1
|
Huynh QDT, Phan TTT, Liu TW, Duong TLT, Hsu SJ, Kuo CC, Chu MH, Wang YH, Nguyen TV, Shen YA, Fan YJ, Nguyen DK, Vo TH, Lee CK. Cytotoxicity-guided isolation of elatostemanosides I-VI from Elatostema tenuicaudatum W. T. Wang and their cytotoxic activities. RSC Adv 2025; 15:10639-10652. [PMID: 40190632 PMCID: PMC11970508 DOI: 10.1039/d4ra09007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/09/2025] [Indexed: 04/09/2025] Open
Abstract
Elatostema tenuicaudatum W. T. Wang, a medicinal plant traditionally utilized in herbal remedies, was explored for its cytotoxic properties. Bioassay-guided fractionation led to the discovery of six novel compounds, designated as elatostemanosides I-VI, with their structures elucidated through advanced spectroscopic methods and DP4+ analysis. Among these, compounds 2, 5, and 6 demonstrated moderate cytotoxicity against the human liver cancer cell line HepG2, exhibiting IC50 values of 18.2 ± 2.1, 32.1 ± 0.4, and 57.6 ± 1.3 µM, respectively. Notably, compound 6 also displayed significant activity against the human breast cancer cell line HCC1806, with an IC50 value of 35.4 ± 0.3 µM. Mechanistic studies revealed these compounds induced apoptosis by modulating the Bax/Bcl-2 ratio. Furthermore, structure-activity relationship (SAR) analysis underscored the importance of specific functional groups in mediating cytotoxic effects.
Collapse
Affiliation(s)
- Quoc-Dung Tran Huynh
- Ph. D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
- Institute of Pharmaceutical Education and Research, Binh Duong University Thu Dau Mot 820000 Binh Duong Vietnam
| | - Thuy-Tien Thi Phan
- Institute of Pharmaceutical Education and Research, Binh Duong University Thu Dau Mot 820000 Binh Duong Vietnam
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei 11031 Taiwan
| | - Ta-Wei Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
| | - Truc-Ly Thi Duong
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy Can Tho 900000 Vietnam
| | - Su-Jung Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
- Institute of Fisheries Science, National Taiwan University Taipei 106 Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes Miaoli County 35053 Taiwan
| | - Man-Hsiu Chu
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
| | - Yun-Han Wang
- Ph. D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Thanh-Vu Nguyen
- Biotechnology Center of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University Taipei 110301 Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University Taipei 110301 Taiwan
- International Master/Ph. D. Program in Medicine, College of Medicine, Taipei Medical University Taipei 110301 Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University Taipei 11031 Taiwan
- International PhD Program for Biomedical Engineering, Taipei Medical University Taipei 110301 Taiwan
| | - Dang-Khoa Nguyen
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh 700000 Vietnam
| | - Thanh-Hoa Vo
- University of Health Sciences, Vietnam National University Ho Chi Minh City Ho Chi Minh 700000 Vietnam
- Center for Discovery and Development of Healthcare Product, Vietnam National University Ho Chi Minh City Ho Chi Minh 700000 Vietnam
| | - Ching-Kuo Lee
- Ph. D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University Taipei 11042 Taiwan
- Department of Chemistry, Chung Yuan Christian University Zhongli District Taoyuan 32023 Taiwan
| |
Collapse
|
2
|
Rogers ZJ, Flood D, Bencherif SA, Taylor CT. Oxygen control in cell culture - Your cells may not be experiencing what you think! Free Radic Biol Med 2025; 226:279-287. [PMID: 39577817 DOI: 10.1016/j.freeradbiomed.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Oxygen (O2)-controlled cell culture has been pivotal in studying mammalian mechanisms of O2 sensing, regulation, and utilization. We posit, however, that O2-controlled cell culture is paradoxically not controlling O2. There is overwhelming evidence that the pericellular O2 is lower than the surrounding gas phase due to cellular O2 consumption. Standard hypoxic cell culture is at high risk of inducing pericellular anoxia. We discuss the implications of poor O2 control for cellular O2 regulation mechanisms, bioenergetics, and redox signaling. We also highlight the evidence of frequent under-oxygenation in standard (i.e., normoxic) cell culture. This issue has been largely overlooked because strategies to control pericellular O2 have been lacking. Here, we propose a framework to control pericellular O2 based on our recent investigation into the nature of the gas/pericellular O2 gradient. Implementing this framework into standard practice will unlock quantitative O2 control in vitro, improving our ability to understand the role of O2 in biology.
Collapse
Affiliation(s)
- Zachary J Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Darragh Flood
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
3
|
Palominos C, Fuentes-Retamal S, Salazar JP, Guzmán-Rivera D, Correa P, Mellado M, Araya-Maturana R, Urra FA. Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy. Cancer Lett 2024; 594:216965. [PMID: 38788967 DOI: 10.1016/j.canlet.2024.216965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Pro-survival BCL-2 proteins prevent the initiation of intrinsic apoptosis (mitochondria-dependent pathway) by inhibiting the pro-apoptotic proteins BAX and BAK, while BH3-only proteins promote apoptosis by blocking pro-survival BCL-2 proteins. Disruptions in this delicate balance contribute to cancer cell survival and chemoresistance. Recent advances in cancer therapeutics involve a new generation of drugs known as BH3-mimetics, which are small molecules designed to mimic the action of BH3-only proteins. Promising effects have been observed in patients with hematological and solid tumors undergoing treatment with these agents. However, the rapid emergence of mitochondria-dependent resistance to BH3-mimetics has been reported. This resistance involves increased mitochondrial respiration, altered mitophagy, and mitochondria with higher and tighter cristae. Conversely, mutations in isocitrate dehydrogenase 1 and 2, catalyzing R-2-hydroxyglutarate production, promote sensitivity to venetoclax. This evidence underscores the urgency for comprehensive studies on bioenergetics-based adaptive responses in both BH3 mimetics-sensitive and -resistant cancer cells. Ongoing clinical trials are evaluating BH3-mimetics in combination with standard chemotherapeutics. In this article, we discuss the role of mitochondrial bioenergetics in response to BH3-mimetics and explore potential therapeutic opportunities through metabolism-targeting strategies.
Collapse
Affiliation(s)
- Charlotte Palominos
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Sebastián Fuentes-Retamal
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Juan Pablo Salazar
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Daniela Guzmán-Rivera
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Pablo Correa
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Mathias Mellado
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago, 8320216, Chile.
| |
Collapse
|
4
|
Stabile AM, Pistilli A, Moretti E, Bartolini D, Ruggirello M, Rende M, Castellini C, Mattioli S, Ponchia R, Tripodi SA, Collodel G. A Possible Role for Nerve Growth Factor and Its Receptors in Human Sperm Pathology. Biomedicines 2023; 11:3345. [PMID: 38137566 PMCID: PMC10742157 DOI: 10.3390/biomedicines11123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Nerve growth factor (NGF) signalling affects spermatogenesis and mature sperm traits. In this paper, we aimed to evaluate the distribution and the role of NGF and its receptors (p75NTR and TrKA) on the reproductive apparatus (testis and epididymis) and sperm of fertile men (F) and men with different pathologies, namely varicocele (V) and urogenital infections (UGIs). We collected semen samples from 21 individuals (31-40 years old) subdivided as follows: V (n = 7), UGIs (n = 7), and F (n = 7). We submitted the semen samples to bacteriological analysis, leucocyte identification, and analysis of sperm parameters (concentration, motility, morphology, and viability). We determined the seminal plasma levels of NGF, interleukin 1β (IL-1β), and F2-isoprostanes (F2-IsoPs), and the gene and protein expression of NGF receptors on sperm. We also used immunofluorescence to examine NGF receptors on ejaculated sperm, testis, and epididymis. As expected, fertile men showed better sperm parameters as well as lower levels of NGF, F2-IsoPs, and IL-1β compared with men with infertility. Notably, in normal sperm, p75NTR and TrKA were localised throughout the entire tail. TrKA was also found in the post-acrosomal sheath. This localisation appeared different in patients with infertility: in particular, there was a strong p75NTR signal in the midpiece and the cytoplasmic residue or coiled tails of altered ejaculated sperm. In line with these findings, NGF receptors were intensely expressed in the epididymis and interstitial tissue of the testis. These data suggest the distinctive involvement of NGF and its receptors in the physiology of sperm from fertile men and men with infertility, indicating a possible role for new targeted treatment strategies.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (A.M.S.); (A.P.); (M.R.); (M.R.)
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (A.M.S.); (A.P.); (M.R.); (M.R.)
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, Section of Biochemistry, University of Perugia, 06132 Perugia, Italy;
| | - Mariangela Ruggirello
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (A.M.S.); (A.P.); (M.R.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (A.M.S.); (A.P.); (M.R.); (M.R.)
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, 06100 Perugia, Italy; (C.C.); (S.M.)
