1
|
Eom KH, Kwon DH, Kim YC, Gim GM, Yum SY, Kim SM, Cha HJ, Jang G. Mammalian ubiquitous promoter isolated from proximal regulatory region of bovine MSTN gene. Sci Rep 2024; 14:27750. [PMID: 39532980 PMCID: PMC11557881 DOI: 10.1038/s41598-024-76937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Gene therapy is a promising method for treating inherited diseases by directly delivering the correct genetic material into patient cells. However, the limited packaging capacity of vectors poses a challenge. Minimizing promoter size is a viable strategy among various approaches to address this issue. This study aims to optimize the bovine myostatin (MSTN) promoter, enhancing its utility in gene therapy applications. We identified the primary driver of activity as the proximal regulatory region. Isolated from the native promoter and termed M243, this 243-bp sequence was assessed for its potential as a ubiquitous promoter. In a variety of cell types, including bovine embryos and embryonic stem cells, the M243 promoter showed consistent expression, highlighting its suitability for applications requiring compact promoters. The isolation of a highly conserved, compact 243-bp sequence serving as a promoter suggests a solution for overcoming the size constraints of AAV vectors, suggesting potential contributions to the field of gene therapy.
Collapse
Affiliation(s)
- Kyeong-Hyeon Eom
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- LARTBio Inc., 60 Haan-ro, Gwangmyeong-si, Gyeonggi-do, 14322, Republic of Korea
| | - Dong-Hyeok Kwon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Chai Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Gyeong-Min Gim
- LARTBio Inc., 60 Haan-ro, Gwangmyeong-si, Gyeonggi-do, 14322, Republic of Korea
| | - Soo-Young Yum
- LARTBio Inc., 60 Haan-ro, Gwangmyeong-si, Gyeonggi-do, 14322, Republic of Korea
| | - Seong-Min Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Goo Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- LARTBio Inc., 60 Haan-ro, Gwangmyeong-si, Gyeonggi-do, 14322, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Yang H, Zhou L, Zheng Y, Yu T, Wu B, Liu Z, Sun X. Myocyte enhancer factor 2 upregulates expression of myostatin promoter in Yesso scallop, Patinopecten yessoensis. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111024. [PMID: 39173872 DOI: 10.1016/j.cbpb.2024.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Myostatin (MSTN) plays an important role in muscle development in animals, especially for mammals and fishes. However, little information has been reported on the regulation of MSTN in marine invertebrates, such as bivalves. In the present study, we cloned the MSTN promoter sequence of Yesso scallop Patinopecten yessoensis, identifying 4 transcription start sites, eleven TATA boxes and one E-box. Additionally, transcription factor binding sites, including myocyte enhancer factor 2 (MEF2) and POU homeodomain protein, were identified. The interaction between the MSTN promoter and MEF2 was analyzed to reveal the transcriptional activity of different fragment sizes of promoters through the dual-luciferase reporter assays. The highest transcriptional activity was found in recombinant plasmids with the most MEF2 binding sites, indicating that this transcription factor upregulates MSTN in Yesso scallop. This study provides new insight into the regulation of muscle growth and development in this species.
Collapse
Affiliation(s)
- Hongsu Yang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao 265800, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao 265800, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Zhu K, He H, Guo H, Liu B, He X, Zhang N, Xian L, Zhang D. Identification of two MEF2s and their role in inhibiting the transcription of the mstn2a gene in the yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). Gene 2024; 909:148322. [PMID: 38423140 DOI: 10.1016/j.gene.2024.148322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-β superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that -987 to +168 and -105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (-527 to -512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.
Collapse
Affiliation(s)
- Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Hongxi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Xin He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China.
| |
Collapse
|
4
|
Wilhelmsen A, Stephens FB, Bennett AJ, Karagounis LG, Jones SW, Tsintzas K. Skeletal muscle myostatin mRNA expression is upregulated in aged human adults with excess adiposity but is not associated with insulin resistance and ageing. GeroScience 2024; 46:2033-2049. [PMID: 37801203 PMCID: PMC10828472 DOI: 10.1007/s11357-023-00956-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Myostatin negatively regulates skeletal muscle growth and appears upregulated in human obesity and associated with insulin resistance. However, observations are confounded by ageing, and the mechanisms responsible are unknown. The aim of this study was to delineate between the effects of excess adiposity, insulin resistance and ageing on myostatin mRNA expression in human skeletal muscle and to investigate causative factors using in vitro models. An in vivo cross-sectional analysis of human skeletal muscle was undertaken to isolate effects of excess adiposity and ageing per se on myostatin expression. In vitro studies employed human primary myotubes to investigate the potential involvement of cross-talk between subcutaneous adipose tissue (SAT) and skeletal muscle, and lipid-induced insulin resistance. Skeletal muscle myostatin mRNA expression was greater in aged adults with excess adiposity than age-matched adults with normal adiposity (2.0-fold higher; P < 0.05) and occurred concurrently with altered expression of genes involved in the maintenance of muscle mass but did not differ between younger and aged adults with normal adiposity. Neither chronic exposure to obese SAT secretome nor acute elevation of fatty acid availability (which induced insulin resistance) replicated the obesity-mediated upregulation of myostatin mRNA expression in vitro. In conclusion, skeletal muscle myostatin mRNA expression is uniquely upregulated in aged adults with excess adiposity and insulin resistance but not by ageing alone. This does not appear to be mediated by the SAT secretome or by lipid-induced insulin resistance. Thus, factors intrinsic to skeletal muscle may be responsible for the obesity-mediated upregulation of myostatin, and future work to establish causality is required.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | - Andrew J Bennett
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Leonidas G Karagounis
- Mary MacKillop Institute for Health Research (MMIHR), Melbourne, Australian Catholic University, Melbourne, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
5
|
Krivoruchko A, Likhovid A, Kanibolotskaya A, Saprikina T, Safaryan E, Yatsyk O. Genome-Wide Search for Associations with Meat Production Parameters in Karachaevsky Sheep Breed Using the Illumina BeadChip 600 K. Genes (Basel) 2023; 14:1288. [PMID: 37372468 DOI: 10.3390/genes14061288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
In a group of Karachaevsky rams, a genome-wide associations analysis of single nucleotide polymorphisms (SNPs) with live parameters of meat production was performed. We used for genotyping the Ovine Infinium HD BeadChip 600 K, which consists of points to detection of 606,000 polymorphisms. A total of 12 SNPs was found to be significantly associated with live meat quality parameters of the corpus and legs and ultrasonic traits. In this case, 11 candidate genes were described, the polymorphic variants of which can change in sheep body parameters. We found SNPs in the exons, introns, and other regions of some genes and transcripts: CLVS1, EVC2, KIF13B, ENSOART00000000511.1, KCNH5, NEDD4, LUZP2, MREG, KRT20, KRT23 and FZD6. The described genes involved in the metabolic pathways of cell differentiation, proliferation and apoptosis are connected with the regulation of the gastrointestinal, immune and nervous systems. In known productivity genes (MSTN, MEF2B, FABP4, etc.), loci were not found to be a significant presence of influence on the meat productivity of the Karachaevsky sheep phenotypes. Our study confirms the possible involvement of the identified candidate genes in the formation of the phenotypes of productivity traits in sheep and indicates the need for new research into candidate genes structure in point to detect their polymorphisms.
