1
|
Differential expression profile of microRNA in yak skeletal muscle and adipose tissue during development. Genes Genomics 2020; 42:1347-1359. [PMID: 32996042 DOI: 10.1007/s13258-020-00988-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND miRNAs play an important role in regulating normal animal development. Muscle tissue and fat metabolism are important for maintaining energy balance in animals. Yak has important agricultural and economic importance as it provides milk, meat, and hair. It is used for transportation as well. However, the miRNA expression profiles of their muscle and adipose tissue are currently unknown. OBJECTIVE To explore the regulatory roles of miRNAs in the skeletal muscle and adipose tissues of yak. METHODS A total of 12 small RNA libraries were constructed from the skeletal muscle and adipose samples from yak aged 0.5, 2.5, 4.5, and 7.5 years. High-throughput sequencing and bioinformatics analysis were used to determine the dynamic expression profile of miRNA, and a miRNA regulatory network related to muscle and adipose tissue development was established. RESULTS miR-1-3p and miR-143-3p showed the highest expression during yak skeletal muscle and fat development, respectively. The MAPK and Ras signaling pathways were the pivotal pathways. miR-181-5p, miR-542-3p, and miR-424-5p may have key roles in skeletal muscle development, and CREBRF, GRB10, CDK1, RFX3, and EPC2 were the core target genes. While miR-127-5p, miR-379-3p, and miR-494-3p may play important regulatory roles in adipose deposition, and ETV1, XPO7, and C5AR2 were the core target genes. CONCLUSION This study provides valuable resources for further study of the molecular mechanisms underlying yak skeletal muscle and adipose tissue development, and also a basis for studying the interactions between genes and miRNAs.
Collapse
|
2
|
Huang D, Gao Y, Wang S, Zhang W, Cao H, Zheng L, Chen Y, Zhang S, Chen J. Impact of low-intensity pulsed ultrasound on transcription and metabolite compositions in proliferation and functionalization of human adipose-derived mesenchymal stromal cells. Sci Rep 2020; 10:13690. [PMID: 32792566 PMCID: PMC7426954 DOI: 10.1038/s41598-020-69430-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/02/2020] [Indexed: 01/09/2023] Open
Abstract
To investigate the effect of low-intensity pulsed ultrasound (LIPUS) on the proliferation of human adipose-derived mesenchymal stromal cells (hASCs) and uncovered its stimulation mechanism. LIPUS at 30 mW/cm2 was applied for 5 min/day to promote the proliferation of hASCs. Flow cytometry was used to study the cell surface markers, cell cycle, and apoptosis of hASCs. The proliferation of hASCs was detected by cell counting kit-8, cell cycle assay, and RT-PCR. The expression of hASCs cytokines was determined by ELISA. The differences between transcriptional genes and metabolites were analyzed by transcript analysis and metabolomic profiling experiments. The number of cells increased after LIPUS stimulation, but there was no significant difference in cell surface markers. The results of flow cytometry, RT-PCR, and ELISA after LIPUS was administered showed that the G1 and S phases of the cell cycle were prolonged. The expression of cell proliferation related genes (CyclinD1 and c-myc) and the paracrine function related gene (SDF-1α) were up-regulated. The expression of cytokines was increased, while the apoptosis rate was decreased. The results of transcriptome experiments showed that there were significant differences in 27 genes;15 genes were up-regulated, while 12 genes were down-regulated. The results of metabolomics experiments showed significant differences in 30 metabolites; 7 metabolites were up-regulated, and 23 metabolites were down-regulated. LIPUS at 30 mW/cm2 intensity can promote the proliferation of hASCs cells in an undifferentiating state, and the stem-cell property of hASCs was maintained. CyclinD1 gene, c-myc gene, and various genes of transcription and products of metabolism play an essential role in cell proliferation. This study provides an important experimental and theoretical basis for the clinical application of LIPUS in promoting the proliferation of hASCs cells.
Collapse
Affiliation(s)
- Denggao Huang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yuanhui Gao
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Shunlan Wang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Wei Zhang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Hui Cao
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Linlin Zheng
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yang Chen
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Shufang Zhang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China.
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.
| |
Collapse
|
3
|
Gaffney CJ, Pollard A, Barratt TF, Constantin-Teodosiu D, Greenhaff PL, Szewczyk NJ. Greater loss of mitochondrial function with ageing is associated with earlier onset of sarcopenia in C. elegans. Aging (Albany NY) 2019; 10:3382-3396. [PMID: 30455409 PMCID: PMC6286836 DOI: 10.18632/aging.101654] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/15/2018] [Indexed: 12/29/2022]
Abstract
Sarcopenia, the age-related decline of muscle, is a significant and growing public health burden. C. elegans, a model organism for investigating the mechanisms of ageing, also displays sarcopenia, but the underlying mechanism(s) remain elusive. Here, we use C. elegans natural scaling of lifespan in response to temperature to examine the relationship between mitochondrial content, mitochondrial function, and sarcopenia. Mitochondrial content and maximal mitochondrial ATP production rates (MAPR) display an inverse relationship to lifespan, while onset of MAPR decline displays a direct relationship. Muscle mitochondrial structure, sarcomere structure, and movement decline also display a direct relationship with longevity. Notably, the decline in mitochondrial network structure occurs earlier than sarcomere decline, and correlates more strongly with loss of movement, and scales with lifespan. These results suggest that mitochondrial function is critical in the ageing process and more robustly explains the onset and progression of sarcopenia than loss of sarcomere structure.