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, 06100 Perugia, Italy; (C.C.); (S.M.)
| | - Rosetta Ponchia
- Unit of Medically Assisted Reproduction, Siena University Hospital, 53100 Siena, Italy;
| | - Sergio Antonio Tripodi
- Department of Pathology Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
5
|
Humphries S, Bond DR, Germon ZP, Keely S, Enjeti AK, Dun MD, Lee HJ. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia. Clin Epigenetics 2023; 15:150. [PMID: 37705055 PMCID: PMC10500762 DOI: 10.1186/s13148-023-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a deadly disease characterised by the uncontrolled proliferation of immature myeloid cells within the bone marrow. Altered regulation of DNA methylation is an important epigenetic driver of AML, where the hypoxic bone marrow microenvironment can help facilitate leukaemogenesis. Thus, interactions between epigenetic regulation and hypoxia signalling will have important implications for AML development and treatment. MAIN BODY This review summarises the importance of DNA methylation and the hypoxic bone marrow microenvironment in the development, progression, and treatment of AML. Here, we focus on the role hypoxia plays on signalling and the subsequent regulation of DNA methylation. Hypoxia is likely to influence DNA methylation through altered metabolic pathways, transcriptional control of epigenetic regulators, and direct effects on the enzymatic activity of epigenetic modifiers. DNA methylation may also prevent activation of hypoxia-responsive genes, demonstrating bidirectional crosstalk between epigenetic regulation and the hypoxic microenvironment. Finally, we consider the clinical implications of these interactions, suggesting that reduced cell cycling within the hypoxic bone marrow may decrease the efficacy of hypomethylating agents. CONCLUSION Hypoxia is likely to influence AML progression through complex interactions with DNA methylation, where the therapeutic efficacy of hypomethylating agents may be limited within the hypoxic bone marrow. To achieve optimal outcomes for AML patients, future studies should therefore consider co-treatments that can promote cycling of AML cells within the bone marrow or encourage their dissociation from the bone marrow.
Collapse
Affiliation(s)
- Sam Humphries
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Zacary P Germon
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Anoop K Enjeti
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
6
|
Amaral-Silva L, Santin JM. Synaptic modifications transform neural networks to function without oxygen. BMC Biol 2023; 21:54. [PMID: 36927477 PMCID: PMC10022038 DOI: 10.1186/s12915-023-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Neural circuit function is highly sensitive to energetic limitations. Much like mammals, brain activity in American bullfrogs quickly fails in hypoxia. However, after emergence from overwintering, circuits transform to function for approximately 30-fold longer without oxygen using only anaerobic glycolysis for fuel, a unique trait among vertebrates considering the high cost of network activity. Here, we assessed neuronal functions that normally limit network output and identified components that undergo energetic plasticity to increase robustness in hypoxia. RESULTS In control animals, oxygen deprivation depressed excitatory synaptic drive within native circuits, which decreased postsynaptic firing to cause network failure within minutes. Assessments of evoked and spontaneous synaptic transmission showed that hypoxia impairs synaptic communication at pre- and postsynaptic loci. However, control neurons maintained membrane potentials and a capacity for firing during hypoxia, indicating that those processes do not limit network activity. After overwintering, synaptic transmission persisted in hypoxia to sustain motor function for at least 2 h. CONCLUSIONS Alterations that allow anaerobic metabolism to fuel synapses are critical for transforming a circuit to function without oxygen. Data from many vertebrate species indicate that anaerobic glycolysis cannot fuel active synapses due to the low ATP yield of this pathway. Thus, our results point to a unique strategy whereby synapses switch from oxidative to exclusively anaerobic glycolytic metabolism to preserve circuit function during prolonged energy limitations.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| | - Joseph M Santin
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| |
Collapse
|
7
|
Sun L, Gao W, Liu J, Wang J, Li L, Yu H, Xu ZP. O 2-Supplying Nanozymes Alleviate Hypoxia and Deplete Lactate to Eliminate Tumors and Activate Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56644-56657. [PMID: 36515637 DOI: 10.1021/acsami.2c18960] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Direct hypoxia alleviation and lactate depletion in the tumor microenvironment (TME) are promising for effective cancer therapy but still very challenging. To address this challenge, the current research directly reshapes the TME for inhibiting tumor growth and activating the antitumor immunity using a drug-free nanozyme. Herein, the acid-sensitive nanozymes were constructed based on peroxidized layered double hydroxide nanoparticles for O2 self-supply and self-boosted lactate depletion. The coloading of partially cross-linked catalase and lactate oxidase enabled the acid-sensitive nanozymes to promote three reactions, that is, (1) H2O2 generation from MgO2 hydrolysis (30% at pH 7.4 vs 63% at pH 6.0 in 8 h); (2) O2 generation from H2O2 (12% at pH 7.4 vs 21% at pH 6.0 in 2 h); and (3) lactate depletion by in situ generated O2 (50% under hypoxia vs 75% under normoxia in 24 h in vitro) in parallel or tandem. These promoted reactions together efficiently induced colon cancer cell apoptosis under the hypoxic conditions, significantly inhibited tumor growth (>95%), and suppressed distant tumor growth upon seven administrations in every 3 days and moreover transformed the immunosuppressive tumor into "hot" one in the colon tumor-bearing mouse model. This is the first example for a nanozyme that supplies sufficient O2 for hypoxia relief and lactate depletion, thus providing a new insight into drug-free nanomaterial-mediated TME-targeted cancer therapy.
Collapse
Affiliation(s)
- Luyao Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Wendong Gao
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD4059, Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai201203, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia
| |
Collapse
|
8
|
Katiyar R, Ghosh SK, Karikalan M, Kumar A, Pande M, Gemeda AI, Rautela R, Dhara SK, Bhure SK, Srivastava N, Patra MK, Chandra V, Devi HL, Singh M. An evidence of Humanin-like peptide and Humanin mediated cryosurvival of spermatozoa in buffalo bulls. Theriogenology 2022; 194:13-26. [PMID: 36183493 DOI: 10.1016/j.theriogenology.2022.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022]
Abstract
Buffalo spermatozoa are vulnerable to cryo-injuries due to inherent deficiency of endogenous antioxidants, high polyunsaturated fatty acids (PUFA) content in plasma membrane and low cholesterol/phospholipid (C/P) ratio. Humanin is a potent cytoprotective agent that protects the cells against oxidative stress and apoptosis. The present study was designed to establish the presence of Humanin in buffalo and effect of Humanin supplementation on freezability of buffalo spermatozoa. Indirect immunofluorescence test revealed presence of Humanin in ejaculated and epididymal spermatozoa, and, elongated spermatids and interstitial space in the testicular tissue section. Humanin levels in seminal plasma were significantly and positively correlated with sperm concentration and individual progressive motility (IPM) in good (n = 22; IPM >70%) and poor (n = 10; IPM <50%) quality ejaculates. For supplementation studies, a total of 24 ejaculates (IPM ≥70%) were collected and each ejaculate was then divided into four aliquots. First aliquot was diluted with egg yolk-tris-glycerol (EYTG) extender without Humanin and served as control group (Group I). Rest three aliquots were diluted with extender containing 2 (Group II), 5 (Group III) and 10 μM Humanin (Group IV), respectively. Semen was cryopreserved using standard protocol and evaluated at pre-freeze for lipid peroxidation (LPO) and post-thaw stages for spermatozoa kinematics, LPO, mitochondrial membrane potential (MMP), capacitation, apoptotic status and DNA integrity. The treatment group that showed best results (5 μM) was compared with control group for in vitro fertility assessment by homologous zona binding assay. The LPO levels were lower (p < 0.05) in 5 and 10 μM Humanin supplemented group. The MMP and DNA integrity were higher (p < 0.05) in 5 μM group than other groups. F-pattern was higher (p < 0.05) and B-pattern was lower (p < 0.05) in 5 and 10 μM Humanin supplemented groups. Lower apoptotic and higher viable spermatozoa (p < 0.05) were observed in 5 μM Humanin group. The mean number of spermatozoa bound to zona pellucida was higher (p < 0.05) in 5 μM Humanin treated group than the control group. The study established the presence of Humanin in buffalo spermatozoa and seminal plasma for very first time and concluded that Humanin supplementation at 5 μM concentration improves the freezability and in vitro fertility of buffalo spermatozoa.
Collapse
Affiliation(s)
- Rahul Katiyar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Subrata Kumar Ghosh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - M Karikalan
- Centre for Wildlife, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Abhishek Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Megha Pande
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Amare Ishetu Gemeda
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Rupali Rautela
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - S K Dhara
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - S K Bhure
- Division of Veterinary Biochemistry, ICAR-Indian Veterinary Research Institute, Bengaluru Campus, India
| | - Neeraj Srivastava
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - M K Patra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Huidrom Lakshmi Devi
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Mahak Singh
- ICAR Research Complex for N.E.H.Region, Nagaland Centre, Medziphema, Nagaland, 797106, India
| |
Collapse
|
9
|
Xu Y, Zeng F, Jiang J, Huo J, Zhao C, Yan Z, Li L. The Hematopoietic Function of Medicinal Wine Maoji Jiu Revealed in Blood Deficiency Model Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1025504. [PMID: 35911170 PMCID: PMC9325634 DOI: 10.1155/2022/1025504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Maoji Jiu (MJ), a medicinal wine, has been used commonly by the Chinese to enrich and nourish the blood. In this study, the aim is to examine the hematopoietic function of MJ and investigate its hematopoietic regulation mechanism. Thirty-six female Sprague-Dawley rats (200 ± 20 g) were randomly divided into six groups with six rats in each group. The blood deficiency model was induced by injecting hypodermically with N-acetylphenylhydrazine (APH) and injecting intraperitoneally with cyclophosphamide (CTX), and treatment drugs were given by oral gavage twice a day for continuous 10 days from the start of the experiments. The administration of MJ improved the levels of white blood cells (WBCs), red blood cells (RBCs), hemoglobin (HGB), and hematocrit (HCT) in the blood deficiency model rats. Hematopoietic effect involves regulating the antioxidant activity in the liver and the levels of Bcl-2, Bax, erythropoietin (EPO), transforming growth factor-beta-1 (TGF-β1), and macrophage colony-stimulating factor (M-CSF) mRNA in spleen tissues to enhance extramedullary hematopoiesis. This study suggests that MJ has a beneficial effect on blood deficiency model rats.