Collapse
Affiliation(s)
- Alexander Krivoruchko
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
- Department of Genetic and Selection, FSAEIHE, North-Caucasus Federal University, 355017 Stavropol, Russia
| | - Andrey Likhovid
- Department of Genetic and Selection, FSAEIHE, North-Caucasus Federal University, 355017 Stavropol, Russia
| | - Anastasiya Kanibolotskaya
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
| | - Tatiana Saprikina
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
| | - Elena Safaryan
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
| | - Olesya Yatsyk
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
| |
Collapse
|
6
|
Chen M, Lian D, Li Y, Zhao Y, Xu X, Liu Z, Zhang J, Zhang X, Wu S, Qi S, Deng S, Yu K, Lian Z. Global Long Noncoding RNA Expression Profiling of MSTN and FGF5 Double-Knockout Sheep Reveals the Key Gatekeepers of Skeletal Muscle Development. DNA Cell Biol 2023; 42:163-175. [PMID: 36917699 DOI: 10.1089/dna.2022.0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Improving livestock and poultry growth rates and increasing meat production are urgently needed worldwide. Previously, we produced a myostatin (MSTN) and fibroblast growth factor 5 (FGF5) double-knockout (MF-/-) sheep by CRISPR Cas9 system to improve meat production, and also wool production. Both MF-/- sheep and the F1 generation (MF+/-) sheep showed an obvious "double-muscle" phenotype. In this study, we identified the expression profiles of long noncoding RNAs (lncRNAs) in wild-type and MF+/- sheep, then screened out the key candidate lncRNAs that can regulate myogenic differentiation and skeletal muscle development. These key candidate lncRNAs can serve as critical gatekeepers for muscle contraction, calcium ion transport and skeletal muscle cell differentiation, apoptosis, autophagy, and skeletal muscle inflammation, further revealing that lncRNAs play crucial roles in regulating muscle phenotype in MF+/- sheep. In conclusion, our newly identified lncRNAs may emerge as novel molecules for muscle development or muscle disease and provide a new reference for MSTN-mediated regulation of skeletal muscle development.
Collapse
Affiliation(s)
- Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Di Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Li
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhimei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Sujun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
A Genome-Wide Search for Candidate Genes of Meat Production in Jalgin Merino Considering Known Productivity Genes. Genes (Basel) 2022; 13:genes13081337. [PMID: 35893074 PMCID: PMC9331477 DOI: 10.3390/genes13081337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
In a group of Jalgin merino rams with no significant influence on the dispersion of the phenotypes of known productivity genes (MSTN, MEF2B, FABP4, etc.), a genome-wide search for associations of individual polymorphisms with intravital indicators of meat productivity was performed. Using the Ovine Infinium HD BeadChip 600K, 606,000 genome loci were evaluated. Twenty-three substitutions were found to be significantly associated with external measurements of the body and ultrasonic parameters. This made it possible to describe 14 candidate genes, the structural features of which can cause changes in animal phenotypes. No closely spaced genes were found for two substitutions. The identified polymorphisms were found in the exons, introns, and adjacent regions of the following genes and transcripts: CDCA2, ENSOARG00000014477, C4BPA, RIPOR2, ENSOARG00000007198, ENSOARG00000026965 (LincRNA), ENSOARG00000026436 (LincRNA), ENSOARG00000026782 (LincRNA), TENM3, RTL8A, MOSPD1, RTL8С, RIMS2, and P4HA3. The detected genes affect the metabolic pathways of cell differentiation and proliferation and are associated with the regulation of the immune system. This confirms their possible participation in the formation of the phenotypes of productivity parameters in animals and indicates the need for further study of the structure of candidate genes in order to identify their internal polymorphisms.
Collapse
|
8
|
Chen MM, Zhao YP, Zhao Y, Deng SL, Yu K. Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Front Cell Dev Biol 2022; 9:785712. [PMID: 35004684 PMCID: PMC8740192 DOI: 10.3389/fcell.2021.785712] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, can negatively regulate the growth and development of skeletal muscle by autocrine or paracrine signaling. Mutation of the myostatin gene under artificial or natural conditions can lead to a significant increase in muscle quality and produce a double-muscle phenotype. Here, we review the similarities and differences between myostatin and other members of the transforming growth factor-β superfamily and the mechanisms of myostatin self-regulation. In addition, we focus extensively on the regulation of myostatin functions involved in myogenic differentiation, myofiber type conversion, and skeletal muscle protein synthesis and degradation. Also, we summarize the induction of reactive oxygen species generation and oxidative stress by myostatin in skeletal muscle. This review of recent insights into the function of myostatin will provide reference information for future studies of myostatin-regulated skeletal muscle formation and may have relevance to agricultural fields of study.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi-Ping Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2021; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
10
|
Associations of CAST, CAPN1 and MSTN Genes Polymorphism with Slaughter Value and Beef Quality – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The slaughter value of cattle and beef quality are influenced by many factors, which can generally be divided into antemortem (breed, sex, age, housing system, diet, pre-slaughter handling) and postmortem (post-slaughter processing, chilling temperature, packaging). Studies of many authors have shown that meat quality traits can be also influenced by the individual genetic background of an animal. Numerous studies have been conducted worldwide to determine the functions of various genes as well as polymorphisms with potential effects on fattening and slaughter value of cattle and on beef quality. This study reviews the most important research done on the associations of polymorphisms in the calpain, calpastatin and myostatin genes with carcass traits and beef quality. Knowledge about the genes and chromosome regions associated with desired meat quality characteristics may prove very helpful when selecting pairs for mating and estimating the breeding value of offspring, mainly because it is difficult to improve meat quality traits based on conventional selection methods due to their low heritability and polygenic regulation. Furthermore, meat quality evaluation is expensive and can only be carried out after slaughter.