Collapse
Affiliation(s)
- Christopher J Gaffney
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK.,Lancaster University Medical School, Lancaster University, Lancaster, UK
| | - Amelia Pollard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Thomas F Barratt
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Chodkowska KA, Ciecierska A, Majchrzak K, Ostaszewski P, Sadkowski T. Effect of β-hydroxy-β-methylbutyrate on miRNA expression in differentiating equine satellite cells exposed to hydrogen peroxide. GENES AND NUTRITION 2018; 13:10. [PMID: 29662554 PMCID: PMC5892041 DOI: 10.1186/s12263-018-0598-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Background Skeletal muscle injury activates satellite cells to initiate processes of proliferation, differentiation, and hypertrophy in order to regenerate muscle fibers. The number of microRNAs and their target genes are engaged in satellite cell activation. β-Hydroxy-β-methylbutyrate (HMB) is known to prevent exercise-induced muscle damage. The purpose of this study was to evaluate the effect of HMB on miRNA and relevant target gene expression in differentiating equine satellite cells exposed to H2O2. We hypothesized that HMB may regulate satellite cell activity, proliferation, and differentiation, hence attenuate the pathological processes induced during an in vitro model of H2O2-related injury by changing the expression of miRNAs. Methods Equine satellite cells (ESC) were isolated from the samples of skeletal muscle collected from young horses. ESC were treated with HMB (24 h) and then exposed to H2O2 (1 h). For the microRNA and gene expression assessment microarrays, technique was used. Identified miRNAs and genes were validated using real-time qPCR. Cell viability, oxidative stress, and cell damage were measured using colorimetric method and flow cytometry. Results Analysis of miRNA and gene profile in differentiating ESC pre-incubated with HMB and then exposed to H2O2 revealed difference in the expression of 27 miRNAs and 4740 genes, of which 344 were potential target genes for identified miRNAs. Special attention was focused on differentially expressed miRNAs and their target genes involved in processes related to skeletal muscle injury. Western blot analysis showed protein protection in HMB-pre-treated group compared to control. The viability test confirmed that HMB enhanced cell survival after the hydrogen peroxide exposition. Conclusions Our results suggest that ESC pre-incubated with HMB and exposed to H2O2 could affect expression on miRNA levels responsible for skeletal muscle development, cell proliferation and differentiation, and activation of tissue repair after injury. Enrichment analyses for targeted genes revealed that a large group of genes was associated with the regulation of signaling pathways crucial for muscle tissue development, protein metabolism, muscle injury, and regeneration, as well as with oxidative stress response.
Collapse
Affiliation(s)
- Karolina A Chodkowska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
5
|
Lehmann S, Bass JJ, Barratt TF, Ali MZ, Szewczyk NJ. Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle. J Cachexia Sarcopenia Muscle 2017; 8:660-672. [PMID: 28508547 PMCID: PMC5566650 DOI: 10.1002/jcsm.12196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Skeletal muscle is central to locomotion and metabolic homeostasis. The laboratory worm Caenorhabditis elegans has been developed into a genomic model for assessing the genes and signals that regulate muscle development and protein degradation. Past work has identified a receptor tyrosine kinase signalling network that combinatorially controls autophagy, nerve signal to muscle to oppose proteasome-based degradation, and extracellular matrix-based signals that control calpain and caspase activation. The last two discoveries were enabled by following up results from a functional genomic screen of known regulators of muscle. Recently, a screen of the kinome requirement for muscle homeostasis identified roughly 40% of kinases as required for C. elegans muscle health; 80 have identified human orthologues and 53 are known to be expressed in skeletal muscle. To complement this kinome screen, here, we screen most of the phosphatases in C. elegans. METHODS RNA interference was used to knockdown phosphatase-encoding genes. Knockdown was first conducted during development with positive results also knocked down only in fully developed adult muscle. Protein homeostasis, mitochondrial structure, and sarcomere structure were assessed using transgenic reporter proteins. Genes identified as being required to prevent protein degradation were also knocked down in conditions that blocked proteasome or autophagic degradation. Genes identified as being required to prevent autophagic degradation were also assessed for autophagic vesicle accumulation using another transgenic reporter. Lastly, bioinformatics were used to look for overlap between kinases and phosphatases required for muscle homeostasis, and the prediction that one phosphatase was required to prevent mitogen-activated protein kinase activation was assessed by western blot. RESULTS A little over half of all phosphatases are each required to prevent abnormal development or maintenance of muscle. Eighty-six of these phosphatases have known human orthologues, 57 of which are known to be expressed in human skeletal muscle. Of the phosphatases required to prevent abnormal muscle protein degradation, roughly half are required to prevent increased autophagy. CONCLUSIONS A significant portion of both the kinome and phosphatome are required for establishing and maintaining C. elegans muscle health. Autophagy appears to be the most commonly triggered form of protein degradation in response to disruption of phosphorylation-based signalling. The results from these screens provide measurable phenotypes for analysing the combined contribution of kinases and phosphatases in a multi-cellular organism and suggest new potential regulators of human skeletal muscle for further analysis.
Collapse
Affiliation(s)
- Susann Lehmann
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Joseph J Bass
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Thomas F Barratt
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Mohammed Z Ali
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| |
Collapse
|
6
|
Wang J, Wang J, Wang X, Liu L, Hu J, Yu X, Xu Y, Niu X, Lin Z, Zhang Y, Zhang X, Zhang Q. Molecular mechanism of inhibition of the abnormal proliferation of human umbilical vein endothelial cells by hydroxysafflor-yellow A. PHARMACEUTICAL BIOLOGY 2016; 54:1800-1807. [PMID: 26730646 DOI: 10.3109/13880209.2015.1129541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/22/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Context It has been found that hydroxysafflor-yellow A (HSYA) inhibits angiogenesis and the proliferation of abnormal human umbilical vein endothelial cells (HUVECs) in our previous study; however, the mechanism is still unclear. Objective This study investigates the mechanisms of HSYA inhibiting abnormal proliferation of HUVECs through detecting the expression of vascular endothelial growth factor (VEGF) and its receptor (KDR), and the protein expression in the Ras-Raf-MEK-ERK-signalling pathway. Materials and methods HepG2 cell cultural supernatant was used to culture HUVECs to make promote abnormal proliferation, and HSYA was added into the medium. The expression of VEGF, KDR, c-myc, N-ras and NF-κB1 in abnormal HUVEC was detected by RT-qPCR and ELISA at the mRNA and protein levels. Protein expression of ERK signal pathway was measured by Western blot. Results Compared with the abnormal proliferation of HUVECs without any treatment, HSYA inhibited the expression of VEGF and KDR in vitro. Similarly, the protein expression of Ras, p-raf, p-ERK and p-p38MARK in the abnormal HUVECs was reduced when they were treated by HSYA, especially in p-ERK, yet the total raf, ERK, p38MAPK and Akt were not changed whether HSYA existed or not. HSYA could also inhibit the expression of c-myc, N-ras, and NF-κB1. Conclusion When the abnormal HUVECs were treated with HSYA, the low expression of VEGF and KDR reduced the expression of oncogene and transcription factor through the Ras-Raf-MEK-ERK1/2 pathway of the MAPK family. This resulted in inhibiting the abnormal proliferation of HUVECs and angiogenesis.