Collapse
Affiliation(s)
- Yongli Xu
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi, China
| | - Fanqiang Zeng
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, China
| | - Jianping Jiang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi, China
| | - Juan Huo
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi, China
| | - Chengjian Zhao
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi, China
| | - Zhigang Yan
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, Guangxi, China
| | - Li Li
- Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning 530022, Guangxi, China
| |
Collapse
|
10
|
An Z, Chen X, Li J. Response to Different Oxygen Partial Pressures and Evolution Analysis of Apoptosis-Related Genes in Plateau Zokor ( Myospalax baileyi). Front Genet 2022; 13:865301. [PMID: 35754836 PMCID: PMC9214310 DOI: 10.3389/fgene.2022.865301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
The plateau zokor (Myospalax baileyi) is a native species of the Qinghai–Tibet Plateau that spends its entire life underground in sealed burrows with hypoxic conditions. The present study aimed to assess the sequence characteristics of apoptosis-related genes and the response to different oxygen partial pressures (pO2) in plateau zokor and Sprague-Dawley rats. The sequences of the p53-induced protein with a death domain (Pidd), p53-upregulated modulator of apoptosis (Puma), insulin-like growth factor binding protein 3 (Igfbp3), and apoptosis protease-activating factor 1 (Apaf1) were evaluated concerning homology and convergent evolution sites, and their mRNA levels were evaluated in different tissues under 14.13 (3,300 m) and 16.12 kPa (2,260 m) pO2 conditions. Our results showed that, (1) the sequences of the apoptosis-related genes in plateau zokor were highly similar to those of Nannospalax galili, followed by Rattus norvegicus; (2). Pidd, Puma, Igfbp3, and Apaf1 of plateau zokor were found to have five, one, two, and five convergent sites in functional domains with N. galili, respectively. Lastly (3), under low pO2, the expression of Pidd and Puma was downregulated in the lung of plateau zokors. In turn, Igfbp3 and Apaf1 were upregulated in the liver and lung, and Puma was upregulated in the skeletal muscle of plateau zokor under low pO2. In Sprague-Dawley rats, low pO2 downregulated Puma and Apaf1 expression in the liver and downregulated Igfbp3 and Puma in the lung and skeletal muscle separately. In contrast, low pO2 upregulated Pidd expression in the liver and skeletal muscle of Sprague-Dawley rats. Overall, the expression patterns of Apaf1, Igfbp3, and Puma showed the opposite pattern in the liver, lung, and skeletal muscle, respectively, of plateau zokor as compared with Sprague-Dawley rats. In conclusion, for the long-time adaptation to hypoxic environments, Pidd, Puma, Igfbp3, and Apaf1 of plateau zokor underwent convergent evolution, which we believe may have led to upregulation of their levels under low oxygen partial pressures to induce apoptosis, so as to suppress tumorigenesis under hypoxic environments in plateau zokor.
Collapse
Affiliation(s)
- Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xiaoqi Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Department of Obstetrics and Gynaecology, Affiliated Hospital of Qinghai University, Xining, China.,Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Jimei Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Department of General Medicine, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
11
|
Zhang Q, Fu H, Gong W, Cao F, Wu T, Hu F. Plumbagin protects H9c2 cardiomyocytes against TBHP‑induced cytotoxicity by alleviating ROS‑induced apoptosis and modulating autophagy. Exp Ther Med 2022; 24:501. [PMID: 35837065 DOI: 10.3892/etm.2022.11428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qianrui Zhang
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Haitan Fu
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Wenjuan Gong
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Feng Cao
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| | - Tao Wu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, Hubei 430000, P.R. China
| | - Fei Hu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
12
|
Myrka A, Buck L. Cytoskeletal Arrest: An Anoxia Tolerance Mechanism. Metabolites 2021; 11:metabo11080561. [PMID: 34436502 PMCID: PMC8401981 DOI: 10.3390/metabo11080561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Polymerization of actin filaments and microtubules constitutes a ubiquitous demand for cellular adenosine-5′-triphosphate (ATP) and guanosine-5′-triphosphate (GTP). In anoxia-tolerant animals, ATP consumption is minimized during overwintering conditions, but little is known about the role of cell structure in anoxia tolerance. Studies of overwintering mammals have revealed that microtubule stability in neurites is reduced at low temperature, resulting in withdrawal of neurites and reduced abundance of excitatory synapses. Literature for turtles is consistent with a similar downregulation of peripheral cytoskeletal activity in brain and liver during anoxic overwintering. Downregulation of actin dynamics, as well as modification to microtubule organization, may play vital roles in facilitating anoxia tolerance. Mitochondrial calcium release occurs during anoxia in turtle neurons, and subsequent activation of calcium-binding proteins likely regulates cytoskeletal stability. Production of reactive oxygen species (ROS) formation can lead to catastrophic cytoskeletal damage during overwintering and ROS production can be regulated by the dynamics of mitochondrial interconnectivity. Therefore, suppression of ROS formation is likely an important aspect of cytoskeletal arrest. Furthermore, gasotransmitters can regulate ROS levels, as well as cytoskeletal contractility and rearrangement. In this review we will explore the energetic costs of cytoskeletal activity, the cellular mechanisms regulating it, and the potential for cytoskeletal arrest being an important mechanism permitting long-term anoxia survival in anoxia-tolerant species, such as the western painted turtle and goldfish.
Collapse
Affiliation(s)
- Alexander Myrka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
| | - Leslie Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-416-978-3506
| |
Collapse
|
13
|
Pang Y, Zhu Z, Wen Z, Lu J, Lin H, Tang M, Xu Z, Lu J. HIGD‑1B inhibits hypoxia‑induced mitochondrial fragmentation by regulating OPA1 cleavage in cardiomyocytes. Mol Med Rep 2021; 24:549. [PMID: 34080026 PMCID: PMC8185509 DOI: 10.3892/mmr.2021.12188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
The dynamic regulation of mitochondrial morphology is key for eukaryotic cells to manage physiological challenges. Therefore, it is important to understand the molecular basis of mitochondrial dynamic regulation. The aim of the present study was to explore the role of HIG1 hypoxia inducible domain family member 1B (HIGD‑1B) in hypoxia‑induced mitochondrial fragmentation. Protein expression was determined via western blotting. Immunofluorescence assays were performed to detect the subcellular location of HIGD‑1B. Cell Counting Kit‑8 assays and flow cytometry were carried out to measure cell viability and apoptosis, respectively. Protein interactions were evaluated by co‑immunoprecipitation. In the present study, it was found that HIGD‑1B serves a role in cell survival by maintaining the integrity of the mitochondria under hypoxic conditions. Knockdown of HIGD‑1B promoted mitochondrial fragmentation, while overexpression of HIGD‑1B increased survival by preventing activation of caspase‑3 and ‑9. HIGD‑1B expression was associated with cell viability and apoptosis in cardiomyocytes. Furthermore, HIGD‑1B delayed the cleavage process of optic atrophy 1 (OPA1) and stabilized mitochondrial morphology by interacting with OPA1. Collectively, the results from the present study identified a role for HIGD‑1B as an inhibitor of the mitochondrial fission in cardiomyocytes.
Collapse
Affiliation(s)
- Yan Pang
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Zhide Zhu
- Academic Affairs Section, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Zhihao Wen
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Junshen Lu
- Academic Affairs Section, Guangxi University of Traditional Chinese Medicine Attached Chinese Medicine School, Nanning, Guangxi 530001, P.R. China
| | - Hao Lin
- Department of Geriatrics, Danzhou Traditional Chinese Medicine Hospital, Danzhou, Hainan 571700, P.R. China
| | - Meiling Tang
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| | - Zhiliang Xu
- Academic Affairs Section, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, P.R. China
| | - Jianqi Lu
- Department of Cardiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| |
Collapse
|
14
|
Zhang Y, Jiang L, Qin N, Cao M, Liang X, Wang R. hCINAP is potentially a direct target gene of HIF-1 and is required for hypoxia-induced EMT and apoptosis in cervical cancer cells. Biochem Cell Biol 2021; 99:203-213. [PMID: 32830518 DOI: 10.1139/bcb-2020-0090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The early metastasis of cervical cancer is a multistep process requiring the cancer cells to adapt to the signal input from different tissue environments, including hypoxia. Hypoxia-induced epithelial-to-mesenchymal transition (EMT) plays a critical role in the ability to invade surrounding tissues. However, the molecular mechanisms underlying EMT in cervical cancer remain to be elucidated. Herein, we show that hypoxia-inducible factor-1alpha (HIF-1α) and aryl hydrocarbon receptor nuclear translocator (ARNT) are recruited to the human coilin-interacting nuclear ATPase protein (hCINAP) promoter and initiate hCINAP expression in hypoxia. Ablation of hCINAP decreased the migratory capacity and EMT of cervical cancer cells under hypoxic conditions. Furthermore, hCINAP regulated EMT through the Akt–mTOR signaling pathway, and inhibits hypoxia-induced p53-dependent apoptosis. Our data collectively show that hCINAP may have essential roles in the metastasis of cervical cancer and could be a potential target for curing cervical cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Li Jiang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Nianqun Qin
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Mi Cao
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiujuan Liang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| |
Collapse
|
15
|
Zhang C, Liu J, Wang J, Zhang T, Xu D, Hu W, Feng Z. The Interplay Between Tumor Suppressor p53 and Hypoxia Signaling Pathways in Cancer. Front Cell Dev Biol 2021; 9:648808. [PMID: 33681231 PMCID: PMC7930565 DOI: 10.3389/fcell.2021.648808] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a hallmark of solid tumors and plays a critical role in different steps of tumor progression, including proliferation, survival, angiogenesis, metastasis, metabolic reprogramming, and stemness of cancer cells. Activation of the hypoxia-inducible factor (HIF) signaling plays a critical role in regulating hypoxic responses in tumors. As a key tumor suppressor and transcription factor, p53 responds to a wide variety of stress signals, including hypoxia, and selectively transcribes its target genes to regulate various cellular responses to exert its function in tumor suppression. Studies have demonstrated a close but complex interplay between hypoxia and p53 signaling pathways. The p53 levels and activities can be regulated by the hypoxia and HIF signaling differently depending on the cell/tissue type and the severity and duration of hypoxia. On the other hand, p53 regulates the hypoxia and HIF signaling at multiple levels. Many tumor-associated mutant p53 proteins display gain-of-function (GOF) oncogenic activities to promote cancer progression. Emerging evidence has also shown that GOF mutant p53 can promote cancer progression through its interplay with the hypoxia and HIF signaling pathway. In this review, we summarize our current understanding of the interplay between the hypoxia and p53 signaling pathways, its impact upon cancer progression, and its potential application in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ, United States
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
16
|
Gao X, Yanan J, Santhanam RK, Wang Y, Lu Y, Zhang M, Chen H. Garlic flavonoids alleviate H 2 O 2 induced oxidative damage in L02 cells and induced apoptosis in HepG2 cells by Bcl-2/Caspase pathway. J Food Sci 2021; 86:366-375. [PMID: 33448034 DOI: 10.1111/1750-3841.15599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Liver damage is a common liver disorder, which could induce liver cancer. Oral antioxidant is one of the effective treatments to prevent and alleviate liver damage. In this study, three flavonoids namely myricetin, isoquercitrin, and isorhamnetin were isolated and identified from Laba garlic. The isolated compounds were investigated on the protective effects against H2 O2 -induced oxidative damages in hepatic L02 cells and apoptosis inducing mechanism in hepatic cancer cells HepG2 by using MTT assay, flow cytometry and western blotting analysis. Myricetin, isoquercitrin, and isorhamnetin showed proliferation inhibition on HepG2 cells with IC50 value of 44.32 ± 0.213 µM, 49.68 ± 0.192 µM, and 54.32 ± 0.176 µM, respectively. While they showed low toxicity on normal cell lines L02. They could significantly alleviate the oxidative damage towards L02 cells (P < 0.05), via inhibiting the morphological changes in mitochondria and upholding the integrity of mitochondrial structure and function. The fluorescence intensity of L02 cells pre-treated with myricetin, isoquercitrin, and isorhamnetin (100 µM) was 89.23 ± 1.26%, 89.35 ± 1.43% and 88.97 ± 0.79%, respectively. Moreover, the flavonoids could induce apoptosis in HepG2 cells via Bcl-2/Caspase pathways, where it could up-regulate the expression of Bax and down-regulate the expression of Bcl-2, Bcl-xL, pro-Caspase-3, and pro-Caspase-9 proteins in a dose dependent manner. Overall, the results suggested that the flavonoids from Laba garlic might be a promising candidate for the treatment of various liver disorders. PRACTICAL APPLICATION: Flavonoids from Laba garlic showed selective toxicity towards HepG2 cells in comparison to L02 cells via regulating Bcl-2/caspase pathway. Additionally, the isolated flavonoids expressively barred the oxidative damage induced by H2 O2 in L02 cells. These results suggested that the flavonoids from laba garlic could be a promising agent towards the development of functional foods.