Collapse
|
11
|
Yan Y, Lu X, Kong J, Meng X, Luan S, Dai P, Chen B, Cao B, Luo K. Molecular characterization of myostatin and its inhibitory function on myogenesis and muscle growth in Chinese Shrimp, Fenneropenaeus chinensis. Gene 2020; 758:144986. [PMID: 32711100 DOI: 10.1016/j.gene.2020.144986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/17/2023]
Abstract
Myostatin (Mstn) inhibits muscle growth in vertebrates with endoskeleton, but it is still inconclusive that Mstn is a positive or negative regulator in crustacean with exoskeleton, and little information was available for its function on myogenesis. In this study, we identified and characterized the Mstn from Fenneropenaeus chinensis (FcMstn), and investigated its function on myogenesis and muscle growth. Two different cDNA sequences (2628 bp and 2604 bp) encoding for slightly different sizes of proteins were obtained for FcMstn, containing 86 bp of 5' untranslated regions (UTR) and 1258 bp of 3' UTR. The open reading frame of the long sequence and the short sequence contain 1284 bp and 1260 bp cDNA, encoding 427 and 419 amino acid sequence, respectively. Sequence analysis revealed that the overall protein sequence and specific functional sites of FcMstn were highly conserved with those in other crustacean species. In the early development stage, the muscle firstly appeared in nauplius stage and developed gradually until post larval, but the expression of FcMstn at mRNA and protein levels decreased from nauplius stage to post larval stage, indicating that Mstn involved in myogenesis as a negative regulator in shrimp. In the adult shrimp, the expression of FcMstn at mRNA and protein levels in muscle were significantly lower in the larger group than in the smaller group, and the diameter and number of muscle fiber of the muscle were significantly different between the two groups. Moreover, the shrimp with reduced level of FcMstn by RNAi displayed a dramatic faster growth rate compared with the control group. The present study demonstrates that FcMstn involved in myogenesis and muscle growth probably also as a negative regulator in shrimp like in vertebrates.
Collapse
Affiliation(s)
- Yunjun Yan
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xia Lu
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.
| | - Jie Kong
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xianhong Meng
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Sheng Luan
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ping Dai
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baolong Chen
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baoxiang Cao
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Kun Luo
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
12
|
Expression of key myogenic, fibrogenic and adipogenic genes in Longissimus thoracis and Masseter muscles in cattle. Animal 2020; 14:1510-1519. [DOI: 10.1017/s1751731120000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Favia M, Fitak R, Guerra L, Pierri CL, Faye B, Oulmouden A, Burger PA, Ciani E. Beyond the Big Five: Investigating Myostatin Structure, Polymorphism and Expression in Camelus dromedarius. Front Genet 2019; 10:502. [PMID: 31231423 PMCID: PMC6566074 DOI: 10.3389/fgene.2019.00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Myostatin, a negative regulator of skeletal muscle mass in animals, has been shown to play a role in determining muscular hypertrophy in several livestock species, and a high degree of polymorphism has been previously reported for this gene in humans and cattle. In this study, we provide a characterization of the myostatin gene in the dromedary (Camelus dromedarius) at the genomic, transcript and protein level. The gene was found to share high structural and sequence similarity with other mammals, notably Old World camelids. 3D modeling highlighted several non-conservative SNP variants compared to the bovine, as well as putative functional variants involved in the stability of the myostatin dimer. NGS data for nine dromedaries from various countries revealed 66 novel SNPs, all of them falling either upstream or downstream the coding region. The analysis also confirmed the presence of three previously described SNPs in intron 1, predicted here to alter both splicing and transcription factor binding sites (TFBS), thus possibly impacting myostatin processing and/or regulation. Several putative TFBS were identified in the myostatin upstream region, some of them belonging to the myogenic regulatory factor family. Patterns of SNP distribution across countries, as suggested by Bayesian clustering of the nine dromedaries using the 69 SNPs, pointed to weak geographic differentiation, in line with known recurrent gene flow at ancient trading centers along caravan routes. Myostatin expression was investigated in a set of 8 skeletal muscles, both at transcript and protein level, via Digital Droplet PCR and Western Blotting, respectively. No significant differences were observed at the transcript level, while, at the protein level, the only significant differences concerned the promyostatin dimer (75 kDa), in four pair-wise comparisons, all involving the tensor fasciae latae muscle. Beside the mentioned band at 75 kDa, additional bands were observed at around 40 and 25 kDa, corresponding to the promyostatin monomer and the active C-terminal myostatin dimer, respectively. Their weaker intensity suggests that the unprocessed myostatin dimers could act as important reservoirs of slowly available myostatin forms. Under this assumption, the sequential cleavage steps may contribute additional layers of control within an already complex regulatory framework.
Collapse
Affiliation(s)
- Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Robert Fitak
- Research Institute of Wildlife Ecology, Vetmeduni, Vienna, Austria.,Department of Biology, Duke University, Durham, NC, United States
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | | | - Ahmad Oulmouden
- Département Sciences du Vivant, Université de Limoges, Limoges, France
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
14
|
Grade CVC, Mantovani CS, Alvares LE. Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. J Anim Sci Biotechnol 2019; 10:32. [PMID: 31044074 PMCID: PMC6477727 DOI: 10.1186/s40104-019-0338-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.
Collapse
Affiliation(s)
- Carla Vermeulen Carvalho Grade
- 1Universidade Federal da Integração Latino-Americana, UNILA, Instituto Latino-Americano de Ciências da Vida e da Natureza, Avenida Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR CEP 85870-901 Brazil
| | - Carolina Stefano Mantovani
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| | - Lúcia Elvira Alvares
- 2Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862 Brazil
| |
Collapse
|
15
|
Zhao Z, Yu X, Jia J, Yang G, Sun C, Li W. miR-181b-5p May Regulate Muscle Growth in Tilapia by Targeting Myostatin b. Front Endocrinol (Lausanne) 2019; 10:812. [PMID: 31849840 PMCID: PMC6902659 DOI: 10.3389/fendo.2019.00812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Myostatin (Mstn), a member of the TGF-β superfamily, is a negative regulator of skeletal muscle mass in mammals. Precise regulation of Mstn expression is important for somite growth in fish. MicroRNA (miRNA), a type of small non-coding RNA, regulates gene expression at the post-transcriptional level and participates in various physiological functions. A growing amount of evidence has emphasized the importance of miRNA in the development of skeletal muscle. Aims: This study aims to study how miRNAs regulate myostatin b (mstnb) post-transcriptionally in tilapia. Methods/Results: Mstnb 3' UTR sequences were obtained, and the results of tissue distribution showed that mstnb was expressed in several tissues, including brain, white muscle, gut, and adipose tissue. A total of 1,992 miRNAs were predicted to target mstnb in tilapia using bioinformatics, and a dual-luciferase reporter experiment confirmed that miR-181a/b-5p, miR-30-3p, miR-200a, and miR-27a were the target miRNAs of mstnb. Mutagenesis of the miR-181b-5p binding sites of mstnb significantly increased the luciferase signal compared to the wild-type mstnb. In tilapia primary muscle cells, overexpression of miR-181b-5p led to the downregulation of MSTNb expression, and the inhibitory effect of MSTNb on the downstream genes was dismissed, while inhibition of miR-181b-5p could reverse these phenomena. Conclusion: Taken together, our results suggested that miR-181b-5p could promote the growth of skeletal muscle by decreasing the MSTNb protein level in tilapia.
