1
|
Liu YB, Wang Q, Song YL, Song XM, Fan YC, Kong L, Zhang JS, Li S, Lv YJ, Li ZY, Dai JY, Qiu ZK. Abnormal phosphorylation / dephosphorylation and Ca 2+ dysfunction in heart failure. Heart Fail Rev 2024; 29:751-768. [PMID: 38498262 DOI: 10.1007/s10741-024-10395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ current through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
- Medical College, Qingdao University, Qingdao, China
| | - Qian Wang
- Medical College, Qingdao University, Qingdao, China
| | - Yu-Ling Song
- Department of Pediatrics, Huantai County Hospital of Traditional Chinese Medicine, Zibo, China
| | | | - Yu-Chen Fan
- Medical College, Qingdao University, Qingdao, China
| | - Lin Kong
- Medical College, Qingdao University, Qingdao, China
| | | | - Sheng Li
- Medical College, Qingdao University, Qingdao, China
| | - Yi-Ju Lv
- Medical College, Qingdao University, Qingdao, China
| | - Ze-Yang Li
- Medical College, Qingdao University, Qingdao, China
| | - Jing-Yu Dai
- Department of Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Zhen-Kang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
2
|
Sun X, Tang X, Qiu H. Cardiac-Specific Suppression of Valosin-Containing Protein Induces Progressive Heart Failure and Premature Mortality Correlating with Temporal Dysregulations in mTOR Complex 2 and Protein Phosphatase 1. Int J Mol Sci 2024; 25:6445. [PMID: 38928151 PMCID: PMC11203954 DOI: 10.3390/ijms25126445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Valosin-containing protein (VCP), an ATPase-associated protein, is emerging as a crucial regulator in cardiac pathologies. However, the pivotal role of VCP in the heart under physiological conditions remains undetermined. In this study, we tested a hypothesis that sufficient VCP expression is required for cardiac development and physiological cardiac function. Thus, we generated a cardiac-specific VCP knockout (KO) mouse model and assessed the consequences of VCP suppression on the heart through physiological and molecular studies at baseline. Our results reveal that homozygous KO mice are embryonically lethal, whereas heterozygous KO mice with a reduction in VCP by ~40% in the heart are viable at birth but progressively develop heart failure and succumb to mortality at the age of 10 to 12 months. The suppression of VCP induced a selective activation of the mammalian target of rapamycin complex 1 (mTORC1) but not mTORC2 at the early age of 12 weeks. The prolonged suppression of VCP increased the expression (by ~2 folds) and nuclear translocation (by >4 folds) of protein phosphatase 1 (PP1), a key mediator of protein dephosphorylation, accompanied by a remarked reduction (~80%) in AKTSer473 phosphorylation in VCP KO mouse hearts at a later age but not the early stage. These temporal molecular alterations were highly associated with the progressive decline in cardiac function. Overall, our findings shed light on the essential role of VCP in the heart under physiological conditions, providing new insights into molecular mechanisms in the development of heart failure.
Collapse
Affiliation(s)
- Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
| | - Xicong Tang
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.S.); (X.T.)
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
- Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Kho C. Targeting calcium regulators as therapy for heart failure: focus on the sarcoplasmic reticulum Ca-ATPase pump. Front Cardiovasc Med 2023; 10:1185261. [PMID: 37534277 PMCID: PMC10392702 DOI: 10.3389/fcvm.2023.1185261] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Impaired myocardial Ca2+ cycling is a critical contributor to the development of heart failure (HF), causing changes in the contractile function and structure remodeling of the heart. Within cardiomyocytes, the regulation of sarcoplasmic reticulum (SR) Ca2+ storage and release is largely dependent on Ca2+ handling proteins, such as the SR Ca2+ ATPase (SERCA2a) pump. During the relaxation phase of the cardiac cycle (diastole), SERCA2a plays a critical role in transporting cytosolic Ca2+ back to the SR, which helps to restore both cytosolic Ca2+ levels to their resting state and SR Ca2+ content for the next contraction. However, decreased SERCA2a expression and/or pump activity are key features in HF. As a result, there is a growing interest in developing therapeutic approaches to target SERCA2a. This review provides an overview of the regulatory mechanisms of the SERCA2a pump and explores potential strategies for SERCA2a-targeted therapy, which are being investigated in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Changwon Kho
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
4
|
Subramanian H, Nikolaev VO. A-Kinase Anchoring Proteins in Cardiac Myocytes and Their Roles in Regulating Calcium Cycling. Cells 2023; 12:cells12030436. [PMID: 36766777 PMCID: PMC9913689 DOI: 10.3390/cells12030436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The rate of calcium cycling and calcium transient amplitude are critical determinants for the efficient contraction and relaxation of the heart. Calcium-handling proteins in the cardiac myocyte are altered in heart failure, and restoring the proper function of those proteins is an effective potential therapeutic strategy. The calcium-handling proteins or their regulators are phosphorylated by a cAMP-dependent kinase (PKA), and thereby their activity is regulated. A-Kinase Anchoring Proteins (AKAPs) play a seminal role in orchestrating PKA and cAMP regulators in calcium handling and contractile machinery. This cAMP/PKA orchestration is crucial for the increased force and rate of contraction and relaxation of the heart in response to fight-or-flight. Knockout models and the few available preclinical models proved that the efficient targeting of AKAPs offers potential therapies tailor-made for improving defective calcium cycling. In this review, we highlight important studies that identified AKAPs and their regulatory roles in cardiac myocyte calcium cycling in health and disease.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Correspondence: (H.S.); (V.O.N.); Tel.: +49(0)40-7410-57383 (V.O.N.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Correspondence: (H.S.); (V.O.N.); Tel.: +49(0)40-7410-57383 (V.O.N.)
| |
Collapse
|
5
|
Carlson CR, Aronsen JM, Bergan-Dahl A, Moutty MC, Lunde M, Lunde PK, Jarstadmarken H, Wanichawan P, Pereira L, Kolstad TRS, Dalhus B, Subramanian H, Hille S, Christensen G, Müller OJ, Nikolaev V, Bers DM, Sjaastad I, Shen X, Louch WE, Klussmann E, Sejersted OM. AKAP18δ Anchors and Regulates CaMKII Activity at Phospholamban-SERCA2 and RYR. Circ Res 2022; 130:27-44. [PMID: 34814703 PMCID: PMC9500498 DOI: 10.1161/circresaha.120.317976] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.
Collapse
Affiliation(s)
- Cathrine R. Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo Norway,Department of Pharmacology, Oslo University Hospital, Norway
| | - Anna Bergan-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Marie Christine Moutty
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Hilde Jarstadmarken
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pimthanya Wanichawan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Laetitia Pereira
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Terje RS Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Bjørn Dalhus
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway,Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Susanne Hille
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany,Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Oliver J. Müller
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany,Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Donald M. Bers
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ole M. Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,The KG Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Function and regulation of phosphatase 1 in healthy and diseased heart. Cell Signal 2021; 90:110203. [PMID: 34822978 DOI: 10.1016/j.cellsig.2021.110203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Reversible phosphorylation of ion channels and calcium-handling proteins provides precise post-translational regulation of cardiac excitation and contractility. Serine/threonine phosphatases govern dephosphorylation of the majority of cardiac proteins. Accordingly, dysfunction of this regulation contributes to the development and progression of heart failure and atrial fibrillation. On the molecular level, these changes include alterations in the expression level and phosphorylation status of Ca2+ handling and excitation-contraction coupling proteins provoked by dysregulation of phosphatases. The serine/threonine protein phosphatase PP1 is one a major player in the regulation of cardiac excitation-contraction coupling. PP1 essentially impacts on cardiac physiology and pathophysiology via interactions with the cardiac ion channels Cav1.2, NKA, NCX and KCNQ1, sarcoplasmic reticulum-bound Ca2+ handling proteins such as RyR2, SERCA and PLB as well as the contractile proteins MLC2, TnI and MyBP-C. PP1 itself but also PP1-regulatory proteins like inhibitor-1, inhibitor-2 and heat-shock protein 20 are dysregulated in cardiac disease. Therefore, they represent interesting targets to gain more insights in heart pathophysiology and to identify new treatment strategies for patients with heart failure or atrial fibrillation. We describe the genetic and holoenzymatic structure of PP1 and review its role in the heart and cardiac disease. Finally, we highlight the importance of the PP1 regulatory proteins for disease manifestation, provide an overview of genetic models to study the role of PP1 for the development of heart failure and atrial fibrillation and discuss possibilities of pharmacological interventions.
Collapse
|
7
|
Dörner MF, Boknik P, Köpp F, Buchwalow IB, Neumann J, Gergs U. Mechanisms of Systolic Cardiac Dysfunction in PP2A, PP5 and PP2AxPP5 Double Transgenic Mice. Int J Mol Sci 2021; 22:ijms22179448. [PMID: 34502355 PMCID: PMC8431312 DOI: 10.3390/ijms22179448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated transgenic mice with cardiac muscle cell-specific overexpression of PP2Acα (PP2A) and PP5 (PP5). For further studies we crossbred PP2A and PP5 mice to obtain PP2AxPP5 double transgenic mice (PP2AxPP5, DT) and compared them with littermate wild-type mice (WT) serving as a control. The mortality of DT mice was greatly enhanced vs. other genotypes. Cardiac fibrosis was noted histologically and mRNA levels of collagen 1α, collagen 3α and fibronectin 1 were augmented in DT. DT and PP2A mice exhibited an increase in relative heart weight. The ejection fraction (EF) was reduced in PP2A and DT but while the EF of PP2A was nearly normalized after β-adrenergic stimulation by isoproterenol, it was almost unchanged in DT. Moreover, left atrial preparations from DT were less sensitive to isoproterenol treatment both under normoxic conditions and after hypoxia. In addition, levels of the hypertrophy markers atrial natriuretic peptide and B-type natriuretic peptide as well as the inflammation markers interleukin 6 and nuclear factor kappa B were increased in DT. PP2A enzyme activity was enhanced in PP2A vs. WT but similar to DT. This was accompanied by a reduced phosphorylation state of phospholamban at serine-16. Fittingly, the relaxation times in left atria from DT were prolonged. In summary, cardiac co-overexpression of PP2A and PP5 were detrimental to animal survival and cardiac function, and the mechanism may involve dephosphorylation of important regulatory proteins but also fibrosis and inflammation.
