1
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Jin L, Liu Y, Wu Y, Huang Y, Zhang D. REST Is Not Resting: REST/NRSF in Health and Disease. Biomolecules 2023; 13:1477. [PMID: 37892159 PMCID: PMC10605157 DOI: 10.3390/biom13101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Chromatin modifications play a crucial role in the regulation of gene expression. The repressor element-1 (RE1) silencing transcription factor (REST), also known as neuron-restrictive silencer factor (NRSF) and X2 box repressor (XBR), was found to regulate gene transcription by binding to chromatin and recruiting chromatin-modifying enzymes. Earlier studies revealed that REST plays an important role in the development and disease of the nervous system, mainly by repressing the transcription of neuron-specific genes. Subsequently, REST was found to be critical in other tissues, such as the heart, pancreas, skin, eye, and vascular. Dysregulation of REST was also found in nervous and non-nervous system cancers. In parallel, multiple strategies to target REST have been developed. In this paper, we provide a comprehensive summary of the research progress made over the past 28 years since the discovery of REST, encompassing both physiological and pathological aspects. These insights into the effects and mechanisms of REST contribute to an in-depth understanding of the transcriptional regulatory mechanisms of genes and their roles in the development and progression of disease, with a view to discovering potential therapeutic targets and intervention strategies for various related diseases.
Collapse
Affiliation(s)
- Lili Jin
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yi Huang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| |
Collapse
|
3
|
Vega-Benedetti AF, Loi E, Moi L, Zavattari P. DNA methylation alterations at RE1-silencing transcription factor binding sites and their flanking regions in cancer. Clin Epigenetics 2023; 15:98. [PMID: 37301955 PMCID: PMC10257853 DOI: 10.1186/s13148-023-01514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND DNA methylation changes, frequent early events in cancer, can modulate the binding of transcription factors. RE1-silencing transcription factor (REST) plays a fundamental role in regulating the expression of neuronal genes, and in particular their silencing in non-neuronal tissues, by inducing chromatin modifications, including DNA methylation changes, not only in the proximity of its binding sites but also in the flanking regions. REST has been found aberrantly expressed in brain cancer and other cancer types. In this work, we investigated DNA methylation alterations at REST binding sites and their flanking regions in a brain cancer (pilocytic astrocytoma), two gastrointestinal tumours (colorectal cancer and biliary tract cancer) and a blood cancer (chronic lymphocytic leukemia). RESULTS Differential methylation analyses focused on REST binding sites and their flanking regions were conducted between tumour and normal samples from our experimental datasets analysed by Illumina microarrays and the identified alterations were validated using publicly available datasets. We discovered distinct DNA methylation patterns between pilocytic astrocytoma and the other cancer types in agreement with the opposite oncogenic and tumour suppressive role of REST in glioma and non-brain tumours. CONCLUSIONS Our results suggest that these DNA methylation alterations in cancer may be associated with REST dysfunction opening the enthusiastic possibility to develop novel therapeutic interventions based on the modulation of this master regulator in order to restore the aberrant methylation of its target regions into a normal status.
Collapse
Affiliation(s)
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042, Cagliari, Italy
| | - Loredana Moi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042, Cagliari, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042, Cagliari, Italy.
| |
Collapse
|
4
|
Inazumi H, Kuwahara K. NRSF/REST-Mediated Epigenomic Regulation in the Heart: Transcriptional Control of Natriuretic Peptides and Beyond. BIOLOGY 2022; 11:1197. [PMID: 36009824 PMCID: PMC9405064 DOI: 10.3390/biology11081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Reactivation of fetal cardiac genes, including those encoding atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), is a key feature of pathological cardiac remodeling and heart failure. Intensive studies on the regulation of ANP and BNP have revealed the involvement of numerous transcriptional factors in the regulation of the fetal cardiac gene program. Among these, we identified that a transcriptional repressor, neuron-restrictive silencer factor (NRSF), also named repressor element-1-silencing transcription factor (REST), which was initially detected as a transcriptional repressor of neuron-specific genes in non-neuronal cells, plays a pivotal role in the transcriptional regulation of ANP, BNP and other fetal cardiac genes. Here we review the transcriptional regulation of ANP and BNP gene expression and the role of the NRSF repressor complex in the regulation of cardiac gene expression and the maintenance of cardiac homeostasis.
Collapse
Affiliation(s)
- Hideaki Inazumi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, School of Medicine, Shinshu University, 3-1-1 Asahi, Nagano 390-8621, Japan
| |
Collapse
|
5
|
Kim I, Choi S, Yoo S, Lee M, Park JW. AURKB, in concert with REST, acts as an oxygen-sensitive epigenetic regulator of the hypoxic induction of MDM2. BMB Rep 2022. [PMID: 35410638 PMCID: PMC9252896 DOI: 10.5483/bmbrep.2022.55.6.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The acute response to hypoxia is mainly driven by hypoxia-inducible factors, but their effects gradually subside with time. Hypoxia-specific histone modifications may be important for the stable maintenance of long-term adaptation to hypoxia. However, little is known about the molecular mechanisms underlying the dynamic alterations of histones under hypoxic conditions. We found that the phosphorylation of histone H3 at Ser-10 (H3S10) was noticeably attenuated after hypoxic challenge, which was mediated by the inhibition of aurora kinase B (AURKB). To understand the role of AURKB in epigenetic regulation, DNA microarray and transcription factor binding site analyses combined with proteomics analysis were performed. Under normoxia, phosphorylated AURKB, in concert with the repressor element-1 silencing transcription factor (REST), phosphorylates H3S10, which allows the AURKB–REST complex to access the MDM2 proto-oncogene. REST then acts as a transcriptional repressor of MDM2 and downregulates its expression. Under hypoxia, AURKB is dephosphorylated and the AURKB–REST complex fails to access MDM2, leading to the upregulation of its expression. In this study, we present a case of hypoxia-specific epigenetic regulation of the oxygen-sensitive AURKB signaling pathway. To better understand the cellular adaptation to hypoxia, it is worthwhile to further investigate the epigenetic regulation of genes under hypoxic conditions.
Collapse
Affiliation(s)
- Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Incheon 22212, Korea
| | - Sanga Choi
- Department of Pharmacology, Inha University College of Medicine, Incheon 22212, Korea
| | - Seongkyeong Yoo
- Department of Pharmacology, Inha University College of Medicine, Incheon 22212, Korea
| | - Mingyu Lee
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
6
|
Inazumi H, Kuwahara K, Nakagawa Y, Kuwabara Y, Numaga-Tomita T, Kashihara T, Nakada T, Kurebayashi N, Oya M, Nonaka M, Sugihara M, Kinoshita H, Moriuchi K, Yanagisawa H, Nishikimi T, Motoki H, Yamada M, Morimoto S, Otsu K, Mortensen RM, Nakao K, Kimura T. NRSF- GNAO1 Pathway Contributes to the Regulation of Cardiac Ca 2+ Homeostasis. Circ Res 2022; 130:234-248. [PMID: 34875852 DOI: 10.1161/circresaha.121.318898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND During the development of heart failure, a fetal cardiac gene program is reactivated and accelerates pathological cardiac remodeling. We previously reported that a transcriptional repressor, NRSF (neuron restrictive silencer factor), suppresses the fetal cardiac gene program, thereby maintaining cardiac integrity. The underlying molecular mechanisms remain to be determined, however. METHODS We aim to elucidate molecular mechanisms by which NRSF maintains normal cardiac function. We generated cardiac-specific NRSF knockout mice and analyzed cardiac gene expression profiles in those mice and mice cardiac-specifically expressing a dominant-negative NRSF mutant. RESULTS We found that cardiac expression of Gαo, an inhibitory G protein encoded in humans by GNAO1, is transcriptionally regulated by NRSF and is increased in the ventricles of several mouse models of heart failure. Genetic knockdown of Gnao1 ameliorated the cardiac dysfunction and prolonged survival rates in these mouse heart failure models. Conversely, cardiac-specific overexpression of GNAO1 in mice was sufficient to induce cardiac dysfunction. Mechanistically, we observed that increasing Gαo expression increased surface sarcolemmal L-type Ca2+ channel activity, activated CaMKII (calcium/calmodulin-dependent kinase-II) signaling, and impaired Ca2+ handling in ventricular myocytes, which led to cardiac dysfunction. CONCLUSIONS These findings shed light on a novel function of Gαo in the regulation of cardiac Ca2+ homeostasis and systolic function and suggest Gαo may be an effective therapeutic target for the treatment of heart failure.