Collapse
|
16
|
Oestbye TKK, Ytteborg E. Preparation and Culturing of Atlantic Salmon Muscle Cells for In Vitro Studies. Methods Mol Biol 2018; 1889:319-330. [PMID: 30367423 DOI: 10.1007/978-1-4939-8897-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
This chapter outlines methods for isolating myosatellites from Atlantic salmon (Salmo salar), how to keep them in culture and differentiate them into mature myocytes. The protocol further describes how to trans-differentiate the myocytes into osteoblasts (bone cells).
Collapse
|
17
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Kim J, Park MY, Kim Y, Yoon KS, Clark JM, Park Y, Whang KY. 4,4'-Dichlorodiphenyltrichloroethane (DDT) and 4,4'-dichlorodiphenyldichloroethylene (DDE) inhibit myogenesis in C2C12 myoblasts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5176-5185. [PMID: 28437004 DOI: 10.1002/jsfa.8399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/08/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Most countries have banned the use of 4,4'-dichlorodiphenyltrichloroethane (DDT). However, owing to its extremely high lipophilic characteristics, DDT and its metabolite 4,4'-dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and in many types of food. The positive correlation between exposure to insecticides, including DDT and DDE, and weight gain, resulting in impaired energy metabolism in offspring following perinatal DDT and DDE exposure, was previously reported. Therefore the influence of DDT and DDE on myogenesis using C2C12 myoblasts was investigated in this study. RESULTS DDT and DDE decreased myotube formation dose- and time-dependently. Among myogenic regulatory factors, DDT and DDE mainly decreased MyoD1 and Myf5 expression. DDT and DDE treatment also altered Myostatin expression, phosphorylation of protein kinase B, p70 ribosomal protein S6 kinase, forkhead box O protein 3 and mammalian target of rapamycin, resulting in attenuation of myotube formation. CONCLUSION These results may have significant implications for understanding the effects of developmental exposure of DDT and DDE on myogenesis and development of obesity and type 2 diabetes later in life. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Young Park
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Kyong Sup Yoon
- Department of Biological Sciences and Environmental Sciences Program, Southern Illinois University, Edwardsville, IL, USA
| | - John Marshall Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Kwang-Youn Whang
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Viral infection upregulates myostatin promoter activity in orange-spotted grouper (Epinephelus coioides). PLoS One 2017; 12:e0186506. [PMID: 29036192 PMCID: PMC5643063 DOI: 10.1371/journal.pone.0186506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection.
Collapse
|
20
|
Zhuo RQ, Zhou TT, Yang SP, Chan SF. Characterization of a molt-related myostatin gene (FmMstn) from the banana shrimp Fenneropenaeus merguiensis. Gen Comp Endocrinol 2017; 248:55-68. [PMID: 28322766 DOI: 10.1016/j.ygcen.2017.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/04/2023]
Abstract
Myostatin is an important member of the transforming growth factor (TGF) family that functions to regulate muscle growth in animals. In this study, the myostatin gene (FmMstn) and two slightly different (short and long forms) cDNAs of the banana shrimp Fenneropenaeus merguiensis were cloned and characterized. Similar to Mstn gene of the scallop, fish and mammal, FmMstn gene consists of 3 exons and 2 introns. The 2kb upstream promoter region of the FmMstn gene consists of putative response elements for myocyte enhancing factor (MEF2) and E-box factors. The longest open reading frame of the short Mstn consists of 1260bp encoding for a protein with 420 amino acid residues. The long FmMstn is almost identical to the short FmMstn with the exception of 8 amino acid insertions. FmMstn is most similar to the Mstn of Litopenaeus vannamei and Penaeus monodon sharing >92-98% amino acid sequence identity. Multiple sequence alignment results revealed high degree of amino acid conservation of the cysteine residues and mature peptide of the FmMstn with Mstn from other animals. FmMstn transcript was detected in the heart, muscle, optic nerve and thoracic ganglion. FmMstn transcript level in muscle is higher in early postmolt, decreases in intermolt and increases again towards ecdysis. Higher expression level of FmMstn is also observed in smaller shrimp of the same age. Knock-down of FmMstn gene by RNAi can cause a significant increase in molt cycle duration and failure of some shrimp to undergo ecdysis. Direct DNA sequencing results revealed that FmMstn gene is highly polymorphic and several potential SNPs have been identified. Some SNPs are associated with the size difference of the shrimp. In summary, the result of this study indicates that shrimp FmMstn gene is molt/growth-related and the presence of SNP suggests that it could be a candidate gene for shrimp genetic improvement research.
Collapse
Affiliation(s)
- Rui Qun Zhuo
- Fisheries College, Guangdong Ocean University, Zhanjiang, PR China
| | - Ting Ting Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, PR China
| | - Shi Ping Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, PR China
| | - Siuming Francis Chan
- Fisheries College, Guangdong Ocean University, Zhanjiang, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, PR China.