Collapse
Affiliation(s)
- Mara-Francine Dörner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Mibe GmbH Arzneimittel, D-06796 Brehna, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, D-48149 Münster, Germany;
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Igor B. Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, D-22547 Hamburg, Germany;
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| |
Collapse
|
8
|
Complex functionality of protein phosphatase 1 isoforms in the heart. Cell Signal 2021; 85:110059. [PMID: 34062239 DOI: 10.1016/j.cellsig.2021.110059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/04/2023]
Abstract
Protein phosphatase 1(PP1) is a key regulator of cardiac function through dephosphorylating serine/threonine residues within target proteins to oppose the function of protein kinases. Studies from failing hearts of animal models and human patients have demonstrated significant increase of PP1 activity in myocardium, while elevated PP1 activity in transgenic mice leads to cardiac dysfunction, suggesting that PP1 might be a therapeutic target to ameliorate cardiac dysfunction in failing hearts. In fact, cardiac overexpression of inhibitor 1, the endogenous inhibitor of PP1, increases cardiac contractility and suppresses heart failure progression. However, this notion of PP1 inhibition for heart failure treatment has been challenged by recent studies on the isoform-specific roles of PP1 in the heart. PP1 is a holoenzyme composed of catalytic subunits (PP1α, PP1β, or PP1γ) and regulatory proteins that target them to distinct subcellular locations for functional specificity. This review will summarize how PP1 regulates phosphorylation of some of the key cardiac proteins involved in Ca2+ handling and cardiac contraction, and the potential role of PP1 isoforms in controlling cardiac physiology and pathophysiology.
Collapse
|
9
|
Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants (Basel) 2021; 10:antiox10050663. [PMID: 33923287 PMCID: PMC8146537 DOI: 10.3390/antiox10050663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cellular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac contractility by classical cAMP-dependent signaling with the contribution of oxidant modification.
Collapse
|
10
|
Bollmann P, Werner F, Jaron M, Bruns TA, Wache H, Runte J, Boknik P, Kirchhefer U, Müller FU, Buchwalow IB, Rothemund S, Neumann J, Gergs U. Initial Characterization of Stressed Transgenic Mice With Cardiomyocyte-Specific Overexpression of Protein Phosphatase 2C. Front Pharmacol 2021; 11:591773. [PMID: 33597873 PMCID: PMC7883593 DOI: 10.3389/fphar.2020.591773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated mice with cardiac-specific overexpression of PP2Cβ (PP2C-TG) and compared them with littermate wild type mice (WT) serving as a control. Cardiac fibrosis was noted histologically in PP2C-TG. Collagen 1a, interleukin-6 and the natriuretic peptides ANP and BNP were augmented in PP2C-TG vs. WT (p < 0.05). Left atrial preparations from PP2C-TG were less resistant to hypoxia than atria from WT. PP2C-TG maintained cardiac function after the injection of lipopolysaccharide (LPS, a model of sepsis) and chronic isoproterenol treatment (a model of heart failure) better than WT. Crossbreeding of PP2C-TG mice with PP2A-TG mice (a genetic model of heart failure) resulted in double transgenic (DT) mice that exhibited a pronounced increase of heart weight in contrast to the mild hypertrophy noted in the mono-transgenic mice. The ejection fraction was reduced in PP2C-TG and in PP2A-TG mice compared with WT, but the reduction was the highest in DT compared with WT. PP2A enzyme activity was enhanced in PP2A-TG and DT mice compared with WT and PP2C-TG mice. In summary, cardiac overexpression of PP2Cβ and co-overexpression of both the catalytic subunit of PP2A and PP2Cβ were detrimental to cardiac function. PP2Cβ overexpression made cardiac preparations less resistant to hypoxia than WT, leading to fibrosis, but PP2Cβ overexpression led to better adaptation to some stressors, such as LPS or chronic β-adrenergic stimulation. Hence, the effect of PP2Cβ is context sensitive.
Collapse
Affiliation(s)
- Paula Bollmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Marko Jaron
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Tom A Bruns
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hartmut Wache
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Jochen Runte
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Hamilton S, Veress R, Belevych A, Terentyev D. The role of calcium homeostasis remodeling in inherited cardiac arrhythmia syndromes. Pflugers Arch 2021; 473:377-387. [PMID: 33404893 PMCID: PMC7940310 DOI: 10.1007/s00424-020-02505-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Sudden cardiac death due to malignant ventricular arrhythmias remains the major cause of mortality in the postindustrial world. Defective intracellular Ca2+ homeostasis has been well established as a key contributing factor to the enhanced propensity for arrhythmia in acquired cardiac disease, such as heart failure or diabetic cardiomyopathy. More recent advances provide a strong basis to the emerging view that hereditary cardiac arrhythmia syndromes are accompanied by maladaptive remodeling of Ca2+ homeostasis which substantially increases arrhythmic risk. This brief review will focus on functional changes in elements of Ca2+ handling machinery in cardiomyocytes that occur secondary to genetic mutations associated with catecholaminergic polymorphic ventricular tachycardia, and long QT syndrome.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Roland Veress
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Levent P, Kocaturk M, Akgun E, Saril A, Cevik O, Baykal AT, Tanaka R, Ceron JJ, Yilmaz Z. Platelet proteome changes in dogs with congestive heart failure. BMC Vet Res 2020; 16:466. [PMID: 33256720 PMCID: PMC7708215 DOI: 10.1186/s12917-020-02692-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Platelets play a central role in the development of cardiovascular diseases and changes in their proteins are involved in the pathophysiology of heart diseases in humans. There is lack of knowledge about the possible role of platelets in congestive heart failure (CHF) in dogs. Thus, this study aimed to investigate the changes in global platelet proteomes in dogs with CHF, to clarify the possible role of platelets in the physiopathology of this disease. Healthy-dogs (n = 10) and dogs with acute CHF due to myxomatous mitral valve disease (MMVD, n = 10) were used. Acute CHF was defined based on the clinical (increased respiratory rate or difficulty breathing) and radiographic findings of pulmonary edema. Dogs Blood samples were collected into tubes with acid-citrate-dextrose, and platelet-pellets were obtained by centrifuge and washing steps. Platelet-proteomes were identified using LC-MS based label-free differential proteome expression analysis method and matched according to protein database for Canis lupus familiaris. RESULTS Totally 104 different proteins were identified in the platelets of the dogs being 4 out of them were significantly up-regulated and 6 down-regulated in acute CHF dogs. Guanine-nucleotide-binding protein, apolipoproteins (A-II and C-III) and clusterin levels increased, but CXC-motif-chemokine-10, cytochrome-C-oxidase-subunit-2, cathepsin-D, serine/threonine-protein-phosphatase-PP1-gamma-catalytic-subunit, creatine-kinase-B-type and myotrophin levels decreased in acute CHF dogs. These proteins are associated with several molecular functions, biological processes, signaling systems and immune-inflammatory responses. CONCLUSION This study describes by first time the changes in the protein composition in platelets of dogs with acute CHF due to MMVD. Our findings provide a resource for increase the knowledge about the proteome of canine platelets and their roles in CHF caused by MMVD and could be a tool for further investigations about the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Pinar Levent
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Meriç Kocaturk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Emel Akgun
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ahmet Saril
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Ozge Cevik
- Department of Basic Science, Medical Biochemistry, Adnan Menderes University School of Medicine, Aydin, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100, Murcia, Spain
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| |
Collapse
|
13
|
Riddell A, McBride M, Braun T, Nicklin SA, Cameron E, Loughrey CM, Martin TP. RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovasc Res 2020; 116:1410-1423. [PMID: 32154891 PMCID: PMC7314639 DOI: 10.1093/cvr/cvaa034] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Runt-related transcription factor-1 (RUNX1), also known as acute myeloid leukaemia 1 protein (AML1), is a member of the core-binding factor family of transcription factors which modulate cell proliferation, differentiation, and survival in multiple systems. It is a master-regulator transcription factor, which has been implicated in diverse signalling pathways and cellular mechanisms during normal development and disease. RUNX1 is best characterized for its indispensable role for definitive haematopoiesis and its involvement in haematological malignancies. However, more recently RUNX1 has been identified as a key regulator of adverse cardiac remodelling following myocardial infarction. This review discusses the role RUNX1 plays in the heart and highlights its therapeutic potential as a target to limit the progression of adverse cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Martin McBride
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1BD, UK
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
14
|
Potenza DM, Janicek R, Fernandez-Tenorio M, Niggli E. Activation of endogenous protein phosphatase 1 enhances the calcium sensitivity of the ryanodine receptor type 2 in murine ventricular cardiomyocytes. J Physiol 2020; 598:1131-1150. [PMID: 31943206 DOI: 10.1113/jp278951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Increased protein phosphatase 1 (PP-1) activity has been found in end stage human heart failure. Although PP-1 has been extensively studied, a detailed understanding of its role in the excitation-contraction coupling mechanism, in normal and diseased hearts, remains elusive. The present study investigates the functional effect of the PP-1 activity on local Ca2+ release events in ventricular cardiomyocytes, by using an activating peptide (PDP3) for the stimulation of the endogenous PP-1 protein. We report that acute de-phosphorylation may increase the sensitivity of RyR2 channels to Ca2+ in situ, and that the RyR2-serine2808 phosphorylation site may mediate such a process. Our approach unmasks the functional importance of PP-1 in the regulation of RyR2 activity, suggesting a potential role in the generation of a pathophysiological sarcoplasmic reticulum Ca2+ leak in the diseased heart. ABSTRACT Changes in cardiac ryanodine receptor (RyR2) phosphorylation are considered to be important regulatory and disease related post-translational protein modifications. The extent of RyR2 phosphorylation is mainly determined by the balance of the activities of protein kinases and phosphatases, respectively. Increased protein phosphatase-1 (PP-1) activity has been observed in heart failure, although the regulatory role of this enzyme on intracellular Ca2+ handling remains poorly understood. To determine the physiological and pathophysiological significance of increased PP-1 activity, we investigated how the PP-1 catalytic subunit (PP-1c) alters Ca2+ sparks in permeabilized cardiomyocytes and we also applied a PP-1-disrupting peptide (PDP3) to specifically activate endogenous PP-1, including the one anchored on the RyR2 macromolecular complex. We compared wild-type and transgenic mice in which the usually highly phosphorylated site RyR2-S2808 has been ablated to investigate its involvement in RyR2 modulation (S2808A+/+ ). In wild-type myocytes, PP-1 increased Ca2+ spark frequency by two-fold, followed by depletion of the sarcoplasmic reticulum Ca2+ store. Similarly, PDP3 transiently increased spark frequency and decreased sarcoplasmic reticulum Ca2+ load. RyR2 Ca2+ sensitivity, which was assessed by Ca2+ spark recovery analysis, was increased in the presence of PDP3 compared to a negative control peptide. S2808A+/+ cardiomyocytes did not respond to both PP-1c and PDP3 treatment. Our results suggest an increased Ca2+ sensitivity of RyR2 upon de-phosphorylation by PP-1. Furthermore, we have confirmed the S2808 site as a target for PP-1 and as a potential link between RyR2s modulation and the cellular response.
