1
|
Mirzaiebadizi A, Shafabakhsh R, Ahmadian MR. Modulating PAK1: Accessory Proteins as Promising Therapeutic Targets. Biomolecules 2025; 15:242. [PMID: 40001545 PMCID: PMC11852631 DOI: 10.3390/biom15020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The p21-activated kinase (PAK1), a serine/threonine protein kinase, is critical in regulating various cellular processes, including muscle contraction, neutrophil chemotaxis, neuronal polarization, and endothelial barrier function. Aberrant PAK1 activity has been implicated in the progression of several human diseases, including cancer, heart disease, and neurological disorders. Increased PAK1 expression is often associated with poor clinical prognosis, invasive tumor characteristics, and therapeutic resistance. Despite its importance, the cellular mechanisms that modulate PAK1 function remain poorly understood. Accessory proteins, essential for the precise assembly and temporal regulation of signaling pathways, offer unique advantages as therapeutic targets. Unlike core signaling components, these modulators can attenuate aberrant signaling without completely abolishing it, potentially restoring signaling to physiological levels. This review highlights PAK1 accessory proteins as promising and novel therapeutic targets, opening new horizons for disease treatment.
Collapse
Affiliation(s)
- Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rana Shafabakhsh
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
4
|
Coveñas R, Rodríguez FD, Robinson P, Muñoz M. The Repurposing of Non-Peptide Neurokinin-1 Receptor Antagonists as Antitumor Drugs: An Urgent Challenge for Aprepitant. Int J Mol Sci 2023; 24:15936. [PMID: 37958914 PMCID: PMC10650658 DOI: 10.3390/ijms242115936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The substance P (SP)/neurokinin-1 receptor (NK-1R) system is involved in cancer progression. NK-1R, activated by SP, promotes tumor cell proliferation and migration, angiogenesis, the Warburg effect, and the prevention of apoptosis. Tumor cells overexpress NK-1R, which influences their viability. A typical specific anticancer strategy using NK-1R antagonists, irrespective of the tumor type, is possible because these antagonists block all the effects mentioned above mediated by SP on cancer cells. This review will update the information regarding using NK-1R antagonists, particularly Aprepitant, as an anticancer drug. Aprepitant shows a broad-spectrum anticancer effect against many tumor types. Aprepitant alone or in combination therapy with radiotherapy or chemotherapy could reduce the sequelae and increase the cure rate and quality of life of patients with cancer. Current data open the door to new cancer research aimed at antitumor therapeutic strategies using Aprepitant. To achieve this goal, reprofiling the antiemetic Aprepitant as an anticancer drug is urgently needed.
Collapse
Affiliation(s)
- Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain;
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
| | - Francisco D. Rodríguez
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Miguel Muñoz
- Pediatric Intensive Care Unit, Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Seville, Spain;
| |
Collapse
|
5
|
Kichina JV, Maslov A, Kandel ES. PAK1 and Therapy Resistance in Melanoma. Cells 2023; 12:2373. [PMID: 37830586 PMCID: PMC10572217 DOI: 10.3390/cells12192373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Malignant melanoma claims more lives than any other skin malignancy. While primary melanomas are usually cured via surgical excision, the metastatic form of the disease portents a poor prognosis. Decades of intense research has yielded an extensive armamentarium of anti-melanoma therapies, ranging from genotoxic chemo- and radiotherapies to targeted interventions in specific signaling pathways and immune functions. Unfortunately, even the most up-to-date embodiments of these therapies are not curative for the majority of metastatic melanoma patients, and the need to improve their efficacy is widely recognized. Here, we review the reports that implicate p21-regulated kinase 1 (PAK1) and PAK1-related pathways in the response of melanoma to various therapeutic modalities. Ample data suggest that PAK1 may decrease cell sensitivity to programmed cell death, provide additional stimulation to growth-promoting molecular pathways, and contribute to the creation of an immunosuppressive tumor microenvironment. Accordingly, there is mounting evidence that the concomitant inhibition of PAK1 enhances the potency of various anti-melanoma regimens. Overall, the available information suggests that a safe and effective inhibition of PAK1-dependent molecular processes would enhance the potency of the currently available anti-melanoma treatments, although considerable challenges in implementing such strategies still exist.
Collapse
Affiliation(s)
- Julia V. Kichina
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Eugene S. Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| |
Collapse
|
6
|
Quezada MJ, Lopez-Bergami P. The signaling pathways activated by ROR1 in cancer. Cell Signal 2023; 104:110588. [PMID: 36621728 DOI: 10.1016/j.cellsig.2023.110588] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The receptor tyrosine kinase orphan receptor 1 (ROR1) is a receptor for WNT5A and related Wnt proteins, that play an important role during embryonic development by regulating cell migration, cell polarity, neural patterning, and organogenesis. ROR1 exerts these functions by transducing signals from the Wnt secreted glycoproteins to the intracellular Wnt/PCP and Wnt/Ca++ pathways. Investigations in adult human cells, particularly cancer cells, have demonstrated that besides these two pathways, the WNT5A/ROR1 axis can activate a number of signaling pathways, including the PI3K/AKT, MAPK, NF-κB, STAT3, and Hippo pathways. Moreover, ROR1 is aberrantly expressed in cancer and was associated with tumor progression and poor survival by promoting cell proliferation, survival, invasion, epithelial to mesenchymal transition, and metastasis. Consequently, numerous therapeutic tools to target ROR1 are currently being evaluated in cancer patients. In this review, we will provide a detailed description of the signaling pathways regulated by ROR1 in cancer and their impact in tumor progression.
Collapse
Affiliation(s)
- María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| |
Collapse
|
7
|
Rasoulinejad SA, Kiyamehr P. The Determinative Role of Cytokines in Retinopathy of Prematurity. Curr Mol Med 2023; 23:36-43. [PMID: 35078395 DOI: 10.2174/1566524022666220117114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
Retinopathy of prematurity (ROP) is a neonatal disease corresponding to vision impairment and blindness. Utilizing the pathogenesis of ROP and the risk factors affecting its progression can help prevent and reduce its incidence and lead to the emergence and development of new treatment strategies. Factors influencing retinopathy include growth and inflammatory factors that play an essential role in the pathogenesis of the ROP. This review summarizes the most critical factors in the pathogenesis of ROP.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Pegah Kiyamehr
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Yoon HY, Maron BY, Girald-Berlingeri S, Gasilina A, Gollin JC, Jian X, Akpan I, Yohe ME, Randazzo PA, Chen PW. ERK phosphorylation is dependent on cell adhesion in a subset of pediatric sarcoma cell lines. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119264. [PMID: 35381293 DOI: 10.1016/j.bbamcr.2022.119264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Osteosarcoma (OS) and Pax-Foxo1 fusion negative rhabdomyosarcoma (FN-RMS) are pediatric sarcomas with poor prognoses in patients with advanced disease. In both malignancies, an actin binding protein has been linked to poor prognosis. Integrin adhesion complexes (IACs) are closely coupled to actin networks and IAC-mediated signaling has been implicated in the progression of carcinomas. However, the relationship of IACs and actin cytoskeleton remodeling with cell signaling is understudied in pediatric sarcomas. Here, we tested the hypothesis that IAC dynamics affect ERK activation in OS and FN-RMS cell lines. Adhesion dependence of ERK activation differed among the OS and FN-RMS cells examined. In the OS cell lines, adhesion did not have a consistent effect on phospho-ERK (pERK). ERK phosphorylation in response to fetal calf serum or 1 ng/ml EGF was nearly as efficient in OS cell lines and one FN-RMS cell line in suspension as cells adherent to poly-l-lysine (PL) or fibronectin (FN). By contrast, adhesion to plastic, PL or FN increased ERK phosphorylation and was greater than additive with a 15 min exposure to 1 ng/ml EGF in three FN-RMS cell lines. Increases in pERK were partly dependent on FAK and PAK1/2 but independent of IAC maturation. As far as we are aware, this examination of adhesion-dependent signaling is the first in pediatric sarcomas and has led to the discovery of differences from the prevailing paradigms and differences in the degree of coupling between components in the signaling pathways among the cell lines.