| |
Collapse
|
21
|
Saneyasu T, Tsuchihashi T, Kitashiro A, Tsuchii N, Kimura S, Honda K, Kamisoyama H. The IGF-1/Akt/S6 pathway and expressions of glycolytic myosin heavy chain isoforms are upregulated in chicken skeletal muscle during the first week after hatching. Anim Sci J 2017; 88:1779-1787. [PMID: 28594135 DOI: 10.1111/asj.12847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/21/2017] [Indexed: 02/05/2023]
Abstract
Skeletal muscle mass is an important trait in the animal industry. We previously reported an age-dependent downregulation of the insulin-like growth factor 1 (IGF-1)/Akt/S6 pathway, major protein synthesis pathway, in chicken breast muscle after 1 week of age, despite a continuous increase of breast muscle weight. Myosin heavy chain (HC), a major protein in muscle fiber, has several isoforms depending on chicken skeletal muscle types. HC I (fast-twitch glycolytic type) is known to be expressed in adult chicken breast muscle. However, little is known about the changes in the expression levels of protein synthesis-related factors and HC isoforms in perihatching chicken muscle. In the present study, protein synthesis-related factors, such as IGF-1 messenger RNA (mRNA) levels, phosphorylation of Akt, and phosphorylated S6 content, increased in an age-dependent manner after post-hatch day (D) 0. The mRNA levels of HC I, III and V (fast-twitch glycolytic type) dramatically increased after D0. The increase ratio of breast muscle weight was approximately 1100% from D0 to D7. To our knowledge, these findings provide the first evidence that upregulation of protein synthesis pathway and transcription of fast twitch glycolytic HC isoforms play critical roles in the increase of chicken breast muscle weight during the first week after hatching.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Ayana Kitashiro
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Nami Tsuchii
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Sayaka Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | |
Collapse
|
22
|
Deng B, Zhang F, Wen J, Ye S, Wang L, Yang Y, Gong P, Jiang S. The function of myostatin in the regulation of fat mass in mammals. Nutr Metab (Lond) 2017; 14:29. [PMID: 28344633 PMCID: PMC5360019 DOI: 10.1186/s12986-017-0179-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/24/2017] [Indexed: 03/12/2023] Open
Abstract
Myostatin (MSTN), also referred to as growth and differentiation factor-8, is a protein secreted in muscle tissues. Researchers believe that its primary function is in negatively regulating muscle because a mutation in its coding region can lead to the famous double muscle trait in cattle. Muscle and adipose tissue develop from the same mesenchymal stem cells, and researchers have found that MSTN is expressed in fat tissues and plays a key role in adipogenesis. Interestingly, MSTN can exert a dual function, either inhibiting or promoting adipogenesis, according to the situation. Due to its potential function in controlling body fat mass, MSTN has attracted the interest of researchers. In this review, we explore its function in regulating adipogenesis in mammals, including preadipocytes, multipotent stem cells and fat mass.
Collapse
Affiliation(s)
- Bing Deng
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Feng Zhang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jianghui Wen
- Wuhan University of Technology, Wuhan, 430074 People's Republic of China
| | - Shengqiang Ye
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Lixia Wang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Yu Yang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Ping Gong
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 China
| |
Collapse
|
23
|
Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep 2016; 6:31729. [PMID: 27530319 PMCID: PMC4987667 DOI: 10.1038/srep31729] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Predictable, clean genetic modification (GM) in livestock is important for reliable phenotyping and biosafety. Here we reported the generation of isozygous, functional myostatin (MSTN) knockout cloned pigs free of selectable marker gene (SMG) by CRISPR/Cas9 and Cre/LoxP. CRISPR/Cas9-mediated homologous recombination (HR) was exploited to knock out (KO) one allele of MSTN in pig primary cells. Cre recombinase was then used to excise the SMG with an efficiency of 82.7%. The SMG-free non-EGFP cells were isolated by flow cytometery and immediately used as donor nuclei for nuclear transfer. A total of 685 reconstructed embryos were transferred into three surrogates with one delivering two male live piglets. Molecular testing verified the mono-allelic MSTN KO and SMG deletion in these cloned pigs. Western blots showed approximately 50% decrease in MSTN and concurrent increased expression of myogenic genes in muscle. Histological examination revealed the enhanced myofiber quantity but myofiber size remained unaltered. Ultrasonic detection showed the increased longissimus muscle size and decreased backfat thickness. Precision editing of pig MSTN gene has generated isozygous, SMG-free MSTN KO cloned founders, which guaranteed a reliable route for elite livestock production and a strategy to minimize potential biological risks.
Collapse
|
24
|
Wang L, Zhang T, Xi Y, Yang C, Sun C, Li D. Sirtuin 1 promotes the proliferation of C2C12 myoblast cells via the myostatin signaling pathway. Mol Med Rep 2016; 14:1309-15. [PMID: 27279047 DOI: 10.3892/mmr.2016.5346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence suggests that Sirtuin (Sirt)1 serves a significant role in proliferation and differentiation of myoblast cells; however the signaling mechanisms involved remain to be established. Myostatin (MSTN), a member of transforming growth factor‑β family, is an vital regulator of myoblast, fibroblast growth and differentiation. To determine if MSTN is involved in the regulation of myoblast cell proliferation by Sirt1, the present study administrated the Sirt1 activator resveratrol, inhibitor nicotinamide (NAM) and MSTN inhibitor SB431542 to C2C12 myoblast cells. It was demonstrated that the Sirt1 activator, resveratrol, repressed, whereas the Sirt1 inhibitor, NAM, enhanced C2C12 myoblast cells proliferation in a Sirt1‑dependent manner. SB431542 promoted the proliferation of C2C12 myoblast cells and reversed the inhibition effect of NAM on C2C12 myoblast cell proliferation. Additionally, resveratrol upregulated the mRNA expression of MyoD, but inhibited the expression of MSTN. Additionally, NAM significantly repressed the expression of MyoD and the phosphorylation of P107 (p‑P107), but enhanced the expression of MSTN and the protein expression of P107. SB431542 significantly mitigated the effect of NAM on the expression of MyoD, P107 and p‑P107. Taken together, these results indicated that Sirt1 promotes the proliferation of C2C12 myoblast cells via the MSTN signaling pathway.
Collapse
Affiliation(s)
- Liang Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yongyong Xi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Cuili Yang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chengcao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
25
|
Lee EJ, Jan AT, Baig MH, Ashraf JM, Nahm SS, Kim YW, Park SY, Choi I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. FASEB J 2016; 30:2708-19. [PMID: 27069062 DOI: 10.1096/fj.201500133r] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022]
Abstract
Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | | | | | - Sang-Soep Nahm
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea; and
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, South Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea;
| |
Collapse
|
26
|
Santagostino M, Khoriauli L, Gamba R, Bonuglia M, Klipstein O, Piras FM, Vella F, Russo A, Badiale C, Mazzagatti A, Raimondi E, Nergadze SG, Giulotto E. Genome-wide evolutionary and functional analysis of the Equine Repetitive Element 1: an insertion in the myostatin promoter affects gene expression. BMC Genet 2015; 16:126. [PMID: 26503543 PMCID: PMC4623272 DOI: 10.1186/s12863-015-0281-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In mammals, an important source of genomic variation is insertion polymorphism of retrotransposons. These may acquire a functional role when inserted inside genes or in their proximity. The aim of this work was to carry out a genome wide analysis of ERE1 retrotransposons in the horse and to analyze insertion polymorphism in relation to evolution and function. The effect of an ERE1 insertion in the promoter of the myostatin gene, which is involved in muscle development, was also investigated. RESULTS In the horse population, the fraction of ERE1 polymorphic loci is related to the degree of similarity to their consensus sequence. Through the analysis of ERE1 conservation in seven equid species, we established that the level of identity to their consensus is indicative of evolutionary age of insertion. The position of ERE1s relative to genes suggests that some elements have acquired a functional role. Reporter gene assays showed that the ERE1 insertion within the horse myostatin promoter affects gene expression. The frequency of this variant promoter correlates with sport aptitude and racing performance. CONCLUSIONS Sequence conservation and insertion polymorphism of ERE1 elements are related to the time of their appearance in the horse lineage, therefore, ERE1s are a useful tool for evolutionary and population studies. Our results suggest that the ERE1 insertion at the myostatin locus has been unwittingly selected by breeders to obtain horses with specific racing abilities. Although a complex combination of environmental and genetic factors contributes to athletic performance, breeding schemes may take into account ERE1 insertion polymorphism at the myostatin promoter.