Collapse
Affiliation(s)
| | | | | | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Inhibitor 1 of Protein Phosphatase 1 Regulates Ca 2+/Calmodulin-Dependent Protein Kinase II to Alleviate Oxidative Stress in Hypoxia-Reoxygenation Injury of Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2193019. [PMID: 31885777 PMCID: PMC6925801 DOI: 10.1155/2019/2193019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/20/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII), regulated by inhibitor 1 of protein phosphatase 1 (I1PP1), is vital for maintaining cardiovascular homeostasis. However, the role and mechanism of I1PP1 against hypoxia-reoxygenation (H/R) injury in cardiomyocytes remain a question. In our study, after I1PP1 overexpression by adenovirus infection in the neonatal cardiomyocytes followed by hypoxia for 4 h and reoxygenation for 12 h, the CaMKIIδ alternative splicing subtype, ATP content, and lactate dehydrogenase (LDH) release were determined. CaMKII activity was evaluated by phosphoprotein phosphorylation at Thr17 (p-PLB Thr17), CaMKII phosphorylation (p-CaMKII), and CaMKII oxidation (ox-CaMKII). Reactive oxygen species (ROS), mitochondrial membrane potential, dynamin-related protein 1 (DRP1), and optic atrophy 1 (OPA1) expressions were assessed. Our study verified that I1PP1 overexpression attenuated the CaMKIIδ alternative splicing disorder; suppressed PLB phosphorylation at Thr17, p-CaMKII, and ox-CaMKII; decreased cell LDH release; increased ATP content; attenuated ROS production; increased mitochondrial membrane potential; and decreased DRP1 expression but increased OPA1 expression in the cardiomyocytes after H/R. Contrarily, CaMKIIδ alternative splicing disorder, LDH release, ATP reduction, and ROS accumulation were aggravated after H/R injury with the I1PP1 knockdown. Collectively, I1PP1 overexpression corrected disorders of CaMKIIδ alternative splicing, inhibited CaMKII phosphorylation, repressed CaMKII oxidation, suppressed ROS production, and attenuated cardiomyocyte H/R injury.
Collapse
|
16
|
Luzum JA, Ting C, Peterson EL, Gui H, Shugg T, Williams LK, Li L, Sadee W, Wang D, Lanfear DE. Association of Regulatory Genetic Variants for Protein Kinase Cα with Mortality and Drug Efficacy in Patients with Heart Failure. Cardiovasc Drugs Ther 2019; 33:693-700. [PMID: 31728800 DOI: 10.1007/s10557-019-06909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Protein kinase C alpha (gene: PRKCA) is a key regulator of cardiac contractility. Two genetic variants have recently been discovered to regulate PRKCA expression in failing human heart tissue (rs9909004 [T → C] and rs9303504 [C → G]). The association of those variants with clinical outcomes in patients with heart failure (HF), and their interaction with HF drug efficacy, is unknown. METHODS Patients with HF in a prospective registry starting in 2007 were genotyped by whole genome array (n = 951). The primary outcome was all-cause mortality. Cox proportional hazards models adjusted for established clinical risk factors and genomic ancestry tested the independent association of rs9909004 or rs9303504 and the variant interactions with cornerstone HF pharmacotherapies (beta-blockers or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers) in additive genetic models. RESULTS The minor allele of rs9909004, but not of rs9303504, was independently associated with a decreased risk for all-cause mortality: adjusted HR = 0.81 (95% CI = 0.67-0.98), p = 0.032. The variants did not significantly interact with mortality benefit associated with cornerstone HF pharmacotherapies (p > 0.1 for all). CONCLUSIONS A recently discovered cardiac-specific regulatory variant for PRKCA (rs9909004) was independently associated with a decreased risk for all-cause mortality in patients with HF. The variant did not interact with mortality benefit associated with cornerstone HF pharmacotherapies.
Collapse
Affiliation(s)
- Jasmine A Luzum
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA. .,Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA.
| | - Christopher Ting
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA
| | - Tyler Shugg
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA
| | - Liang Li
- Department of Medical Genetics, Southern Medical University, Guangzhou, China
| | - Wolfgang Sadee
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - David E Lanfear
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA.,Heart and Vascular Institute, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
17
|
Chiang DY, Alsina KM, Corradini E, Fitzpatrick M, Ni L, Lahiri SK, Reynolds JO, Pan X, Scott L, Heck AJR, Wehrens XHT. Rearrangement of the Protein Phosphatase 1 Interactome During Heart Failure Progression. Circulation 2019; 138:1569-1581. [PMID: 29669786 PMCID: PMC6193872 DOI: 10.1161/circulationaha.118.034361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure (HF) is a complex disease with a rising prevalence despite advances in treatment. Protein phosphatase 1 (PP1) has long been implicated in HF pathogenesis, but its exact role is both unclear and controversial. Most previous studies measured only the PP1 catalytic subunit (PP1c) without investigating its diverse set of interactors, which confer localization and substrate specificity to the holoenzyme. In this study, we define the PP1 interactome in cardiac tissue and test the hypothesis that this interactome becomes rearranged during HF progression at the level of specific PP1c interactors. METHODS Mice were subjected to transverse aortic constriction and grouped on the basis of ejection fraction into sham, hypertrophy, moderate HF (ejection fraction, 30%-40%), and severe HF (ejection fraction <30%). Cardiac lysates were subjected to affinity purification with anti-PP1c antibodies followed by high-resolution mass spectrometry. PP1 regulatory subunit 7 (Ppp1r7) was knocked down in mouse cardiomyocytes and HeLa cells with adeno-associated virus serotype 9 and siRNA, respectively. Calcium imaging was performed on isolated ventricular myocytes. RESULTS Seventy-one and 98 PP1c interactors were quantified from mouse cardiac and HeLa lysates, respectively, including many novel interactors and protein complexes. This represents the largest reproducible PP1 interactome data set ever captured from any tissue, including both primary and secondary/tertiary interactors. Nine PP1c interactors with changes in their binding to PP1c were strongly associated with HF progression, including 2 known (Ppp1r7 and Ppp1r18) and 7 novel interactors. Within the entire cardiac PP1 interactome, Ppp1r7 had the highest binding to PP1c. Cardiac-specific knockdown in mice led to cardiac dysfunction and disruption of calcium release from the sarcoplasmic reticulum. CONCLUSIONS PP1 is best studied at the level of its interactome, which undergoes significant rearrangement during HF progression. The 9 key interactors that are associated with HF progression may represent potential targets in HF therapy. In particular, Ppp1r7 may play a central role in regulating the PP1 interactome by acting as a competitive molecular "sponge" of PP1c.