Collapse
Affiliation(s)
- Ji Wang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Jingjing Wang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Xixi Wang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Li Liu
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Jinghong Hu
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Xue Yu
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Yingying Xu
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Xuyan Niu
- b Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences , Beijing , China
| | - Zong Lin
- c Zhejiang Provincial Key Laboratory of Applied Enzymology , Yangtze Delta Region Institute of Tsinghua University , Jiaxing , China
| | - Yan Zhang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Xin Zhang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Qian Zhang
- a School of Basic Medicine, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
7
|
Gaffney CJ, Shephard F, Chu J, Baillie DL, Rose A, Constantin-Teodosiu D, Greenhaff PL, Szewczyk NJ. Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle. J Cachexia Sarcopenia Muscle 2016; 7:181-92. [PMID: 27493871 PMCID: PMC4864282 DOI: 10.1002/jcsm.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Declines in skeletal muscle structure and function are found in various clinical populations, but the intramuscular proteolytic pathways that govern declines in these individuals remain relatively poorly understood. The nematode Caenorhabditis elegans has been developed into a model for identifying and understanding these pathways. Recently, it was reported that UNC-105/degenerin channel activation produced muscle protein degradation via an unknown mechanism. METHODS Generation of transgenic and double mutant C. elegans, RNAi, and drug treatments were utilized to assess molecular events governing protein degradation. Western blots were used to measure protein content. Cationic dyes and adenosine triphosphate (ATP) production assays were utilized to measure mitochondrial function. RESULTS unc-105 gain-of-function mutants display aberrant muscle protein degradation and a movement defect; both are reduced in intragenic revertants and in let-2 mutants that gate the hyperactive UNC-105 channel. Degradation is not suppressed by interventions suppressing proteasome-mediated, autophagy-mediated, or calpain-mediated degradation nor by suppressors of degenerin-induced neurodegeneration. Protein degradation, but not the movement defect, is decreased by treatment with caspase inhibitors or RNAi against ced-3 or ced-4. Adult unc-105 muscles display a time-dependent fragmentation of the mitochondrial reticulum that is associated with impaired mitochondrial membrane potential and that correlates with decreased rates of maximal ATP production. Reduced levels of CED-4, which is sufficient to activate CED-3 in vitro, are observed in unc-105 mitochondrial isolations. CONCLUSIONS Constitutive cationic influx into muscle appears to cause caspase degradation of cytosolic proteins as the result of mitochondrial dysfunction, which may be relevant to ageing and sarcopenia.
Collapse
Affiliation(s)
- Christopher J Gaffney
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Freya Shephard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Jeff Chu
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BCV5A 1S6 Canada; Department of Medical Genetics University of British Columbia Vancouver BCV6T 1Z4 Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Ann Rose
- Department of Medical Genetics University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| |
Collapse
|
8
|
Réus GZ, Abelaira HM, Tuon T, Titus SE, Ignácio ZM, Rodrigues ALS, Quevedo J. Glutamatergic NMDA Receptor as Therapeutic Target for Depression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 103:169-202. [DOI: 10.1016/bs.apcsb.2015.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Butuči M, Williams AB, Wong MM, Kramer B, Michael WM. Zygotic Genome Activation Triggers Chromosome Damage and Checkpoint Signaling in C. elegans Primordial Germ Cells. Dev Cell 2015; 34:85-95. [PMID: 26073019 DOI: 10.1016/j.devcel.2015.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 03/17/2015] [Accepted: 04/24/2015] [Indexed: 01/05/2023]
Abstract
Recent findings have identified highly transcribed genes as a source of genome instability; however, the degree to which large-scale shifts in transcriptional activity cause DNA damage was not known. One example of a large-scale shift in transcriptional activity occurs during development, when maternal regulators are destroyed and zygotic genome activation (ZGA) occurs. Here, we show that ZGA triggers widespread chromosome damage in the primordial germ cells of the nematode C. elegans. We show that ZGA-induced DNA damage activates a checkpoint response, the damage is repaired by factors required for inter-sister homologous recombination, and topoisomerase II plays a role in generating the damage. These findings identify ZGA as a source of intrinsic genome instability in the germline and suggest that genome destabilization may be a general consequence of extreme shifts in cellular transcriptional load.
Collapse
Affiliation(s)
- Melina Butuči
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ashley B Williams
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew M Wong
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Kramer
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - W Matthew Michael
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Neural Mechanisms for Evaluating Environmental Variability in Caenorhabditis elegans. Neuron 2015; 86:428-41. [PMID: 25864633 DOI: 10.1016/j.neuron.2015.03.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/18/2015] [Accepted: 02/20/2015] [Indexed: 11/21/2022]
Abstract
The ability to evaluate variability in the environment is vital for making optimal behavioral decisions. Here we show that Caenorhabditis elegans evaluates variability in its food environment and modifies its future behavior accordingly. We derive a behavioral model that reveals a critical period over which information about the food environment is acquired and predicts future search behavior. We also identify a pair of high-threshold sensory neurons that encode variability in food concentration and the downstream dopamine-dependent circuit that generates appropriate search behavior upon removal from food. Further, we show that CREB is required in a subset of interneurons and determines the timescale over which the variability is integrated. Interestingly, the variability circuit is a subset of a larger circuit driving search behavior, showing that learning directly modifies the very same neurons driving behavior. Our study reveals how a neural circuit decodes environmental variability to generate contextually appropriate decisions.