Collapse
Affiliation(s)
- Marco Santagostino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Lela Khoriauli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Riccardo Gamba
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Margherita Bonuglia
- Laboratorio di Genetica Forense Veterinaria, UNIRELAB srl, Via A. Gramsci 70, 20019, Settimo Milanese (MI), Italy.
| | - Ori Klipstein
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Francesca M Piras
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Francesco Vella
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Alessandra Russo
- Laboratorio di Genetica Forense Veterinaria, UNIRELAB srl, Via A. Gramsci 70, 20019, Settimo Milanese (MI), Italy.
| | - Claudia Badiale
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Alice Mazzagatti
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Raimondi
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Solomon G Nergadze
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| | - Elena Giulotto
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy.
| |
Collapse
|
27
|
Sharma M, McFarlane C, Kambadur R, Kukreti H, Bonala S, Srinivasan S. Myostatin: expanding horizons. IUBMB Life 2015; 67:589-600. [PMID: 26305594 DOI: 10.1002/iub.1392] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022]
Abstract
Myostatin is a secreted growth and differentiation factor that belongs to the TGF-β superfamily. Myostatin is predominantly synthesized and expressed in skeletal muscle and thus exerts a huge impact on muscle growth and function. In keeping with its negative role in myogenesis, myostatin expression is tightly regulated at several levels including epigenetic, transcriptional, post-transcriptional, and post-translational. New revelations regarding myostatin regulation also offer mechanisms that could be exploited for developing myostatin antagonists. Increasingly, it is becoming clearer that besides its conventional role in muscle, myostatin plays a critical role in metabolism. Hence, molecular mechanisms by which myostatin regulates several key metabolic processes need to be further explored.
Collapse
Affiliation(s)
- Mridula Sharma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Craig McFarlane
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Ravi Kambadur
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Himani Kukreti
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Sabeera Bonala
- Department of Cell & Molecular Biology, Brenner Centre for Molecular Medicine, Singapore Institute of Clinical Sciences (SICS), Singapore
| | - Shruti Srinivasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
28
|
Wang J, Zhou H, Hu J, Li S, Luo Y, Hickford J. Two single nucleotide polymorphisms in the promoter of the ovine myostatin gene (MSTN
) and their effect on growth and carcass muscle traits in New Zealand Romney sheep. J Anim Breed Genet 2015; 133:219-26. [DOI: 10.1111/jbg.12171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/09/2015] [Indexed: 01/12/2023]
Affiliation(s)
- J. Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology; Gansu Agricultural University; Lanzhou China
- Research and Analysis Center; Gansu Agricultural University; Lanzhou China
| | - H. Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology; Gansu Agricultural University; Lanzhou China
- Gene-Marker Laboratory; Faculty of Agriculture and Life Sciences; Lincoln University; Lincoln New Zealand
| | - J. Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology; Gansu Agricultural University; Lanzhou China
| | - S. Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology; Gansu Agricultural University; Lanzhou China
| | - Y. Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology; Gansu Agricultural University; Lanzhou China
- Research and Analysis Center; Gansu Agricultural University; Lanzhou China
| | - J.G.H. Hickford
- Gene-Marker Laboratory; Faculty of Agriculture and Life Sciences; Lincoln University; Lincoln New Zealand
| |
Collapse
|
29
|
Tang Q, Song C, Zhang S, Hu Y, Zhao D, Zou J. Gene expression profile of IGF1 and MSTN mRNA and their correlation with carcass traits in different breeds of geese at 70 d of age. Br Poult Sci 2014; 55:76-80. [PMID: 24678589 DOI: 10.1080/00071668.2013.867925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The expression of insulin-like growth factor-1 (IGF1) and myostatin (MSTN) mRNA in breast and leg muscle was quantified in 70-d-old Taihu and Wanxi geese by using a Multiplex Competitive Fluorescent-PCR method and the correlations between mRNA levels and carcass traits were analysed. 2. IGF1 mRNA expression in breast muscle in Taihu geese was significantly higher than that in Wanxi geese and the MSTN mRNA level in leg muscle in Taihu geese was significantly higher than that in Wanxi geese. 3. There was no significant difference in breast muscle MSTN or leg muscle IGF1 mRNA expression between the two breeds. 4. Within the same breed, the IGF1 mRNA expression in leg muscle of male geese was significantly higher than that in female geese, and MSTN mRNA expression in leg muscle was significantly higher than that in breast muscle. 5. There was no difference in the IGF1 mRNA expression between tissues. 6. There was a positive correlation between IGF1 mRNA and MSTN mRNA and a negative correlation between IGF1 mRNA expression of breast muscle and leg muscle ratio. 7. In Wanxi geese, MSTN mRNA expression in leg muscle was negatively associated with body weight and leg muscle weight.
Collapse
Affiliation(s)
- Q Tang
- a Key Laboratory of Poultry Heredity & Breeding , Jiangsu Institute of Poultry Science , Yangzhou 225125 , China
| | | | | | | | | | | |
Collapse
|
30
|
Kong Q, Hai T, Ma J, Huang T, Jiang D, Xie B, Wu M, Wang J, Song Y, Wang Y, He Y, Sun J, Hu K, Guo R, Wang L, Zhou Q, Mu Y, Liu Z. Rosa26 locus supports tissue-specific promoter driving transgene expression specifically in pig. PLoS One 2014; 9:e107945. [PMID: 25232950 PMCID: PMC4169413 DOI: 10.1371/journal.pone.0107945] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
Genetically modified pigs have become a popular model system in fundamental research, agricultural and biomedical applications. However, random integration often result in unstable expression of transgene and unpredictable phenotypes. The Rosa26 locus has been widely used to produce genetic modified animals with high and consistent expressing of transgene in mouse, human and rat, as it can be targeted efficiently and is not subject to gene-silencing effects. Recently, the first case of reporter gene targeting pigs in porcine Rosa26 (pRosa26) locus was reported. In the study, full sequence of pRosa26 locus was further characterized, and the pRosa26 promoter (pR26) was cloned and we evidenced that the new porcine endogenous promoter is suitable for driving transgene expression in a high and stable manner by avoiding DNA methylation. Furthermore, elongation factor 1a promoter (EF1a) -driven GFP reporter and Myostatin promoter (MyoP)-driven Follistatin (Fst) were successfully targeted into the pRosa26 locusby traditional homologous recombination (HR) strategy. EF1a showed high activity and hypomethylation at the locus. And, muscle-specific promoter MyoP was activated strictly in muscle of the pRosa26 targeted pigs, indicating Rosa26 locus supports tissue-specific promoter driving transgene expression in its own manner. The study provided further demonstration on biomedical and agricultural applications of porcine Rosa26 promoter and locus.