Collapse
Affiliation(s)
- Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Yanan
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, 21030, Malaysia
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yangpeng Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Agricultural University, Tianjin, 300384, P.R. China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
17
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Liu Z, Tian Z, Lv J, Liu W, Ma Y, Hu M, Huang M. Mechanism in bradycardia induced by Trimethyltin chloride: Inhibition activity and expression of Na +/K +-ATPase and apoptosis in myocardia. J Toxicol Sci 2020; 45:549-558. [PMID: 32879254 DOI: 10.2131/jts.45.549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Trimethyltin chloride (TMT) is a stabilizer by-product in the process of manufacturing plastic, which is a kind of very strong toxic substance, and has acute, cumulative and chronic toxicity. TMT may cause bradycardia in patients with occupational poisoning, the mechanism of which has not been reported. This study explored the mechanism of TMT resulting in bradycardia of C57BL/6 mice. TMT was administered to mice to measure heart rate, serum succinate dehydrogenase (SDH) level, and myocardial Na+/K+-ATPase activity and expression. The effects of TMT on myocardial apoptosis were observed by changing the expressions of caspase-3, Bax and Bcl-2 in myocardium. It was found that the heart rate and SDH activity in serum of mice gradually decreased with the increase of TMT dose compared with the control group. The activity and the expression of Na+/K+-ATPase in the heart tissue of mice exposed to TMT was measured and gradually decreased with the increase of dose and time. We measured the expression of Bcl-2, Bax, caspase-3 and cleaved caspase-3 in the heart tissues of TMT exposed mice and found that the expressions of Bax, caspase-3 and cleaved caspase-3 increased and the expressions of Bcl-2 decreased in the heart tissues of the TMT-exposed mice at different doses. With the extension of TMT exposure time, the expression of Bax and caspase-3 increased and the expression of Bcl-2 decreased in the heart tissues of TMT exposed mice. Our findings suggest the mechanisms of TMT resulting in bradycardia may be associated with the inhibited activity and decreased content of Na+/K+-ATPase, thus further leading to the changes of Bcl-2, Bax, caspase-3 and cleaved caspase-3 in the mice's ventricular tissues.
Collapse
Affiliation(s)
- Zhenzhong Liu
- Department of Preventive Medicine, North Sichuan Medical College, China.,Innovative Platform of Basic Medical Sciences, School of Basic Medical Sciences, North Sichuan Medical College, China
| | - Zhiqiang Tian
- School of public health, Shanxi Medical University, China
| | - Jiaqi Lv
- Department of Preventive Medicine, North Sichuan Medical College, China
| | - Wenhu Liu
- School of pharmacy, North Sichuan Medical College, China
| | - Ying Ma
- Department of Preventive Medicine, North Sichuan Medical College, China
| | - Miancai Hu
- Department of Preventive Medicine, North Sichuan Medical College, China
| | - Ming Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, China
| |
Collapse
|
19
|
Lu T, Zhang L, Zhu W, Zhang Y, Zhang S, Wu B, Deng N. CRISPR/Cas9-Mediated OC-2 Editing Inhibits the Tumor Growth and Angiogenesis of Ovarian Cancer. Front Oncol 2020; 10:1529. [PMID: 32984003 PMCID: PMC7492522 DOI: 10.3389/fonc.2020.01529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the leading cancer-related cause of death in women worldwide. It is of great relevance to understand the mechanism responsible for tumor progression and identify unique oncogenesis markers for a higher chance of preventing this malignant disease. The high-expression OC-2 gene has been shown to be a potential candidate for regulating oncogenesis and angiogenesis in ovarian cancer. Hence, we wished to investigate the impact of OC-2 gene on ovarian cancer aggressiveness. CRISPR/Cas9, a gene editing tool, allows for direct ablation of OC-2 at the genomic level, and we successfully generated OC-2 KO cell lines from SKOV3 and CAOV3 cells. In an apoptosis assay, OC-2 KO induced the apoptosis activation of tumor cells, with the up-regulation of Bax/Caspase-8 and the down-regulation of Bcl-2. Consequently, the proliferation, migration, and invasion of OC-2 KO cell lines were significantly inhibited. Assays of qRT-PCR and Western blotting showed that the expression levels of pro-angiogenic growth factors VEGFA, FGF2, HGF, and HIF-1α and the activation of Akt/ERK pathways were significantly down-regulated at the loss of OC-2. In the xenograft model, OC-2 KO potently suppressed the subcutaneous tumor growth, with the inhibition exceeding 56%. The down-regulation of CD31 and relevant pro-angiogenic growth factors were observed in OC-2 KO tumor tissues. Taken together, OC-2 depletion negatively regulated the ovarian cancer progression possibly by apoptosis activation and angiogenesis inhibition. This work revealed a pivotal regulator of apoptosis and angiogenesis networks in ovarian cancer, and we applied the CRISPR/Cas9 system to the transcription factor pathway for developing a broad-acting anti-tumor gene therapy.
Collapse
Affiliation(s)
- Tongyi Lu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Yinmei Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Simin Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Binhua Wu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Shiri E, Abolhassani F, Khosravizadeh Z, Najafi A, Khanezad M, Vazirian M, Fallahi P, Rezaeian Z, Hedayatpour A. Aqueous Origanum vulgare Extract Improves the Quality of Cryopreserved Human Spermatozoa Through Its Antioxidant Effects. Biopreserv Biobank 2020; 18:329-336. [DOI: 10.1089/bio.2020.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Elham Shiri
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Atefeh Najafi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Khanezad
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahdi Vazirian
- Department of Pharmacognosy, School of Pharmacy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Parvin Fallahi
- Department of Infertility, Tehran University of Medical Science, Shariati Hospital, Tehran, Iran
| | - Zahra Rezaeian
- Department of Infertility, Tehran University of Medical Science, Shariati Hospital, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
21
|
Ren Z, Gu X, Fang J, Cai D, Zuo Z, Liang S, Cui H, Deng J, Ma X, Geng Y, Zhang M, Xie Y, Ye G, Gou L, Hu Y. Effect of intranasal instillation of Escherichia coli on apoptosis of spleen cells in diet-induced-obese mice. Sci Rep 2020; 10:5109. [PMID: 32198370 PMCID: PMC7083956 DOI: 10.1038/s41598-020-62044-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/05/2020] [Indexed: 11/09/2022] Open
Abstract
Splenic immune function was enhanced in diet-induced-obese (DIO) mice caused by Escherichia coli. The changes in spleen function on apoptosis were still unknown. Two hundred mice in groups Lean-E. coli and DIO-E. coli were intranasal instillation of E. coli. And another two hundred mice in groups Lean-PBS and DIO-PBS were given phosphate-buffered saline (PBS). Subsequently, spleen histology was analyzed. Then the rates of spleen cell (SC) apoptosis, and expression of the genes and proteins of Bcl-2, Bax, caspase-3 and caspase-9 were quantified in each group at 0 h (uninfected), 12 h, 24 h, and 72 h postinfection. The SC apoptosis rates of the DIO-E. coli groups were lower than those of the DIO-PBS groups at 12, 24 and 72 h (p < 0.05). Anti-apoptotic Bcl-2 expression gene and protein of the DIO-E. coli groups were higher than those of the DIO-PBS groups (p < 0.05). Gene expressions of pro-apoptotic Bax, caspase-3 and caspase-9 of the DIO-E. coli groups were lower than those of DIO-PBS groups at 12, 24 and 72 h (p < 0.05). The SC apoptosis rates of the Lean-E. coli groups were higher than those of the Lean- PBS groups at 12 h and 24 h (p < 0.05). Interestingly, the SC apoptosis rates in the DIO-E. coli groups were lower than those of the Lean-E. coli groups at 12 h (p < 0.05). In conclusion, our results suggested that the DIO mice presented stronger anti-apoptotic abilities than Lean mice in non-fatal acute pneumonia induced by E. coli infection, which is more conducive to protecting the spleen and improving the immune defense ability of the body.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Xuchu Gu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China.