Collapse
Affiliation(s)
- Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Ben Y Maron
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Sofia Girald-Berlingeri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Anjelika Gasilina
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Josephine C Gollin
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Marielle E Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| |
Collapse
|
9
|
García-Aranda M, Téllez T, McKenna L, Redondo M. Neurokinin-1 Receptor (NK-1R) Antagonists as a New Strategy to Overcome Cancer Resistance. Cancers (Basel) 2022; 14:cancers14092255. [PMID: 35565383 PMCID: PMC9102068 DOI: 10.3390/cancers14092255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022] Open
Abstract
Nowadays, the identification of new therapeutic targets that allow for the development of treatments, which as monotherapy, or in combination with other existing treatments can contribute to improve response rates, prognosis and survival of oncologic patients, is a priority to optimize healthcare within sustainable health systems. Recent studies have demonstrated the role of Substance P (SP) and its preferred receptor, Neurokinin 1 Receptor (NK-1R), in human cancer and the potential antitumor activity of NK-1R antagonists as an anticancer treatment. In this review, we outline the relevant studies published to date regarding the SP/NK-1R complex as a key player in human cancer and also evaluate if the repurposing of already marketed NK-1R antagonists may be useful in the development of new treatment strategies to overcome cancer resistance.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain; (M.G.-A.); (L.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), C/Dr. Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Teresa Téllez
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Lauraine McKenna
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain; (M.G.-A.); (L.M.)
| | - Maximino Redondo
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain; (M.G.-A.); (L.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), C/Dr. Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain;
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Correspondence:
| |
Collapse
|
10
|
Ouellette MM, Zhou S, Yan Y. Cell Signaling Pathways That Promote Radioresistance of Cancer Cells. Diagnostics (Basel) 2022; 12:diagnostics12030656. [PMID: 35328212 PMCID: PMC8947583 DOI: 10.3390/diagnostics12030656] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy (RT) is a standard treatment for solid tumors and about 50% of patients with cancer, including pediatric cancer, receive RT. While RT has significantly improved the overall survival and quality of life of cancer patients, its efficacy has still been markedly limited by radioresistance in a significant number of cancer patients (intrinsic or acquired), resulting in failure of the RT control of the disease. Radiation eradicates cancer cells mainly by causing DNA damage. However, radiation also concomitantly activates multiple prosurvival signaling pathways, which include those mediated by ATM, ATR, AKT, ERK, and NF-κB that promote DNA damage checkpoint activation/DNA repair, autophagy induction, and/or inhibition of apoptosis. Furthermore, emerging data support the role of YAP signaling in promoting the intrinsic radioresistance of cancer cells, which occurs through its activation of the transcription of many essential genes that support cell survival, DNA repair, proliferation, and the stemness of cancer stem cells. Together, these signaling pathways protect cancer cells by reducing the magnitude of radiation-induced cytotoxicity and promoting radioresistance. Thus, targeting these prosurvival signaling pathways could potentially improve the radiosensitivity of cancer cells. In this review, we summarize the contribution of these pathways to the radioresistance of cancer cells.
Collapse
Affiliation(s)
- Michel M. Ouellette
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Correspondence:
| |
Collapse
|
11
|
Chen PW, Gasilina A, Yadav MP, Randazzo PA. Control of cell signaling by Arf GTPases and their regulators: Focus on links to cancer and other GTPase families. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119171. [PMID: 34774605 DOI: 10.1016/j.bbamcr.2021.119171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022]
Abstract
The ADP-ribosylation factors (Arfs) comprise a family of regulatory GTP binding proteins. The Arfs regulate membrane trafficking and cytoskeleton remodeling, processes critical for eukaryotes and which have been the focus of most studies on Arfs. A more limited literature describes a role in signaling and in integrating several signaling pathways to bring about specific cell behaviors. Here, we will highlight work describing function of Arf1, Arf6 and several effectors and regulators of Arfs in signaling.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Anjelika Gasilina
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States of America(1); Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America
| | - Mukesh P Yadav
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America.
| |
Collapse
|
12
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
13
|
Wang M, Liu J, Tu Y, Zhao Z, Qu J, Chen K, Chen Y, Sun Y, Zhao H, Deng Y, Wu C. RSU-1 interaction with prohibitin-2 links cell-extracellular matrix detachment to downregulation of ERK signaling. J Biol Chem 2020; 296:100109. [PMID: 33853759 PMCID: PMC7948471 DOI: 10.1074/jbc.ra120.014413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
Cell–extracellular matrix (ECM) detachment is known to decrease extracellular signal–regulated kinase (ERK) signaling, an intracellular pathway that is central for control of cell behavior. How cell–ECM detachment is linked to downregulation of ERK signaling, however, is incompletely understood. We show here that focal adhesion protein Ras Suppressor 1 (RSU1) plays a critical role in cell–ECM detachment induced suppression of ERK signaling. We have identified prohibitin 2 (PHB2), a component of membrane lipid rafts, as a novel binding protein of RSU1, and mapped a major RSU1-binding site to PHB2 amino acids 150 to 206 in the C-terminal region of the PHB/SPFH (stomatin/prohibitin/flotillin/HflKC) domain. The PHB2 binding is mediated by multiple sites located in the N-terminal leucine-rich repeat region of RSU1. Depletion of PHB2 suppressed cell–ECM adhesion–induced ERK activation. Furthermore, cell–ECM detachment increased RSU1 association with membrane lipid rafts and interaction with PHB2. Finally, knockout of RSU1 or inhibition of RSU1 interaction with PHB2 by overexpression of the major RSU1-binding PHB2 fragment (amino acids 150–206) effectively suppressed the cell–ECM detachment induced downregulation of ERK signaling. Additionally, expression of venus-tagged wild-type RSU1 restored ERK signaling, while expression of venus-tagged PHB2-binding defective RSU1 mutant in which the N-terminal leucine-rich repeat region is deleted did not. Taken together, Our findings identify a novel RSU1-PHB2 signaling axis that senses cell–ECM detachment and links it to decreased ERK signaling.
Collapse
Affiliation(s)
- Meiling Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yizeng Tu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zihan Zhao
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China; The Faculty of Health Sciences, The University of Macau, Macau, China
| | - Jingjing Qu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Ka Chen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Ying Sun
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Hoy JJ, Parra NS, Park J, Kuhn S, Iglesias-Bartolome R. Protein kinase A inhibitor proteins (PKIs) divert GPCR-Gαs-cAMP signaling toward EPAC and ERK activation and are involved in tumor growth. FASEB J 2020; 34:13900-13917. [PMID: 32830375 PMCID: PMC7722164 DOI: 10.1096/fj.202001515r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023]
Abstract
The PKA-inhibitor (PKI) family members PKIα, PKIβ, and PKIγ bind with high affinity to PKA and block its kinase activity, modulating the extent, and duration of PKA-mediated signaling events. While PKA is a well-known regulator of physiological and oncogenic events, the role of PKI proteins in these pathways has remained elusive. Here, by measuring activation of the MAPK pathway downstream of GPCR-Gαs-cAMP signaling, we show that the expression levels of PKI proteins can alter the balance of activation of two major cAMP targets: PKA and EPAC. Our results indicate that PKA maintains repressive control over MAPK signaling as well as a negative feedback on cAMP concentration. Overexpression of PKI and its subsequent repression of PKA dysregulates these signaling pathways, resulting in increased intracellular cAMP, and enhanced activation of EPAC and MAPK. We also find that amplifications of PKIA are common in prostate cancer and are associated with reduced progression free survival. Depletion of PKIA in prostate cancer cells leads to reduced migration, increased sensitivity to anoikis and reduced tumor growth. By altering PKA activity PKI can act as a molecular switch, driving GPCR-Gαs-cAMP signaling toward activation of EPAC-RAP1 and MAPK, ultimately modulating tumor growth.