Collapse
|
11
|
Anti-Differentiation Effect of Oncogenic Met Receptor in Terminally-Differentiated Myotubes. Biomedicines 2015; 3:124-137. [PMID: 28536403 PMCID: PMC5344230 DOI: 10.3390/biomedicines3010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/04/2015] [Indexed: 01/12/2023] Open
Abstract
Activation of the hepatocyte growth factor/Met receptor is involved in muscle regeneration, through promotion of proliferation and inhibition of differentiation in myogenic stem cells (MSCs). We previously described that the specific expression of an oncogenic version of the Met receptor (Tpr-Met) in terminally-differentiated skeletal muscle causes muscle wasting in vivo. Here, we induced Tpr-Met in differentiated myotube cultures derived from the transgenic mouse. These cultures showed a reduced protein level of myosin heavy chain (MyHC), increased phosphorylation of Erk1,2 MAPK, the formation of giant sacs of myonuclei and the collapse of elongated myotubes. Treatment of the cultures with an inhibitor of the MAPK kinase pathway or with an inhibitor of the proteasome increased the expression levels of MyHC. In addition, the inhibition of the MAPK kinase pathway prevented the formation of myosacs and myotube collapse. Finally, we showed that induction of Tpr-Met in primary myotubes was unable to produce endoreplication in their nuclei. In conclusion, our data indicate that multinucleated, fused myotubes may be forced to disassemble their contractile apparatus by the Tpr-Met oncogenic factor, but they resist the stimulus toward the reactivation of the cell cycle.
Collapse
|
12
|
Lüersen K, Faust U, Gottschling DC, Döring F. Gait-specific adaptation of locomotor activity in response to dietary restriction in Caenorhabditis elegans. ACTA ACUST UNITED AC 2014; 217:2480-8. [PMID: 24803455 DOI: 10.1242/jeb.099382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Locomotion is crucial for the survival of living organisms, as it allows foraging, flight and mating behaviour. In response to environmental cues, many organisms switch between alternative forms of locomotion, referred to as gaits. The nematode Caenorhabditis elegans exhibits two gaits: swimming in liquids and crawling on dense gels. The kinematics and patterns of muscle activity differ between the two gaits, with swimming being less efficient than crawling. We found that C. elegans when grown on dietary restriction (DR) plates and then tested immediately for swimming activity exhibit an accelerated frequency of body-bending swimming compared with ad libitum-fed worms, resulting in an increased swimming speed. This response is independent of the presence or absence of food bacteria in the assay liquid. In contrast, the crawling speed of DR worms on assay agar plates is decreased and influenced by food availability. Because DR also attenuates the disturbed swimming activity of worms that are deficient in the presynaptic dopamine transporter DAT-1, our data link DR-induced alterations of the swimming gait to synaptic processes. This strongly suggests a biochemical rather than a biomechanical response to DR provoked by changes in the worm's body structure. We conclude that the increase in locomotor activity in response to DR is specific to the swimming gait and might represent a survival strategy, allowing food-deprived nematodes to exit unfavourable environments.
Collapse
Affiliation(s)
- Kai Lüersen
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Ulla Faust
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Dieter-Christian Gottschling
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Frank Döring
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
13
|
Muñoz-Lobato F, Rodríguez-Palero MJ, Naranjo-Galindo FJ, Shephard F, Gaffney CJ, Szewczyk NJ, Hamamichi S, Caldwell KA, Caldwell GA, Link CD, Miranda-Vizuete A. Protective role of DNJ-27/ERdj5 in Caenorhabditis elegans models of human neurodegenerative diseases. Antioxid Redox Signal 2014; 20:217-35. [PMID: 23641861 PMCID: PMC3887457 DOI: 10.1089/ars.2012.5051] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Cells have developed quality control systems for protection against proteotoxicity. Misfolded and aggregation-prone proteins, which are behind the initiation and progression of many neurodegenerative diseases (ND), are known to challenge the proteostasis network of the cells. We aimed to explore the role of DNJ-27/ERdj5, an endoplasmic reticulum (ER)-resident thioredoxin protein required as a disulfide reductase for the degradation of misfolded proteins, in well-established Caenorhabditis elegans models of Alzheimer, Parkinson and Huntington diseases. RESULTS We demonstrate that DNJ-27 is an ER luminal protein and that its expression is induced upon ER stress via IRE-1/XBP-1. When dnj-27 expression is downregulated by RNA interference we find an increase in the aggregation and associated pathological phenotypes (paralysis and motility impairment) caused by human β-amyloid peptide (Aβ), α-synuclein (α-syn) and polyglutamine (polyQ) proteins. In turn, DNJ-27 overexpression ameliorates these deleterious phenotypes. Surprisingly, despite being an ER-resident protein, we show that dnj-27 downregulation alters cytoplasmic protein homeostasis and causes mitochondrial fragmentation. We further demonstrate that DNJ-27 overexpression substantially protects against the mitochondrial fragmentation caused by human Aβ and α-syn peptides in these worm models. INNOVATION We identify C. elegans dnj-27 as a novel protective gene for the toxicity associated with the expression of human Aβ, α-syn and polyQ proteins, implying a protective role of ERdj5 in Alzheimer, Parkinson and Huntington diseases. CONCLUSION Our data support a scenario where the levels of DNJ-27/ERdj5 in the ER impact cytoplasmic protein homeostasis and the integrity of the mitochondrial network which might underlie its protective effects in models of proteotoxicity associated to human ND.