Collapse
Affiliation(s)
- Qingran Kong
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Tang Hai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Ma
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Tianqing Huang
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Dandan Jiang
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Bingteng Xie
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Meiling Wu
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Jiaqiang Wang
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Yuran Song
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yilong He
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Jialu Sun
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Kui Hu
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Runfa Guo
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Liu Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanshuang Mu
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Laboratory of Embryo Biotechnology, College of life science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Petersen JL, Valberg SJ, Mickelson JR, McCue ME. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Anim Genet 2014; 45:827-35. [PMID: 25160752 DOI: 10.1111/age.12205] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 12/21/2022]
Abstract
Two variants in the equine myostatin gene (MSTN), including a T/C SNP in the first intron and a 227-bp SINE insertion in the promoter, are associated with muscle fiber type proportions in the Quarter Horse (QH) and with the prediction of race distance propensity in the Thoroughbred (TB). Genotypes from these loci, along with 18 additional variants surrounding MSTN, were examined in 301 horses of 14 breeds to evaluate haplotype relationships and diversity. The C allele of intron 1 was found in 12 of 14 breeds at a frequency of 0.27; the SINE was observed in five breeds, but common in only the TB and QH (0.73 and 0.48 respectively). Haplotype data suggest the SINE insertion is contemporary to and arose upon a haplotype containing the intron 1 C allele. Gluteal muscle biopsies of TBs showed a significant association of the intron 1 C allele and SINE with a higher proportion of Type 2B and lower proportion of Type 1 fibers. However, in the Belgian horse, in which the SINE is not present, the intron 1 SNP was not associated with fiber type proportions, and evaluation of fiber type proportions across the Belgian, TB and QH breeds shows the significant effect of breed on fiber type proportions is negated when evaluating horses without the SINE variant. These data suggest the SINE, rather than the intron 1 SNP, is driving the observed muscle fiber type characteristics and is the variant targeted by selection for short-distance racing.
Collapse
Affiliation(s)
- Jessica L Petersen
- Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, USA; Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| | | | | | | |
Collapse
|
32
|
Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model. PLoS One 2014; 9:e100594. [PMID: 24963862 PMCID: PMC4070942 DOI: 10.1371/journal.pone.0100594] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/29/2014] [Indexed: 11/23/2022] Open
Abstract
Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.
Collapse
|
33
|
The effects of exogenous cortisol on myostatin transcription in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:57-63. [PMID: 24875565 DOI: 10.1016/j.cbpa.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 11/23/2022]
Abstract
Glucocorticoids (GCs) strongly regulate myostatin expression in mammals via glucocorticoid response elements (GREs), and bioinformatics methods suggest that this regulatory mechanism is conserved among many vertebrates. However, the multiple myostatin genes found in some fishes may be an exception. In silico promoter analyses of the three putative rainbow trout (Oncorhynchus mykiss) myostatin promoters have failed to identify putative GREs, suggesting a divergence in myostatin function. Therefore, we hypothesized that myostatin mRNA expression is not regulated by glucocorticoids in rainbow trout. In this study, both juvenile rainbow trout and primary trout myoblasts were treated with cortisol to examine the effects on myostatin mRNA expression. Results suggest that exogenous cortisol does not regulate myostatin-1a and -1b expression in vivo, as myostatin mRNA levels were not significantly affected by cortisol treatment in either red or white muscle tissue. In red muscle, myostatin-2a levels were significantly elevated in the cortisol treatment group relative to the control, but not the vehicle control, at both 12 h and 24 h post-injection. As such, it is unclear if cortisol was acting alone or in combination with the vehicle. Cortisol increased myostatin-1b expression in a dose-dependent manner in vitro. Further work is needed to determine if this response is the direct result of cortisol acting on the myostatin-1b promoter or through an alternative mechanism. These results suggest that regulation of myostatin by cortisol may not be as highly conserved as previously thought and support previous work that describes potential functional divergence of the multiple myostatin genes in fishes.
Collapse
|
34
|
Bouyer C, Forestier L, Renand G, Oulmouden A. Deep intronic mutation and pseudo exon activation as a novel muscular hypertrophy modifier in cattle. PLoS One 2014; 9:e97399. [PMID: 24827585 PMCID: PMC4020855 DOI: 10.1371/journal.pone.0097399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/17/2014] [Indexed: 02/02/2023] Open
Abstract
Myostatin is essential for proper regulation of myogenesis, and inactivation of Myostatin results in muscle hypertrophy. Here, we identified an unexpected mutation in the myostatin gene which is almost fixed in Blonde d'Aquitaine cattle. In skeletal muscle, the mutant allele was highly expressed leading to an abnormal transcript consisting of a 41-bp inclusion and premature termination codons and to residual levels of a correctly spliced transcript. This expression pattern, caused by a leaky intronic mutation with regard to spliceosome activity and its apparent stability with regard to surveillance mechanisms, could contribute to the moderate muscle hypertrophy in this cattle breed. This finding is of importance for genetic counseling for meat quantity and quality in livestock production and possibly to manipulate myostatin pre-mRNA in human muscle diseases.
Collapse
Affiliation(s)
- Claire Bouyer
- Unité Mixte de Recherche (UMR) 1061 INRA/Université de Limoges, Unité de Génétique Moléculaire Animale, Limoges, France
| | - Lionel Forestier
- Unité Mixte de Recherche (UMR) 1061 INRA/Université de Limoges, Unité de Génétique Moléculaire Animale, Limoges, France
| | - Gilles Renand
- UMR 1313 INRA, Unité de Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Ahmad Oulmouden
- Unité Mixte de Recherche (UMR) 1061 INRA/Université de Limoges, Unité de Génétique Moléculaire Animale, Limoges, France
- * E-mail:
| |
Collapse
|
35
|
Abstract
Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present during the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or 'catch-up' postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and the risk of cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts toward improving muscle growth early in life to prevent the development of chronic metabolic diseases later in life.