Collapse
Affiliation(s)
- James J. Hoy
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Natalia Salinas Parra
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeannie Park
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Skyler Kuhn
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Goka ET, Chaturvedi P, Lopez DTM, Lippman ME. Rac Signaling Drives Clear Cell Renal Carcinoma Tumor Growth by Priming the Tumor Microenvironment for an Angiogenic Switch. Mol Cancer Ther 2020; 19:1462-1473. [PMID: 32371578 DOI: 10.1158/1535-7163.mct-19-0762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/11/2019] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) remains a common cause of cancer mortality. Better understanding of ccRCC molecular drivers resulted in the development of antiangiogenic therapies that block the blood vessels that supply tumors with nutrients for growth and metastasis. Unfortunately, most ccRCC patients eventually become resistant to initial treatments, creating a need for alternative treatment options. We investigated the role of the small GTPase Rac1 in ccRCC. Analysis of ccRCC clinical samples indicates that Rac signaling drives disease progression and predicts patients with poorer outcomes. Investigation of Rac1 identifies multiple roles for Rac1 in the pathogenesis of ccRCC. Rac1 is overexpressed in RCC cell lines and drives proliferation and migratory/metastatic potential. Rac1 is also critical for endothelial cells to grow and form endothelial tubular networks potentiated by angiogenic factors. Importantly, Rac1 controls paracrine signaling of angiogenic factors including VEGF from renal carcinoma cells to surrounding blood vessels. A novel Rac1 inhibitor impaired the growth and migratory potential of both renal carcinoma cells and endothelial cells and reduced VEGF production by RCC cells, thereby limiting paracrine signaling both in vitro and in vivo Lastly, Rac1 was shown to be downstream of VEGF receptor (VEGFR) signaling and required for activation of MAPK signaling. In combination with VEGFR2 inhibitors, Rac inhibition provides enhanced suppression of angiogenesis. Therefore, targeting Rac in ccRCC has the potential to block the growth of tumor cells, endothelial cell recruitment, and paracrine signaling from tumor cells to other cells in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Marc E Lippman
- Department of Oncology, Georgetown University, Washington, District of Columbia
| |
Collapse
|
16
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
17
|
Liu X, Liu R, Bai Y, Jiang H, Fu X, Ma S. Post-translational modifications of protein in response to ionizing radiation. Cell Biochem Funct 2020; 38:283-289. [PMID: 31943290 DOI: 10.1002/cbf.3467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
Based on central dogma of genetics, protein is the embodiment and executor of genetic function, post-translational modifications (PTMs) of protein are particularly important and involved in almost all aspects of cell biology and pathogenesis. Studies have shown that ionizing radiation (IR) alters gene expression much more profoundly and a broad variety of cell-process pathways, lots of proteins are modified and activated. Our understanding of the protein in response to ionizing radiation is steadily increasing. Among the various biological processes known to induce radioresistance, PTMs have attracted marked attention in recent years. The present review summarizes the latest knowledge about how PTMs response to ionizing radiation and pathway analysis were conducted. The data provided insights into biological effects of IR and contributing to the development of novel IR-based strategies.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,NHC Key lab of Radiation Biology, Jilin University, Changchun, Jilin, China.,Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Liu
- NHC Key lab of Radiation Biology, Jilin University, Changchun, Jilin, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinxin Fu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
White SM, Avantaggiati ML, Nemazanyy I, Di Poto C, Yang Y, Pende M, Gibney GT, Ressom HW, Field J, Atkins MB, Yi C. YAP/TAZ Inhibition Induces Metabolic and Signaling Rewiring Resulting in Targetable Vulnerabilities in NF2-Deficient Tumor Cells. Dev Cell 2020; 49:425-443.e9. [PMID: 31063758 DOI: 10.1016/j.devcel.2019.04.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 02/09/2023]
Abstract
Merlin/NF2 is a bona fide tumor suppressor whose mutations underlie inherited tumor syndrome neurofibromatosis type 2 (NF2), as well as various sporadic cancers including kidney cancer. Multiple Merlin/NF2 effector pathways including the Hippo-YAP/TAZ pathway have been identified. However, the molecular mechanisms underpinning the growth and survival of NF2-mutant tumors remain poorly understood. Using an inducible orthotopic kidney tumor model, we demonstrate that YAP/TAZ silencing is sufficient to induce regression of pre-established NF2-deficient tumors. Mechanistically, YAP/TAZ depletion diminishes glycolysis-dependent growth and increases mitochondrial respiration and reactive oxygen species (ROS) buildup, resulting in oxidative-stress-induced cell death when challenged by nutrient stress. Furthermore, we identify lysosome-mediated cAMP-PKA/EPAC-dependent activation of RAF-MEK-ERK signaling as a resistance mechanism to YAP/TAZ inhibition. Finally, unbiased analysis of TCGA primary kidney tumor transcriptomes confirms a positive correlation of a YAP/TAZ signature with glycolysis and inverse correlations with oxidative phosphorylation and lysosomal gene expression, supporting the clinical relevance of our findings.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | | | - Ivan Nemazanyy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cristina Di Poto
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Yang Yang
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mario Pende
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Geoffrey T Gibney
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Habtom W Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Jeffery Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Atkins
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
19
|
Babagana M, Kichina JV, Slabodkin H, Johnson S, Maslov A, Brown L, Attwood K, Nikiforov MA, Kandel ES. The role of polo-like kinase 3 in the response of BRAF-mutant cells to targeted anticancer therapies. Mol Carcinog 2019; 59:5-14. [PMID: 31571292 DOI: 10.1002/mc.23123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
The activation of oncogenic mitogen-activated protein kinase cascade via mutations in BRAF is often observed in human melanomas. Targeted inhibitors of BRAF (BRAFi), alone or as a part of a combination therapy, offer a significant benefit to such patients. Unfortunately, some cases are initially nonresponsive to these drugs, while others become refractory in the course of treatment, underscoring the need to understand and mitigate the underlying resistance mechanisms. We report that interference with polo-like kinase 3 (PLK3) reduces the tolerance of BRAF-mutant melanoma cells to BRAFi, while increased PLK3 expression has the opposite effect. Accordingly, PLK3 expression correlates with tolerance to BRAFi in a panel of BRAF-mutant cell lines and is elevated in a subset of recurring BRAFi-resistant melanomas. In PLK3-expressing cells, R406, a kinase inhibitor whose targets include PLK3, recapitulates the sensitizing effects of genetic PLK3 inhibitors. The findings support a role for PLK3 as a predictor of BRAFi efficacy and suggest suppression of PLK3 as a way to improve the efficacy of targeted therapy.
Collapse
Affiliation(s)
- Mahamat Babagana
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Julia V Kichina
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Hannah Slabodkin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sydney Johnson
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Lorin Brown
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mikhail A Nikiforov
- Department of Cancer Biology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
20
|
Ouellette MM, Yan Y. Radiation‐activated prosurvival signaling pathways in cancer cells. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Michel M. Ouellette
- Department of Internal MedicineUniversity of Nebraska Medical Center Omaha Nebraska USA
| | - Ying Yan
- Department of Radiation OncologyUniversity of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
21
|
Reina-Campos M, Diaz-Meco MT, Moscat J. The Dual Roles of the Atypical Protein Kinase Cs in Cancer. Cancer Cell 2019; 36:218-235. [PMID: 31474570 PMCID: PMC6751000 DOI: 10.1016/j.ccell.2019.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023]
Abstract
Atypical protein kinase C (aPKC) isozymes, PKCλ/ι and PKCζ, are now considered fundamental regulators of tumorigenesis. However, the specific separation of functions that determine their different roles in cancer is still being unraveled. Both aPKCs have pleiotropic context-dependent functions that can translate into tumor-promoter or -suppressive functions. Here, we review early and more recent literature to discuss how the different tumor types, and their microenvironments, might account for the selective signaling of each aPKC isotype. This is of clinical relevance because a better understanding of the roles of these kinases is essential for the design of new anti-cancer treatments.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Zhang Y, Roos M, Himburg H, Termini CM, Quarmyne M, Li M, Zhao L, Kan J, Fang T, Yan X, Pohl K, Diers E, Jin Gim H, Damoiseaux R, Whitelegge J, McBride W, Jung ME, Chute JP. PTPσ inhibitors promote hematopoietic stem cell regeneration. Nat Commun 2019; 10:3667. [PMID: 31413255 PMCID: PMC6694155 DOI: 10.1038/s41467-019-11490-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Receptor type protein tyrosine phosphatase-sigma (PTPσ) is primarily expressed by adult neurons and regulates neural regeneration. We recently discovered that PTPσ is also expressed by hematopoietic stem cells (HSCs). Here, we describe small molecule inhibitors of PTPσ that promote HSC regeneration in vivo. Systemic administration of the PTPσ inhibitor, DJ001, or its analog, to irradiated mice promotes HSC regeneration, accelerates hematologic recovery, and improves survival. Similarly, DJ001 administration accelerates hematologic recovery in mice treated with 5-fluorouracil chemotherapy. DJ001 displays high specificity for PTPσ and antagonizes PTPσ via unique non-competitive, allosteric binding. Mechanistically, DJ001 suppresses radiation-induced HSC apoptosis via activation of the RhoGTPase, RAC1, and induction of BCL-XL. Furthermore, treatment of irradiated human HSCs with DJ001 promotes the regeneration of human HSCs capable of multilineage in vivo repopulation. These studies demonstrate the therapeutic potential of selective, small-molecule PTPσ inhibitors for human hematopoietic regeneration.
Collapse
Affiliation(s)
- Yurun Zhang
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Martina Roos
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
| | - Heather Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Christina M Termini
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Mamle Quarmyne
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Tiancheng Fang
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
| | - Xiao Yan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
| | - Katherine Pohl
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Emelyne Diers
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Hyo Jin Gim
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Julian Whitelegge
- Department of Psychiatry and Behavioral Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - William McBride
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Department of Radiation Oncology, UCLA, Los Angeles, CA, 90095, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - John P Chute
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- Department of Radiation Oncology, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Cao Z, Liao Q, Su M, Huang K, Jin J, Cao D. AKT and ERK dual inhibitors: The way forward? Cancer Lett 2019; 459:30-40. [PMID: 31128213 DOI: 10.1016/j.canlet.2019.05.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K)/AKT pathway regulates cell growth, proliferation, survival, mobility and invasion. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is also an important mitogenic signaling pathway involved in various cellular progresses. AKT, also named protein kinase B (PKB), is a primary mediator of the PI3K signaling pathway; and ERK at the end of MAPK signaling is the unique substrate and downstream effector of mitogen-activated protein/extracellular signal-regulated kinase (MEK). The AKT and ERK signaling are both aberrantly activated in a wide range of human cancers and have long been targeted for cancer therapy, but the clinical benefits of these targeted therapies have been limited due to complex cross-talk. Novel strategies, such as AKT/ERK dual inhibitors, may be needed.