Collapse
Affiliation(s)
- Fernando Muñoz-Lobato
- 1 Centro Andaluz de Biología del Desarrollo (CABD-CSIC), Depto. de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide , Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fisher K, Gee F, Wang S, Xue F, Knapp S, Philpott M, Wells C, Rodriguez M, Snoek LB, Kammenga J, Poulin GB. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation. Biol Open 2013; 2:1354-63. [PMID: 24285704 PMCID: PMC3863420 DOI: 10.1242/bio.20136007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.
Collapse
Affiliation(s)
- Kate Fisher
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lehmann S, Bass JJ, Szewczyk NJ. Knockdown of the C. elegans kinome identifies kinases required for normal protein homeostasis, mitochondrial network structure, and sarcomere structure in muscle. Cell Commun Signal 2013; 11:71. [PMID: 24060339 PMCID: PMC3849176 DOI: 10.1186/1478-811x-11-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/15/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Kinases are important signalling molecules for modulating cellular processes and major targets of drug discovery programs. However, functional information for roughly half the human kinome is lacking. We conducted three kinome wide, >90%, RNAi screens and epistasis testing of some identified kinases against known intramuscular signalling systems to increase the functional annotation of the C. elegans kinome and expand our understanding of kinome influence upon muscle protein degradation. RESULTS 96 kinases were identified as required for normal protein homeostasis, 74 for normal mitochondrial networks and 50 for normal sarcomere structure. Knockdown of kinases required only for normal protein homeostasis and/or mitochondrial structure was significantly less likely to produce a developmental or behavioural phenotype than knockdown of kinases required for normal sarcomere structure and/or other sub-cellular processes. Lastly, assessment of kinases for which knockdown produced muscle protein degradation against the known regulatory pathways in C. elegans muscle revealed that close to half of kinase knockdowns activated autophagy in a MAPK dependent fashion. CONCLUSIONS Roughly 40% of kinases studied, 159 of 397, are important in establishing or maintaining muscle cell health, with most required for both. For kinases where decreased expression triggers protein degradation, autophagy is most commonly activated. These results increase the annotation of the C. elegans kinome to roughly 75% and enable future kinome research. As 33% of kinases identified have orthologues expressed in human muscle, our results also enable testing of whether identified kinases function similarly in maintaining human muscle homeostasis.
Collapse
Affiliation(s)
- Susann Lehmann
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, England
| | - Joseph J Bass
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, England
| | - Nathaniel J Szewczyk
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, England
| |
Collapse
|
16
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
17
|
Using Multiple Phenotype Assays and Epistasis Testing to Enhance the Reliability of RNAi Screening and Identify Regulators of Muscle Protein Degradation. Genes (Basel) 2012; 3:686-701. [PMID: 23152949 PMCID: PMC3495584 DOI: 10.3390/genes3040686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RNAi is a convenient, widely used tool for screening for genes of interest. We have recently used this technology to screen roughly 750 candidate genes, in C. elegans, for potential roles in regulating muscle protein degradation in vivo. To maximize confidence and assess reproducibility, we have only used previously validated RNAi constructs and have included time courses and replicates. To maximize mechanistic understanding, we have examined multiple sub-cellular phenotypes in multiple compartments in muscle. We have also tested knockdowns of putative regulators of degradation in the context of mutations or drugs that were previously shown to inhibit protein degradation by diverse mechanisms. Here we discuss how assaying multiple phenotypes, multiplexing RNAi screens with use of mutations and drugs, and use of bioinformatics can provide more data on rates of potential false positives and negatives as well as more mechanistic insight than simple RNAi screening.
Collapse
|
18
|
Lehmann S, Shephard F, Jacobson LA, Szewczyk NJ. Integrated control of protein degradation in C. elegans muscle. WORM 2012; 1:141-50. [PMID: 23457662 PMCID: PMC3583358 DOI: 10.4161/worm.20465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/14/2012] [Accepted: 04/23/2012] [Indexed: 12/26/2022]
Abstract
Protein degradation is a fundamental cellular process, the genomic control of which is incompletely understood. The advent of transgene-coded reporter proteins has enabled the development of C. elegans into a model for studying this problem. The regulation of muscle protein degradation is surprisingly complex, integrating multiple signals from hypodermis, intestine, neurons and muscle itself. Within the muscle, degradation is executed by separately regulated autophagy-lysosomal, ubiquitin-proteasome and calpain-mediated systems. The signal-transduction mechanisms, in some instances, involve modules previously identified for their roles in developmental processes, repurposed in terminally differentiated muscle to regulate the activities of pre-formed proteins. Here we review the genes, and mechanisms, which appear to coordinately control protein degradation within C. elegans muscle. We also consider these mechanisms in the context of development, physiology, pathophysiology and disease models.
Collapse
Affiliation(s)
- Susann Lehmann
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Freya Shephard
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Lewis A. Jacobson
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - Nathaniel J. Szewczyk
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| |
Collapse
|
19
|
Etheridge T, Oczypok EA, Lehmann S, Fields BD, Shephard F, Jacobson LA, Szewczyk NJ. Calpains mediate integrin attachment complex maintenance of adult muscle in Caenorhabditis elegans. PLoS Genet 2012; 8:e1002471. [PMID: 22253611 PMCID: PMC3257289 DOI: 10.1371/journal.pgen.1002471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/23/2011] [Indexed: 11/23/2022] Open
Abstract
Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line– or M-line–specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C. elegans lacks satellite cells, this mechanism is intrinsic to the muscles and raises the question if such a mechanism also exists in higher metazoans. Muscle is a dynamic tissue that grows in response to use and nutrition and shrinks in response to lack of use, poor nutrition, or disease. Loss of muscle mass is an important public health problem, but we understand little of the genes that regulate muscle shrinkage. We have found that, in adult worm muscle, attachment to the basement membrane is continuously required to prevent catastrophic sub-cellular defects that result in impaired ability of muscle to function. We have also identified a group of proteases that are activated when the attachment fails to be properly maintained. Conversely, when these proteases are lacking in adult muscle, the muscles fail to maintain attachment to the basement membrane. Thus, we have discovered a group of proteases that appear to act to maintain attachment to the basement membrane and therefore to maintain muscle itself. Because these worms lack satellite cells, this maintenance system is intrinsic to muscle, thus raising the question whether a similar or identical system also works in humans.