Collapse
Affiliation(s)
- Hideaki Inazumi
- Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University
| | - Koichiro Kuwahara
- Cardiovascular Medicine (K.K., M.O., H.M.), School of Medicine, Shinshu University, Matsumoto
| | - Yasuaki Nakagawa
- Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University
| | - Yoshihiro Kuwabara
- Center for Accessing Early Promising Treatment, Kyoto University Hospital (Y.K.)
| | - Takuro Numaga-Tomita
- Molecular Pharmacology (T.N.-T., M.Y.), School of Medicine, Shinshu University, Matsumoto
| | - Toshihide Kashihara
- Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo (T. Kashihara)
| | - Tsutomu Nakada
- Research Center for Supports to Advanced Science (T. Nakada), School of Medicine, Shinshu University, Matsumoto
| | - Nagomi Kurebayashi
- Cellular and Molecular Pharmacology, School of Medicine, Juntendo University, Tokyo (N.K.)
| | - Miku Oya
- Cardiovascular Medicine (K.K., M.O., H.M.), School of Medicine, Shinshu University, Matsumoto
| | - Miki Nonaka
- Pain Control Research, The Jikei University School of Medicine (M.N.)
| | - Masami Sugihara
- Clinical Laboratory Medicine, School of Medicine, Juntendo University, Tokyo (M.S.)
| | - Hideyuki Kinoshita
- Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University
| | - Kenji Moriuchi
- Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University
| | | | - Toshio Nishikimi
- Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University
- Wakakusa Tatsuma Rehabilitation Hospital, Osaka (T. Nishikimi)
| | - Hirohiko Motoki
- Cardiovascular Medicine (K.K., M.O., H.M.), School of Medicine, Shinshu University, Matsumoto
| | - Mitsuhiko Yamada
- Molecular Pharmacology (T.N.-T., M.Y.), School of Medicine, Shinshu University, Matsumoto
| | - Sachio Morimoto
- School of Health Sciences Fukuoka, International University of Health and Welfare, Okawa (S.M.)
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, United Kingdom (K.O.)
| | | | - Kazuwa Nakao
- Medical Innovation Center (K.N.), Graduate School of Medicine, Kyoto University
| | - Takeshi Kimura
- Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University
| |
Collapse
|
7
|
Sossalla S, Bers DM. Neuron-Restrictive Silencer Factor Limits Myocyte Gα O Expression and Is Protective in Heart Failure Progression. Circ Res 2022; 130:249-251. [PMID: 35050687 DOI: 10.1161/circresaha.121.320597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Samuel Sossalla
- Department of Internal Medicine II, University Hospital Regensburg, Germany (S.S.)
| | - Donald M Bers
- Department of Pharmacology University of California, Davis (D.M.B.)
| |
Collapse
|
8
|
Kuwahara K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol Ther 2021; 227:107863. [PMID: 33894277 DOI: 10.1016/j.pharmthera.2021.107863] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Natriuretic peptides, which are activated in heart failure, play an important cardioprotective role. The most notable of the cardioprotective natriuretic peptides are atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are abundantly expressed and secreted in the atrium and ventricles, respectively, and C-type natriuretic peptide (CNP), which is expressed mainly in the vasculature, central nervous system, and bone. ANP and BNP exhibit antagonistic effects against angiotensin II via diuretic/natriuretic actions, vasodilatory actions, and inhibition of aldosterone secretion, whereas CNP is involved in the regulation of vascular tone and blood pressure, among other roles. ANP and BNP are of particular interest with respect to heart failure, as their levels, most notably BNP and N-terminal proBNP-a cleavage product produced when proBNP is processed to mature BNP-are increased in patients with heart failure. Furthermore, the identification of natriuretic peptides as sensitive markers of cardiac load has driven significant research into their physiological roles in cardiovascular homeostasis and disease, as well as their potential use as both biomarkers and therapeutics. In this review, I discuss the physiological functions of the natriuretic peptide family, with a particular focus on the basic research that has led to our current understanding of its roles in maintaining cardiovascular homeostasis, and the pathophysiological implications for the onset and progression of heart failure. The clinical significance and potential of natriuretic peptides as diagnostic and/or therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
9
|
Crosstalk between cardiomyocytes and noncardiomyocytes is essential to prevent cardiomyocyte apoptosis induced by proteasome inhibition. Cell Death Dis 2020; 11:783. [PMID: 32951004 PMCID: PMC7502079 DOI: 10.1038/s41419-020-03005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Heart is a multi-cellular organ made up of various cell types interacting with each other. Cardiomyocytes may benefit or suffer from crosstalk with noncardiomyocytes in response to diverse kinds of cardiac stresses. Proteasome dysfunction is a common cardiac stress which causes cardiac proteotoxicity and contributes to cardiac diseases such as heart failure and myocardial infarction. The role of crosstalk between cardiomyocytes and noncardiomyocytes in defense of cardiac proteotoxicity remains unknown. Here, we report a cardiomyocyte-specific survival upon proteasome inhibition in a heterogeneous culture consisting of cardiomyocytes and other three major cardiac cell types. Conversely, cardiomyocyte apoptosis is remarkably induced by proteasome inhibition in a homogeneous culture consisting of a majority of cardiomyocytes, demonstrating an indispensable role of noncardiomyocytes in the prevention of cardiomyocyte apoptosis resulting from proteasome inhibition. We further show that cardiomyocytes express brain natriuretic peptide (BNP) as an extracellular molecule in response to proteasome inhibition. Blockade of BNP receptor on noncardiomyocytes significantly exacerbated the cardiomyocyte apoptosis, indicating a paracrine function of cardiomyocyte-released extracellular BNP in activation of a protective feedback from noncardiomyocytes. Finally, we demonstrate that proteasome inhibition-activated transcriptional up-regulation of BNP in cardiomyocytes was associated with the dissociation of repressor element 1 silencing transcription factor (REST)/ histone deacetylase 1 (HDAC1) repressor complex from BNP gene promoter. Consistently, the induction of BNP could be further augmented by the treatment of HDAC inhibitors. We conclude that the crosstalk between cardiomyocytes and noncardiomyocytes plays a crucial role in the protection of cardiomyocytes from proteotoxicity stress, and identify cardiomyocyte-released BNP as a novel paracrine signaling molecule mediating this crosstalk. These findings provide new insights into the key regulators and cardioprotective mechanism in proteasome dysfunction-related cardiac diseases.
Collapse
|
10
|
Taura D, Nakao K, Nakagawa Y, Kinoshita H, Sone M, Nakao K. C-type natriuretic peptide (CNP)/guanylate cyclase B (GC-B) system and endothelin-1(ET-1)/ET receptor A and B system in human vasculature. Can J Physiol Pharmacol 2020; 98:611-617. [PMID: 32268070 DOI: 10.1139/cjpp-2019-0686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To assess the physiological and clinical implications of the C-type natriuretic peptide (CNP)/guanylyl cyclase B (GC-B) system in the human vasculature, we have examined gene expressions of CNP and its receptor, GC-B, in human vascular endothelial cells (ECs) and smooth muscle cells (SMCs) and have also compared the endothelin-1(ET-1)/endothelin receptor-A (ETR-A) and endothelin receptor-B (ETR-B) system in human aortic ECs (HAECs) and vascular SMCs (HSMCs) in vitro. We also examined these gene expressions in human embryonic stem (ES)/induced pluripotent stem cell (iPS)-derived ECs and mural cells (MCs). A little but significant amount of mRNA encoding CNP was detected in both human ES-derived ECs and HAECs. A substantial amount of GC-B was expressed in both ECs (iPS-derived ECs and HAECs) and SMCs (iPS-derived MCs and HSMCs). ET-1 was expressed solely in ECs. ETR-A was expressed in SMCs, while ETR-B was expressed in ECs. These results indicate the existence of a vascular CNP/GC-B system in the human vascular wall, indicating the evidence for clinical implication of the CNP/GC-B system in concert with the ET-1/ETR-A and ETR-B system in the human vasculature.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhiro Nakao
- National Cardiovascular, Cerebrovascular Research Center Hospital, Suita, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Kinoshita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Nakagawa Y, Nishikimi T, Kuwahara K. Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides 2019; 111:18-25. [PMID: 29859763 DOI: 10.1016/j.peptides.2018.05.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 02/01/2023]
Abstract
The natriuretic peptide family consists of three biologically active peptides: atrial natriuretic peptide (ANP), brain (or B-type) natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). Among these, ANP and BNP are secreted by the heart and act as cardiac hormones. Both ANP and BNP preferentially bind to natriuretic peptide receptor-A (NPR-A or guanylyl cyslase-A) and exert similar effects through increases in intracellular cyclic guanosine monophosphate (cGMP) within target tissues. Expression and secretion of ANP and BNP are stimulated by various factors and are regulated via multiple signaling pathways. Human ANP has three molecular forms, α-ANP, β-ANP, and proANP (or γ-ANP), with proANP predominating in healthy atrial tissue. During secretion proANP is proteolytically processed by corin, resulting in secretion of bioactive α-ANP into the peripheral circulation. ProANP and β-ANP are minor forms in the circulation but are increased in patients with heart failure. The human BNP precursor proBNP is proteolytically processed to BNP1-32 and N-terminal proBNP (NT-proBNP) within ventricular myocytes. Uncleaved proBNP as well as mature BNP1-32 and NT-proBNP is secreted from the heart, and its secretion is increased in patients with heart failure. Mature BNP, its metabolites including BNP3-32, BNP4-32, and BNP5-32, and proBNP are all detected as immunoreactive-BNP by the current BNP assay system. We recently developed an assay system that specifically detects human proBNP. Using this assay system, we observed that miR30-GALNTs-dependent O-glycosylation in the N-terminal region of proBNP contributes to regulation of the processing and secretion of proBNP from the heart.