Collapse
Affiliation(s)
- David Y Chiang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.).,Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (D.Y.C., E.C., M.F., A.J.R.H.)
| | - Katherina M Alsina
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Integrative Molecular and Biomedical Sciences (K.M.A.), Baylor College of Medicine, Houston, TX
| | - Eleonora Corradini
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (D.Y.C., E.C., M.F., A.J.R.H.).,Netherlands Proteomics Centre, Utrecht (E.C., M.F., A.J.R.H.)
| | - Martin Fitzpatrick
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (D.Y.C., E.C., M.F., A.J.R.H.).,Netherlands Proteomics Centre, Utrecht (E.C., M.F., A.J.R.H.)
| | - Li Ni
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Satadru K Lahiri
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Julia O Reynolds
- Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Xiaolu Pan
- Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Larry Scott
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (D.Y.C., E.C., M.F., A.J.R.H.).,Netherlands Proteomics Centre, Utrecht (E.C., M.F., A.J.R.H.)
| | - Xander H T Wehrens
- Cardiovascular Research Institute (D.Y.C., K.M.A., L.N., S.K.L., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (L.N., S.K.L., J.O.R., X.P., L.S., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Medicine (Cardiology) (X.H.T.W.), and Department of Pediatrics (Cardiology) (X.H.T.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
18
|
Pimenov OY, Galimova MH, Evdokimovskii EV, Averin AS, Nakipova OV, Reyes S, Alekseev AE. Myocardial α2-Adrenoceptors as Therapeutic Targets to Prevent Cardiac Hypertrophy and Heart Failure. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091905021x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
19
|
Wang B, Zhou Q, Bi Y, Zhou W, Zeng Q, Liu Z, Liu X, Zhan Z. Phosphatase PPM1L Prevents Excessive Inflammatory Responses and Cardiac Dysfunction after Myocardial Infarction by Inhibiting IKKβ Activation. THE JOURNAL OF IMMUNOLOGY 2019; 203:1338-1347. [PMID: 31331970 DOI: 10.4049/jimmunol.1900148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022]
Abstract
Although the inflammatory response triggered by damage-associated molecular patterns (DAMPs) in the infarcted cardiac tissues after acute myocardial infarction (MI) contributes to cardiac repair, the unrestrained inflammation induces excessive matrix degradation and myocardial fibrosis, leading to the development of adverse remodeling and cardiac dysfunction, although the molecular mechanisms that fine tune inflammation post-MI need to be fully elucidated. Protein phosphatase Mg2+/Mn2+-dependent 1L (PPM1L) is a member of the serine/threonine phosphatase family. It is originally identified as a negative regulator of stress-activated protein kinase signaling and involved in the regulation of ceramide trafficking from the endoplasmic reticulum to Golgi apparatus. However, the role of PPM1L in MI remains unknown. In this study, we found that PPM1L transgenic mice exhibited reduced infarct size, attenuated myocardial fibrosis, and improved cardiac function. PPM1L transgenic mice showed significantly lower levels of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and IL-12, in myocardial tissue. In response to DAMPs, such as HMGB1 or HSP60, released in myocardial tissue after MI, macrophages from PPM1L transgenic mice consistently produced fewer inflammatory cytokines. PPM1L-silenced macrophages showed higher levels of inflammatory cytokine production induced by DAMPs. Mechanically, PPM1L overexpression selectively inhibited the activation of NF-κB signaling in myocardial tissue post-MI and DAMP-triggered macrophages. PPM1L directly bound IKKβ and then inhibited its phosphorylation and activation, leading to impaired NF-κB signaling activation and suppressed inflammatory cytokine production. Thus, our data demonstrate that PPM1L prevents excessive inflammation and cardiac dysfunction after MI, which sheds new light on the protective regulatory mechanism underlying MI.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingqing Zhou
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Bi
- Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200081, China
| | - Wenhui Zhou
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiyan Zeng
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhongmin Liu
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China; and
| | - Zhenzhen Zhan
- Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; .,Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200081, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
20
|
Affiliation(s)
- Jake M. Kieserman
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Valerie D. Myers
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Praveen Dubey
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Joseph Y. Cheung
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Arthur M. Feldman
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| |
Collapse
|
21
|
Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. Int J Mol Sci 2019; 20:ijms20102386. [PMID: 31091723 PMCID: PMC6566636 DOI: 10.3390/ijms20102386] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aging of the heart is associated with a blunted response to sympathetic stimulation, reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac death significantly increased in the elderly population. The altered cardiac structural and functional phenotype, as well as age-associated prevalent comorbidities including hypertension and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+ cycling via these proteins contributes to arrhythmogenesis in the aged heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Lawless M, Caldwell JL, Radcliffe EJ, Smith CER, Madders GWP, Hutchings DC, Woods LS, Church SJ, Unwin RD, Kirkwood GJ, Becker LK, Pearman CM, Taylor RF, Eisner DA, Dibb KM, Trafford AW. Phosphodiesterase 5 inhibition improves contractile function and restores transverse tubule loss and catecholamine responsiveness in heart failure. Sci Rep 2019; 9:6801. [PMID: 31043634 PMCID: PMC6494852 DOI: 10.1038/s41598-019-42592-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is characterized by poor survival, a loss of catecholamine reserve and cellular structural remodeling in the form of disorganization and loss of the transverse tubule network. Indeed, survival rates for HF are worse than many common cancers and have not improved over time. Tadalafil is a clinically relevant drug that blocks phosphodiesterase 5 with high specificity and is used to treat erectile dysfunction. Using a sheep model of advanced HF, we show that tadalafil treatment improves contractile function, reverses transverse tubule loss, restores calcium transient amplitude and the heart's response to catecholamines. Accompanying these effects, tadalafil treatment normalized BNP mRNA and prevented development of subjective signs of HF. These effects were independent of changes in myocardial cGMP content and were associated with upregulation of both monomeric and dimerized forms of protein kinase G and of the cGMP hydrolyzing phosphodiesterases 2 and 3. We propose that the molecular switch for the loss of transverse tubules in HF and their restoration following tadalafil treatment involves the BAR domain protein Amphiphysin II (BIN1) and the restoration of catecholamine sensitivity is through reductions in G-protein receptor kinase 2, protein phosphatase 1 and protein phosphatase 2 A abundance following phosphodiesterase 5 inhibition.
Collapse
Affiliation(s)
- Michael Lawless
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Jessica L Caldwell
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Emma J Radcliffe
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Charlotte E R Smith
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - George W P Madders
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - David C Hutchings
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Lori S Woods
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Stephanie J Church
- Division of Cardiovascular Sciences, Centre for Advanced Discovery and Experimental Therapeutics, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Richard D Unwin
- Division of Cardiovascular Sciences, Centre for Advanced Discovery and Experimental Therapeutics, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Graeme J Kirkwood
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Lorenz K Becker
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Charles M Pearman
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Rebecca F Taylor
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - David A Eisner
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Katharine M Dibb
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom
| | - Andrew W Trafford
- Division of Cardiovascular Sciences, Unit of Cardiac Physiology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.24 Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, United Kingdom.
| |
Collapse
|
23
|
Penton D, Moser S, Wengi A, Czogalla J, Rosenbaek LL, Rigendinger F, Faresse N, Martins JR, Fenton RA, Loffing-Cueni D, Loffing J. Protein Phosphatase 1 Inhibitor-1 Mediates the cAMP-Dependent Stimulation of the Renal NaCl Cotransporter. J Am Soc Nephrol 2019; 30:737-750. [PMID: 30902838 DOI: 10.1681/asn.2018050540] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/06/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND A number of cAMP-elevating hormones stimulate phosphorylation (and hence activity) of the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). Evidence suggests that protein phosphatase 1 (PP1) and other protein phosphatases modulate NCC phosphorylation, but little is known about PP1's role and the mechanism regulating its function in the DCT. METHODS We used ex vivo mouse kidney preparations to test whether a DCT-enriched inhibitor of PP1, protein phosphatase 1 inhibitor-1 (I1), mediates cAMP's effects on NCC, and conducted yeast two-hybrid and coimmunoprecipitation experiments in NCC-expressing MDCK cells to explore protein interactions. RESULTS Treating isolated DCTs with forskolin and IBMX increased NCC phosphorylation via a protein kinase A (PKA)-dependent pathway. Ex vivo incubation of mouse kidney slices with isoproterenol, norepinephrine, and parathyroid hormone similarly increased NCC phosphorylation. The cAMP-induced stimulation of NCC phosphorylation strongly correlated with the phosphorylation of I1 at its PKA consensus phosphorylation site (a threonine residue in position 35). We also found an interaction between NCC and the I1-target PP1. Moreover, PP1 dephosphorylated NCC in vitro, and the PP1 inhibitor calyculin A increased NCC phosphorylation. Studies in kidney slices and isolated perfused kidneys of control and I1-KO mice demonstrated that I1 participates in the cAMP-induced stimulation of NCC. CONCLUSIONS Our data suggest a complete signal transduction pathway by which cAMP increases NCC phosphorylation via a PKA-dependent phosphorylation of I1 and subsequent inhibition of PP1. This pathway might be relevant for the physiologic regulation of renal sodium handling by cAMP-elevating hormones, and may contribute to salt-sensitive hypertension in patients with endocrine disorders or sympathetic hyperactivity.