Collapse
Affiliation(s)
- Timothy Etheridge
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Elizabeth A. Oczypok
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Susann Lehmann
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Brandon D. Fields
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Freya Shephard
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Lewis A. Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathaniel J. Szewczyk
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Shephard F, Adenle AA, Jacobson LA, Szewczyk NJ. Identification and functional clustering of genes regulating muscle protein degradation from amongst the known C. elegans muscle mutants. PLoS One 2011; 6:e24686. [PMID: 21980350 PMCID: PMC3181249 DOI: 10.1371/journal.pone.0024686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/15/2011] [Indexed: 01/08/2023] Open
Abstract
Loss of muscle mass via protein degradation is an important clinical problem but we know little of how muscle protein degradation is regulated genetically. To gain insight our labs developed C. elegans into a model for understanding the regulation of muscle protein degradation. Past studies uncovered novel functional roles for genes affecting muscle and/or involved in signalling in other cells or tissues. Here we examine most of the genes previously identified as the sites of mutations affecting muscle for novel roles in regulating degradation. We evaluate genomic (RNAi knockdown) approaches and combine them with our established genetic (mutant) and pharmacologic (drugs) approaches to examine these 159 genes. We find that RNAi usually recapitulates both organismal and sub-cellular mutant phenotypes but RNAi, unlike mutants, can frequently be used acutely to study gene function solely in differentiated muscle. In the majority of cases where RNAi does not produce organismal level phenotypes, sub-cellular defects can be detected; disrupted proteostasis is most commonly observed. We identify 48 genes in which mutation or RNAi knockdown causes excessive protein degradation; myofibrillar and/or mitochondrial morphologies are also disrupted in 19 of these 48 cases. These 48 genes appear to act via at least three sub-networks to control bulk degradation of protein in muscle cytosol. Attachment to the extracellular matrix regulates degradation via unidentified proteases and affects myofibrillar and mitochondrial morphology. Growth factor imbalance and calcium overload promote lysosome based degradation whereas calcium deficit promotes proteasome based degradation, in both cases myofibrillar and mitochondrial morphologies are largely unaffected. Our results provide a framework for effectively using RNAi to identify and functionally cluster novel regulators of degradation. This clustering allows prioritization of candidate genes/pathways for future mechanistic studies.
Collapse
Affiliation(s)
- Freya Shephard
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Ademola A. Adenle
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Lewis A. Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathaniel J. Szewczyk
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Lin B, Reinke V. The candidate MAP kinase phosphorylation substrate DPL-1 (DP) promotes expression of the MAP kinase phosphatase LIP-1 in C. elegans germ cells. Dev Biol 2008; 316:50-61. [PMID: 18304523 DOI: 10.1016/j.ydbio.2007.12.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/21/2007] [Accepted: 12/31/2007] [Indexed: 10/22/2022]
Abstract
The highly-conserved, commonly used MAP kinase signaling cascade plays multiple integral roles in germline development in Caenorhabditis elegans. Using a functional proteomic approach, we found that the transcription factor DPL-1, a component of the LIN-35(Rb)/EFL-1(E2F)/DPL-1(DP) pathway, is a candidate phosphorylation substrate of MAP kinase. Moreover, dpl-1 genetically interacts with mpk-1(MAP kinase) to control chromosome morphology in pachytene of meiosis I, as does lin-35. However, EFL-1, the canonical DPL-1 heterodimeric partner, does not have a role in this process. Interestingly, we find that DPL-1 and EFL-1, but not LIN-35, promote the expression of a negative regulator of MPK-1, the MAP kinase phosphatase LIP-1. Two E2F consensus motifs are present upstream of the lip-1 open reading frame. Therefore, the Rb/E2F/DP pathway intersects with MAP kinase signaling at multiple points to regulate different aspects of C. elegans germ cell development. These two highly conserved pathways with major regulatory roles in proliferation and differentiation likely have multiple mechanisms for cross-talk during development across many species.
Collapse
Affiliation(s)
- Baiqing Lin
- Department of Genetics, School of Medicine, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Szewczyk NJ, Peterson BK, Barmada SJ, Parkinson LP, Jacobson LA. Opposed growth factor signals control protein degradation in muscles of Caenorhabditis elegans. EMBO J 2007; 26:935-43. [PMID: 17290229 PMCID: PMC1852841 DOI: 10.1038/sj.emboj.7601540] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 12/10/2006] [Indexed: 02/06/2023] Open
Abstract
In addition to contractile function, muscle provides a metabolic buffer by degrading protein in times of organismal need. Protein is also degraded during adaptive muscle remodeling upon exercise, but extreme degradation in diverse clinical conditions can compromise function(s) and threaten life. Here, we show how two independent signals interact to control protein degradation. In striated muscles of Caenorhabditis elegans, reduction of insulin-like signaling via DAF-2 insulin/IGF receptor or its intramuscular effector PtdIns-3-kinase (PI3K) causes unexpected activation of MAP kinase (MAPK), consequent activation of pre-existing systems for protein degradation, and progressive impairment of mobility. Degradation is prevented by mutations that increase signal downstream of PI3K or by disruption of autocrine signal from fibroblast growth factor (FGF) via the FGF receptor and its effectors in the Ras-MAPK pathway. Thus, the activity of constitutive protein degradation systems in normal muscle is minimized by a balance between directly interacting signaling pathways, implying that physiological, pathological, or therapeutic alteration of this balance may contribute to muscle remodeling or wasting.