Collapse
Affiliation(s)
- Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Toshio Nishikimi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan; Department of Internal Medicine, Wakakusa-Tatsuma Rehabilitation Hospital, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Japan.
| |
Collapse
|
12
|
NAKAO K. Translational science: Newly emerging science in biology and medicine - Lessons from translational research on the natriuretic peptide family and leptin. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:538-567. [PMID: 31708497 PMCID: PMC6856003 DOI: 10.2183/pjab.95.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Translation is the process of turning observations in the laboratory, clinic, and community into interventions that improve the health of individuals and the public, ranging from diagnostics and therapeutics to medical procedures and behavioral changes. Translational research is defined as the effort to traverse a particular step of the translation process for a particular target or disease. Translational science is a newly emerging science, distinct from basic and clinical sciences in biology and medicine, and is a field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Advances in translational science will increase the efficacy and safety of translational research in all diagnostic and therapeutic areas. This report examines translational research on novel hormones, the natriuretic peptide family and leptin, which have achieved clinical applications or for which studies are still ongoing, and also emphasizes the lessons that translational science has learned from more than 30 years' experience in translational research.
Collapse
Affiliation(s)
- Kazuwa NAKAO
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Bauer AJ, Martin KA. Coordinating Regulation of Gene Expression in Cardiovascular Disease: Interactions between Chromatin Modifiers and Transcription Factors. Front Cardiovasc Med 2017; 4:19. [PMID: 28428957 PMCID: PMC5382160 DOI: 10.3389/fcvm.2017.00019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is a leading cause of death with increasing economic burden. The pathogenesis of cardiovascular diseases is complex, but can arise from genetic and/or environmental risk factors. This can lead to dysregulated gene expression in numerous cell types including cardiomyocytes, endothelial cells, vascular smooth muscle cells, and inflammatory cells. While initial studies addressed transcriptional control of gene expression, epigenetics has been increasingly appreciated to also play an important role in this process through alterations in chromatin structure and gene accessibility. Chromatin-modifying proteins including enzymes that modulate DNA methylation, histone methylation, and histone acetylation can influence gene expression in numerous ways. These chromatin modifiers and their marks can promote or prevent transcription factor recruitment to regulatory regions of genes through modifications to DNA, histones, or the transcription factors themselves. This review will focus on the emerging question of how epigenetic modifiers and transcription factors interact to coordinately regulate gene expression in cardiovascular disease. While most studies have addressed the roles of either epigenetic or transcriptional control, our understanding of the integration of these processes is only just beginning. Interrogating these interactions is challenging, and improved technical approaches will be needed to fully dissect the temporal and spatial relationships between transcription factors, chromatin modifiers, and gene expression in cardiovascular disease. We summarize the current state of the field and provide perspectives on limitations and future directions. Through studies of epigenetic and transcriptional interactions, we can advance our understanding of the basic mechanisms of cardiovascular disease pathogenesis to develop novel therapeutics.
Collapse
Affiliation(s)
- Ashley J Bauer
- Department of Medicine (Cardiovascular Medicine), Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Pharmacology, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen A Martin
- Department of Medicine (Cardiovascular Medicine), Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Pharmacology, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Cavadas MAS, Cheong A, Taylor CT. The regulation of transcriptional repression in hypoxia. Exp Cell Res 2017; 356:173-181. [PMID: 28219680 DOI: 10.1016/j.yexcr.2017.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
A sufficient supply molecular oxygen is essential for the maintenance of physiologic metabolism and bioenergetic homeostasis for most metazoans. For this reason, mechanisms have evolved for eukaryotic cells to adapt to conditions where oxygen demand exceeds supply (hypoxia). These mechanisms rely on the modification of pre-existing proteins, translational arrest and transcriptional changes. The hypoxia inducible factor (HIF; a master regulator of gene induction in response to hypoxia) is responsible for the majority of induced gene expression in hypoxia. However, much less is known about the mechanism(s) responsible for gene repression, an essential part of the adaptive transcriptional response. Hypoxia-induced gene repression leads to a reduction in energy demanding processes and the redirection of limited energetic resources to essential housekeeping functions. Recent developments have underscored the importance of transcriptional repressors in cellular adaptation to hypoxia. To date, at least ten distinct transcriptional repressors have been reported to demonstrate sensitivity to hypoxia. Central among these is the Repressor Element-1 Silencing Transcription factor (REST), which regulates over 200 genes. In this review, written to honor the memory and outstanding scientific legacy of Lorenz Poellinger, we provide an overview of our existing knowledge with respect to transcriptional repressors and their target genes in hypoxia.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Alex Cheong
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences and Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
15
|
Choi TM, Yun M, Lee JK, Park JT, Park MS, Kim HS. Proteomic Analysis of a Rat Cerebral Ischemic Injury Model after Human Cerebral Endothelial Cell Transplantation. J Korean Neurosurg Soc 2016; 59:544-550. [PMID: 27847565 PMCID: PMC5106351 DOI: 10.3340/jkns.2016.59.6.544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 02/08/2023] Open
Abstract
Objective Cerebral endothelial cells have unique biological features and are fascinating candidate cells for stroke therapy. Methods In order to understand the molecular mechanisms of human cerebral endothelial cell (hCMEC/D3) transplantation in a rat stroke model, we performed proteomic analysis using 2-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein expression was confirmed by quantitative real-time PCR and Western blot. Results Several protein spots were identified by gel electrophoresis in the sham, cerebral ischemia (CI), and CI with hCMEC/D3 treatment cerebral ischemia with cell transplantation (CT) groups, and we identified 14 differentially expressed proteins in the CT group. Proteins involved in mitochondrial dysfunction (paraplegin matrix AAA peptidase subunit, SPG7), neuroinflammation (peroxiredoxin 6, PRDX6), and neuronal death (zinc finger protein 90, ZFP90) were markedly reduced in the CT group compared with the CI group. The expression of chloride intracellular channel 4 proteins involved in post-ischemic vasculogenesis was significantly decreased in the CI group but comparable to sham in the CT group. Conclusion These results contribute to our understanding of the early phase processes that follow cerebral endothelial cell treatment in CI. Moreover, some of the identified proteins may present promising new targets for stroke therapy.
Collapse
Affiliation(s)
- Tae-Min Choi
- Department of Neurosurgery, Gwangju Christian Hospital, Gwangju, Korea.; Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Misun Yun
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Jung-Kil Lee
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Jong-Tae Park
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Man-Seok Park
- Department of Neurosurgery, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea.; Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
16
|
Cavadas MAS, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Keogh CE, Fabian Z, Scholz CC, Nolan KA, Rocha LMA, Tambuwala MM, Brown S, Wdowicz A, Corbett D, Murphy KJ, Godson C, Cummins EP, Taylor CT, Cheong A. REST is a hypoxia-responsive transcriptional repressor. Sci Rep 2016; 6:31355. [PMID: 27531581 PMCID: PMC4987654 DOI: 10.1038/srep31355] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Marion Mesnieres
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Bianca Crifo
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Mario C Manresa
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Andrew C Selfridge
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Ciara E Keogh
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Zsolt Fabian
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Carsten C Scholz
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Karen A Nolan
- Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Liliane M A Rocha
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK
| | - Stuart Brown
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Anita Wdowicz
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Danielle Corbett
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Eoin P Cummins
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Alex Cheong
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland.,Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
17
|
Li YD, Hong YF, Yusufuaji Y, Tang BP, Zhou XH, Xu GJ, Li JX, Sun L, Zhang JH, Xin Q, Xiong J, Ji YT, Zhang Y. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation. Mol Med Rep 2015; 12:3243-3248. [PMID: 26005035 PMCID: PMC4526032 DOI: 10.3892/mmr.2015.3831] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels mediate pacemaker currents in the atrium. The microRNA (miR) families miR-1 and miR-133 regulate the expression of multiple genes involved in myocardial function, including HCN channels. It was hypothesized that age‑dependent changes in HCN2, HCN4, miR‑1 and miR‑133 expression may contribute to age‑associated atrial fibrillation, and therefore the correlation between expression levels, among adult (≤65 years) and aged patients (≥65 years), and sinus rhythm was determined. Right atrial appendage samples were collected from 60 patients undergoing coronary artery bypass grafting. Reverse transcription-quantitative polymerase chain reaction (PCR) and western blot analyses were performed in order to determine target RNA and protein expression levels. Compared with aged patients with sinus rhythm, aged patients with atrial fibrillation exhibited significantly higher HCN2 and HCN4 channel mRNA and protein expression levels (P<0.05), but significantly lower expression levels of miR‑1 and miR‑133 (P<0.05). In addition, aged patients with sinus rhythm exhibited significantly higher expression levels of HCN2 and HCN4 channel mRNA and protein (P<0.05), but significantly lower expression levels of miR‑1 and ‑133 (P<0.05), compared with those of adult patients with sinus rhythm. Expression levels of HCN2 and HCN4 increased with age, and a greater increase was identified in patients with age‑associated atrial fibrillation compared with that in those with aged sinus rhythm. These electrophysiological changes may contribute to the induction of ectopic premature beats that trigger atrial fibrillation.