| | - Shuang Liang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Ming Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Yue Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Gang Ye
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
22
|
Lin Z, Jin J, Shan X. Fish oils protects against cecal ligation and puncture‑induced septic acute kidney injury via the regulation of inflammation, oxidative stress and apoptosis. Int J Mol Med 2019; 44:1771-1780. [PMID: 31545434 PMCID: PMC6777667 DOI: 10.3892/ijmm.2019.4337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
Septic acute kidney injury (AKI) is usually caused by sepsis. ω3 fatty acid has been reported to suppress sepsis-induced organ dysfunction to a certain degree. The present study aimed to investigate the effects of ω3 fatty acid in septic renal injury. Sprague Dawley rats were used to establish a cecal ligation and puncture (CLP) model in order to mimic the development of septic injury. The rats were treated with dexamethasone and fish oils (FOs) for 4 days prior to CLP. Alterations in the morphology of the tissues, the renal function and the induction of inflammation, oxidative stress and apoptosis were evaluated. The effects of FOs on nuclear factor-κB (NF-κB), JAK2/STAT3 and p38-MAPK were determined. The rats of the CLP model group exhibited low survival rates and increased expression of serum creatine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin, kidney injury molecule-1 and of proinflammatory cytokines. In addition, the levels of the markers of oxidative injury and apoptosis were increased. The induction of renal injury was notably reversed by administration of dexamethasone and FOs. The expression levels of the protein markers involved in inflammation and apoptosis were measured and the results indicated that FOs inhibited JAK/STAT3 and p-38MAPK signaling, while they concomitantly increased the expression of NF-κB. The present study highlighted that FOs improve CLP-induced mortality and renal injury by inhibiting inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Intensive Care Unit, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong, Yunnan 666100, P.R. China
| | - Jing Jin
- Intensive Care Unit, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong, Yunnan 666100, P.R. China
| | - Xiyun Shan
- Intensive Care Unit, The People's Hospital of Xishuangbanna Dai Nationality Autonomous Prefecture, Jinghong, Yunnan 666100, P.R. China
| |
Collapse
|
23
|
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
The Mitochondrion as an Emerging Therapeutic Target in Cancer. Trends Mol Med 2019; 26:119-134. [PMID: 31327706 DOI: 10.1016/j.molmed.2019.06.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria have emerged as important pharmacological targets because of their key role in cellular proliferation and death. In tumor tissues, mitochondria can switch metabolic phenotypes to meet the challenges of high energy demand and macromolecular synthesis. Furthermore, mitochondria can engage in crosstalk with the tumor microenvironment, and signals from cancer-associated fibroblasts can impinge on mitochondria. Cancer cells can also acquire a hybrid phenotype in which both glycolysis and oxidative phosphorylation (OXPHOS) can be utilized. This hybrid phenotype can facilitate metabolic plasticity of cancer cells more specifically in metastasis and therapy-resistance. In light of the metabolic heterogeneity and plasticity of cancer cells that had until recently remained unappreciated, strategies targeting cancer metabolic dependency appear to be promising in the development of novel and effective cancer therapeutics.
Collapse
|
25
|
Astragalosides IV protected the renal tubular epithelial cells from free fatty acids-induced injury by reducing oxidative stress and apoptosis. Biomed Pharmacother 2018; 108:679-686. [DOI: 10.1016/j.biopha.2018.09.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 01/17/2023] Open
|
26
|
The hypoxia-tolerant vertebrate brain: Arresting synaptic activity. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:61-70. [DOI: 10.1016/j.cbpb.2017.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 01/16/2023]
|
27
|
Flampouri E, Theodosi-Palimeri D, Kintzios S. Strobilurin fungicide kresoxim-methyl effects on a cancerous neural cell line: oxidant/antioxidant responses and in vitro migration. Toxicol Mech Methods 2018; 28:709-716. [PMID: 30064279 DOI: 10.1080/15376516.2018.1506848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this paper we report the effects of the complex III inhibitor, strobilurin fungicide kresoxim-methyl, on the cellular homeostasis of a mammalian cancerous neural cell line. We examined whether exposure to subcytotoxic concentrations of kresoxim-methyl induce cellular and biochemical mechanisms of toxicity on the murine neuroblastoma N2a cells. Results revealed elevation of mitochondrial superoxide generation, decrease in mitochondrial transmembrane potential, losses on GPx enzyme activity, along with increased nitrite release. Fungicide exposure also induced impaired cellular migration. Our findings suggest that kresoxim-methyl, besides targeting the mitochondria in fungi, exerts its mode of action in mammalian cancer cells. Abbreviations: CAT: catalase; DMEM: Dulbecco's modified Eagle's medium; GPx: glutathione peroxidase; KM: kresoxym-methyl; N2a: mouse neuroblastoma cells; NO: nitric oxide.
Collapse
Affiliation(s)
- Evangelia Flampouri
- a Laboratory of Cell Technology, Department of Biotechnology, School of Food, Biotechnology and Development , Agricultural University of Athens , Athens , Greece
| | - Dimitra Theodosi-Palimeri
- a Laboratory of Cell Technology, Department of Biotechnology, School of Food, Biotechnology and Development , Agricultural University of Athens , Athens , Greece
| | - Spyridon Kintzios
- a Laboratory of Cell Technology, Department of Biotechnology, School of Food, Biotechnology and Development , Agricultural University of Athens , Athens , Greece
| |
Collapse
|
28
|
Buege MJ, DiPippo AJ, DiNardo CD. Evolving Treatment Strategies for Elderly Leukemia Patients with IDH Mutations. Cancers (Basel) 2018; 10:E187. [PMID: 29882807 PMCID: PMC6025071 DOI: 10.3390/cancers10060187] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a debilitating and life-threatening condition, especially for elderly patients who account for over 50% of diagnoses. For over four decades, standard induction therapy with intensive cytotoxic chemotherapy for AML had remained unchanged. However, for most patients, standard therapy continues to have its shortcomings, especially for elderly patients who may not be able to tolerate the complications from intensive cytotoxic chemotherapy. New research into the development of targeted and alternative therapies has led to a new era in AML therapy. For the nearly 20% of diagnoses harboring a mutation in isocitrate dehydrogenase 1 or 2 (IDH1/2), potential treatment options have undergone a paradigm shift away from intensive cytotoxic chemotherapy and towards targeted therapy alone or in combination with lower intensity chemotherapy. The first FDA approved IDH2 inhibitor was enasidenib in 2017. In addition, IDH1 inhibitors are in ongoing clinical studies, and the oral BCL-2 inhibitor venetoclax shows preliminary efficacy in this subset of patients. These new tools aim to improve outcomes and change the treatment paradigm for elderly patients with IDH mutant AML. However, the challenge of how to best incorporate these agents into standard practice remains.
Collapse
Affiliation(s)
- Michael J Buege
- Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Adam J DiPippo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Liu D. Effects of procyanidin on cardiomyocyte apoptosis after myocardial ischemia reperfusion in rats. BMC Cardiovasc Disord 2018; 18:35. [PMID: 29439657 PMCID: PMC5812030 DOI: 10.1186/s12872-018-0772-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study is aimed at investigating the effects of procyanidin on cardiomyocyte apoptosis of myocardial ischemia/reperfusion (I/R) injury in rats. METHODS Sprague-Dawley rats were randomly assigned into four groups: control group (normal saline), ischemic group (normal saline), procyanidin low-dose group (procyanidin 50 mg/kg/day) and procyanidin high-dose group (procyanidin 100 mg/kg/day) by intragastric administration for 2 weeks. After last administration, myocardial I/R model was induced by ligating left anterior descending artery for 30 min followed by 120 min of perfusion. The activity of serum creatine kinase mb isoenzyme (CK-MB) was detected after experiment. The content of reactive oxygen species (ROS) was determined by ROS fluorescent probe dihydroethidium; the expressions of p53, Caspase-9, Caspase-3, Bcl-2 and Bax were determined by western blotting; myocardial apoptosis was measured by the method of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. RESULTS Compared with control group, the contents of serum CK-MB, ROS, the expressions of p53, Caspase-9, Caspase-3 and Bax increased significantly in ischemic group, the Bcl-2 expression, Bcl-2/Bax ratio decreased and the cardiomyocyte apoptosis index increased (p < 0.05); compared with ischemic group, the content of CK-MB, ROS, the expressions of p53, Caspase-9, Caspase-3 and Bax decreased, the Bcl-2 expression, Bcl-2/Bax ratio increased and the cardiomyocyte apoptosis index decreased in procyanidin group (p < 0.05). CONCLUSIONS Procyanidin can reduce cardiomyocyte apoptosis after I/R. This beneficial effect is partially dependant on decreased ROS, p53, Caspase-9, Caspase-3 and Bax, as well as increased Bcl-2 and Bcl-2/Bax ratio.