Collapse
Affiliation(s)
- Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brant K Peterson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sami J Barmada
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah P Parkinson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lewis A Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA. Tel.: +1 412 624 4647; Fax: +1 412 624 4759; E-mail:
| |
Collapse
|
23
|
Kritikou EA, Milstein S, Vidalain PO, Lettre G, Bogan E, Doukoumetzidis K, Gray P, Chappell TG, Vidal M, Hengartner MO. C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival. Genes Dev 2006; 20:2279-92. [PMID: 16912277 PMCID: PMC1553210 DOI: 10.1101/gad.384506] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
During oocyte development in Caenorhabditis elegans, approximately half of all developing germ cells undergo apoptosis. While this process is evolutionarily conserved from worms to humans, the regulators of germ cell death are still largely unknown. In a genetic screen for novel genes involved in germline apoptosis in Caenorhabditis elegans, we identified and cloned gla-3. Loss of gla-3 function results in increased germline apoptosis and reduced brood size due to defective pachytene exit from meiosis I. gla-3 encodes a TIS11-like zinc-finger-containing protein that is expressed in the germline, from the L4 larval stage to adulthood. Biochemical evidence and genetic epistasis analysis revealed that GLA-3 participates in the MAPK signaling cascade and directly interacts with the C. elegans MAPK MPK-1, an essential meiotic regulator. Our results show that GLA-3 is a new component of the MAPK cascade that controls meiotic progression and apoptosis in the C. elegans germline and functions as a negative regulator of the MAPK signaling pathway during vulval development and in muscle cells.
Collapse
|
24
|
Higashibata A, Szewczyk NJ, Conley CA, Imamizo-Sato M, Higashitani A, Ishioka N. Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight. J Exp Biol 2006; 209:3209-18. [PMID: 16888068 DOI: 10.1242/jeb.02365] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
SUMMARY
The molecular mechanisms underlying muscle atrophy during spaceflight are not well understood. We have analyzed the effects of a 10-day spaceflight on Caenorhabditis elegans muscle development. DNA microarray, real-time quantitative PCR, and quantitative western blot analyses revealed that the amount of MHC in both body-wall and pharyngeal muscle decrease in response to spaceflight. Decreased transcription of the body-wall myogenic transcription factor HLH-1 (CeMyoD) and of the three pharyngeal myogenic transcription factors, PEB-1, CEH-22 and PHA-4 were also observed. Upon return to Earth animals displayed reduced rates of movement, indicating a functional defect. These results demonstrate that C. elegans muscle development is altered in response to spaceflight. This altered development occurs at the level of gene transcription and was observed in the presence of innervation,not simply in isolated cells. This important finding coupled with past observations of decreased levels of the same myogenic transcription factions in vertebrates after spaceflight raises the possibility that altered muscle development is a contributing factor to spaceflight-induced muscle atrophy in vertebrates.
Collapse
Affiliation(s)
- Akira Higashibata
- Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Pak SC, Tsu C, Luke CJ, Askew YS, Silverman GA. The Caenorhabditis elegans muscle specific serpin, SRP-3, neutralizes chymotrypsin-like serine peptidases. Biochemistry 2006; 45:4474-80. [PMID: 16584183 PMCID: PMC2654365 DOI: 10.1021/bi052626d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the intracellular serpin family may help regulate apoptosis, tumor progression, and metastasis. However, their in vivo functions in the context of a whole organism have not been easily defined. To better understand the biology of these serpins, we initiated a comparative genomics study using Caenorhabditis elegans as a model organism. Previous in silico analysis suggested that the C. elegans genome harbors nine serpin-like sequences bearing significant similarities to the human clade B intracellular serpins. However, only five genes appear to encode full-length serpins with intact reactive site loops. To determine if this was the case, we have cloned and expressed a putative inhibitory-type C. elegans serpin, srp-3. Analysis of SRP-3 inhibitory activity indicated that SRP-3 was a potent inhibitor of the serine peptidases, chymotrypsin and cathepsin G. Spatial and temporal expression studies using GFP and LacZ promoter fusions indicated that SRP-3 was expressed primarily in the anterior body wall muscles, suggesting that it may play a role in muscle cell homeostasis. Combined with previous studies showing that SRP-2 is an inhibitor of the serine peptidase, granzyme B, and lysosomal cysteine peptidases, these data suggested that C. elegans expressed at least two inhibitory-type serpins with nonoverlapping expression and inhibitory profiles. Moreover, the profiles of these clade L serpins in C. elegans share significant similarities with the profiles of clade B intracellular serpin members in higher vertebrates. This degree of conservation suggests that C. elegans should prove to be a valuable resource in the study of metazoan intracellular serpin function.
Collapse
Affiliation(s)
- Stephen C Pak
- UPMC Newborn Medicine Program, Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, and Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
26
|
Huang P, Stern MJ. FGF signaling in flies and worms: more and more relevant to vertebrate biology. Cytokine Growth Factor Rev 2005; 16:151-8. [PMID: 15863031 DOI: 10.1016/j.cytogfr.2005.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
FGF signaling in the invertebrate model systems Drosophila melanogaster and Caenorhabditis elegans was initially most obviously involved in cell motility events. More recently, however, FGFs and FGF signaling in these systems have been shown to affect many additional cellular processes. This recent work has shown that the pleiotropies of these FGF receptors resemble those of their vertebrate counterparts, and, in many cases, serve as excellent models for understanding the fundamental molecular mechanisms controlling these events.