Collapse
Affiliation(s)
- Yao-Dong Li
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Yi-Fan Hong
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Yueerguli Yusufuaji
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Bao-Peng Tang
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Xian-Hui Zhou
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Guo-Jun Xu
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Jin-Xin Li
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Lin Sun
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Jiang-Hua Zhang
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Qiang Xin
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Jian Xiong
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Yu-Tong Ji
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| | - Yu Zhang
- Department of Cardiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uyghur 830011, P.R. China
| |
Collapse
|
18
|
Saritas-Yildirim B, Childers CP, Elsik CG, Silva EM. Identification of REST targets in the Xenopus tropicalis genome. BMC Genomics 2015; 16:380. [PMID: 25971704 PMCID: PMC4430910 DOI: 10.1186/s12864-015-1591-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 04/28/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A major role of REST (repressor element-1 silencing transcription factor) is to inhibit the expression of neuronal genes in neural stem cells and non-neuronal cells by binding to a 21 bp consensus sequence and recruiting epigenetic and regulatory cofactors to gene regulatory regions. In neural stem cells, REST silences differentiation-promoting genes to prevent their premature expression and is central to the regulation of neurogenesis and the balance of neural stem cells and neurons. RESULTS To understand the role of REST in vertebrate neurogenesis, we performed a genome-wide screen for REST targets in Xenopus tropicalis. We identified 742 neuron-restrictive silencer elements (NRSE) associated with 1396 genes that are enriched in neuronal function. Comparative analyses revealed that characteristics of NRSE motifs in frog are similar to those in mammals in terms of the distance to target genes, frequency of motifs and the repertoire of putative target genes. In addition, we identified four F-box ubiquitin ligases as putative REST targets and determined that they are expressed in neuronal tissues during Xenopus development. CONCLUSION We identified a conserved core of putative target genes in human, mouse and frog that may be fundamental to REST function in vertebrates. We demonstrate that NRSE sites are associated with both protein-coding genes and lncRNAs in the human genome. Furthermore, we demonstrate that REST binding sites are abundant in low gene-occupancy regions of the human genome but this is not due to an increased association with non-coding RNAs. Our findings identify novel targets of REST and broaden the known mechanism of REST-mediated silencing in neurogenesis.
Collapse
Affiliation(s)
- Banu Saritas-Yildirim
- Department of Biology, Georgetown University, 411 Regents Hall, Washington, DC, 20057, USA.
| | - Christopher P Childers
- Department of Biology, Georgetown University, 411 Regents Hall, Washington, DC, 20057, USA. .,Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Christine G Elsik
- Department of Biology, Georgetown University, 411 Regents Hall, Washington, DC, 20057, USA. .,Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA. .,Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Elena M Silva
- Department of Biology, Georgetown University, 411 Regents Hall, Washington, DC, 20057, USA.
| |
Collapse
|
19
|
Zhang H, Shao Z, Alibin CP, Acosta C, Anderson HD. Liganded peroxisome proliferator-activated receptors (PPARs) preserve nuclear histone deacetylase 5 levels in endothelin-treated Sprague-Dawley rat cardiac myocytes. PLoS One 2014; 9:e115258. [PMID: 25514029 PMCID: PMC4267838 DOI: 10.1371/journal.pone.0115258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/20/2014] [Indexed: 01/06/2023] Open
Abstract
Ligand activation of peroxisome proliferator-activated receptors (PPARs) prevents cardiac myocyte hypertrophy, and we previously reported that diacylglycerol kinase zeta (DGKζ) is critically involved. DGKζ is an intracellular lipid kinase that catalyzes phosphorylation of diacylglycerol; by attenuating DAG signaling, DGKζ suppresses protein kinase C (PKC) and G-protein signaling. Here, we investigated how PPAR-DGKζ signaling blocks activation of the hypertrophic gene program. We focused on export of histone deacetylase 5 (HDAC5) from the nucleus, a key event during hypertrophy, since crosstalk occurs between PPARs and other members of the HDAC family. Using cardiac myocytes isolated from Sprague-Dawley rats, we determined that liganded PPARs disrupt endothelin-1 (ET1)-induced nuclear export of HDAC5 in a manner that is dependent on DGKζ. When DGKζ-mediated PKC inhibition was circumvented using a constitutively-active PKCε mutant, PPARs failed to block ET1-induced nuclear retention of HDAC5. Liganded PPARs also prevented (i) activation of protein kinase D (the downstream effector of PKC), (ii) HDAC5 phosphorylation at 14-3-3 protein chaperone binding sites (serines 259 and 498), and (iii) physical interaction between HDAC5 and 14-3-3, all of which are consistent with blockade of nucleo-cytoplasmic shuttling of HDAC5. Finally, the ability of PPARs to prevent neutralization of HDAC5 activity was associated with transcriptional repression of hypertrophic genes. This occurred by first, reduced MEF2 transcriptional activity and second, augmented deacetylation of histone H3 associated with hypertrophic genes expressing brain natriuretic peptide, β-myosin heavy chain, skeletal muscle α-actin, and cardiac muscle α-actin. Our findings identify spatial regulation of HDAC5 as a target for liganded PPARs, and to our knowledge, are the first to describe a mechanistic role for nuclear DGKζ in cardiac myocytes. In conclusion, these results implicate modulation of HDAC5 as a mechanism by which liganded PPARs suppress the hypertrophic gene program.
Collapse
Affiliation(s)
- Haining Zhang
- From the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Zongjun Shao
- From the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Caroline P. Alibin
- From the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Crystal Acosta
- From the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hope D. Anderson
- From the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Li YD, Hong YF, Zhang Y, Zhou XH, Ji YT, Li HL, Hu GJ, Li JX, Sun L, Zhang JH, Xin Q, Yusufuaji Y, Xiong J, Tang BP. Association between reversal in the expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel and age-related atrial fibrillation. Med Sci Monit 2014; 20:2292-7. [PMID: 25404650 PMCID: PMC4242900 DOI: 10.12659/msm.892505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background We compared cardiac electrophysiological indicators and regional expression levels of cardiac hyperpolarization-activated cyclic nucleotide-gated (HCN) channels between adult and aged dogs to identify possible mechanisms of age-related atrial fibrillation. Material/Methods Corrected sinus node recovery time (SNRTc) and effective refractory period (ERP) of the atrium and pulmonary veins were measured in 10 adult (3–6 years old) and 10 aged dogs (>9 years old). Expression levels of HCN2 and HCN4 channel mRNAs and proteins were measured in the sinoatrial node, atrium, and pulmonary veins by real-time PCR and Western blotting. Results Aged dogs exhibited a higher induction rate of atrial fibrillation (AF) in response to electrical stimulation, longer AF duration after induction, longer SNRTc, longer right atrial effective refractory period (AERP), shorter left AERP, and increased AERP dispersion compared to adults. Expression levels of HCN2 and HCN4 channel mRNAs and proteins were lower in the sinoatrial node but higher in the atrium and pulmonary veins of aged dogs. Conclusions Changes in atrial electrophysiological indicators in aged dogs revealed sinoatrial node dysfunction. There was a reversal in the local tissue distribution of HCN2 and HCN4 channel mRNA and protein, a decrease in sinoatrial node expression, and increase in atrial and pulmonary vein expression with age. Changes in atrial electrophysiological characteristics and regional HCN channel expression patterns were associated with the onset and maintenance of age-related atrial fibrillation.
Collapse
Affiliation(s)
- Yao-Dong Li
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Yi-Fan Hong
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Yu Zhang
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Xian-Hui Zhou
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Yu-Tong Ji
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Hong-Liang Li
- Heart Rhythm Institute and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Guo-Jun Hu
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Jin-Xin Li
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Lin Sun
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Jiang-Hua Zhang
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Qiang Xin
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Yueerguli Yusufuaji
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Jian Xiong
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Bao-Peng Tang
- Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
21
|
Myslicki JP, Belke DD, Shearer J. Role of O-GlcNAcylation in nutritional sensing, insulin resistance and in mediating the benefits of exercise. Appl Physiol Nutr Metab 2014; 39:1205-13. [PMID: 25203141 DOI: 10.1139/apnm-2014-0122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this review is to highlight the role of O-linked β-N-acetylglucosamine (O-GlcNAc) protein modification in metabolic disease states and to summarize current knowledge of how exercise affects this important post-translational signalling pathway. O-GlcNAc modification is an intracellular tool capable of integrating energy supply with demand. The accumulation of excess energy associated with obesity and insulin resistance is mediated, in part, by the hexosamine biosynthetic pathway (HBP), which results in the O-GlcNAcylation of a myriad of proteins, thereby affecting their respective function, stability, and localization. Insulin resistance is related to the excessive O-GlcNAcylation of key metabolic proteins causing a chronic blunting of insulin signalling pathways and precipitating the accompanying pathologies, such as heart and kidney disease. Lifestyle modifications such as diet and exercise also modify the pathway. Exercise is a front-line and cost-effective therapeutic approach for insulin resistance, and recent work shows that the intervention can alter O-GlcNAc gene expression, signalling, and protein modification. However, there is currently no consensus on the effect of frequency, intensity, type, and duration of exercise on O-GlcNAc modification, the HBP, and its related enzymes. On one end of the spectrum, mild, prolonged swim training reduces O-GlcNAcylation, while on the other end, higher intensity treadmill running increases cardiac protein O-GlcNAc modification. Clearly, a balance between acute and chronic stress of exercise is needed to reap the benefits of the intervention on O-GlcNAc signalling.