Collapse
Affiliation(s)
- Zhe Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Kai Huang
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Deliang Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China; Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL, 62794, USA.
| |
Collapse
|
24
|
Lu L, Liu N, Fan K, Zhang G, Li C, Yan Y, Liu T, Fu WH. A tetravalent single chain diabody (CD40/HER2) efficiently inhibits tumor proliferation through recruitment of T cells and anti-HER2 functions. Mol Immunol 2019; 109:149-156. [PMID: 30951934 DOI: 10.1016/j.molimm.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
Abstract
Our aim was to construct a CD40×HER2 single chain diabody (ScDb) and determine its tumor-specific immune activation and anti-HER2 function. Overlap extension-polymerase chain reaction was applied in the construction of ScDb, and the protein was expressed with the pET28a (+)-Rosetta prokaryotic expression system. Soluble ScDb was purified by a nickel-nitrilotriacetic acid column. Dendritic cells (DC) was stimulated by ScDb and inhibited 4T1 cells proliferation in vitro. In 4T1 tumor mice model, lymphocyte infiltration was prominently detected in ScDb group, Caspase-3 expression was significantly upregulated. ScDb was labeled using quantum dots. Immunofluorescence assay indicated ScDb exhibited high affinity to HER2. T6-17 cells were inhibited by ScDb in vitro. The phosphorylation and expression levels of AKT, ERK were markedly decreased. In T6-17 tumor mice model. Compared to CD40 ScFv, HER2 ScFv and normal saline groups, tumor volume diminished significantly in ScDb group, and tumor cells showed extensive deformation, and pervasive karyopyknosis and karyorrhexis were found. In the present study, we successfully constructed a ScDb fragment and expressed it using a prokaryotic expression system. The in vivo and in vitro experimental results indicated that ScDb could inhibit the proliferation of tumor cells by stimulating the tumor-specific immunoreaction and blocking the HER2-related signaling pathway.
Collapse
Affiliation(s)
- Li Lu
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Ningbo Liu
- Department of Oncology Surgery, The first hospital of Handan, Hebei province China
| | - Kaihu Fan
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Guojing Zhang
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Chuan Li
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Yongjia Yan
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Tong Liu
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Wei-Huahua Fu
- Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
25
|
Román M, López I, Guruceaga E, Baraibar I, Ecay M, Collantes M, Nadal E, Vallejo A, Cadenas S, Miguel MED, Jang JH, Martin-Uriz PS, Castro-Labrador L, Vilas-Zornoza A, Lara-Astiaso D, Ponz-Sarvise M, Rolfo C, Santos ES, Raez LE, Taverna S, Behrens C, Weder W, Wistuba II, Vicent S, Gil-Bazo I. Inhibitor of Differentiation-1 Sustains Mutant KRAS-Driven Progression, Maintenance, and Metastasis of Lung Adenocarcinoma via Regulation of a FOSL1 Network. Cancer Res 2018; 79:625-638. [PMID: 30563891 DOI: 10.1158/0008-5472.can-18-1479] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Because of the refractory nature of mutant KRAS lung adenocarcinoma (LUAD) to current therapies, identification of new molecular targets is essential. Genes with a prognostic role in mutant KRAS LUAD have proven to be potential molecular targets for therapeutic development. Here we determine the clinical, functional, and mechanistic role of inhibitor of differentiation-1 (Id1) in mutant KRAS LUAD. Analysis of LUAD cohorts from TCGA and SPORE showed that high expression of Id1 was a marker of poor survival in patients harboring mutant, but not wild-type KRAS. Abrogation of Id1 induced G2-M arrest and apoptosis in mutant KRAS LUAD cells. In vivo, loss of Id1 strongly impaired tumor growth and maintenance as well as liver metastasis, resulting in improved survival. Mechanistically, Id1 was regulated by the KRAS oncogene through JNK, and loss of Id1 resulted in downregulation of elements of the mitotic machinery via inhibition of the transcription factor FOSL1 and of several kinases within the KRAS signaling network. Our study provides clinical, functional, and mechanistic evidence underscoring Id1 as a critical gene in mutant KRAS LUAD and warrants further studies of Id1 as a therapeutic target in patients with LUAD. SIGNIFICANCE: These findings highlight the prognostic significance of the transcriptional regulator Id1 in KRAS-mutant lung adenocarcinoma and provide mechanistic insight into how it controls tumor growth and metastasis.
Collapse
Affiliation(s)
- Marta Román
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Inés López
- Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Elisabeth Guruceaga
- Proteomics, Genomics and Bioinformatics Core Facility, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Iosune Baraibar
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Margarita Ecay
- Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - María Collantes
- Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Ernest Nadal
- Thoracic Oncology Unit, Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Adrián Vallejo
- Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Silvia Cadenas
- Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Marta Echavarri-de Miguel
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Jae Hwi Jang
- Klinik für Thoraxchirurgie, Universitätsspital Zürich, Zürich, Switzerland
| | - Patxi San Martin-Uriz
- Advanced Genomics Laboratory, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Laura Castro-Labrador
- Advanced Genomics Laboratory, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Advanced Genomics Laboratory, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - David Lara-Astiaso
- Advanced Genomics Laboratory, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Mariano Ponz-Sarvise
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Edegem, Belgium
| | - Edgardo S Santos
- Department of Oncology, Boca Ratón Regional Hospital, Boca Raton, Florida
| | - Luis E Raez
- Memorial Cancer Institute, Memorial Health Care System, Florida International University, Miami, Florida
| | - Simona Taverna
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - Carmen Behrens
- Translational Molecular Pathology Department, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Walter Weder
- Klinik für Thoraxchirurgie, Universitätsspital Zürich, Zürich, Switzerland
| | - Ignacio I Wistuba
- Translational Molecular Pathology Department, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Silvestre Vicent
- Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain. .,Program of Solid Tumors, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
26
|
Gu C, Ramos J, Begley U, Dedon PC, Fu D, Begley TJ. Phosphorylation of human TRM9L integrates multiple stress-signaling pathways for tumor growth suppression. SCIENCE ADVANCES 2018; 4:eaas9184. [PMID: 30009260 PMCID: PMC6040840 DOI: 10.1126/sciadv.aas9184] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
The human transfer RNA methyltransferase 9-like gene (TRM9L, also known as KIAA1456) encodes a negative regulator of tumor growth that is frequently silenced in many forms of cancer. While TRM9L can inhibit tumor cell growth in vivo, the molecular mechanisms underlying the tumor inhibition activity of TRM9L are unknown. We show that oxidative stress induces the rapid and dose-dependent phosphorylation of TRM9L within an intrinsically disordered domain that is necessary for tumor growth suppression. Multiple serine residues are hyperphosphorylated in response to oxidative stress. Using a chemical genetic approach, we identified a key serine residue in TRM9L that undergoes hyperphosphorylation downstream of the oxidative stress-activated MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase)-RSK (ribosomal protein S6 kinase) signaling cascade. Moreover, we found that phosphorylated TRM9L interacts with the 14-3-3 family of proteins, providing a link between oxidative stress and downstream cellular events involved in cell cycle control and proliferation. Mutation of the serine residues required for TRM9L hyperphosphorylation and 14-3-3 binding abolished the tumor inhibition activity of TRM9L. Our results uncover TRM9L as a key downstream effector of the ERK signaling pathway and elucidate a phospho-signaling regulatory mechanism underlying the tumor inhibition activity of TRM9L.