Collapse
Affiliation(s)
- David Penton
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centre for Competence in Research "Kidney Control of Homeostasis," Zurich, Switzerland
| | - Sandra Moser
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Agnieszka Wengi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Jan Czogalla
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centre for Competence in Research "Kidney Control of Homeostasis," Zurich, Switzerland
| | - Lena Lindtoft Rosenbaek
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Nourdine Faresse
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centre for Competence in Research "Kidney Control of Homeostasis," Zurich, Switzerland
| | - Joana R Martins
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Swiss National Centre for Competence in Research "Kidney Control of Homeostasis," Zurich, Switzerland
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and
| | | | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; .,Swiss National Centre for Competence in Research "Kidney Control of Homeostasis," Zurich, Switzerland
| |
Collapse
|
24
|
Liu R, Miller C, D’Annibale C, Vo K, Jacobs A. Differential localizations of protein phosphatase 1 isoforms determine their physiological function in the heart. Acta Biochim Biophys Sin (Shanghai) 2019; 51:323-330. [PMID: 30721967 PMCID: PMC6422231 DOI: 10.1093/abbs/gmy171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
Protein phosphatase 1 isoforms α, β, and γ (PP1α, PP1β, and PP1γ) are highly homologous in the catalytic domains but have distinct subcellular localizations. In this study, we utilized both primary cell culture and knockout mice to investigate the isoform-specific roles of PP1s in the heart. In both neonatal and adult cardiac myocytes, PP1β was mainly localized in the nucleus, compared to the predominant presence of PP1α and PP1γ in the cytoplasm. Adenovirus-mediated overexpression of PP1α led to decreased phosphorylation of phospholamban, which was not influenced by overexpression of either PP1β or PP1γ. Interestingly, only cardiac-specific knockout of PP1β resulted in increased HDAC7 phosphorylation, consistent with the predominant nuclear localization of PP1β. Functionally, deletion of either PP1 isoform resulted in reduced fractional shortening in aging mice, however only PP1β deletion resulted in interstitial fibrosis in mice as early as 3 weeks of age. Deletion of neither PP1 isoform had any effect on pathological cardiac hypertrophy induced by 2 weeks of pressure overload stimulation. Together, our data suggest that PP1 isoforms have differential localizations to regulate the phosphorylation of their specific substrates for the physiological function in the heart.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| | - Christian Miller
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| | - Christiana D’Annibale
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| | - Kimberly Vo
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| | - Ashley Jacobs
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI, USA
| |
Collapse
|
25
|
Alekseev AE, Park S, Pimenov OY, Reyes S, Terzic A. Sarcolemmal α2-adrenoceptors in feedback control of myocardial response to sympathetic challenge. Pharmacol Ther 2019; 197:179-190. [PMID: 30703415 DOI: 10.1016/j.pharmthera.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α2-adrenoceptor (α2-AR) isoforms, abundant in sympathetic synapses and noradrenergic neurons of the central nervous system, are integral in the presynaptic feed-back loop mechanism that moderates norepinephrine surges. We recently identified that postsynaptic α2-ARs, found in the myocellular sarcolemma, also contribute to a muscle-delimited feedback control capable of attenuating mobilization of intracellular Ca2+ and myocardial contractility. This previously unrecognized α2-AR-dependent rheostat is able to counteract competing adrenergic receptor actions in cardiac muscle. Specifically, in ventricular myocytes, nitric oxide (NO) and cGMP are the intracellular messengers of α2-AR signal transduction pathways that gauge the kinase-phosphatase balance and manage cellular Ca2+ handling preventing catecholamine-induced Ca2+ overload. Moreover, α2-AR signaling counterbalances phospholipase C - PKC-dependent mechanisms underscoring a broader cardioprotective potential under sympathoadrenergic and angiotensinergic challenge. Recruitment of such tissue-specific features of α2-AR under sustained sympathoadrenergic drive may, in principle, be harnessed to mitigate or prevent cardiac malfunction. However, cardiovascular disease may compromise peripheral α2-AR signaling limiting pharmacological targeting of these receptors. Prospective cardiac-specific gene or cell-based therapeutic approaches aimed at repairing or improving stress-protective α2-AR signaling may offer an alternative towards enhanced preservation of cardiac muscle structure and function.
Collapse
Affiliation(s)
- Alexey E Alekseev
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia.
| | - Sungjo Park
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Oleg Yu Pimenov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Santiago Reyes
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Ferreira M, Beullens M, Bollen M, Van Eynde A. Functions and therapeutic potential of protein phosphatase 1: Insights from mouse genetics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:16-30. [PMID: 30056088 PMCID: PMC7114192 DOI: 10.1016/j.bbamcr.2018.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) catalyzes more than half of all phosphoserine/threonine dephosphorylation reactions in mammalian cells. In vivo PP1 does not exist as a free catalytic subunit but is always associated with at least one regulatory PP1-interacting protein (PIP) to generate a large set of distinct holoenzymes. Each PP1 complex controls the dephosphorylation of only a small subset of PP1 substrates. We screened the literature for genetically engineered mouse models and identified models for all PP1 isoforms and 104 PIPs. PP1 itself and at least 49 PIPs were connected to human disease-associated phenotypes. Additionally, phenotypes related to 17 PIPs were clearly linked to altered PP1 function, while such information was lacking for 32 other PIPs. We propose structural reverse genetics, which combines structural characterization of proteins with mouse genetics, to identify new PP1-related therapeutic targets. The available mouse models confirm the pleiotropic action of PP1 in health and diseases.
Collapse
Affiliation(s)
- Mónica Ferreira
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
27
|
Age-Dependent Protein Expression of Serine/Threonine Phosphatases and Their Inhibitors in the Human Cardiac Atrium. Adv Med 2019; 2019:2675972. [PMID: 30719459 PMCID: PMC6334353 DOI: 10.1155/2019/2675972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Heart failure and aging of the heart show many similarities regarding hemodynamic and biochemical parameters. There is evidence that heart failure in experimental animals and humans is accompanied and possibly exacerbated by increased activity of protein phosphatase (PP) 1 and/or 2A. Here, we wanted to study the age-dependent protein expression of major members of the protein phosphatase family in human hearts. Right atrial samples were obtained during bypass surgery. Patients (n=60) were suffering from chronic coronary artery disease (CCS 2-3; New York Heart Association (NYHA) stage 1-3). Age ranged from 48 to 84 years (median 69). All patients included in the study were given β-adrenoceptor blockers. Other medications included angiotensin-converting enzyme (ACE) or angiotensin-receptor-1 (AT1) inhibitors, statins, nitrates, and acetylsalicylic acid (ASS). 100 µg of right atrial homogenates was used for western blotting. Antibodies against catalytic subunits (and their major regulatory proteins) of all presently known cardiac serine/threonine phosphatases were used for antigen detection. In detail, we studied the expression of the catalytic subunit of PP1 (PP1c); I1 PP1 and I2 PP1, proteins that can inhibit the activity of PP1c; the catalytic subunit of PP2A (PP2Ac); regulatory A-subunit of PP2A (PP2AA); regulatory B56α-subunit of PP2A (PP2AB); I1 PP2A and I2 PP2A, inhibitory subunits of PP2A; catalytic and regulatory subunits of calcineurin: PP2BA and PP2BB; PP2C; PP5; and PP6. All data were obtained within the linear range of the assay. There was a significant decline in PP2Ac and I2 PP2A expression in older patients, whereas all other parameters remained unchanged with age. It remains to be elucidated whether the decrease in the protein expression of I2 PP2A might elevate cardiac PP2A activity in a detrimental way or is overcome by a reduced protein expression and thus a reduced activity of PP2Ac.
Collapse
|
28
|
Kirchhefer U, Hammer E, Heinick A, Herpertz T, Isensee G, Müller FU, Neumann J, Schulte K, Seidl MD, Boknik P, Schulte JS. Chronic β-adrenergic stimulation reverses depressed Ca handling in mice overexpressing inhibitor-2 of protein phosphatase 1. J Mol Cell Cardiol 2018; 125:195-204. [PMID: 30389400 DOI: 10.1016/j.yjmcc.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022]
Abstract
RATIONALE A higher expression/activity of type 1 serine/threonine protein phosphatase 1 (PP1) may contribute to dephosphorylation of cardiac regulatory proteins triggering the development of heart failure. OBJECTIVE Here, we tested the putatively protective effects of PP1 inhibitor-2 (I2) overexpression using a heart failure model induced by chronic β-adrenergic stimulation. METHODS AND RESULTS Transgenic (TG) and wild-type (WT) mice were subjected to isoprenaline (ISO) or isotonic NaCl solution supplied via osmotic minipumps for 7 days. I2 overexpression was associated with a depressed PP1 activity. Basal contractility was unchanged in catheterized mice and isolated cardiomyocytes between TGNaCl and WTNaCl. TGISO mice exhibited more fibrosis and a higher expression of hypertrophy marker proteins as compared to WTISO. After acute administration of ISO, the contractile response was accompanied by a higher sensitivity in TGISO as compared to WTISO. In contrast to basal contractility, the peak amplitude of [Ca]i and SR Ca load were reduced in TGNaCl as compared to WTNaCl. These effects were normalized to WT levels after chronic ISO stimulation. Cardiomyocyte relaxation and [Ca]i decay kinetics were hastened in TGISO as compared to WTISO, which can be explained by a higher phospholamban phosphorylation at Ser16. Chronic catecholamine stimulation was followed by an enhanced expression of GSK3β, whereas the phosphorylation at Ser9 was lower in TG as compared to the corresponding WT group. This resulted in a higher I2 phosphorylation that may reactivate PP1. CONCLUSION Our findings suggest that the basal desensitization of β-adrenergic signaling and the depressed Ca handling in TG by inhibition of PP1 is restored by a GSK3β-dependent phosphorylation of I2.
Collapse
Affiliation(s)
- Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany.
| | - Elke Hammer
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Germany
| | - Alexander Heinick
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Thomas Herpertz
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Gunnar Isensee
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Joachim Neumann
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Martin-Luther-University, Halle, Germany
| | - Kirsten Schulte
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Matthias D Seidl
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jan S Schulte
- Institut für Pharmakologie und Toxikologie, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
29
|
Successful overexpression of wild-type inhibitor-2 of PP1 in cardiovascular cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:859-873. [PMID: 29797049 DOI: 10.1007/s00210-018-1515-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/13/2018] [Indexed: 01/16/2023]
Abstract
About half of the cardiac serine/threonine phosphatase activity is due to the activity of protein phosphatase type 1 (PP1). The activity of PP1 can be inhibited by an endogenous protein for which the expression inhibitor-2 (I-2) has been coined. We have previously described a transgenic mouse overexpressing a truncated form of I-2. Here, we have described and initially characterized several founders that overexpress the non-truncated (i.e., full length) I-2 in the mouse heart (TG) and compared them with non-transgenic littermates (WT). The founder with the highest overexpression of I-2 displayed under basal conditions no difference in contractile parameters (heart rate, developed tension, and its first derivate) compared to WT. The relative level of PP1 inhibition was similar in mice overexpressing the non-truncated as well as the truncated form of I-2. For comparison, we overexpressed I-2 by an adenoviral system in several cell lines (myocytes from a tumor-derived cell line (H9C2), neonatal rat cardiomyocytes, smooth muscle cells from rat aorta (A7R5)). We noted gene dosage-dependent staining for I-2 protein in infected cells together with reduced PP1 activity. Finally, I-2 expression in neonatal rat cardiomyocytes led to an increase of Ca2+ transients by about 60%. In summary, we achieved immunologically confirmed overexpression of wild-type I-2 in cardiovascular cells which was biochemically able to inhibit PP1 in the whole heart (using I-2 transgenic mice) as well as in isolated cells including cardiomyocytes (using I-2 coding virus) indirectly underscoring the importance of PP1 for cardiovascular function.