Collapse
Affiliation(s)
- Dan Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Jinzhou Medical University, Renmin Street, Jinzhou, Liaoning Province, 121000, China.
| |
Collapse
|
30
|
Yang GL, Jia LQ, Wu J, Ma YX, Cao HM, Song N, Zhang N. Effect of tanshinone IIA on oxidative stress and apoptosis in a rat model of fatty liver. Exp Ther Med 2017; 14:4639-4646. [PMID: 29201162 PMCID: PMC5704301 DOI: 10.3892/etm.2017.5162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/14/2017] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress is a crucial factor associated with fatty liver disease, which raises the possibility of using antioxidants to improve liver steatosis. Tanshinone IIA (TSIIA) is a traditional Chinese medicine that has been reported to have antioxidant effects in vitro. The present study aimed to investigate whether TSIIA possesses antioxidant effects in vivo and whether TSIIA was able to improve liver steatosis. Hence, the ability of TSIIA to protect rats from liver disease was explored, particularly in regard to antioxidant activity. Rats were fed a high-lipid diet for 90 days, causing severe liver steatosis, both morphologically and biochemically. An increase in reactive oxygen species (ROS) in the liver was exhibited in addition to significantly elevated serum lipids and malondialdehyde (MDA). Furthermore, hepatocyte apoptosis was measured by Hoechst staining, reverse transcription-quantitative polymerase chain reaction and western blot analysis and an increase in hepatocyte apoptosis rate was indicated in mice on a high-fat diet. Following intraperitoneal injection of TSIIA (10 mg/kg/day), liver steatosis was significantly inhibited. In rats receiving TSIIA treatment, less ROS were indicated in the liver and significantly decreased levels of MDA (P<0.05) in serum were exhibited, whereas significantly increased activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) were observed (P<0.05 and P<0.01, respectively). In addition, the rate of hepatocyte apoptosis was significantly decreased in the TSIIA group (P<0.01). However, TSIIA elicited no effect on serum lipid profiles. These results suggest that TSIIA attenuates oxidative stress by decreasing ROS and MDA production and enhancing the activity of T-SOD and GSH-PX, which may contribute to the inhibition of apoptosis and amelioration of liver steatosis.
Collapse
Affiliation(s)
- Guan-Lin Yang
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Jin Wu
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Yi-Xin Ma
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Hui-Min Cao
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Nan Song
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Ni Zhang
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| |
Collapse
|
31
|
Kavanagh S, Murphy T, Law A, Yehudai D, Ho JM, Chan S, Schimmer AD. Emerging therapies for acute myeloid leukemia: translating biology into the clinic. JCI Insight 2017; 2:95679. [PMID: 28931762 PMCID: PMC5621868 DOI: 10.1172/jci.insight.95679] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a poor outcome; overall survival is approximately 35% at two years and some subgroups have a less than 5% two-year survival. Recently, significant improvements have been made in our understanding of AML biology and genetics. These fundamental discoveries are now being translated into new therapies for this disease. This review will discuss recent advances in AML biology and the emerging treatments that are arising from biological studies. Specifically, we will consider new therapies that target molecular mutations in AML and dysregulated pathways such as apoptosis and mitochondrial metabolism. We will also discuss recent advances in immune and cellular therapy for AML.
Collapse
|
32
|
Pasha R, Moon TW. Coenzyme Q10 protects against statin-induced myotoxicity in zebrafish larvae (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:150-160. [PMID: 28414942 DOI: 10.1016/j.etap.2017.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the rate-limiting enzyme of the mevalonic acid pathway and is required for cholesterol biosynthesis and the synthesis of Coenzyme Q10 (CoQ10). Statins inhibit HMGCR, thus inhibiting the downstream products of this pathway including the biosynthesis of decaprenyl-pyrophosphate that is critical for the synthesis of Coenzyme Q10 (CoQ10). We show that zebrafish (Danio rerio) larvae treated in tank water with Atorvastatin (ATV; Lipitor) exhibited movement alterations and reduced whole body tissue metabolism. The ATV-inhibition of HMGCR function altered transcript abundance of muscle atrophy markers (atrogen-1, murf) and the mitochondrial biogenesis marker (pgc-1α). Furthermore, ATV-induced reduction in larval response to tactile stimuli was reversed with treatment of CoQ10. Together, the implication of our results contributes to the understanding of the mechanisms of action of the statin-induced damage in this model fish species.
Collapse
Affiliation(s)
- Rand Pasha
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Thomas W Moon
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5.
| |
Collapse
|
33
|
Kim JH, Lee DK, Kim J, Choi S, Park W, Ha KS, Kim TH, Choe J, Won MH, Kwon YG, Kim YM. A miRNA-101-3p/Bim axis as a determinant of serum deprivation-induced endothelial cell apoptosis. Cell Death Dis 2017; 8:e2808. [PMID: 28518140 PMCID: PMC5520733 DOI: 10.1038/cddis.2017.219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Serum deprivation or withdrawal induces apoptosis in endothelial cells, resulting in endothelial cell dysfunction that is associated with cardiovascular disease. However, there is still limited information on the role of miRNA in serum deprivation-induced apoptosis. Here we found that serum deprivation increased caspase-dependent apoptosis through miRNA-101-3p downregulation, without altering expression of its host gene RNA 3′-terminal phosphate cyclase-like 1, which was highly correlated with suppressed expression levels of Dicer and Argonaute 2 (Ago2), indicating that miR-101-3p is post-transcriptionally elevated in serum-deprived conditions. The decreased miR-101-3p caused elevated Bim expression by targeting its 3′-untranslated region (3′-UTR). This resulted in activation of the intrinsic pathway of apoptosis via interaction with Bcl-2, decreased mitochondrial membrane potential, cytochrome c release, mitochondrial reactive oxygen species (ROS) production, and caspase activation. These events were abrogated by miR-101-3p mimic and the proapoptotic Bim siRNA, which suggest a determinant role of the miR-101-3p/Bim axis in serum deprivation-induced apoptosis. The apoptosis induced by miR-101-3p-mediated Bim expression is mediated by both caspase-3 and -1, which are activated by two distinct intrinsic mechanisms, cytochrome c release and ROS-induced inflammasome activation, respectively. In other words, the antioxidant inhibited endothelial cell death mediated by caspase-1 that activated caspase-7, but not caspase-3. These findings provide mechanistic insight into a novel function of miR-101-3p in serum withdrawal-induced apoptosis triggered by activating two different intrinsic or mitochondrial apoptosis pathways, implicating miR-101-3p as a therapeutic target that limits endothelial cell death associated with vascular disorders.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Dong-Keon Lee
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Joohwan Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Seunghwan Choi
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Wonjin Park
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Tae-Hoon Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jongseon Choe
- Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
34
|
Abstract
BACKGROUND Oxygen (O2) homeostasis is an indispensable requirement of eukaryotes. O2 concentration in cellular milieu is defined as normoxia (∼21% O2), physoxia (∼1-13% O2) or hypoxia (∼0.1-1% O2). Hypoxia, a striking micro-environmental feature in tumorigenesis, is countered by tumor cells via induction of O2 governed transcription factor, hypoxia inducible factor-1 (HIF-1). Post discovery, HIF-1 has emerged as a promising anticancer therapeutic target during the last two decades. Recent reports have highlighted that enhanced levels of HIF-1 correlate with tumor metastasis leading to poor patient prognosis. MATERIAL AND METHODS A systematic search in PubMed and SciFinder for the literature on HIF-1 biology and therapeutic importance in cancer was carried out. RESULTS This review highlights the initial description as well as the recent insights into HIF-1 biology and regulation. We have focused on emerging data regarding varied classes of HIF-1 target genes affecting various levels of crosstalk among tumorigenic pathways. We have emphasized on the fact that HIF-1 acts as a networking hub coordinating activities of multiple signaling molecules influencing tumorigenesis. Emerging evidences indicate role of many HIF-induced proteomic and genomic alterations in malignant progression by mediating a myriad of genes stimulating angiogenesis, anaerobic metabolism and survival of cancer cells in O2-deficient microenvironment. CONCLUSIONS Better understanding of the crucial role of HIF-1 in carcinogenesis could offer promising new avenues to researchers and aid in elucidating various open issues regarding the use of HIF-1 as an anticancer therapeutic target. In spite of large efforts in this field, many questions still remain unanswered. Hence, future investigations are necessary to devise, assess and refine methods for translating previous research efforts into novel clinical practices in cancer treatment.
Collapse
Affiliation(s)
- Sourabh Soni
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Yogendra S. Padwad
- Pharmacology and Toxicology Lab, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
35
|
Yan T, Zhang J, Tang D, Zhang X, Jiang X, Zhao L, Zhang Q, Zhang D, Huang Y. Hypoxia Regulates mTORC1-Mediated Keratinocyte Motility and Migration via the AMPK Pathway. PLoS One 2017; 12:e0169155. [PMID: 28068384 PMCID: PMC5221764 DOI: 10.1371/journal.pone.0169155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/13/2016] [Indexed: 01/06/2023] Open
Abstract
Keratinocyte migration, the initial event and rate-limiting step in wound healing, plays a vital role in restoration of the intact skin barrier, also known as re-epithelialization. After acute tissue injury, hypoxic microenvironment gradually develops and acts as an early stimulus to initiate the healing process. Although we have previously found that hypoxia induces keratinocyte migration, the underlying mechanism remains unknown. Here, we first observed that hypoxia increased mTORC1 activity. Recombinant lentivirus vector and Rapamycin were used for silencing mTORC1 in HaCaT cells and primary mouse keratinocytes (MKs). Using cell migration assay and a Zeiss chamber equipped with imaging system, we also demonstrated that mTORC1 downregulation reversed hypoxia-induced keratinocyte motility and lateral migration. Importantly, hypoxia-activated mTORC1 was accompanied by the AMPK downregulation, and we found that the AMPK pathway activators Metformin (Met) and 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) decreased the mTORC1 activity, cell motility and lateral migration. Thus, our results suggest that hypoxia regulates mTORC1-mediated keratinocyte motility and migration via the AMPK pathway.