Collapse
Affiliation(s)
- Jason P Myslicki
- a Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | |
Collapse
|
22
|
Medford HM, Cox EJ, Miller LE, Marsh SA. Consuming a Western diet for two weeks suppresses fetal genes in mouse hearts. Am J Physiol Regul Integr Comp Physiol 2014; 306:R519-26. [PMID: 24523346 DOI: 10.1152/ajpregu.00253.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diets high in sugar and saturated fat (Western diet) contribute to obesity and pathophysiology of metabolic syndrome. A common physiological response to obesity is hypertension, which induces cardiac remodeling and hypertrophy. Hypertrophy is regulated at the level of chromatin by repressor element 1-silencing transcription factor (REST), and pathological hypertrophy is associated with reexpression of a fetal cardiac gene program. Reactivation of fetal genes is commonly observed in hypertension-induced hypertrophy; however, this response is blunted in diabetic hearts, partially due to upregulation of the posttranslational modification O-linked-β-N-acetylglucosamine (O-GlcNAc) to proteins by O-GlcNAc transferase (OGT). OGT and O-GlcNAc are found in chromatin-modifying complexes, but it is unknown whether they play a role in Western diet-induced hypertrophic remodeling. Therefore, we investigated the interactions between O-GlcNAc, OGT, and the fetal gene-regulating transcription factor complex REST/mammalian switch-independent 3A/histone deacetylase (HDAC). Five-week-old male C57BL/6 mice were fed a Western (n = 12) or control diet (n = 12) for 2 wk to examine the early hypertrophic response. Western diet-fed mice exhibited fasting hyperglycemia and increased body weight (P < 0.05). As expected for this short duration of feeding, cardiac hypertrophy was not yet evident. We found that REST is O-GlcNAcylated and physically interacts with OGT in mouse hearts. Western blot analysis showed that HDAC protein levels were not different between groups; however, relative to controls, Western diet hearts showed increased REST and decreased ANP and skeletal α-actin. Transcript levels of HDAC2 and cardiac α-actin were decreased in Western diet hearts. These data suggest that REST coordinates regulation of diet-induced hypertrophy at the level of chromatin.
Collapse
Affiliation(s)
- Heidi M Medford
- Graduate Program in Pharmaceutical Sciences, Washington State University, Spokane, Washington; and
| | | | | | | |
Collapse
|
23
|
Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes. J Mol Cell Cardiol 2013; 67:12-25. [PMID: 24370890 DOI: 10.1016/j.yjmcc.2013.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/14/2013] [Accepted: 12/13/2013] [Indexed: 01/12/2023]
Abstract
The ability of human pluripotent stem cells (hPSCs) to differentiate into any cell type of the three germ layers makes them a very promising cell source for multiple purposes, including regenerative medicine, drug discovery, and as a model to study disease mechanisms and progression. One of the first specialized cell types to be generated from hPSC was cardiomyocytes (CM), and differentiation protocols have evolved over the years and now allow for robust and large-scale production of hPSC-CM. Still, scientists are struggling to achieve the same, mainly ventricular, phenotype of the hPSC-CM in vitro as their adult counterpart in vivo. In vitro generated cardiomyocytes are generally described as fetal-like rather than adult. In this review, we compare the in vivo development of cardiomyocytes to the in vitro differentiation of hPSC into CM with focus on electrophysiology, structure and contractility. Furthermore, known epigenetic changes underlying the differences between adult human CM and CM differentiated from pluripotent stem cells are described. This should provide the reader with an extensive overview of the current status of human stem cell-derived cardiomyocyte phenotype and function. Additionally, the reader will gain insight into the underlying signaling pathways and mechanisms responsible for cardiomyocyte development.
Collapse
|
24
|
Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2403-13. [DOI: 10.1016/j.bbadis.2013.07.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 11/17/2022]
|
25
|
Funayama A, Shishido T, Netsu S, Narumi T, Kadowaki S, Takahashi H, Miyamoto T, Watanabe T, Woo CH, Abe JI, Kuwahara K, Nakao K, Takeishi Y, Kubota I. Cardiac nuclear high mobility group box 1 prevents the development of cardiac hypertrophy and heart failure. Cardiovasc Res 2013; 99:657-64. [PMID: 23708738 PMCID: PMC3746952 DOI: 10.1093/cvr/cvt128] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aims High mobility group box 1 (HMGB1) is an abundant and ubiquitous nuclear DNA-binding protein that has multiple functions dependent on its cellular location. HMGB1 binds to DNA, facilitating numerous nuclear functions including maintenance of genome stability, transcription, and repair. However, little is known about the effects of nuclear HMGB1 on cardiac hypertrophy and heart failure. The aim of this study was to examine whether nuclear HMGB1 plays a role in the development of cardiac hypertrophy induced by pressure overload. Methods and results Analysis of human biopsy samples by immunohistochemistry showed decreased nuclear HMGB1 expression in failing hearts compared with normal hearts. Nuclear HMGB1 decreased in response to both endothelin-1 (ET-1) and angiotensin II (Ang II) stimulation in neonatal rat cardiomyocytes, where nuclear HMGB1 was acetylated and translocated to the cytoplasm. Overexpression of nuclear HMGB1 attenuated ET-1 induced cardiomyocyte hypertrophy. Thoracic transverse aortic constriction (TAC) was performed in transgenic mice with cardiac-specific overexpression of HMGB1 (HMGB1-Tg) and wild-type (WT) mice. Cardiac hypertrophy after TAC was attenuated in HMGB1-Tg mice and the survival rate after TAC was higher in HMGB1-Tg mice than in WT mice. Induction of foetal cardiac genes was decreased in HMGB1-Tg mice compared with WT mice. Nuclear HMGB1 expression was preserved in HMGB1-Tg mice compared with WT mice and significantly attenuated DNA damage after TAC was attenuated in HMGB1-TG mice. Conclusion These results suggest that the maintenance of stable nuclear HMGB1 levels prevents hypertrophy and heart failure by inhibiting DNA damage.
Collapse
Affiliation(s)
- Akira Funayama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kuwabara Y, Kuwahara K, Takano M, Kinoshita H, Arai Y, Yasuno S, Nakagawa Y, Igata S, Usami S, Minami T, Yamada Y, Nakao K, Yamada C, Shibata J, Nishikimi T, Ueshima K, Nakao K. Increased expression of HCN channels in the ventricular myocardium contributes to enhanced arrhythmicity in mouse failing hearts. J Am Heart Assoc 2013; 2:e000150. [PMID: 23709563 PMCID: PMC3698776 DOI: 10.1161/jaha.113.000150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/30/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The efficacy of pharmacological interventions to prevent sudden arrhythmic death in patients with chronic heart failure remains limited. Evidence now suggests increased ventricular expression of hyperpolarization-activated cation (HCN) channels in hypertrophied and failing hearts contributes to their arrythmicity. Still, the role of induced HCN channel expression in the enhanced arrhythmicity associated with heart failure and the capacity of HCN channel blockade to prevent lethal arrhythmias remains undetermined. METHODS AND RESULTS We examined the effects of ivabradine, a specific HCN channel blocker, on survival and arrhythmicity in transgenic mice (dnNRSF-Tg) expressing a cardiac-specific dominant-negative form of neuron-restrictive silencer factor, a useful mouse model of dilated cardiomyopathy leading to sudden death. Ivabradine (7 mg/kg per day orally) significantly reduced ventricular tachyarrhythmias and improved survival among dnNRSF-Tg mice while having no significant effect on heart rate or cardiac structure or function. Ivabradine most likely prevented the increase in automaticity otherwise seen in dnNRSF-Tg ventricular myocytes. Moreover, cardiac-specific overexpression of HCN2 in mice (HCN2-Tg) made hearts highly susceptible to arrhythmias induced by chronic β-adrenergic stimulation. Indeed, ventricular myocytes isolated from HCN2-Tg mice were highly susceptible to β-adrenergic stimulation-induced abnormal automaticity, which was inhibited by ivabradine. CONCLUSIONS HCN channel blockade by ivabradine reduces lethal arrhythmias associated with dilated cardiomyopathy in mice. Conversely, cardiac-specific overexpression of HCN2 channels increases arrhythmogenicity of β-adrenergic stimulation. Our findings demonstrate the contribution of HCN channels to the increased arrhythmicity seen in failing hearts and suggest HCN channel blockade is a potentially useful approach to preventing sudden death in patients with heart failure.
Collapse
Affiliation(s)
- Yoshihiro Kuwabara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, Japan (M.T., S.I.)
| | - Hideyuki Kinoshita
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Yuji Arai
- Department of Bioscience, National Cerebral and Cardiovascular Center Research Institute, Japan (Y.A.)
| | - Shinji Yasuno
- EBM Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.Y., K.U.)
| | - Yasuaki Nakagawa
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Sachiyo Igata
- Department of Physiology, Kurume University School of Medicine, Japan (M.T., S.I.)
| | - Satoru Usami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Takeya Minami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Yuko Yamada
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Kazuhiro Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Chinatsu Yamada
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Junko Shibata
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Toshio Nishikimi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Kenji Ueshima
- EBM Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.Y., K.U.)