Collapse
|
30
|
Fang HY, Hung MY, Lin YM, Pandey S, Chang CC, Lin KH, Shen CY, Viswanadha VP, Kuo WW, Huang CY. 17β-Estradiol and/or estrogen receptor alpha signaling blocks protein phosphatase 1 mediated ISO induced cardiac hypertrophy. PLoS One 2018; 13:e0196569. [PMID: 29723269 PMCID: PMC5933784 DOI: 10.1371/journal.pone.0196569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
Earlier studies have shown that estrogen possess protective function against the development of pathological cardiac hypertrophy. However, the molecular mechanisms of estrogens (E2) protective effect are poorly understood. Additionally, abnormal activation of β-adrenergic signaling have been implicated in the development of pathological cardiac remodeling. However, the role of serine/threonine protein phosphatase 1 (PP1) in pathological cardiac remodeling under the influence of β-adrenergic signaling have been sparsely investigated. In this study, we assessed the downstream effects of abnormal activation of PP1 upon isoproterenol (ISO) induced pathological cardiac changes. We found that pre-treatment of 17β-estradiol (E2), tet-on estrogen receptor-α, or both significantly inhibited ISO-induced increase in cell size, hypertrophy marker gene expression and cytosolic calcium accumulation in H9c2 cells. Additionally, treatment with estrogen receptor inhibitor (ICI) reversed those effects, implicating role of E2 in inhibiting pathological cardiac remodeling. However, specific inhibition of ERα using melatonin, reduced ISO-induced PP1c expression and enhanced the level of ser-16 phosphorylated phospholamban (PLB), responsible for regulation of sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Furthermore, hypertrophic effect caused by overexpression of PP1cα was reduced by treatment with specific inhibitor of ERα. Collectively, we found that estrogen and estrogen receptor-α have protective effect against pathological cardiac changes by suppressing PP1 expression and its downstream signaling pathway, which further needs to be elucidated.
Collapse
Affiliation(s)
- Hsin-Yuan Fang
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Yu Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Chien Chang
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Adeno-Associated Virus Gene Therapy: Translational Progress and Future Prospects in the Treatment of Heart Failure. Heart Lung Circ 2018; 27:1285-1300. [PMID: 29703647 DOI: 10.1016/j.hlc.2018.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/03/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in treatment over the past decade, heart failure remains a significant public health burden and a leading cause of death in the developed world. Gene therapy provides a promising approach for preventing and reversing cardiac abnormalities, however, clinical application has shown limited success to date. A substantial effort is being invested into the development of recombinant adeno-associated viruses (AAVs) for cardiac gene therapy as AAV gene therapy offers a high safety profile and provides sustained and efficient transgene expression following a once-off administration. Due to the physiological, anatomical and genetic similarities between large animals and humans, preclinical studies using large animal models for AAV gene therapy are crucial stepping stones between the laboratory and the clinic. Many molecular targets selected to treat heart failure using AAV gene therapy have been chosen because of their potential to regulate and restore cardiac contractility. Other genes targeted with AAV are involved with regulating angiogenesis, beta-adrenergic sensitivity, inflammation, physiological signalling and metabolism. While significant progress continues to be made in the field of AAV cardiac gene therapy, challenges remain in overcoming host neutralising antibodies, improving AAV vector cardiac-transduction efficiency and selectivity, and optimising the dose, route and method of delivery.
Collapse
|
32
|
Schwab DM, Tilemann L, Bauer R, Heckmann M, Jungmann A, Wagner M, Burgis J, Vettel C, Katus HA, El-Armouche A, Müller OJ. AAV-9 mediated phosphatase-1 inhibitor-1 overexpression improves cardiac contractility in unchallenged mice but is deleterious in pressure-overload. Gene Ther 2018; 25:13-19. [DOI: 10.1038/gt.2017.97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 11/09/2022]
|
33
|
Rajtik T, Goncalvesova E, Varga ZV, Leszek P, Kusmierczyk M, Hulman M, Kyselovic J, Ferdinandy P, Adameova A. Posttranslational modifications of calcium/calmodulin-dependent protein kinase IIδ and its downstream signaling in human failing hearts. Am J Transl Res 2017; 9:3573-3585. [PMID: 28861149 PMCID: PMC5575172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In human failing hearts (HF) of different origin (coronary artery disease-CAD, dilated-DCM, restrictive and hypertrophic cardiomyopathy-OTHER), we investigated the active forms of Ca2+/calmodulin-dependent protein kinase IIδ (p-Thr287-CaMKIIδ, oxMet281/282-CaMKIIδ) and their role in phenotypes of the disease. METHODS AND RESULTS Although basic diagnostic and clinical markers indicating the attenuated cardiac contractility and remodeling were comparable in HF groups, CaMKIIδ-mediated axis was different. P-Thr287-CaMKIIδ was unaltered in CAD group, whereas it was upregulated in non-ischemic cardiomyopathic groups. No correlation between the upregulated p-Thr287-CaMKIIδ and QT interval prolongation was detected. Unlike in DCM, oxMet281/282-CaMKIIδ did not differ among HF groups. Independently of CaMKIIδ phosphorylation/oxidation, activation of its downstreams-phospholamban and cardiac myosin binding protein-C was significantly downregulated supporting both diminished cardiac lusitropy and inotropy in all hearts. Content of sarcoplasmic reticulum Ca2+-ATPase 2a in all HF was unchanged. Protein phosphatase1β was upregulated in CAD and DCM only, while 2A did not differ among groups. CONCLUSION This is the first demonstration that the posttranslational activation of CaMKIIδ differs in HF depending on etiology. Lower levels of downstream molecular targets of CaMKIIδ do not correlate with either activation of CaMKIIδ or the expression of major protein phosphatases in the HF. Thus, it is unlikely that these mechanisms exclusively underlie failing of the heart.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Comenius UniversityBratislava, Slovak Republic
| | - Eva Goncalvesova
- Department of Heart Failure & Transplantation, The National Institute of Cardiovascular DiseasesBratislava, Slovak Republic
| | - Zoltan V Varga
- Department of Pharmacology & Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | | | | | - Michal Hulman
- Clinic of Heart Surgery, The National Institute of Cardiovascular DiseasesBratislava, Slovak Republic
| | - Jan Kyselovic
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Comenius UniversityBratislava, Slovak Republic
| | - Peter Ferdinandy
- Department of Pharmacology & Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - Adriana Adameova
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Comenius UniversityBratislava, Slovak Republic
| |
Collapse
|
34
|
Heart Failure and MEF2 Transcriptome Dynamics in Response to β-Blockers. Sci Rep 2017; 7:4476. [PMID: 28667250 PMCID: PMC5493616 DOI: 10.1038/s41598-017-04762-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/19/2017] [Indexed: 01/12/2023] Open
Abstract
Myocyte Enhancer Factor 2 (MEF2) mediates cardiac remodelling in heart failure (HF) and is also a target of β-adrenergic signalling, a front-line treatment for HF. We identified global gene transcription networks involved in HF with and without β-blocker treatment. Experimental HF by transverse aortic constriction (TAC) in a MEF2 “sensor” mouse model (6 weeks) was followed by four weeks of β-blockade with Atenolol (AT) or Solvent (Sol) treatment. Transcriptome analysis (RNA-seq) from left ventricular RNA samples and MEF2A depleted cardiomyocytes was performed. AT treatment resulted in an overall improvement in cardiac function of TAC mice and repression of MEF2 activity. RNA-seq identified 65 differentially expressed genes (DEGs) due to TAC treatment with enriched GO clusters including the inflammatory system, cell migration and apoptosis. These genes were mapped against DEGs in cardiomyocytes in which MEF2A expression was suppressed. Of the 65 TAC mediated DEGs, AT reversed the expression of 28 mRNAs. Rarres2 was identified as a novel MEF2 target gene that is upregulated with TAC in vivo and isoproterenol treatment in vitro which may have implications in cardiomyocyte apoptosis and hypertrophy. These studies identify a cohort of genes with vast potential for disease diagnosis and therapeutic intervention in heart failure.
Collapse
|
35
|
Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, Wang X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. Br J Pharmacol 2017; 175:1362-1374. [PMID: 28574147 DOI: 10.1111/bph.13872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yanwen Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Shunyao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ming Lei
- Department of Pharmacology, The University of Oxford, Oxford, UK
| | - Mark Boyett
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hoyee Tsui
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Differential regulation of protein phosphatase 1 (PP1) isoforms in human heart failure and atrial fibrillation. Basic Res Cardiol 2017; 112:43. [PMID: 28597249 DOI: 10.1007/s00395-017-0635-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Protein phosphatase 1 (PP1) is a key regulator of important cardiac signaling pathways. Dysregulation of PP1 has been heavily implicated in cardiac dysfunctions. Accordingly, pharmacological targeting of PP1 activity is considered for therapeutic intervention in human cardiomyopathies. Recent evidence from animal models implicated previously unrecognized, isoform-specific activities of PP1 in the healthy and diseased heart. Therefore, this study examined the expression of the distinct PP1 isoforms PP1α, β, and γ in human heart failure (HF) and atrial fibrillation (AF) and addressed the consequences of β-adrenoceptor blocker (beta-blocker) therapy for HF patients with reduced ejection fraction on PP1 isoform expression. Using western blot analysis, we found greater abundance of PP1 isoforms α and γ but unaltered PP1β levels in left ventricular myocardial tissues from HF patients as compared to non-failing controls. However, expression of all three PP1 isoforms was higher in atrial appendages from patients with AF compared to patients with sinus rhythm. Moreover, we found that in human failing ventricles, beta-blocker therapy was associated with lower PP1α abundance and activity, as indicated by higher phosphorylation of the PP1α-specific substrate eIF2α. Greater eIF2α phosphorylation is a known repressor of protein translation, and accordingly, we found lower levels of the endoplasmic reticulum (ER) stress marker Grp78 in the very same samples. We propose that isoform-specific targeting of PP1α activity may be a novel and innovative therapeutic strategy for the treatment of human cardiac diseases by reducing ER stress conditions.