Collapse
Affiliation(s)
- Tiantian Yan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Di Tang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xingyue Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liping Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
36
|
Flampouri E, Mavrikou S, Mouzaki-Paxinou AC, Kintzios S. Alterations of cellular redox homeostasis in cultured fibroblast-like renal cells upon exposure to low doses of cytochrome bc1 complex inhibitor kresoxim-methyl. Biochem Pharmacol 2016; 113:97-109. [DOI: 10.1016/j.bcp.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022]
|
37
|
Frustaci AM, Montillo M, Picardi P, Mazzucchelli M, Cairoli R, Tedeschi A. Paving the way for new agents; is standard chemotherapy part of the treatment paradigm for chronic lymphocytic leukemia in the future? Expert Rev Hematol 2016; 9:679-93. [DOI: 10.1080/17474086.2016.1191943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Maria Frustaci
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Marco Montillo
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Paola Picardi
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Maddalena Mazzucchelli
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Roberto Cairoli
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Alessandra Tedeschi
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Piazza Ospedale Maggiore 3, Milano, Italy
| |
Collapse
|
38
|
Valproic acid–mediated myocardial protection of acute hemorrhagic rat via the BCL-2 pathway. J Trauma Acute Care Surg 2016; 80:812-8. [DOI: 10.1097/ta.0000000000000987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Cang S, Iragavarapu C, Savooji J, Song Y, Liu D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J Hematol Oncol 2015; 8:129. [PMID: 26589495 PMCID: PMC4654800 DOI: 10.1186/s13045-015-0224-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022] Open
Abstract
With the advent of new agents targeting CD20, Bruton's tyrosine kinase, and phosphoinositol-3 kinase for chronic lymphoid leukemia (CLL), more treatment options exist than ever before. B-cell lymphoma-2 (BCL-2) plays a major role in cellular apoptosis and is a druggable target. Small molecule inhibitors of BCL-2 are in active clinical studies. ABT-199 (venetoclax, RG7601, GDC-0199) has been granted breakthrough designation by FDA for relapsed or refractory CLL with 17p deletion. In this review, we summarized the latest clinical development of ABT-199/venetoclax and other novel agents targeting the BCL-2 proteins.
Collapse
Affiliation(s)
- Shundong Cang
- Department of Oncology, The Henan Province People's Hospital, Zhengzhou, China
| | - Chaitanya Iragavarapu
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, New York, 10595, USA
| | - John Savooji
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, New York, 10595, USA
| | - Yongping Song
- Henan Cancer Hospital and the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Delong Liu
- Henan Cancer Hospital and the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
40
|
Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway? Mediators Inflamm 2015; 2015:584758. [PMID: 26491231 PMCID: PMC4600544 DOI: 10.1155/2015/584758] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/28/2014] [Indexed: 12/14/2022] Open
Abstract
Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.
Collapse
|
41
|
Wang LY, Li X, Han YZ. Neuroprotection by epigallo catechin gallate against bupivacaine anesthesia induced toxicity involves modulation of PI3/Akt/PTEN signalling in N2a and SH-SY5Y cells. Int J Clin Exp Med 2015; 8:15065-15075. [PMID: 26628990 PMCID: PMC4658879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Bupivacaine, an amide type long-acting local anaesthetic is commonly employed for epidural anesthesia and as well for nerve blockades. However, studies have shown neurotoxicity following local administration of bupivacaine raising concerns over the use of the drug. Compounds that could minimize or inhibit toxic effects of bupivacaine are of high value in operative settings and in pain management. The present study aims to investigate if epigallo catechin gallate (EGCG) could inhibit or prevent bupivacaine toxicity in neuroblastoma cells (N2a and SH-SY5Y). The viability of N2a and SH-SY5Y cells following exposure to EGCG (10-50 µM) were assessed by MTT assay and Annexin V/PI staining. The influence of EGCG on ROS generation was determined. The expression of apoptotic cascade proteins (Caspases-3, -8 and -9, Bcl-xL, Bad, Bax, Bcl-2) and PI3/Akt pathway proteins (Akt, p-Akt, GSK-3β, p-GSK-3β, PTEN) were analyzed by western blotting. EGCG improved the viability of the cells and inhibited apoptosis by potentially decreasing the expression of caspases and pro-apoptotic proteins. Bupivacaine induced ROS generations were reduced on EGCG exposure. EGCG significantly promoted the phosphorylation of Akt and GSK-3β and down-regulated PTEN, thus activating PI3/Akt signalling. EGCG effectively improved the cell viability and inhibited apoptosis of N2a and SH-SY5Y cells via suppression of ROS generation and modulation of PI3K/Akt signalling cascade.
Collapse
Affiliation(s)
- Li-Yan Wang
- Department of Pediatric Surgery, Linyi People's Hospital Linyi 276003, Shandong, China
| | - Xia Li
- Department of Pediatric Surgery, Linyi People's Hospital Linyi 276003, Shandong, China
| | - Yu-Zeng Han
- Department of Pediatric Surgery, Linyi People's Hospital Linyi 276003, Shandong, China
| |
Collapse
|
42
|
Oxidative Stress and Lung Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:590987. [PMID: 26161240 PMCID: PMC4487720 DOI: 10.1155/2015/590987] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Ischemia-reperfusion (IR) injury is directly related to the formation of reactive oxygen species (ROS), endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.
Collapse
|
43
|
Huangzhi Oral Liquid Prevents Arrhythmias by Upregulating Caspase-3 and Apoptosis Network Proteins in Myocardial Ischemia-Reperfusion Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:518926. [PMID: 26074995 PMCID: PMC4449909 DOI: 10.1155/2015/518926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/07/2014] [Indexed: 01/18/2023]
Abstract
To study the effect of Huangzhi oral liquid (HZOL) on I/R after 2 h and 4 h and determine its regulatory function on caspase-3 and protein networks. 70 SD male rats were randomly divided into seven groups and established myocardial I/R injury model by ligating the left anterior descending coronary artery. Myocardial infarction model was defined by TTC staining and color of the heart. The levels of CK-MB, CTnI, C-RPL, SOD, and MDA were tested at 2 h and 4 h after reperfusion. HE staining and ultramicrostructural were used to observe the pathological changes. The apoptotic index (AI) of cardiomyocyte was marked by TUNEL. The expression levels of caspase-3, p53, fas, Bcl-2, and Bax were tested by immunohistochemistry and western blot. HZOL corrected arrhythmia, improved the pathologic abnormalities, decreased CK-MB, CTnI, C-RPL, MDA, AI, caspase-3, p53, fas, and Bax, and increased SOD ans Bcl-2 with different times of myocardial reperfusion; this result was similar to the ISMOC (P > 0.05). HZOL could inhibit arrhythmia at 2 and 4 h after I/R and ameliorate cardiac function, which was more significant at 4 h after reperfusion. This result may be related to decreased expression of caspase-3, p53, and fas and increased Bcl-2/Bax ratio.
Collapse
|
44
|
Saito S, Lin YC, Tsai MH, Lin CS, Murayama Y, Sato R, Yokoyama KK. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells. Kaohsiung J Med Sci 2015; 31:279-86. [PMID: 26043406 DOI: 10.1016/j.kjms.2015.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic organisms require oxygen homeostasis to maintain proper cellular function for survival. During conditions of low oxygen tension (hypoxia), cells activate the transcription of genes that induce an adaptive response, which supplies oxygen to tissues. Hypoxia and hypoxia-inducible factors (HIFs) may contribute to the maintenance of putative cancer stem cells, which can continue self-renewal indefinitely and express stemness genes in hypoxic stress environments (stem cell niches). Reactive oxygen species (ROS) have long been recognized as toxic by-products of aerobic metabolism that are harmful to living cells, leading to DNA damage, senescence, or cell death. HIFs may promote a cancer stem cell state, whereas the loss of HIFs induces the production of cellular ROS and activation of proteins p53 and p16(Ink4a), which lead to tumor cell death and senescence. ROS seem to inhibit HIF regulation in cancer cells. By contrast, controversial data have suggested that hypoxia increases the generation of ROS, which prevents hydroxylation of HIF proteins by inducing their transcription as negative feedback. Moreover, hypoxic conditions enhance the generation of induced pluripotent stem cells (iPSCs). During reprogramming of somatic cells into a PSC state, cells attain a metabolic state typically observed in embryonic stem cells (ESCs). ESCs and iPSCs share similar bioenergetic metabolisms, including decreased mitochondrial number and activity, and induced anaerobic glycolysis. This review discusses the current knowledge regarding the emerging roles of ROS homeostasis in cellular reprogramming and the implications of hypoxic regulation in cancer development.