Collapse
Affiliation(s)
- Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Ulrike Begley
- The RNA Institute and Department of Biological Sciences, University at Albany, State University of New York, NY 12222, USA
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Thomas J. Begley
- The RNA Institute and Department of Biological Sciences, University at Albany, State University of New York, NY 12222, USA
| |
Collapse
|
27
|
Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proc Natl Acad Sci U S A 2018; 115:6369-6374. [PMID: 29866848 PMCID: PMC6016797 DOI: 10.1073/pnas.1714099115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Efficient manufacturing is critical for the translation of cell-based therapies to clinical applications. To date, high-yield expansion of human pluripotent stem cells (hPSC) in suspension bioreactors has not been reported. Here, we present a strategy to shift suspension-grown hPSC to a high-yield state without compromising their ability to differentiate to all three germ layers. In this new state, hPSC expand to densities 5.7 ± 0.2-fold higher than conventional hPSC each passage in suspension bioreactors. High-density suspension cultures enable process intensification, cost reduction, and more efficient manufacturing. This work advances cell-state engineering as a valuable tool to overcome current challenges in therapeutic cell production and processing. The development of cell-based therapies to replace missing or damaged tissues within the body or generate cells with a unique biological activity requires a reliable and accessible source of cells. Human pluripotent stem cells (hPSC) have emerged as a strong candidate cell source capable of extended propagation in vitro and differentiation to clinically relevant cell types. However, the application of hPSC in cell-based therapies requires overcoming yield limitations in large-scale hPSC manufacturing. We explored methods to convert hPSC to alternative states of pluripotency with advantageous bioprocessing properties, identifying a suspension-based small-molecule and cytokine combination that supports increased single-cell survival efficiency, faster growth rates, higher densities, and greater expansion than control hPSC cultures. ERK inhibition was found to be essential for conversion to this altered state, but once converted, ERK inhibition led to a loss of pluripotent phenotype in suspension. The resulting suspension medium formulation enabled hPSC suspension yields 5.7 ± 0.2-fold greater than conventional hPSC in 6 d, for at least five passages. Treated cells remained pluripotent, karyotypically normal, and capable of differentiating into all germ layers. Treated cells could also be integrated into directed differentiated strategies as demonstrated by the generation of pancreatic progenitors (NKX6.1+/PDX1+ cells). Enhanced suspension-yield hPSC displayed higher oxidative metabolism and altered expression of adhesion-related genes. The enhanced bioprocess properties of this alternative pluripotent state provide a strategy to overcome cell manufacturing limitations of hPSC.
Collapse
|
28
|
Tilli TM, Carels N, Tuszynski JA, Pasdar M. Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an in vitro model for inhibition of tumor development. Oncotarget 2018; 7:63189-63203. [PMID: 27527857 PMCID: PMC5325356 DOI: 10.18632/oncotarget.11055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022] Open
Abstract
Network-based strategies provided by systems biology are attractive tools for cancer therapy. Modulation of cancer networks by anticancer drugs may alter the response of malignant cells and/or drive network re-organization into the inhibition of cancer progression. Previously, using systems biology approach and cancer signaling networks, we identified top-5 highly expressed and connected proteins (HSP90AB1, CSNK2B, TK1, YWHAB and VIM) in the invasive MDA-MB-231 breast cancer cell line. Here, we have knocked down the expression of these proteins, individually or together using siRNAs. The transfected cell lines were assessed for in vitro cell growth, colony formation, migration and invasion relative to control transfected MDA-MB-231, the non-invasive MCF-7 breast carcinoma cell line and the non-tumoral mammary epithelial cell line MCF-10A. The knockdown of the top-5 upregulated connectivity hubs successfully inhibited the in vitro proliferation, colony formation, anchorage independence, migration and invasion in MDA-MB-231 cells; with minimal effects in the control transfected MDA-MB-231 cells or MCF-7 and MCF-10A cells. The in vitro validation of bioinformatics predictions regarding optimized multi-target selection for therapy suggests that protein expression levels together with protein-protein interaction network analysis may provide an optimized combinatorial target selection for a highly effective anti-metastatic precision therapy in triple-negative breast cancer. This approach increases the ability to identify not only druggable hubs as essential targets for cancer survival, but also interactions most susceptible to synergistic drug action. The data provided in this report constitute a preliminary step toward the personalized clinical application of our strategy to optimize the therapeutic use of anti-cancer drugs.
Collapse
Affiliation(s)
- Tatiana M Tilli
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Jack A Tuszynski
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res 2018; 138:99-142. [PMID: 29551131 DOI: 10.1016/bs.acr.2018.02.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.
Collapse
Affiliation(s)
- Scott T Eblen
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
30
|
Feng X, Bao L, Wu M, Zhang D, Yao L, Guo Z, Yan D, Zhao P, Hao H, Wang Z. Inhibition of ERK1/2 downregulates triglyceride and palmitic acid accumulation in cashmere goat foetal fibroblasts. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1480486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Xue Feng
- College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Lili Bao
- College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Manlin Wu
- College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Di Zhang
- College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, People’s Republic of China
| | - Le Yao
- College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Zhixin Guo
- College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Dandan Yan
- College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Pingping Zhao
- College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Huifang Hao
- College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Zhigang Wang
- College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| |
Collapse
|
31
|
Pal J, Patil V, Kumar A, Kaur K, Sarkar C, Somasundaram K. Loss-of-Function Mutations in Calcitonin Receptor ( CALCR) Identify Highly Aggressive Glioblastoma with Poor Outcome. Clin Cancer Res 2017; 24:1448-1458. [PMID: 29263181 DOI: 10.1158/1078-0432.ccr-17-1901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/15/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Despite significant advances in the understanding of the biology, the prognosis of glioblastoma (GBM) remains dismal. The objective was to carry out whole-exome sequencing (WES) of Indian glioma and integrate with that of TCGA to find clinically relevant mutated pathways.Experimental Design: WES of different astrocytoma samples (n = 42; Indian cohort) was carried out and compared with that of TCGA cohort. An integrated analysis of mutated genes from Indian and TCGA cohorts was carried out to identify survival association of pathways with genetic alterations. Patient-derived glioma stem-like cells, glioma cell lines, and mouse xenograft models were used for functional characterization of calcitonin receptor (CALCR) and establish it as a therapeutic target.Results: A similar mutation spectrum between the Indian cohort and TCGA cohort was demonstrated. An integrated analysis identified GBMs with defective "neuroactive ligand-receptor interaction" pathway (n = 23; 9.54%) that have significantly poor prognosis (P < 0.0001). Furthermore, GBMs with mutated calcitonin receptor (CALCR) or reduced transcript levels predicted poor prognosis. Exogenously added calcitonin (CT) inhibited various properties of glioma cells and pro-oncogenic signaling pathways in a CALCR-dependent manner. Patient-derived mutations in CALCR abolished these functions with the degree of loss of function negatively correlating with patient survival. WT CALCR, but not the mutant versions, inhibited Ras-mediated transformation of immortalized astrocytes in vitro Furthermore, calcitonin inhibited patient-derived neurosphere growth and in vivo glioma tumor growth in a mouse model.Conclusions: We demonstrate CT-CALCR signaling axis is an important tumor suppressor pathway in glioma and establish CALCR as a novel therapeutic target for GBM. Clin Cancer Res; 24(6); 1448-58. ©2017 AACR.
Collapse
Affiliation(s)
- Jagriti Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anupam Kumar
- Department of Pathology, All India Institute of Medical Science, New Delhi, India
| | - Kavneet Kaur
- Department of Pathology, All India Institute of Medical Science, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Science, New Delhi, India.
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
32
|
Non-canonical PI3K-Cdc42-Pak-Mek-Erk Signaling Promotes Immune-Complex-Induced Apoptosis in Human Neutrophils. Cell Rep 2017; 17:374-386. [PMID: 27705787 PMCID: PMC5067281 DOI: 10.1016/j.celrep.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/08/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are peripheral blood leukocytes that represent the first line of immune cell defense against bacterial and fungal infections but are also crucial players in the generation of the inflammatory response. Many neutrophil cell surface receptors regulate important cellular processes via activation of agonist-activated PI3Ks. We show here that activation of human neutrophils with insoluble immune complexes drives a previously uncharacterized, PI3K-dependent, non-canonical, pro-apoptotic signaling pathway, FcγR-PI3Kβ/δ-Cdc42-Pak-Mek-Erk. This is a rare demonstration of Ras/Raf-independent activation of Erk and of PI3K-mediated activation of Cdc42. In addition, comparative analysis of immune-complex- and fMLF-induced signaling uncovers key differences in pathways used by human and murine neutrophils. The non-canonical pathway we identify in this study may be important for the resolution of inflammation in chronic inflammatory diseases that rely on immune-complex-driven neutrophil activation. Immune-complex-activated human neutrophils use PI3Kβ/δ-Cdc42-Pak-Mek-Erk signaling Immune-complex-induced non-canonical neutrophil signaling is pro-apoptotic Other immune-complex-induced neutrophil functions depend on alternative PI3K effectors Immune-complex-induced PI3K signaling is not conserved between humans and mice
Collapse
|
33
|
Hampsch RA, Shee K, Bates D, Lewis LD, Désiré L, Leblond B, Demidenko E, Stefan K, Huang YH, Miller TW. Therapeutic sensitivity to Rac GTPase inhibition requires consequential suppression of mTORC1, AKT, and MEK signaling in breast cancer. Oncotarget 2017; 8:21806-21817. [PMID: 28423521 PMCID: PMC5400625 DOI: 10.18632/oncotarget.15586] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
Rac GTPases have oncogenic roles in cell growth, survival, and migration. We tested response to the Rac inhibitor EHT1864 in a panel of breast cancer cell lines. EHT1864-induced growth inhibition was associated with dual inhibition of the PI3K/AKT/mTORC1 and MEK/ERK pathways. Breast cancer cells harboring PIK3CA mutations or HER2 overexpression were most sensitive to Rac inhibition, suggesting that such oncogenic alterations link Rac activation with PI3K/AKT/mTORC1 and MEK/ERK signaling. Interestingly, EHT1864 decreased activation of the mTORC1 substrate p70S6K earlier than AKT inhibition, suggesting that Rac may activate mTORC1/p70S6K independently of AKT. Comparison of the growth-inhibitory profile of EHT1864 to 137 other anti-cancer drugs across 656 cancer cell lines revealed significant correlation with the p70S6K inhibitor PF-4708671. We confirmed that Rac complexes contain MEK1/2 and ERK1/2, but also contain p70S6K; these interactions were disrupted by EHT1864. Pharmacokinetic profiles revealed that EHT1864 was present in mouse plasma at concentrations effective in vitro for approximately 1 h after intraperitoneal administration. EHT1864 suppressed growth of HER2+ tumors, and enhanced response to anti-estrogen treatment in ER+ tumors. Further therapeutic development of Rac inhibitors for HER2+ and PIK3CA-mutant cancers is warranted.