Collapse
|
37
|
Bera A, Sen D. Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Fail Rev 2017; 22:795-823. [DOI: 10.1007/s10741-017-9622-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
17β-Estradiol and/or estrogen receptor alpha blocks isoproterenol-induced calcium accumulation and hypertrophy via GSK3β/PP2A/NFAT3/ANP pathway. Mol Cell Biochem 2017; 434:181-195. [DOI: 10.1007/s11010-017-3048-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 12/13/2022]
|
39
|
Neef S, Heijman J, Otte K, Dewenter M, Saadatmand AR, Meyer-Roxlau S, Antos CL, Backs J, Dobrev D, Wagner M, Maier LS, El-Armouche A. Chronic loss of inhibitor-1 diminishes cardiac RyR2 phosphorylation despite exaggerated CaMKII activity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:857-862. [PMID: 28451724 DOI: 10.1007/s00210-017-1376-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Inhibitor-1 (I-1) modulates protein phosphatase 1 (PP1) activity and thereby counteracts the phosphorylation by kinases. I-1 is downregulated and deactivated in failing hearts, but whether its role is beneficial or detrimental remains controversial, and opposing therapeutic strategies have been proposed. Overactivity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) with hyperphosphorylation of ryanodine receptors (RyR2) at the CaMKII-site is recognized to be central for heart failure and arrhythmias. Using an I-1-deficient mouse line as well as transfected cell lines, we investigated the effects of acute and chronic modulation of I-1 on CaMKII activity and RyR2 phosphorylation. We demonstrate that I-1 acutely modulates CaMKII by regulating PP1 activity. However, while ablation of I-1 should thus limit CaMKII-activation, we unexpectedly found exaggerated CaMKII-activation under β-adrenergic stress upon chronic loss of I-1 in knockout mice. We unraveled that this is due to chronic upregulation of the exchange protein activated by cAMP (EPAC) leading to augmented CaMKII activation, and using computational modeling validated that an increase in EPAC expression can indeed explain our experimental findings. Interestingly, at the level of RyR2, the increase in PP1 activity more than outweighed the increase in CaMKII activity, resulting in reduced RyR phosphorylation at Ser-2814. Exaggerated CaMKII activation due to counterregulatory mechanisms upon loss of I-1 is an important caveat with respect to suggested therapeutic I-1-inhibition, as CaMKII overactivity has been heavily implicated in several cardiac pathologies.
Collapse
Affiliation(s)
- Stefan Neef
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Kristian Otte
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Matthias Dewenter
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Ali R Saadatmand
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christopher L Antos
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Johannes Backs
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
40
|
Li Z, Singh S, Suryavanshi SV, Ding W, Shen X, Wijaya CS, Gao WD, McConnell BK. Force development and intracellular Ca 2+ in intact cardiac muscles from gravin mutant mice. Eur J Pharmacol 2017; 807:117-126. [PMID: 28428008 DOI: 10.1016/j.ejphar.2017.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Gravin (AKAP12) is an A-kinase-anchoring-protein that scaffolds protein kinase A (PKA), β2-adrenergic receptor (β2-AR), protein phosphatase 2B and protein kinase C. Gravin facilitates β2-AR-dependent signal transduction through PKA to modulate cardiac excitation-contraction coupling and its removal positively affects cardiac contraction. Trabeculae from the right ventricles of gravin mutant (gravin-t/t) mice were employed for force determination. Simultaneously, corresponding intracellular Ca2+ transient ([Ca2+]i) were measured. Twitch force (Tf)-interval relationship, [Ca2+]i-interval relationship, and the rate of decay of post-extrasysolic potentiation (Rf) were also obtained. Western blot analysis were performed to correlate sarcomeric protein expression with alterations in calcium cycling between the WT and gravin-t/t hearts. Gravin-t/t muscles had similar developed force compared to WT muscles despite having lower [Ca2+]i at any given external Ca2+ concentration ([Ca2+]o). The time to peak force and peak [Ca2+]i were slower and the time to 75% relaxation was significantly prolonged in gravin-t/t muscles. Both Tf-interval and [Ca2+]i-interval relations were depressed in gravin-t/t muscles. Rf, however, did not change. Furthermore, Western blot analysis revealed decreased ryanodine receptor (RyR2) phosphorylation in gravin-t/t hearts. Gravin-t/t cardiac muscle exhibits increased force development in responsiveness to Ca2+. The Ca2+ cycling across the SR appears to be unaltered in gravin-t/t muscle. Our study suggests that gravin is an important component of cardiac contraction regulation via increasing myofilament sensitivity to calcium. Further elucidation of the mechanism can provide insights to role of gravin if any in the pathophysiology of impaired contractility.
Collapse
Affiliation(s)
- Zhitao Li
- Department of Pathophysiology, Harbin Medical University, Heilongjiang, China
| | - Sonal Singh
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Santosh V Suryavanshi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA
| | - Wengang Ding
- Department of Anesthesiology of 2nd Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Xiaoxu Shen
- Cardiology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Cori S Wijaya
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 1800 Orleans Street, Zaye Tower 6208, Baltimore, MD 21287, USA.
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas Medical Center, Houston, TX, USA.
| |
Collapse
|
41
|
Chiang DY, Heck AJR, Dobrev D, Wehrens XHT. Regulating the regulator: Insights into the cardiac protein phosphatase 1 interactome. J Mol Cell Cardiol 2016; 101:165-172. [PMID: 27663175 PMCID: PMC5154861 DOI: 10.1016/j.yjmcc.2016.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 11/28/2022]
Abstract
Reversible phosphorylation of proteins is a delicate yet dynamic balancing act between kinases and phosphatases, the disturbance of which underlies numerous disease processes. While our understanding of protein kinases has grown tremendously over the past decades, relatively little is known regarding protein phosphatases. This may be because protein kinases are great in number and relatively specific in function, and thereby amenable to be studied in isolation, whereas protein phosphatases are much less abundant and more nonspecific in their function. To achieve subcellular localization and substrate specificity, phosphatases depend on partnering with a large number of regulatory subunits, protein scaffolds and/or other interactors. This added layer of complexity presents a significant barrier to their study, but holds the key to unexplored opportunities for novel pharmacologic intervention. In this review we focus on serine/threonine protein phosphatase type-1 (PP1), which plays an important role in cardiac physiology and pathophysiology. Although much work has been done to investigate the role of PP1 in cardiac diseases including atrial fibrillation and heart failure, most of these studies were limited to examining and manipulating the catalytic subunit(s) of PP1 without adequately considering the PP1 interactors, which give specificity to PP1's functions. To complement these studies, three unbiased methods have been developed and applied to the mapping of the PP1 interactome: bioinformatics approaches, yeast two-hybrid screens, and affinity-purification mass spectrometry. The application of these complementary methods has the potential to generate a detailed cardiac PP1 interactome, which is an important step in identifying novel and targeted pharmacological interventions.
Collapse
Affiliation(s)
- David Y Chiang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg/Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA; Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
42
|
Lorenzen-Schmidt I, Clarke SB, Pyle WG. The neglected messengers: Control of cardiac myofilaments by protein phosphatases. J Mol Cell Cardiol 2016; 101:81-89. [PMID: 27721025 DOI: 10.1016/j.yjmcc.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023]
Abstract
Cardiac myofilaments act as the central contractile apparatus of heart muscle cells. Covalent modification of constituent proteins through phosphorylation is a rapid and powerful mechanism to control myofilament function, and is increasingly seen as a mechanism of disease. While the relationship between protein kinases and cardiac myofilaments has been widely examined, the impact of protein dephosphorylation by protein phosphatases is poorly understood. This review outlines the mechanisms by which the mostly widely expressed protein phosphatases in cardiac myocytes regulate myofilament function, and the emerging role of myofilament-associated protein phosphatases in heart failure. The importance of regulatory subunits and subcellular compartmentalization in determining the functional impact of protein phosphatases on myofilament and myocardial function is also discussed, as are discrepancies about the roles of protein phosphatases in regulating myofilament function. The potential for targeting these molecular messengers in the treatment of heart failure is discussed as a key future direction.
Collapse
Affiliation(s)
- Ilka Lorenzen-Schmidt
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Samantha B Clarke
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - W Glen Pyle
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
43
|
Weber S, Meyer-Roxlau S, El-Armouche A. Role of protein phosphatase inhibitor-1 in cardiac beta adrenergic pathway. J Mol Cell Cardiol 2016; 101:116-126. [PMID: 27639308 DOI: 10.1016/j.yjmcc.2016.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 01/08/2023]
Abstract
Phosphoproteomic studies have shown that about one third of all cardiac proteins are reversibly phosphorylated, affecting virtually every cellular signaling pathway. The reversibility of this process is orchestrated by the opposing enzymatic activity of kinases and phosphatases. Conversely, imbalances in subcellular protein phosphorylation patterns are a hallmark of many cardiovascular diseases including heart failure and cardiac arrhythmias. While numerous studies have revealed excessive beta-adrenergic signaling followed by deregulated kinase expression or activity as a major driver of the latter cardiac pathologies, far less is known about the beta-adrenergic regulation of their phosphatase counterparts. In fact, most of the limited knowledge stems from the detailed analysis of the endogenous inhibitor of the protein phosphatase 1 (I-1) in cellular and animal models. I-1 acts as a nodal point between adrenergic and putatively non-adrenergic cardiac signaling pathways and is able to influence widespread cellular functions of protein phosphatase 1 which are contributing to cardiac health and disease, e.g. Ca2+ handling, sarcomere contractility and glucose metabolism. Finally, nearly all of these studies agree that I-1 is a promising drug target on the one hand but the outcome of its pharmacological regulation maybe extremely context-dependent on the other hand, thus warranting for careful interpretation of past and future experimental results. In this respect we will: 1) comprehensively review the current knowledge about structural, functional and regulatory properties of I-1 within the heart 2) highlight current working hypothesis and potential I-1 mediated disease mechanisms 3) discuss state-of-the-art knowledge and future prospects of a potential therapeutic strategy targeting I-1 by restoring the balance of cardiac protein phosphorylation.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| |
Collapse
|
44
|
Terentyev D, Hamilton S. Regulation of sarcoplasmic reticulum Ca 2+ release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 2016; 101:156-164. [PMID: 27585747 DOI: 10.1016/j.yjmcc.2016.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/17/2022]
Abstract
The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.