Collapse
Affiliation(s)
- Peng Huang
- Yale University School of Medicine, Department of Genetics, I-354 SHM, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | | |
Collapse
|
27
|
Szewczyk NJ, Jacobson LA. Signal-transduction networks and the regulation of muscle protein degradation. Int J Biochem Cell Biol 2005; 37:1997-2011. [PMID: 16125109 DOI: 10.1016/j.biocel.2005.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/18/2005] [Accepted: 02/22/2005] [Indexed: 02/05/2023]
Abstract
Protein degradation in muscle functions in maintaining normal physiological homeostasis and adapting to new homeostatic states, and is required for muscle wasting or atrophy in various pathological states. The interplay between protein synthesis and degradation to maintain homeostasis is complex and responds to a variety of autocrine and intercellular signals from neuronal inputs, hormones, cytokines, growth factors and other regulatory molecules. The intracellular events that connect extracellular signals to the molecular control of protein degradation are incompletely understood, but likely involve interacting signal-transduction networks rather than isolated pathways. We review some examples of signal-transduction systems that regulate protein degradation, including effectors of proteolysis inducing factor (PIF), insulin and insulin-like growth factor (IGF) and their receptors, and fibroblast growth factor (FGF) and its receptors.
Collapse
Affiliation(s)
- Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, 304 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
28
|
Nicholas HR, Hodgkin J. The ERK MAP kinase cascade mediates tail swelling and a protective response to rectal infection in C. elegans. Curr Biol 2004; 14:1256-61. [PMID: 15268855 DOI: 10.1016/j.cub.2004.07.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 05/10/2004] [Accepted: 05/26/2004] [Indexed: 11/21/2022]
Abstract
The nematode Caenorhabditis elegans is proving to be an attractive model organism for investigating innate immune responses to infection. Among the known pathogens of C. elegans is the bacterium Microbacterium nematophilum, which adheres to the nematode rectum and postanal cuticle, inducing swelling of the underlying hypodermal tissue and causing mild constipation. We find that on infection by M. nematophilum, an extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase cascade mediates tail swelling and protects C. elegans from severe constipation, which would otherwise arrest development and cause sterility. Involvement in pathogen defense represents a new role for ERK MAP kinase signaling in this organism.
Collapse
Affiliation(s)
- Hannah R Nicholas
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
29
|
Di Giovanni S, Molon A, Broccolini A, Melcon G, Mirabella M, Hoffman EP, Servidei S. Constitutive activation of MAPK cascade in acute quadriplegic myopathy. Ann Neurol 2004; 55:195-206. [PMID: 14755723 DOI: 10.1002/ana.10811] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute quadriplegic myopathy (AQM; also called "critical illness myopathy") shows acute muscle wasting and weakness and is experienced by some patients with severe systemic illness, often associated with administration of corticosteroids and/or neuroblocking agents. Key aspects of AQM include muscle atrophy and myofilament loss. Although these features are shared with neurogenic atrophy, myogenic atrophy in AQM appears mechanistically distinct from neurogenic atrophy. Using muscle biopsies from AQM, neurogenic atrophy, and normal controls, we show that both myogenic and neurogenic atrophy share induction of myofiber-specific ubiquitin/proteosome pathways (eg, atrogin-1). However, AQM patient muscle showed a specific strong induction of transforming growth factor (TGF)-beta/MAPK pathways. Atrophic AQM myofibers showed coexpression of TGF-beta receptors, p38 MAPK, c-jun, and c-myc, including phosphorylated active forms, and these same fibers showed apoptotic features. Our data suggest a model of AQM pathogenesis in which stress stimuli (sepsis, corticosteroids, pH imbalance, osmotic imbalance) converge on the TGF-beta pathway in myofibers. The acute stimulation of the TGF-beta/MAPK pathway, coupled with the inactivity-induced atrogin-1/proteosome pathway, leads to the acute muscle loss seen in AQM patients.
Collapse
Affiliation(s)
- Simone Di Giovanni
- Center for Genetic Medicine, Children's National Medical Center and Genetics Program, George Washington University, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Fostel JL, Benner Coste L, Jacobson LA. Degradation of transgene-coded and endogenous proteins in the muscles of Caenorhabditis elegans. Biochem Biophys Res Commun 2003; 312:173-7. [PMID: 14630038 DOI: 10.1016/j.bbrc.2003.09.248] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To develop reporter systems to study the regulation of protein degradation in innervated muscle, we have used strains of the nematode Caenorhabditis elegans containing transgenes that fuse lacZ or green fluorescent protein (GFP) coding regions to muscle-specific promoter/enhancer regions, such that the fusion proteins are expressed exclusively in body-wall and vulval muscle cells. The starvation-induced degradation of the beta-galactosidase reporter protein is quantitatively similar to that of two endogenous muscle proteins, arginine kinase and adenylate kinase. A soluble GFP in the muscle cytosol is degraded during starvation, but when GFP is fused to a full-length myosin heavy chain and incorporated into myofibrils, it is resistant to starvation-induced degradation. This suggests that under some conditions soluble muscle proteins may be extensively catabolized in preference to the proteins of the contractile fibers.
Collapse
Affiliation(s)
- Jennifer L Fostel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
31
|
Szewczyk NJ, Jacobson LA. Activated EGL-15 FGF receptor promotes protein degradation in muscles of Caenorhabditis elegans. EMBO J 2003; 22:5058-67. [PMID: 14517244 PMCID: PMC204456 DOI: 10.1093/emboj/cdg472] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signaling by fibroblast growth factors (FGFs) and their receptors has been previously implicated in control of cell proliferation, differentiation and migration. Here we report a novel role for signaling by the EGL-15 FGFR of Caenorhabditis elegans in controlling protein degradation in differentiated muscle. Activation of EGL-15, by means of a reduction of function mutation (clr-1) affecting an inhibitory phosphatase, triggers protein degradation in adult muscle cells using a pre-existing proteolytic system. This activation is not suppressed by mutation in either of the known genes encoding FGF ligands (egl-17 or let-756) but is well suppressed when both are mutated, indicating that either ligand is sufficient and at least one is necessary for FGFR activation. Activity of the Ras pathway through mitogen-activated protein kinase (MAPK) is required to trigger protein degradation. This is the first report that degradation of intracellular protein can be triggered by a growth factor receptor using an identified signal transduction pathway. The data raise the possibility that FGF-triggered proteolysis may be relevant to muscle remodeling or dedifferentiation.
Collapse
Affiliation(s)
- Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|