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| |
Collapse
|
27
|
Medford HM, Porter K, Marsh SA. Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2013; 305:H114-23. [PMID: 23624624 DOI: 10.1152/ajpheart.00135.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy induced by pathological stimuli is regulated by a complex formed by the repressor element 1-silencing transcription factor (REST) and its corepressor mSin3A. We previously reported that hypertrophic signaling is blunted by O-linked attachment of β-N-acetylglucosamine (O-GlcNAc) to proteins. Regular exercise induces a physiological hypertrophic phenotype in the heart that is associated with decreased O-GlcNAc levels, but a link between O-GlcNAc, the REST complex, and initiation of exercise-induced cardiac hypertrophy is not known. Therefore, mice underwent a single 15- or 30-min bout of moderate- to high-intensity treadmill running, and hearts were harvested immediately and compared with sedentary controls. Cytosolic O-GlcNAc was lower (P < 0.05) following 15 min exercise with no differences in nuclear levels (P > 0.05). There were no differences in cytosolic or nuclear O-GlcNAc levels in hearts after 30 min exercise (P > 0.05). Cellular compartment levels of O-GlcNAc transferase (OGT, the enzyme that removes the O-GlcNAc moiety from proteins), REST, mSin3A, and histone deacetylases (HDACs) 1, 2, 3, 4, and 5 were not changed with exercise. Immunoprecipitation revealed O-GlcNAcylation of OGT and HDACs 1, 2, 4, and 5 that was not changed with acute exercise; however, exercised hearts did exhibit lower interactions between OGT and REST (P < 0.05) but not between OGT and mSin3A. These data suggest that hypertrophic signaling in the heart may be initiated by as little as 15 min of exercise via intracellular changes in protein O-GlcNAcylation distribution and reduced interactions between OGT and the REST chromatin repressor.
Collapse
Affiliation(s)
- Heidi M Medford
- Graduate Program in Nutrition and Exercise Physiology, College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine
| |
Collapse
|
29
|
Kuwahara K. [Ca2+ channels as novel therapeutic targets in heart failure]. Nihon Yakurigaku Zasshi 2012; 140:255-258. [PMID: 23229630 DOI: 10.1254/fpj.140.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
30
|
Elucidation of regulatory mechanisms revealed by human promoter sequence analysis of genes co-expressed in forskolin-treated theca cells in PCOS. Arch Gynecol Obstet 2012; 287:477-85. [DOI: 10.1007/s00404-012-2580-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
|
31
|
Post-translational protein modification by O-linked N-acetyl-glucosamine: its role in mediating the adverse effects of diabetes on the heart. Life Sci 2012; 92:621-7. [PMID: 22985933 DOI: 10.1016/j.lfs.2012.08.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/16/2012] [Accepted: 08/02/2012] [Indexed: 11/20/2022]
Abstract
The post-translation attachment of O-linked N-acetylglucosamine, or O-GlcNAc, to serine and threonine residues of nuclear and cytoplasmic proteins is increasingly recognized as a key regulator of diverse cellular processes. O-GlcNAc synthesis is essential for cell survival and it has been shown that acute activation of pathways, which increase cellular O-GlcNAc levels is cytoprotective; however, prolonged increases in O-GlcNAcylation have been implicated in a number of chronic diseases. Glucose metabolism via the hexosamine biosynthesis pathway plays a central role in regulating O-GlcNAc synthesis; consequently, sustained increases in O-GlcNAc levels have been implicated in glucose toxicity and insulin resistance. Studies on the role of O-GlcNAc in regulating cardiomyocyte function have grown rapidly over the past decade and there is growing evidence that increased O-GlcNAc levels contribute to the adverse effects of diabetes on the heart, including impaired contractility, calcium handling, and abnormal stress responses. Recent evidence also suggests that O-GlcNAc plays a role in epigenetic control of gene transcription. The goal of this review is to provide an overview of our current knowledge about the regulation of protein O-GlcNAcylation and to explore in more detail O-GlcNAc-mediated responses in the diabetic heart.
Collapse
|
32
|
Kuwahara K, Nishikimi T, Nakao K. Transcriptional regulation of the fetal cardiac gene program. J Pharmacol Sci 2012; 119:198-203. [PMID: 22786561 DOI: 10.1254/jphs.12r04cp] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Reactivation of the fetal cardiac gene program in adults is a reliable marker of cardiac hypertrophy and heart failure. Normally, genes within this group are expressed in the fetal ventricles during development, but are silent after birth. However, their expression is re-induced in the ventricular myocardium in response to various cardiovascular diseases, and potentially plays an important role in the pathological process of cardiac remodeling. Thus, analysis of the molecular mechanisms that govern the expression of fetal cardiac genes could lead to the discovery of transcriptional regulators and signaling pathways involved in both cardiac differentiation and cardiac disease. In this review we will summarize what is currently known about the transcriptional regulation of the fetal cardiac gene program.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
33
|
Abstract
Acquisition and maintenance of cell fate and potential are dependent on the complex interplay of extracellular signaling, gene regulatory networks and epigenetic states. During embryonic development, embryonic stem cells become progressively more restricted along specific lineages, ultimately giving rise to the diversity of cell types in the adult mammalian organism. Recent years have seen major advances in our understanding of the mechanisms that regulate the underlying transcriptional programmes during development. In particular, there has been a significant increase in our knowledge of how epigenetic marks on chromatin can regulate transcription by generating more or less permissive chromatin conformations. This article focuses on how a single transcription factor, repressor element-1 silencing transcription factor, can function as both a transcriptional and epigenetic regulator, controlling diverse aspects of development. We will discuss how the elucidation of repressor element-1 silencing transcription factor function in both normal and disease conditions has provided valuable insights into how the epigenome and transcriptional regulators might cooperatively orchestrate correct development.
Collapse
Affiliation(s)
- Angela Bithell
- King's College London, Institute of Psychiatry, Department of Neuroscience, Centre for the Cellular Basis of Behaviour, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
34
|
Abstract
The cardiovascular system is broadly composed of the heart, which pumps blood, and the blood vessels, which carry blood to and from tissues of the body. Heart malformations are the most serious common birth defect, affecting at least 2% of newborns and leading to significant morbidity and mortality. Severe heart malformations cause heart failure in fetuses, infants, and children, whereas milder heart defects may not trigger significant heart dysfunction until early or midadulthood. Severe vasculogenesis or angiogenesis defects in embryos are incompatible with life, and anomalous arterial patterning may cause vascular aberrancies that often require surgical treatment. It is therefore important to understand the underlying mechanisms that control cardiovascular development. Understanding developmental mechanisms will also help us design better strategies to regenerate cardiovascular tissues for therapeutic purposes. An important mechanism regulating genes involves the modification of chromatin, the higher-order structure in which DNA is packaged. Recent studies have greatly expanded our understanding of the regulation of cardiovascular development at the chromatin level, including the remodeling of chromatin and the modification of histones. Chromatin-level regulation integrates multiple inputs and coordinates broad gene expression programs. Thus, understanding chromatin-level regulation will allow for a better appreciation of gene regulation as a whole and may set a fundamental basis for cardiovascular disease. This review focuses on how chromatin-remodeling and histone-modifying factors regulate gene expression to control cardiovascular development.
Collapse
Affiliation(s)
- Ching-Pin Chang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
35
|
Differential role of Nkx2-5 in activation of the atrial natriuretic factor gene in the developing versus failing heart. Mol Cell Biol 2011; 31:4633-45. [PMID: 21930795 DOI: 10.1128/mcb.05940-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atrial natriuretic factor (ANF) is abundantly expressed in atrial cardiomyocytes throughout ontogeny and in ventricular cardiomyocytes in the developing heart. However, during cardiac failure and hypertrophy, ANF expression can reappear in adult ventricular cardiomyocytes. The transcription factor Nkx2-5 is one of the major transactivators of the ANF gene in the developing heart. We identified Nkx2-5 binding at three 5' regulatory elements (kb -34, -31, and -21) and at the proximal ANF promoter by ChIP assay using neonatal mouse cardiomyocytes. 3C analysis revealed close proximity between the distal elements and the promoter region. A 5.8-kb fragment consisting of these elements transactivated a reporter gene in vivo recapitulating endogenous ANF expression, which was markedly reduced in tamoxifen-inducible Nkx2-5 gene knockout mice. However, expression of a reporter gene was increased and expanded toward the outer compact layer in the absence of the transcription repressor Hey2, similar to endogenous ANF expression. Functional Nkx2-5 and Hey2 binding sites separated by 59 bp were identified in the -34 kb element in neonatal cardiomyocytes. In adult hearts, this fragment did not respond to pressure overload, and ANF was induced in the absence of Nkx2-5. These results demonstrate that Nkx2-5 and its responsive cis-regulatory DNA elements are essential for ANF expression selectively in the developing heart.