Collapse
Affiliation(s)
- Riley A Hampsch
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kevin Shee
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Darcy Bates
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lionel D Lewis
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | - Eugene Demidenko
- Department of Community & Family Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kurtis Stefan
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
34
|
Inhibiting p21-Activated Kinase Induces Cell Death in Vestibular Schwannoma and Meningioma via Mitotic Catastrophe. Otol Neurotol 2017; 38:139-146. [PMID: 27755359 DOI: 10.1097/mao.0000000000001247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS p21-activated kinase (PAK) regulates signaling pathways that promote cell survival and proliferation; therefore, pharmacological inhibition of PAK will induce cell death in vestibular schwannomas (VS) and meningiomas. BACKGROUND All VS and many meningiomas result from loss of the neurofibromatosis type 2 (NF2) gene product merlin, with ensuing PAK hyperactivation and increased cell proliferation/survival. METHODS The novel small molecule PAK inhibitors PI-8 and PI-15-tested in schwannoma and meningioma cells-perturb molecular signaling and induce cell death. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay analyzed PAK inhibitors' effect on cell viability, cell cycle, and cell death, respectively. Western blots evaluated activation and expression of cell proliferation, apoptotic, and mitotic catastrophe markers. Light microscopy evaluated cell morphology, and immunocytochemistry analyzed cellular localization of phospho-Merlin and autophagy-related protein. RESULTS Treatment with PI-8 and PI-15 decreased cell viability at 0.65 to 3.7 μM 50% inhibitory concentration (IC50) in schwannoma and meningioma cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling and immunocytochemistry studies show that PI-8 and PI-15 induce mitotic catastrophe but not apoptosis in HEI193 cells while in BenMen1 cells, PI-8 induces autophagy and mitotic catastrophe. PI-15 induces apoptosis in BenMen1 cells. PAK inhibitor treated cells show phospho-Merlin localized to over-duplicated centrosomes of dividing cells, multiple enlarged nuclei, and misaligned/missegregated chromosomes-markers for mitotic catastrophe. Increased autophagy-related protein levels in the nucleus confirmed this cell death type. PI-8 and PI-15 inhibits PAK in both cell lines. However, only PI-15 inhibits v-akt murine thymoma viral oncogene homolog in BenMen1 cells. CONCLUSION PAK inhibitors induce cell death in schwannoma and meningioma cells, at least in part, by mitotic catastrophe.
Collapse
|
35
|
Buranrat B, Suwannaloet W, Naowaboot J. Simvastatin potentiates doxorubicin activity against MCF-7 breast cancer cells. Oncol Lett 2017; 14:6243-6250. [PMID: 29113274 DOI: 10.3892/ol.2017.6783] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/07/2017] [Indexed: 01/01/2023] Open
Abstract
Simvastatin is a low density lipoprotein-lowering drug that is widely used to prevent and treat cardiovascular disease by inhibiting the mevalonate pathway. Simvastatin also exhibits inhibitory effects on a number of types of cancer. In the present study, the effects of simvastatin on the activity of doxorubicin in the breast cancer MCF-7 cell line, and the mechanisms by which this interaction occurs were investigated. The effect of simvastatin and doxorubicin treatment, alone and in combination, on the growth of MCF-7 cells was evaluated by a sulforhodamine B and colony formation assay. To delineate the mechanisms of cell death, the following parameters were measured: Reactive oxygen species (ROS) production using the fluorescence probe dihydroethidium; caspase 3 activity by the fluorometry method; gene expression by quantitative polymerase chain reaction; and apoptotic- and proliferative-related protein levels by western blotting. MCF-7 cell proliferation was significantly suppressed by 24-48 h treatment with simvastatin alone. Doses of 10-50 µM simvastatin also enhanced the cytotoxicity of doxorubicin against MCF-7 cells in a dose-dependent manner, and decreased the colony-forming ability of MCF-7 cells. Simvastatin alone or in combination with doxorubicin significantly increased ROS levels. Combination treatment significantly decreased expression of the cell cycle regulatory protein Ras-related C3 botulinum toxin substrate 1 and numerous downstream proteins including cyclin-dependent kinase (Cdk) 2, Cdk4 and Cdk6. Additionally, simvastatin in combination with doxorubicin significantly induced expression of the cyclin-dependent kinase inhibitor p21, increased cytochrome c and caspase 3 expression and reduced cyclin D1 expression. In conclusion, simvastatin acts synergistically with the anticancer drug doxorubicin against MCF-7 cells, possibly through a downregulation of the cell cycle or induction of apoptosis. Although additional studies are required, simvastatin and doxorubicin combination may be a reasonable regimen for the treatment of breast cancer.
Collapse
Affiliation(s)
- Benjaporn Buranrat
- Faculty of Medicine, Mahasarakham University, Talad, Maha Sarakham 44000, Thailand
| | - Wanwisa Suwannaloet
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Warin chamrap, Ubon Ratchathani 34190, Thailand
| | - Jarinyaporn Naowaboot
- Division of Pharmacology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit, Pathum Thani 12120, Thailand
| |
Collapse
|
36
|
Zhou W, Li X, Premont RT. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J Cell Sci 2017; 129:1963-74. [PMID: 27182061 DOI: 10.1242/jcs.179465] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins (inactivators) for the ADP-ribosylation factor (Arf) small GTP-binding proteins, and function to limit the activity of Arf proteins. The PIX proteins, α-PIX and β-PIX (also known as ARHGEF6 and ARHGEF7, respectively), are guanine nucleotide exchange factors (activators) for the Rho family small GTP-binding protein family members Rac1 and Cdc42. Through their multi-domain structures, GIT and PIX proteins can also function as signaling scaffolds by binding to numerous protein partners. Importantly, the constitutive association of GIT and PIX proteins into oligomeric GIT-PIX complexes allows these two proteins to function together as subunits of a larger structure that coordinates two distinct small GTP-binding protein pathways and serves as multivalent scaffold for the partners of both constituent subunits. Studies have revealed the involvement of GIT and PIX proteins, and of the GIT-PIX complex, in numerous fundamental cellular processes through a wide variety of mechanisms, pathways and signaling partners. In this Commentary, we discuss recent findings in key physiological systems that exemplify current understanding of the function of this important regulatory complex. Further, we draw attention to gaps in crucial information that remain to be filled to allow a better understanding of the many roles of the GIT-PIX complex in health and disease.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Medicine, College of Medicine and Health, Lishui University, Lishui 323000, China
| | - Xiaobo Li
- Department of Computer Science and Technology, College of Engineering and Design, Lishui University, Lishui 323000, China
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
37
|
Yuan LH, Chen XL, Di Y, Liu ML. CCR7/p-ERK1/2/VEGF signaling promotes retinal neovascularization in a mouse model of oxygen-induced retinopathy. Int J Ophthalmol 2017; 10:862-869. [PMID: 28730075 DOI: 10.18240/ijo.2017.06.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/14/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the role of CCR7/p-ERK1/2/VEGF signaling in the mouse model of oxygen-induced retinopathy (OIR). METHODS Neonatal C57BL/6J mice were evenly randomized into four groups: normoxia, OIR, OIR control (treated with scramble siRNA), and OIR treated (treated with CCR7 siRNA). Normoxia group was not specially handled. Postnatal day 7 (P7) mice in the OIR group were exposed to 75%±5% oxygen for 5d (P7-P12) and then maintained under normoxic conditions for 5d (P12-P17). Mice in the OIR control and OIR treated groups were given injections of scramble or CCR7 siRNA plasmid on P12 before returning to normoxic conditions for 5d (P12-P17). Retina samples were collected from all mice on P17, stained with adenosine diphosphatase (ADPase), and retinal neovascularization (RNV) was assessed. Retinas were also stained with hematoxylin and eosin (H&E) for RNV quantitation. The distribution and expression of CCR7, p-ERK1/2 and vascular endothelial growth factor (VEGF) were assessed via immunohistochemistry, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS High oxygen promoted retinal neovascularization (P<0.05) and increased the number of endothelial nuclei in new vessels extending from the retina to the vitreous body; CCR7 promoted this process (P<0.05). CCR7 and VEGF mRNA were expressed at higher levels in the OIR and OIR control groups than in the normoxia and OIR treated groups. CCR7, p-ERK1/2, and VEGF protein were expressed in the retinas of mice in the OIR and OIR control groups. Intravitreal injection of CCR7 siRNA significantly reduced CCR7, p-ERK1/2, and VEGF expression in the OIR mouse model (all P<0.05). CCR7 significantly enhanced the neovascularization and non-perfusion areas in the OIR group (P<0.05). CCR7 siRNA significantly reduced levels of p-ERK1/2 and VEGF as compared to OIR controls (P<0.05). CONCLUSION These results suggest that CCR7/p-ERK 1/2/VEGF signaling plays an important role in OIR. CCR7 may be a potential target for the prevention and treatment of retinopathy of prematurity.
