent work on this topic emphasizes an earlier notion that suggests that, in many instances, the functional response to histone variability is possibly the result of a synergistic structural effect.Key words: histone variants, posttranslational modifications, chromatin.
Collapse
|
48
|
Forsberg EC, Bresnick EH. Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world. Bioessays 2001; 23:820-30. [PMID: 11536294 DOI: 10.1002/bies.1117] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Histone acetylation is an important regulatory mechanism that controls transcription and diverse nuclear processes. While great progress has been made in understanding how localized acetylation and deacetylation control promoter activity, virtually nothing is known about the consequences of acetylation throughout entire chromosomal regions. An increasing number of genes have been found to reside in large chromatin domains that are controlled by regulatory elements many kilobases away. Recent studies have shown that broad histone acetylation patterns are hallmarks of chromatin domains. The purpose of this review is to discuss how such patterns are established and their implications for regulating gene expression.
Collapse
Affiliation(s)
- E C Forsberg
- Department of Pharmacology, Molecular and Cellular Pharmacology Program, University of Wisconsin Medical School, 13090 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
49
|
Urnov FD, Wolffe AP. An array of positioned nucleosomes potentiates thyroid hormone receptor action in vivo. J Biol Chem 2001; 276:19753-61. [PMID: 11274156 DOI: 10.1074/jbc.m100924200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of the genome into chromatin imposes a poorly understood set of rules and constraints on action by regulatory factors. We investigated the role played by chromatin infrastructure in enabling an acute response of the Xenopus TRbetaA gene to thyroid hormone receptor (TR), an extensively studied member of the nuclear hormone receptor superfamily. We found that in addition to the known TR response element (TRE) in the promoter, full range regulation required an upstream enhancer that contained multiple nonconsensus TREs and augmented ligand action at high receptor levels. An array of translationally positioned nucleosomes formed over the TRbetaA locus in vivo; unliganded TR engaged this array in linker DNA between two nucleosomes and via TREs on the surface of histone octamers. Remarkably, assembly of enhancer DNA into mature chromatin potentiated binding by TR to its target response elements and enabled a greater range of regulation by TR than was observed on immature chromatin templates. Because assembly of enhancer DNA into chromatin increased TR binding to the nonconsensus TREs, we hypothesize that chromatin disruption targeted by liganded TR to the enhancer may lead to receptor release from the template and to an attenuation of response to hormone.
Collapse
Affiliation(s)
- F D Urnov
- Sangamo Biosciences, Point Richmond Tech Center, Richmond, California 94804, USA.
| | | |
Collapse
|
50
|
Urnov FD, Wolffe AP. Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 2001; 20:2991-3006. [PMID: 11420714 DOI: 10.1038/sj.onc.1204323] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The number of chromatin modifying and remodeling complexes implicated in genome control is growing faster than our understanding of the functional roles they play. We discuss recent in vitro experiments with biochemically defined chromatin templates that illuminate new aspects of action by histone acetyltransferases and ATP-dependent chromatin remodeling engines in facilitating transcription. We review a number of studies that present an 'ordered recruitment' view of transcriptional activation, according to which various complexes enter and exit their target promoter in a set sequence, and at specific times, such that action by one complex sets the stage for the arrival of the next one. A consensus emerging from all these experiments is that the joint action by several types of chromatin remodeling machines can lead to a more profound alteration of the infrastructure of chromatin over a target promoter than could be obtained by these enzymes acting independently. In addition, it appears that in specific cases one type of chromatin structure alteration (e.g., histone hyperacetylation) is contingent upon prior alterations of a different sort (i.e., ATP-dependent remodeling of histone-DNA contacts). The striking differences between the precise sequence of action by various cofactors observed in these studies may be - at least in part - due to differences between the specific promoters studied, and distinct requirements exhibited by specific loci for chromatin remodeling based on their pre-existing nucleoprotein architecture.
Collapse
Affiliation(s)
- F D Urnov
- Sangamo Biosciences, Pt. Richmond Tech. Center, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.
| | | |
Collapse
|