Collapse
|
36
|
Xue JH, Zheng M, Xu XW, Wu SS, Chen Z, Chen F. Involvement of REST corepressor 3 in prognosis of human hepatitis B. Acta Pharmacol Sin 2011; 32:1019-24. [PMID: 21765449 DOI: 10.1038/aps.2011.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM To examine the potential correlation between serum REST corepressor 3 (RCOR3) level and the outcome of patients with hepatitis B. METHODS Concanavalin A (ConA)-induced mouse hepatitis model was used. The mRNA level of RCOR3 in mouse liver was measured using GeneChip array and real-time PCR. One hundred seventy-seven patients with hepatitis B and 34 healthy individuals were categorized into six groups including mild chronic hepatitis, moderate chronic hepatitis B, severe hepatitis B (SHB), cirrhosis, hepatocellular carcinoma (HCC) and healthy control. Serum levels of human RCOR3 were measured using ELISA. RESULTS In the mouse hepatitis model, the mRNA level of RCOR3 in liver was reduced early after exposure to ConA, then increased after 6 h of exposure. There was no significant difference in the serum RCOR3 level between the mild chronic hepatitis B and the control groups. The serum RCOR3 level was significantly increased in the moderate chronic hepatitis B group, but significantly reduced in SHB, cirrhosis and HCC groups, as compared with the control group. Moreover, the serum RCOR3 levels in SHB, cirrhosis and liver cancer patients were significantly lower than those in the patients with moderate chronic hepatitis B and with mild chronic hepatitis B. Rank correlation analysis revealed a significant correlation between serum RCOR3 level and total bilirubin (r=-0.305, P<0.01). There was no significant correlation between RCOR3 on one hand, and alanine transaminase (r=0.014, P>0.05) or aspartate transaminase (r=-0.079, P>0.05) on the other hand. CONCLUSION Serum RCOR3 level may reflect the degree of liver damage, which might be a potential biomarker for the outcome of patients with hepatitis B.
Collapse
|
37
|
Kuwahara K, Nakao K. New molecular mechanisms for cardiovascular disease:transcriptional pathways and novel therapeutic targets in heart failure. J Pharmacol Sci 2011; 116:337-42. [PMID: 21757847 DOI: 10.1254/jphs.10r28fm] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic remodeling contributes to the progression of heart failure by affecting myocardial cellular function and survival. In our investigation of the transcriptional regulation of cardiac gene expression, we found several transcriptional pathways involved in pathological cardiac remodeling. A transcriptional repressor, neuron-restrictive silencer factor (NRSF), regulates expression of multiple fetal cardiac genes through the activity of histone deacetylases (HDACs). Inhibition of NRSF in the heart results in cardiac dysfunction and sudden arrhythmic death accompanied by re-expression of a number of fetal genes, including those encoding fetal ion channels, such as the T-type Ca²⁺ channel. In the pathological calcineurin--nuclear factor of activated T-cells (NFAT) signaling pathway, transient receptor potential cation channel, subfamily C, member 6 (TRPC6) is a key component of a Ca²⁺-dependent regulatory loop. Indeed, inhibition of TRPC significantly ameliorates this pathological process in a mouse model of cardiac hypertrophy. Moreover, we recently showed that myocardin-related transcription factor-A (MRTF-A), a co-activator of serum response factor (SRF), mediates prohypertrophic signaling by linking the small GTPase Rho-actin dynamics signaling pathway to cardiac gene transcription. Collectively, our studies have revealed the transcriptional network involved in the development of cardiac dysfunction and potential therapeutic targets for the treatment of heart failure.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Japan.
| | | |
Collapse
|
38
|
Szabó G, Rigó J, Nagy B. [Physiology and clinical role of natriuretic peptides]. Orv Hetil 2011; 152:1025-34. [PMID: 21652296 DOI: 10.1556/oh.2011.29153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the last three decades many members of the natriuretic peptide family was isolated. The function and physiological role of these peptides are pleiotropic. All natriuretic peptides are synthesized from polypeptide precursors. Together with the sympathetic nervous system and other hormones they play key roles, like an endogenous system in the regulation of the body fluid homeostasis and blood pressure. Changes in this balance lead to dysfunction in the endothel and left ventricle, which can cause severe complications. In many cardiovascular diseases natriuretic peptides serve not only as marker for diagnosis and prognosis but they have therapeutic importance. In the last years the potential use of the elevated BNP levels for diagnosis of pre-eclampsia was examined. In our review we discuss the current understanding of molecular biology, biochemistry and clinical relevance of natriuretic peptides.
Collapse
Affiliation(s)
- Gábor Szabó
- Semmelweis Egyetem, Általános Orvostudományi Kar, I., Szülészeti és Nőgyógyászati Klinika, Budapest.
| | | | | |
Collapse
|
39
|
Sone K, Tsuda M, Mori N. Position-dependent effect of a neural-restrictive silencer-like element present in the promoter downstream of the SCG10-like protein gene. J Biochem 2011; 150:451-60. [DOI: 10.1093/jb/mvr077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
40
|
Abstract
Chromatin regulation provides an important means for controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease.
Collapse
Affiliation(s)
- Pei Han
- CCSR Building, Room 3115-C, 269 Campus Dr, Stanford, CA 94305-5169, USA
| | | | | | | |
Collapse
|
41
|
Nishikimi T, Kuwahara K, Nakao K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J Cardiol 2011; 57:131-40. [PMID: 21296556 DOI: 10.1016/j.jjcc.2011.01.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
The mammalian natriuretic peptide family consists of atrial (ANP), brain [B-type; BNP] and C-type natriuretic peptide (CNP) and three receptors, natriuretic receptors-A (NPR-A), -B (NPR-B) and -C (NPR-C). Both ANP and BNP are abundantly expressed in the heart and are secreted mainly from the atria and ventricles, respectively. By contrast, CNP is mainly expressed in the central nervous system, bone and vasculature. Plasma concentrations of both ANP and BNP are elevated in patients with cardiovascular disease, though the magnitude of the increase in BNP is usually greater than the increase in ANP. This makes BNP is a clinically useful diagnostic marker for several pathophysiological conditions, including heart failure, ventricular remodeling and pulmonary hypertension, among others. Recent studies have shown that in addition to BNP-32, proBNP-108 also circulates in human plasma and that levels of both forms are increased in heart failure. Furthermore, proBNP-108 is O-glycosylated and circulates at higher levels in patients with severe heart failure. In this review we discuss recent progress in our understanding of the biochemistry, molecular biology and clinical relevance of the natriuretic peptide system.
Collapse
Affiliation(s)
- Toshio Nishikimi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54, Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
42
|
Zinc-finger protein 90 negatively regulates neuron-restrictive silencer factor-mediated transcriptional repression of fetal cardiac genes. J Mol Cell Cardiol 2011; 50:972-81. [PMID: 21284946 DOI: 10.1016/j.yjmcc.2011.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 11/23/2022]
Abstract
Neuron-restrictive silencer factor (NRSF) is a zinc-finger transcription factor that binds to specific DNA sequences (NRSE) to repress transcription. By down-regulating the transcription of its target genes, NRSF contributes to the regulation of various biological processes, including neuronal differentiation, carcinogenesis and cardiovascular homeostasis. We previously reported that NRSF regulates expression of the cardiac fetal gene program, and that attenuation of NRSF-mediated repression contributes to genetic remodeling in hearts under pathological conditions. The precise molecular mechanisms and signaling pathways via which NRSF activity is regulated in pathological conditions of the heart remain unclear, however. In this study, to search for regulators of NRSF, we carried out yeast two-hybrid screening using NRSF as bait and identified zinc-finger protein (Zfp) 90 as a novel NRSF-binding protein. NRSF and Zfp90 colocalized in the nucleus, with the zinc-finger DNA-binding domain of the former specifically interacting with the latter. Zfp90 inhibited the repressor activity of NRSF by inhibiting its binding to DNA, thereby derepressing transcription of NRSF-target genes. Knockdown of Zfp90 by siRNA led to reduced expression of NRSF-target fetal cardiac genes, atrial and brain natriuretic peptide genes, and conversely, overexpression of Zfp90 in ventricular myocardium resulted in significant increases in the expression of these genes. Notably, expression of Zfp90 mRNA was significantly upregulated in mouse and human hearts with chronic heart failure. Collectively, these results suggest that Zfp90 functions as a negative regulator of NRSF and contributes to genetic remodeling during the development of cardiac dysfunction.