Collapse
Affiliation(s)
- Lin-Hui Yuan
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Xiao-Long Chen
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| | - Mei-Lin Liu
- Department of Ophthalmology, Shengjing Affiliated Hospital of China Medical University, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
38
|
Drube S, Kraft F, Dudeck J, Müller AL, Weber F, Göpfert C, Meininger I, Beyer M, Irmler I, Häfner N, Schütz D, Stumm R, Yakovleva T, Gaestel M, Dudeck A, Kamradt T. MK2/3 Are Pivotal for IL-33-Induced and Mast Cell-Dependent Leukocyte Recruitment and the Resulting Skin Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:3662-3668. [PMID: 27694493 DOI: 10.4049/jimmunol.1600658] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022]
Abstract
The IL-1R family member IL-33R mediates Fcε-receptor-I (FcεRI)-independent activation of mast cells leading to NF-κB activation and consequently the production of cytokines. IL-33 also induces the activation of MAPKs, such as p38. We aimed to define the relevance of the p38-targets, the MAPK-activated protein kinases 2 and 3 (MK2 and MK3) in IL-33-induced signaling and the resulting mast cell effector functions in vitro and in vivo. We demonstrate that the IL-33-induced IL-6 and IL-13 production strongly depends on the MK2/3-mediated activation of ERK1/2 and PI3K signaling. Furthermore, in the presence of the stem cell factors, IL-33 did induce an MK2/3-, ERK1/2- and PI3K-dependent production of TNF-α. In vivo, the loss of MK2/3 in mast cells decreased the IL-33-induced leukocyte recruitment and the resulting skin inflammation. Therefore, the MK2/3-dependent signaling in mast cells is essential to mediate IL-33-induced inflammatory responses. Thus, MK2/3 are potential therapeutic targets for suppression of IL-33-induced inflammation skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Sebastian Drube
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany;
| | - Florian Kraft
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Jan Dudeck
- Institute of Immunology, Technical University Dresden, Medical Faculty Carl Gustav Carus, 01307 Dresden, Germany
| | - Anna-Lena Müller
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Franziska Weber
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | | | - Isabel Meininger
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Mandy Beyer
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Ingo Irmler
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital-Friedrich Schiller University, 07743 Jena, Germany
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany; and
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany; and
| | - Tatiana Yakovleva
- Department of Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Matthias Gaestel
- Department of Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Anne Dudeck
- Institute of Immunology, Technical University Dresden, Medical Faculty Carl Gustav Carus, 01307 Dresden, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
39
|
Identification of TRA2B-DNAH5 fusion as a novel oncogenic driver in human lung squamous cell carcinoma. Cell Res 2016; 26:1149-1164. [PMID: 27670699 DOI: 10.1038/cr.2016.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/03/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022] Open
Abstract
Lung squamous cell carcinoma (SCC) is one of the major subtypes of lung cancer. Our current knowledge of oncogenic drivers in this specific subtype of lung cancer is largely limited compared with lung adenocarcinoma (ADC). Through exon array analyses, molecular analyses and functional studies, we here identify the TRA2B-DNAH5 fusion as a novel oncogenic driver in lung SCC. We found that this gene fusion occurs exclusively in lung SCC (3.1%, 5/163), but not in lung ADC (0/119). Through mechanistic studies, we further revealed that this TRA2B-DNAH5 fusion promotes lung SCC malignant progression through regulating a SIRT6-ERK1/2-MMP1 signaling axis. We show that inhibition of ERK1/2 activation using selumetinib efficiently inhibits the growth of lung SCC with TRA2B-DNAH5 fusion expression. These findings improve our current knowledge of oncogenic drivers in lung SCC and provide a potential therapeutic strategy for lung SCC patients with TRA2B-DNAH5 fusion.
Collapse
|
40
|
Al-Mahdi R, Babteen N, Thillai K, Holt M, Johansen B, Wetting HL, Seternes OM, Wells CM. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adh Migr 2016; 9:483-94. [PMID: 26588708 PMCID: PMC4955959 DOI: 10.1080/19336918.2015.1112485] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ERK3 is an atypical Mitogen-activated protein kinase (MAPK6). Despite the fact that the Erk3 gene was originally identified in 1991, its function is still unknown. MK5 (MAP kinase- activated protein kinase 5) also called PRAK is the only known substrate for ERK3. Recently, it was found that group I p21 protein activated kinases (PAKs) are critical effectors of ERK3. PAKs link Rho family of GTPases to actin cytoskeletal dynamics and are known to be involved in the regulation of cell adhesion and migration. In this study we demonstrate that ERK3 protein levels are elevated as MDA-MB-231 breast cancer cells adhere to collagen I which is concomitant with changes in cellular morphology where cells become less well spread following nascent adhesion formation. During this early cellular adhesion event we observe that the cells retain protrusive activity while reducing overall cellular area. Interestingly exogenous expression of ERK3 delivers a comparable reduction in cell spread area, while depletion of ERK3 expression increases cell spread area. Importantly, we have detected a novel specific endogenous ERK3 localization at the cell periphery. Furthermore we find that ERK3 overexpressing cells exhibit a rounded morphology and increased cell migration speed. Surprisingly, exogenous expression of a kinase inactive mutant of ERK3 phenocopies ERK3 overexpression, suggesting a novel kinase independent function for ERK3. Taken together our data suggest that as cells initiate adhesion to matrix increasing levels of ERK3 at the cell periphery are required to orchestrate cell morphology changes which can then drive migratory behavior.
Collapse
Affiliation(s)
- Rania Al-Mahdi
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Nouf Babteen
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| | - Kiruthikah Thillai
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| | - Mark Holt
- c Randall Division for Cell and Molecular Biophysics and Cardiovascular Division; King's College London ; London , UK
| | - Bjarne Johansen
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Hilde Ljones Wetting
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Ole-Morten Seternes
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Claire M Wells
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| |
Collapse
|
41
|
Kinoshita E, Kinoshita-Kikuta E, Kubota Y, Takekawa M, Koike T. A Phos-tag SDS-PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1. Proteomics 2016; 16:1825-36. [DOI: 10.1002/pmic.201500494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/14/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Eiji Kinoshita
- Department of Functional Molecular Science; Institute of Biomedical and Health Sciences; Hiroshima University; Japan
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science; Institute of Biomedical and Health Sciences; Hiroshima University; Japan
| | - Yuji Kubota
- Division of Cell Signaling and Molecular Medicine; Institute of Medical Science; The University of Tokyo; Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine; Institute of Medical Science; The University of Tokyo; Japan
| | - Tohru Koike
- Department of Functional Molecular Science; Institute of Biomedical and Health Sciences; Hiroshima University; Japan
| |
Collapse
|
42
|
Hein AL, Post CM, Sheinin YM, Lakshmanan I, Natarajan A, Enke CA, Batra SK, Ouellette MM, Yan Y. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene 2016; 35:6319-6329. [PMID: 27181206 PMCID: PMC5112160 DOI: 10.1038/onc.2016.163] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/08/2016] [Accepted: 03/29/2016] [Indexed: 01/22/2023]
Abstract
Radiation therapy is a staple approach for cancer treatment, whereas radioresistance of cancer cells remains a substantial clinical problem. In response to ionizing radiation (IR) induced DNA-damage, cancer cells can sustain/activate pro-survival signaling pathways, leading to apoptotic resistance and induction of cell cycle checkpoint/DNA repair. Previous studies show that Rac1 GTPase is overexpressed/hyperactivated in breast cancer cells and is associated with poor prognosis. Studies from our laboratory reveal that Rac1 activity is necessary for G2/M checkpoint activation and cell survival in response to IR exposure of breast and pancreatic cancer cells. In the present study, we investigated the effect of Rac1 on the survival of breast cancer cells treated with hyper-fractionated radiation (HFR), which is used clinically for cancer treatment. Results in this report indicate that Rac1 protein expression is increased in the breast cancer cells that survived HFR compared to parental cells. Furthermore, this increase of Rac1 is associated with enhanced activities of ERK1/2 and NF-κB signaling pathways and increased levels of anti-apoptotic protein Bcl-xL and Mcl-1, which are downstream targets of ERK1/2 and NF-κB signaling pathways. Using Rac1 specific inhibitor and dominant negative mutant N17Rac1, here we demonstrate that Rac1 inhibition decreases the phosphorylation of ERK1/2 and IκBα, as well as the levels of Bcl-xL and Mcl-1 protein in the HFR-selected breast cancer cells. Moreover, inhibition of Rac1 using either small molecule inhibitor or dominant negative N17Rac1 abrogates clonogenic survival of HFR-selected breast cancer cells and decreases the level of intact PARP, which is indicative of apoptosis induction. Collectively, results in this report suggest that Rac1 signaling is essential for the survival of breast cancer cells subjected to HFR and implicate Rac1 in radioresistance of breast cancer cells. These studies also provide the basis to explore Rac1 as a therapeutic target for radioresistant breast cancer cells.