Collapse
Affiliation(s)
- Dmitry Terentyev
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Medicine, Cardiovascular Research Center, United States.
| | - Shanna Hamilton
- Cardiff University, School of Medicine, Wales Heart Research Institute, United Kingdom
| |
Collapse
|
45
|
Li L, Fang C, Xu D, Xu Y, Fu H, Li J. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy. Am J Transl Res 2016; 8:1769-1779. [PMID: 27186301 PMCID: PMC4859906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Cardiac hypertrophy is a common pathological alteration in heart disease, which has been reported to be connected with serine/threonine protein phosphatases that control the dephosphorylation of a variety of cardiac proteins. Herein, we generated protein phosphatase type 2A knockout expressing a tamoxifen-inducible Cre recombinase protein fused to two mutant estrogen-receptor ligand-binding domains (MerCreMer) under the control of the a-myosin heavy chain promoter. Cardiac function of mice was determined by echocardiography. Decrease in PP2A activity leads to increased cardiomyocyte hypertrophy and fibrosis. Loss of PP2ACα leads to the heart failure, including the changes of EF, FS, LV, ANP and BNP. On the molecular level, knockout mice shows increased expression of B55a and B56e at 60 days after tamoxifen injection. Additionally, the regulation of the Akt/GSK3β/β-catenin pathway is severely disturbed in knockout mice. In conclusion, cardiomyocyte specific deletion of PP2A gene causes the cardiac hypertrophy. We will use the knockout mice to generate a type of cardiomyocyte hypertrophy mouse model with myocardial fibrosis.
Collapse
Affiliation(s)
- Lei Li
- Department of Pharmacology, Basic Medical Sciences of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Chao Fang
- Department of Pharmacology, Basic Medical Sciences of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Di Xu
- Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Yidan Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Heling Fu
- Model Animal Research Center of Nanjing Medical UniversityNanjing, Jiangsu 210029, China
| | - Jianmin Li
- Department of Pharmacology, Basic Medical Sciences of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| |
Collapse
|
46
|
Hafver TL, Hodne K, Wanichawan P, Aronsen JM, Dalhus B, Lunde PK, Lunde M, Martinsen M, Enger UH, Fuller W, Sjaastad I, Louch WE, Sejersted OM, Carlson CR. Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman. J Biol Chem 2015; 291:4561-79. [PMID: 26668322 DOI: 10.1074/jbc.m115.677898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/06/2022] Open
Abstract
The sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na(+)/K(+)-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca(2+) binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5-8Φ1Φ2-X8-9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.
Collapse
Affiliation(s)
- Tandekile Lubelwana Hafver
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Kjetil Hodne
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway, the Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences (NMBU), 0454 Oslo, Norway
| | - Pimthanya Wanichawan
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Jan Magnus Aronsen
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the Bjørknes College, Oslo, Norway
| | - Bjørn Dalhus
- the Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway, the Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, 0424 Oslo, Norway and
| | - Per Kristian Lunde
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Marianne Lunde
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Marita Martinsen
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Ulla Helene Enger
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - William Fuller
- the Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom DD1 9SY
| | - Ivar Sjaastad
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - William Edward Louch
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Ole Mathias Sejersted
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Cathrine Rein Carlson
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway,
| |
Collapse
|
47
|
Haghighi K, Pritchard TJ, Liu GS, Singh VP, Bidwell P, Lam CK, Vafiadaki E, Das P, Ma J, Kunduri S, Sanoudou D, Florea S, Vanderbilt E, Wang HS, Rubinstein J, Hajjar RJ, Kranias EG. Human G109E-inhibitor-1 impairs cardiac function and promotes arrhythmias. J Mol Cell Cardiol 2015; 89:349-59. [PMID: 26455482 PMCID: PMC4689614 DOI: 10.1016/j.yjmcc.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 01/09/2023]
Abstract
A hallmark of human and experimental heart failure is deficient sarcoplasmic reticulum (SR) Ca-uptake reflecting impaired contractile function. This is at least partially attributed to dephosphorylation of phospholamban by increased protein phosphatase 1 (PP1) activity. Indeed inhibition of PP1 by transgenic overexpression or gene-transfer of constitutively active inhibitor-1 improved Ca-cycling, preserved function and decreased fibrosis in small and large animal models of heart failure, suggesting that inhibitor-1 may represent a potential therapeutic target. We recently identified a novel human polymorphism (G109E) in the inhibitor-1 gene with a frequency of 7% in either normal or heart failure patients. Transgenic mice, harboring cardiac-specific expression of G109E inhibitor-1, exhibited decreases in contractility, Ca-kinetics and SR Ca-load. These depressive effects were relieved by isoproterenol stimulation. Furthermore, stress conditions (2Hz +/- Iso) induced increases in Ca-sparks, Ca-waves (60% of G109E versus 20% in wild types) and after-contractions (76% of G109E versus 23% of wild types) in mutant cardiomyocytes. Similar findings were obtained by acute expression of the G109E variant in adult cardiomyocytes in the absence or presence of endogenous inhibitor-1. The underlying mechanisms included reduced binding of mutant inhibitor-1 to PP1, increased PP1 activity, and dephosphorylation of phospholamban at Ser16 and Thr17. However, phosphorylation of the ryanodine receptor at Ser2808 was not altered while phosphorylation at Ser2814 was increased, consistent with increased activation of Ca/calmodulin-dependent protein kinase II (CaMKII), promoting aberrant SR Ca-release. Parallel in vivo studies revealed that mutant mice developed ventricular ectopy and complex ventricular arrhythmias (including bigeminy, trigeminy and ventricular tachycardia), when challenged with isoproterenol. Inhibition of CaMKII activity by KN-93 prevented the increased propensity to arrhythmias. These findings suggest that the human G109E inhibitor-1 variant impairs SR Ca-cycling and promotes arrhythmogenesis under stress conditions, which may present an additional insult in the compromised function of heart failure carriers.
Collapse
Affiliation(s)
- Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Tracy J Pritchard
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Guan-Sheng Liu
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Vivek P Singh
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Philip Bidwell
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Chi Keung Lam
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Greece
| | - Parthib Das
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Jianyong Ma
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Swati Kunduri
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Greece; 4th Department of Internal Medicine, Medical School, University of Athens and Attikon Hospital, Greece
| | - Stela Florea
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Erica Vanderbilt
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Hong-Shang Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Jack Rubinstein
- Division of Cardiology, Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, United States
| | - Roger J Hajjar
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, United States
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States; Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Greece.
| |
Collapse
|
48
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
49
|
Biesiadecki BJ, Ziolo MT. Should we treat heart failure with phosphatase inhibitors? Better to start at the end. J Mol Cell Cardiol 2015; 89:116-8. [PMID: 26497613 DOI: 10.1016/j.yjmcc.2015.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
50
|
Liu R, Correll RN, Davis J, Vagnozzi RJ, York AJ, Sargent MA, Nairn AC, Molkentin JD. Cardiac-specific deletion of protein phosphatase 1β promotes increased myofilament protein phosphorylation and contractile alterations. J Mol Cell Cardiol 2015; 87:204-13. [PMID: 26334248 PMCID: PMC4637224 DOI: 10.1016/j.yjmcc.2015.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022]
Abstract
There are 3 protein phosphatase 1 (PP1) catalytic isoforms (α, β and γ) encoded within the mammalian genome. These 3 gene products share ~90% amino acid homology within their catalytic domains but each has unique N- and C-termini that likely underlie distinctive subcellular localization or functionality. In this study, we assessed the effect associated with the loss of each PP1 isoform in the heart using a conditional Cre-loxP targeting approach in mice. Ppp1ca-loxP, Ppp1cb-loxP and Ppp1cc-loxP alleles were crossed with either an Nkx2.5-Cre knock-in containing allele for early embryonic deletion or a tamoxifen inducible α-myosin heavy chain (αMHC)-MerCreMer transgene for adult and cardiac-specific deletion. We determined that while deletion of Ppp1ca (PP1α) or Ppp1cc (PP1γ) had little effect on the whole heart, deletion of Ppp1cb (PP1β) resulted in concentric remodeling of the heart, interstitial fibrosis and contractile dysregulation, using either the embryonic or adult-specific Cre-expressing alleles. However, myocytes isolated from Ppp1cb deleted hearts surprisingly showed enhanced contractility. Mechanistically we found that deletion of any of the 3 PP1 gene-encoding isoforms had no effect on phosphorylation of phospholamban, nor were Ca(2+) handling dynamics altered in adult myocytes from Ppp1cb deleted hearts. However, the loss of Ppp1cb from the heart, but not Ppp1ca or Ppp1cc, resulted in elevated phosphorylation of myofilament proteins such as myosin light chain 2 and cardiac myosin binding protein C, consistent with an enriched localization profile of this isoform to the sarcomeres. These results suggest a unique functional role for the PP1β isoform in affecting cardiac contractile function.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Robert N Correll
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Jennifer Davis
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Ronald J Vagnozzi
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Allen J York
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Michelle A Sargent
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA.
| |
Collapse
|