Collapse
|
43
|
Shimojo M. RE1-silencing transcription factor (REST) and REST-interacting LIM domain protein (RILP) affect P19CL6 differentiation. Genes Cells 2010; 16:90-100. [DOI: 10.1111/j.1365-2443.2010.01471.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Cardinale JP, Sriramula S, Pariaut R, Guggilam A, Mariappan N, Elks CM, Francis J. HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension 2010; 56:437-44. [PMID: 20679181 DOI: 10.1161/hypertensionaha.110.154567] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species and proinflammatory cytokines contribute to cardiovascular diseases. Inhibition of downstream transcription factors and gene modifiers of these components are key mediators of hypertensive response. Histone acetylases/deacetylases can modulate the gene expression of these hypertrophic and hypertensive components. Therefore, we hypothesized that long-term inhibition of histone deacetylase with valproic acid might attenuate hypertrophic and hypertensive responses by modulating reactive oxygen species and proinflammatory cytokines in SHR rats. Seven-week-old SHR and WKY rats were used in this study. Following baseline blood pressure measurement, rats were administered valproic acid in drinking water (0.71% wt/vol) or vehicle, with pressure measured weekly thereafter. Another set of rats were treated with hydralazine (25 mg/kg per day orally) to determine the pressure-independent effects of HDAC inhibition on hypertension. Following 20 weeks of treatment, heart function was measured using echocardiography, rats were euthanized, and heart tissue was collected for measurement of total reactive oxygen species, as well as proinflammatory cytokine, cardiac hypertrophic, and oxidative stress gene and protein expressions. Blood pressure, proinflammatory cytokines, hypertrophic markers, and reactive oxygen species were increased in SHR versus WKY rats. These changes were decreased in valproic acid-treated SHR rats, whereas hydralazine treatment only reduced blood pressure. These data indicate that long-term histone deacetylase inhibition, independent of the blood pressure response, reduces hypertrophic, proinflammatory, and hypertensive responses by decreasing reactive oxygen species and angiotensin II type1 receptor expression in the heart, demonstrating the importance of uncontrolled histone deacetylase activity in hypertension.
Collapse
Affiliation(s)
- Jeffrey P Cardinale
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, Li Y, Nakagawa Y, Usami S, Fujiwara M, Yamada Y, Minami T, Ueshima K, Nakao K. Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 2010; 106:1849-60. [PMID: 20448219 DOI: 10.1161/circresaha.109.208314] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Atrial and brain natriuretic peptides (ANP and BNP, respectively) exert antihypertrophic effects in the heart via their common receptor, guanylyl cyclase (GC)-A, which catalyzes the synthesis of cGMP, leading to activation of protein kinase (PK)G. Still, much of the network of molecular mediators via which ANP/BNP-GC-A signaling inhibit cardiac hypertrophy remains to be characterized. OBJECTIVE We investigated the effect of ANP-GC-A signaling on transient receptor potential subfamily C (TRPC)6, a receptor-operated Ca(2+) channel known to positively regulate prohypertrophic calcineurin-nuclear factor of activated T cells (NFAT) signaling. METHODS AND RESULTS In cardiac myocytes, ANP induced phosphorylation of TRPC6 at threonine 69, the PKG phosphorylation site, and significantly inhibited agonist-evoked NFAT activation and Ca(2+) influx, whereas in HEK293 cells, it dramatically inhibited agonist-evoked TRPC6 channel activity. These inhibitory effects of ANP were abolished in the presence of specific PKG inhibitors or by substituting an alanine for threonine 69 in TRPC6. In model mice lacking GC-A, the calcineurin-NFAT pathway is constitutively activated, and BTP2, a selective TRPC channel blocker, significantly attenuated the cardiac hypertrophy otherwise seen. Conversely, overexpression of TRPC6 in mice lacking GC-A exacerbated cardiac hypertrophy. BTP2 also significantly inhibited angiotensin II-induced cardiac hypertrophy in mice. CONCLUSIONS Collectively, these findings suggest that TRPC6 is a critical target of antihypertrophic effects elicited via the cardiac ANP/BNP-GC-A pathway and suggest TRPC6 blockade could be an effective therapeutic strategy for preventing pathological cardiac remodeling.
Collapse
Affiliation(s)
- Hideyuki Kinoshita
- Department of Medicine and Clinical Science, Kyoto University Graduated School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones. During cardiac development, their expression is a maker of cardiomyocyte differentiation and is under tight spatiotemporal regulation. After birth, however, their ventricular expression is only up-regulated in response to various cardiovascular diseases. As a result, analysis of ANP and BNP gene expression has led to discoveries of transcriptional regulators and signaling pathways involved in both cardiac differentiation and cardiac disease. Studies using genetically engineered mice have shed light on the molecular mechanisms regulating ANP and BNP gene expression, as well as the physiological and pathophysiological relevance of the cardiac natriuretic peptide system. In this review we will summarize what is currently known about their regulation and the significance of ANP and BNP as hormones derived from the heart.
Collapse
Affiliation(s)
- Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
47
|
Kee HJ, Kook H. Krüppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol 2009; 47:770-80. [DOI: 10.1016/j.yjmcc.2009.08.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/31/2009] [Accepted: 08/20/2009] [Indexed: 01/16/2023]
|
48
|
Nakao K, Yasoda A, Ebihara K, Hosoda K, Mukoyama M. Translational research of novel hormones: lessons from animal models and rare human diseases for common human diseases. J Mol Med (Berl) 2009; 87:1029-39. [DOI: 10.1007/s00109-009-0515-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 01/15/2023]
|
49
|
Nakagawa Y, Kuwahara K, Takemura G, Akao M, Kato M, Arai Y, Takano M, Harada M, Murakami M, Nakanishi M, Usami S, Yasuno S, Kinoshita H, Fujiwara M, Ueshima K, Nakao K. p300 plays a critical role in maintaining cardiac mitochondrial function and cell survival in postnatal hearts. Circ Res 2009; 105:746-54. [PMID: 19729597 DOI: 10.1161/circresaha.109.206037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE It is known that the transcriptional coactivator p300 is crucially involved in the differentiation and growth of cardiac myocytes during development. However, the physiological function of p300 in the postnatal hearts remains to be characterized. OBJECTIVE We have now investigated the physiological function of p300 in adult hearts. METHODS AND RESULTS We analyzed transgenic mice exhibiting cardiac-specific overexpression of a dominant-negative p300 mutant lacking the C/H3 domain (p300DeltaC/H3 transgenic [TG] mice). p300DeltaC/H3 significantly inhibited p300-induced activation of GATA- and myocyte enhancer factor 2-dependent promoters in cultured ventricular myocytes, and p300DeltaC/H3-TG mice showed cardiac dysfunction that was lethal by 20 weeks of age. The numbers of mitochondria in p300DeltaC/H3-TG myocytes were markedly increased, but the mitochondria were diminished in size. Moreover, cardiac mitochondrial gene expression, mitochondrial membrane potential and ATP contents were all significantly disrupted in p300DeltaC/H3-TG hearts, suggesting that mitochondrial dysfunction contributes to the progression of the observed cardiomyopathy. Transcription of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, a master regulator of mitochondrial gene expression, and its target genes was significantly downregulated in p300DeltaC/H3-TG mice, and p300DeltaC/H3 directly repressed myocyte enhancer factor 2C-dependent PGC-1alpha promoter activity and disrupted the transcriptional activity of PGC-1alpha in cultured ventricular myocytes. In addition, myocytes showing features of autophagy were observed in p300DeltaC/H3-TG hearts. CONCLUSIONS Collectively, our findings suggest that p300 is essential for the maintenance of mitochondrial integrity and for myocyte survival in the postnatal left ventricular myocardium.
Collapse
Affiliation(s)
- Yasuaki Nakagawa
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara-cho, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kinoshita H, Kuwahara K, Takano M, Arai Y, Kuwabara Y, Yasuno S, Nakagawa Y, Nakanishi M, Harada M, Fujiwara M, Murakami M, Ueshima K, Nakao K. T-type Ca2+ channel blockade prevents sudden death in mice with heart failure. Circulation 2009; 120:743-52. [PMID: 19687356 DOI: 10.1161/circulationaha.109.857011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pharmacological interventions for prevention of sudden arrhythmic death in patients with chronic heart failure remain limited. Accumulating evidence suggests increased ventricular expression of T-type Ca(2+) channels contributes to the progression of heart failure. The ability of T-type Ca(2+) channel blockade to prevent lethal arrhythmias associated with heart failure has never been tested, however. METHODS AND RESULTS We compared the effects of efonidipine and mibefradil, dual T- and L-type Ca(2+) channel blockers, with those of nitrendipine, a selective L-type Ca(2+) channel blocker, on survival and arrhythmogenicity in a cardiac-specific, dominant-negative form of neuron-restrictive silencer factor transgenic mice (dnNRSF-Tg), which is a useful mouse model of dilated cardiomyopathy leading to sudden death. Efonidipine, but not nitrendipine, substantially improved survival among dnNRSF-Tg mice. Arrhythmogenicity was dramatically reduced in dnNRSF-Tg mice treated with efonidipine or mibefradil. Efonidipine acted by reversing depolarization of the resting membrane potential otherwise seen in ventricular myocytes from dnNRSF-Tg mice and by correcting cardiac autonomic nervous system imbalance. Moreover, the R(-)-isomer of efonidipine, a recently identified, highly selective T-type Ca(2+) channel blocker, similarly improved survival among dnNRSF-Tg mice. Efonidipine also reduced the incidence of sudden death and arrhythmogenicity in mice with acute myocardial infarction. CONCLUSIONS T-type Ca(2+) channel blockade reduced arrhythmias in a mouse model of dilated cardiomyopathy by repolarizing the resting membrane potential and improving cardiac autonomic nervous system imbalance. T-type Ca(2+) channel blockade also prevented sudden death in mice with myocardial infarction. Our findings suggest T-type Ca(2+) channel blockade is a potentially useful approach to preventing sudden death in patients with heart failure.
Collapse
Affiliation(s)
- Hideyuki Kinoshita
- Department of Medicine and Clinical Science, Kyoto University Graduated School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|