Collapse
Affiliation(s)
- Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, Japan
| | - Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Ho Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Ryuji Sato
- SPK Co., Ltd., Aizuwakamatsu, Fukushima, Japan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
45
|
Radhakrishnan J, Bazarek S, Chandran B, Gazmuri RJ. Cyclophilin-D: a resident regulator of mitochondrial gene expression. FASEB J 2015; 29:2734-48. [PMID: 25837584 DOI: 10.1096/fj.14-263855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/25/2015] [Indexed: 12/11/2022]
Abstract
Cyclophilin-D (Cyp-D) is a mitochondrial matrix peptidyl-prolyl isomerase. Because cyclophilins can regulate nuclear gene expression, we examined whether Cyp-D could regulate mitochondrial gene expression. We demonstrated in HEK 293T cells that transfected Cyp-D interacts with mitochondrial transcription factors B1 and B2 (TFB2M) but not with mitochondrial transcription factor A. We also demonstrated that Cyp-D interacts in vivo with TFB2M. Genetic silencing of Cyp-D and pharmacologic inhibition of Cyp-D markedly reduced mitochondrial transcription to 18 ± 5% (P < 0.05) and 24 ± 3% (P < 0.05) of respective controls. The level of interaction between Cyp-D and TFB2M correlated with the level of nascent mitochondrial RNA intensity (r = 0.896; P = 0.0156). Cyp-D silencing down-regulated mitochondrial transcripts initiated from the heavy strand promoter 2 [i.e., NADH dehydrogenase 1 (ND1) by 11-fold, P < 0.005; cytochrome oxidase 1 (COX1) by 4-fold, P < 0.001; and ATP synthase subunit 6 (ATP6) by 6.5-fold, P < 0.005); but not NADH dehydrogenase 6 (ND6)], which is initiated from the light strand promoter. Cyp-D silencing reduced mitochondrial membrane potential and cellular oxygen consumption (from 59 ± 5 to 34 ± 1 µmol oxygen/min/10(6) cells, P < 0.001); the latter without a statistically significant reversal after uncoupling electron transport from ATP synthesis, consistent with down-regulation of electron transport complexes. Accordingly, these studies provide novel evidence that Cyp-D could play a key role in regulating mitochondrial gene expression.
Collapse
Affiliation(s)
- Jeejabai Radhakrishnan
- *Department of Medicine and Resuscitation Institute, Center for Stem Cell and Regenerative Medicine, Department of Neuroscience, and H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA; and Captain James A. Lovell Federal Health Care Center, North Chicago, Illinois, USA
| | - Stanley Bazarek
- *Department of Medicine and Resuscitation Institute, Center for Stem Cell and Regenerative Medicine, Department of Neuroscience, and H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA; and Captain James A. Lovell Federal Health Care Center, North Chicago, Illinois, USA
| | - Bala Chandran
- *Department of Medicine and Resuscitation Institute, Center for Stem Cell and Regenerative Medicine, Department of Neuroscience, and H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA; and Captain James A. Lovell Federal Health Care Center, North Chicago, Illinois, USA
| | - Raúl J Gazmuri
- *Department of Medicine and Resuscitation Institute, Center for Stem Cell and Regenerative Medicine, Department of Neuroscience, and H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA; and Captain James A. Lovell Federal Health Care Center, North Chicago, Illinois, USA
| |
Collapse
|
46
|
Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S, Hong WJ, Zhao F, Medeiros BC, Tyvoll DA, Majeti R. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med 2015; 21:178-84. [PMID: 25599133 DOI: 10.1038/nm.3788] [Citation(s) in RCA: 467] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
Mutant isocitrate dehydrogenase (IDH) 1 and 2 proteins alter the epigenetic landscape in acute myeloid leukemia (AML) cells through production of the oncometabolite (R)-2-hydroxyglutarate (2-HG). Here we performed a large-scale RNA interference (RNAi) screen to identify genes that are synthetic lethal to the IDH1(R132H) mutation in AML and identified the anti-apoptotic gene BCL-2. IDH1- and IDH2-mutant primary human AML cells were more sensitive than IDH1/2 wild-type cells to ABT-199, a highly specific BCL-2 inhibitor that is currently in clinical trials for hematologic malignancies, both ex vivo and in xenotransplant models. This sensitization effect was induced by (R)-2-HG-mediated inhibition of the activity of cytochrome c oxidase (COX) in the mitochondrial electron transport chain (ETC); suppression of COX activity lowered the mitochondrial threshold to trigger apoptosis upon BCL-2 inhibition. Our findings indicate that IDH1/2 mutation status may identify patients that are likely to respond to pharmacologic BCL-2 inhibition and form the rational basis for combining agents that disrupt ETC activity with ABT-199 in future clinical studies.
Collapse
Affiliation(s)
- Steven M Chan
- 1] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA. [2] Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Thomas
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - M Ryan Corces-Zimmerman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Seethu Xavy
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Suchita Rastogi
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Wan-Jen Hong
- 1] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA. [2] Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Feifei Zhao
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Bruno C Medeiros
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David A Tyvoll
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Ravindra Majeti
- 1] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA. [2] Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
47
|
Gong LL, Wang ZH, Li GR, Liu LH. Protective effects of Akebia saponin D against rotenone-induced hepatic mitochondria dysfunction. J Pharmacol Sci 2014; 126:243-52. [PMID: 25319614 DOI: 10.1254/jphs.14135fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Akebia saponin D (ASD) is a typical bioactive triterpenoid saponin obtained from the rhizome of Dipsacus asper Wall. Previous studies have found that ASD has a hepatoprotective effect in a mouse model. The purpose of this paper was to explore the molecular mechanism of the hepatoprotective effects of ASD on BRL cells and isolated rat liver mitochondria. We investigated the effects of ASD on rotenone-induced toxicity in BRL cells. The results showed that ASD inhibited the accumulation of reactive oxidant species, ATP deficiency, and mitochondrial membrane potential dissipation; ameliorates mitochondrial respiratory dysfunction, and improved the activity of complex I in a concentration-dependent manner, indicating that ASD likely improved mitochondrial function. ASD suppressed rotenone-induced BRL cell apoptosis and increased Bcl-2/Bax ratio. These results suggest that ASD may exert hepatoprotective effects against rotenone-induced toxicity through mitochondria. This study supports our previous research that ASD possesses hepatoprotective activity in vivo and it is worthy of further study.
Collapse
Affiliation(s)
- Li-li Gong
- Beijing Chao-Yang Hospital, Capital Medical University, China
| | | | | | | |
Collapse
|
48
|
Khalifeh S, Oryan S, Digaleh H, Shaerzadeh F, Khodagholi F, Maghsoudi N, Zarrindast MR. Involvement of Nrf2 in development of anxiety-like behavior by linking Bcl2 to oxidative phosphorylation: estimation in rat hippocampus, amygdala, and prefrontal cortex. J Mol Neurosci 2014; 55:492-9. [PMID: 25007950 DOI: 10.1007/s12031-014-0370-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/30/2014] [Indexed: 12/27/2022]
Abstract
Anxiety-related disorders are complex illnesses that underlying molecular mechanisms of these complicated emotional disorders are poorly understood. Nuclear factor erythroid 2-related factor 2 (Nrf2) is the most important regulator of the antioxidant defense system. Its protective actions are not only limited to antioxidative transactivation, but also plays important roles in encountering various physiological and pathological stresses. In this study, we evaluated whether silencing of Nrf2 plays a role in development of anxiety-related behavior. In this regard, we exerted small interfering RNA (siRNA) targeting Nrf2 in dorsal third ventricle and subsequently examined the effect of this silencing on anxiety-related behavior along with supposed molecular mechanisms. Therefore, we evaluated apoptotic markers and mitochondrial electron transport chain (ETC) activity in three brain regions: hippocampus, amygdala, and prefrontal cortex. Based on our result, Nrf2-silenced rats exhibited greater anxiety-like behavior compared to control group. Furthermore, Nrf2 silencing increased activity of ETC complexes. Also, Bax/Bcl2 ratio of all mentioned areas of the brain and cleavage of caspase-3 in hippocampus increased in Nrf2 silenced group, however, with a distinct pattern.
Collapse
Affiliation(s)
- Solmaz Khalifeh
- Department of Animal Physiology, Faculty of Biology, Kharazmi (Tarbiat Moallem) University, Tehran, Iran,
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Decreased oxygen availability impairs cellular energy production and, without a coordinated and matched decrease in energy consumption, cellular and whole organism death rapidly ensues. Of particular interest are mechanisms that protect brain from low oxygen injury, as this organ is not only the most sensitive to hypoxia, but must also remain active and functional during low oxygen stress. As a result of natural selective pressures, some species have evolved molecular and physiological mechanisms to tolerate prolonged hypoxia with no apparent detriment. Among these mechanisms are a handful of responses that are essential for hypoxia tolerance, including (i) sensors that detect changes in oxygen availability and initiate protective responses; (ii) mechanisms of energy conservation; (iii) maintenance of basic brain function; and (iv) avoidance of catastrophic cell death cascades. As the study of hypoxia-tolerant brain progresses, it is becoming increasingly apparent that mitochondria play a central role in regulating all of these critical mechanisms. Furthermore, modulation of mitochondrial function to mimic endogenous neuroprotective mechanisms found in hypoxia-tolerant species confers protection against otherwise lethal hypoxic stresses in hypoxia-intolerant organs and organisms. Therefore, lessons gleaned from the investigation of endogenous mechanisms of hypoxia tolerance in hypoxia-tolerant organisms may provide insight into clinical pathologies related to low oxygen stress.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Zoology, The University of British Columbia, #4200-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
50
|
Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X, Slocum KL, Pu M, Lin F, Vickers C, Joud-Caldwell C, Chung F, Yin H, Handly ED, Straub C, Growney JD, Vander Heiden MG, Murphy AN, Pagliarini R, Metallo CM. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res 2014; 74:3317-31. [PMID: 24755473 PMCID: PMC4885639 DOI: 10.1158/0008-5472.can-14-0772-t] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.
Collapse
Affiliation(s)
- Alexandra R Grassian
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Seth J Parker
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Shawn M Davidson
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Ajit S Divakaruni
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Courtney R Green
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Xiamei Zhang
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Kelly L Slocum
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Minying Pu
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Fallon Lin
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Chad Vickers
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Carol Joud-Caldwell
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Franklin Chung
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Hong Yin
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Erika D Handly
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Christopher Straub
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Joseph D Growney
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Matthew G Vander Heiden
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, CaliforniaAuthors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Anne N Murphy
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Raymond Pagliarini
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Christian M Metallo
- Authors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, CaliforniaAuthors' Affiliations: Novartis Institutes for Biomedical Research; Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Departments of Bioengineering and Pharmacology; and Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|