Collapse
Affiliation(s)
- A L Hein
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - C M Post
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Y M Sheinin
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - C A Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - S K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - M M Ouellette
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Y Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
43
|
Aoidi R, Maltais A, Charron J. Functional redundancy of the kinases MEK1 and MEK2: Rescue of theMek1mutant phenotype byMek2knock-in reveals a protein threshold effect. Sci Signal 2016; 9:ra9. [DOI: 10.1126/scisignal.aad5658] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Kamishibahara Y, Kawaguchi H, Shimizu N. Rho kinase inhibitor Y-27632 promotes neuronal differentiation in mouse embryonic stem cells via phosphatidylinositol 3-kinase. Neurosci Lett 2016; 615:44-9. [PMID: 26797580 DOI: 10.1016/j.neulet.2016.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Rho kinase (ROCK) regulates the functions of several target proteins via its kinase activity. Therefore, ROCK activity inhibition may provide new possibilities of controlling the in vitro neuronal differentiation of embryonic stem (ES) cells. When we investigated the effects of the ROCK inhibitor Y-27632 on ES cell differentiation, we found that this inhibitor promoted the differentiation of these cells into neurons. Furthermore, we found that ROCK inhibition may promote the neuronal differentiation of ES cells by activating extracellular signal-regulated kinase (ERK) involved in the ERK signaling pathway. In this study, we investigated the effects of specific inhibitors of several cellular signaling components on the promotion of neuronal differentiation in ES cells to clarify the roles of cellular signaling pathways in the ROCK inhibitor-mediated cell differentiation process. Our results suggest that ERK may be activated via the Ras/Raf/MEK, the PI3K/PKC, or the Cdc42/Rac signaling pathways in the ROCK inhibitor-mediated promotion of neuronal differentiation in ES cells.
Collapse
Affiliation(s)
- Yu Kamishibahara
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Hideo Kawaguchi
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan.
| | - Norio Shimizu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan; Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan.
| |
Collapse
|
45
|
Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget 2015; 6:1981-94. [PMID: 25596744 PMCID: PMC4385830 DOI: 10.18632/oncotarget.2810] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022] Open
Abstract
Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder characterized by the development of multiple tumors in the central nervous system, most notably schwannomas and meningiomas. Mutational inactivation of NF2 is found in 40-60% of sporadic meningiomas, but the molecular mechanisms underlying malignant changes of meningioma cells remain unclear. Because group I p21-activated kinases (Paks) bind to and are inhibited by the NF2-encoded protein Merlin, we assessed the signaling and anti-tumor effects of three group-I specific Pak inhibitors - Frax597, 716 and 1036 - in NF2-/- meningiomas in vitro and in an orthotopic mouse model. We found that these Pak inhibitors suppressed the proliferation and motility of both benign (Ben-Men1) and malignant (KT21-MG1) meningiomas cells. In addition, we found a strong reduction in phosphorylation of Mek and S6, and decreased cyclin D1 expression in both cell lines after treatment with Pak inhibitors. Using intracranial xenografts of luciferase-expressing KT21-MG1 cells, we found that treated mice showed significant tumor suppression for all three Pak inhibitors. Similar effects were observed in Ben-Men1 cells. Tumors dissected from treated animals exhibited an increase in apoptosis without notable change in proliferation. Collectively, these results suggest that Pak inhibitors might be useful agents in treating NF2-deficient meningiomas.
Collapse
|
46
|
Aspirin Inhibits LPS-Induced Expression of PI3K/Akt, ERK, NF-κB, CX3CL1, and MMPs in Human Bronchial Epithelial Cells. Inflammation 2015; 39:643-50. [DOI: 10.1007/s10753-015-0289-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Tam SY, Lilla JN, Chen CC, Kalesnikoff J, Tsai M. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells. PLoS One 2015; 10:e0142935. [PMID: 26588713 PMCID: PMC4654474 DOI: 10.1371/journal.pone.0142935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023] Open
Abstract
Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells.
Collapse
Affiliation(s)
- See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Jennifer N. Lilla
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ching-Cheng Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janet Kalesnikoff
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
48
|
Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res 2015; 16:134. [PMID: 26517982 PMCID: PMC4628321 DOI: 10.1186/s12931-015-0296-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
49
|
Du T, Zhang B, Zhang S, Jiang X, Zheng P, Li J, Yan M, Zhu Z, Liu B. Decreased expression of long non-coding RNA WT1-AS promotes cell proliferation and invasion in gastric cancer. Biochim Biophys Acta Mol Basis Dis 2015; 1862:12-9. [PMID: 26449525 DOI: 10.1016/j.bbadis.2015.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/17/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022]
Abstract
Tumor recurrence and metastasis remain the major obstacles for the successful treatment of patients diagnosed with gastric cancer. In recent years, long non-coding RNAs (lncRNAs) have been considered as key regulators of tumor behavior. In this study, we investigated the expression and biological role of a newly-identified cancer-related lncRNA, WT1-AS. We found that WT1-AS expression was significantly down-regulated in tumor tissues compared to matched adjacent non-tumor tissues. The WT1-AS expression level was also associated with tumor size and the clinicopathological stage. Cell proliferation, migration, and invasion were inhibited, and the proportion of G0/G1 cells increased when WT1-AS was ectopically-expressed in gastric cancer cells. Furthermore, ectopic expression of WT1-AS was demonstrated to inhibit tumor growth and metastasis in vivo. Finally, we found that WT1-AS overexpression could decrease ERK protein phosphorylation. Our study indicates that WT1-AS is significantly down-regulated in gastric cancers and may be correlated with tumor progression.
Collapse
Affiliation(s)
- Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, No 150 Jimo Road, Shanghai, China.
| | - Baogui Zhang
- Affiliated Hospital of Jining Medical University, Jining 272000, China; Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of medicine, No 197 Ruijin er Road, Shanghai 200025, China.
| | - Shun Zhang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, No 150 Jimo Road, Shanghai, China.
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, No 150 Jimo Road, Shanghai, China.
| | - Ping Zheng
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, No 150 Jimo Road, Shanghai, China.
| | - Jianfang Li
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of medicine, No 197 Ruijin er Road, Shanghai 200025, China.
| | - Min Yan
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of medicine, No 197 Ruijin er Road, Shanghai 200025, China.
| | - Zhenggang Zhu
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of medicine, No 197 Ruijin er Road, Shanghai 200025, China.
| | - Bingya Liu
- Shanghai Key laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of medicine, No 197 Ruijin er Road, Shanghai 200025, China.
| |
Collapse
|
50
|
Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 2015; 15:577-92. [PMID: 26399658 DOI: 10.1038/nrc4000] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of the ERK signalling pathway in cancer is thought to be most prominent in tumours in which mutations in the receptor tyrosine kinases RAS, BRAF, CRAF, MEK1 or MEK2 drive growth factor-independent ERK1 and ERK2 activation and thence inappropriate cell proliferation and survival. New drugs that inhibit RAF or MEK1 and MEK2 have recently been approved or are currently undergoing late-stage clinical evaluation. In this Review, we consider the ERK pathway, focusing particularly on the role of MEK1 and MEK2, the 'gatekeepers' of ERK1/2 activity. We discuss their validation as drug targets, the merits of targeting MEK1 and MEK2 versus BRAF and the mechanisms of action of different inhibitors of MEK1 and MEK2. We also consider how some of the systems-level properties (intrapathway regulatory loops and wider signalling network connections) of the ERK pathway present a challenge for the success of MEK1 and MEK2 inhibitors, discuss mechanisms of resistance to these inhibitors, and review their clinical progress.
Collapse
Affiliation(s)
- Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Sale
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Paul D Smith
- AstraZeneca, Oncology iMed, Cancer Biosciences, Cancer Research UK, Li Ka Shing Centre, Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|