Collapse
Affiliation(s)
- Laura D. Brown
- Department of Pediatrics (Neonatology), University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23 Avenue, Aurora, CO 80045, Phone: 303-724-0106, Fax: 303-724-0898
| |
Collapse
|
36
|
Meregalli M, Farini A, Sitzia C, Torrente Y. Advancements in stem cells treatment of skeletal muscle wasting. Front Physiol 2014; 5:48. [PMID: 24575052 PMCID: PMC3921573 DOI: 10.3389/fphys.2014.00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/25/2014] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging.
Collapse
Affiliation(s)
- Mirella Meregalli
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Andrea Farini
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Clementina Sitzia
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| |
Collapse
|
37
|
McFarlane C, Vajjala A, Arigela H, Lokireddy S, Ge X, Bonala S, Manickam R, Kambadur R, Sharma M. Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PLoS One 2014; 9:e87687. [PMID: 24498167 PMCID: PMC3909192 DOI: 10.1371/journal.pone.0087687] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022] Open
Abstract
Growth factors, such as myostatin (Mstn), play an important role in regulating post-natal myogenesis. In fact, loss of Mstn has been shown to result in increased post-natal muscle growth through enhanced satellite cell functionality; while elevated levels of Mstn result in dramatic skeletal muscle wasting through a mechanism involving reduced protein synthesis and increased ubiquitin-mediated protein degradation. Here we show that miR-27a/b plays an important role in feed back auto-regulation of Mstn and thus regulation of post-natal myogenesis. Sequence analysis of Mstn 3' UTR showed a single highly conserved miR-27a/b binding site and increased expression of miR-27a/b was correlated with decreased expression of Mstn and vice versa both in vitro and in mice in vivo. Moreover, we also show that Mstn gene expression was regulated by miR-27a/b. Treatment with miR-27a/b-specific AntagomiRs resulted in increased Mstn expression, reduced myoblast proliferation, impaired satellite cell activation and induction of skeletal muscle atrophy that was rescued upon either blockade of, or complete absence of, Mstn. Consistent with this, miR-27a over expression resulted in reduced Mstn expression, skeletal muscle hypertrophy and an increase in the number of activated satellite cells, all features consistent with impaired Mstn function. Loss of Smad3 was associated with increased levels of Mstn, concomitant with decreased miR-27a/b expression, which is consistent with impaired satellite cell function and muscular atrophy previously reported in Smad3-null mice. Interestingly, treatment with Mstn resulted in increased miR-27a/b expression, which was shown to be dependent on the activity of Smad3. These data highlight a novel auto-regulatory mechanism in which Mstn, via Smad3 signaling, regulates miR-27a/b and in turn its own expression. In support, Mstn-mediated inhibition of Mstn 3' UTR reporter activity was reversed upon miR-27a/b-specific AntagomiR transfection. Therefore, miR-27a/b, through negatively regulating Mstn, plays a role in promoting satellite cell activation, myoblast proliferation and preventing muscle wasting.
Collapse
Affiliation(s)
- Craig McFarlane
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Anuradha Vajjala
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Harikumar Arigela
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - XiaoJia Ge
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sabeera Bonala
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ravikumar Manickam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ravi Kambadur
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mridula Sharma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Bonala S, Lokireddy S, McFarlane C, Patnam S, Sharma M, Kambadur R. Myostatin induces insulin resistance via Casitas B-lineage lymphoma b (Cblb)-mediated degradation of insulin receptor substrate 1 (IRS1) protein in response to high calorie diet intake. J Biol Chem 2014; 289:7654-70. [PMID: 24451368 DOI: 10.1074/jbc.m113.529925] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To date a plethora of evidence has clearly demonstrated that continued high calorie intake leads to insulin resistance and type-2 diabetes with or without obesity. However, the necessary signals that initiate insulin resistance during high calorie intake remain largely unknown. Our results here show that in response to a regimen of high fat or high glucose diets, Mstn levels were induced in muscle and liver of mice. High glucose- or fat-mediated induction of Mstn was controlled at the level of transcription, as highly conserved carbohydrate response and sterol-responsive (E-box) elements were present in the Mstn promoter and were revealed to be critical for ChREBP (carbohydrate-responsive element-binding protein) or SREBP1c (sterol regulatory element-binding protein 1c) regulation of Mstn expression. Further molecular analysis suggested that the increased Mstn levels (due to high glucose or fatty acid loading) resulted in increased expression of Cblb in a Smad3-dependent manner. Casitas B-lineage lymphoma b (Cblb) is an ubiquitin E3 ligase that has been shown to specifically degrade insulin receptor substrate 1 (IRS1) protein. Consistent with this, our results revealed that elevated Mstn levels specifically up-regulated Cblb, resulting in enhanced ubiquitin proteasome-mediated degradation of IRS1. In addition, over expression or knock down of Cblb had a major impact on IRS1 and pAkt levels in the presence or absence of insulin. Collectively, these observations strongly suggest that increased glucose levels and high fat diet, both, result in increased circulatory Mstn levels. The increased Mstn in turn is a potent inducer of insulin resistance by degrading IRS1 protein via the E3 ligase, Cblb, in a Smad3-dependent manner.
Collapse
Affiliation(s)
- Sabeera Bonala
- From the School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | | | | |
Collapse
|
39
|
Akhmedov D, Berdeaux R. The effects of obesity on skeletal muscle regeneration. Front Physiol 2013; 4:371. [PMID: 24381559 PMCID: PMC3865699 DOI: 10.3389/fphys.2013.00371] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/28/2013] [Indexed: 12/18/2022] Open
Abstract
Obesity and metabolic disorders such as type 2 diabetes mellitus are accompanied by increased lipid deposition in adipose and non-adipose tissues including liver, pancreas, heart and skeletal muscle. Recent publications report impaired regenerative capacity of skeletal muscle following injury in obese mice. Although muscle regeneration has not been thoroughly studied in obese and type 2 diabetic humans and mechanisms leading to decreased muscle regeneration in obesity remain elusive, the initial findings point to the possibility that muscle satellite cell function is compromised under conditions of lipid overload. Elevated toxic lipid metabolites and increased pro-inflammatory cytokines as well as insulin and leptin resistance that occur in obese animals may contribute to decreased regenerative capacity of skeletal muscle. In addition, obesity-associated alterations in the metabolic state of skeletal muscle fibers and satellite cells may directly impair the potential for satellite cell-mediated repair. Here we discuss recent studies that expand our understanding of how obesity negatively impacts skeletal muscle maintenance and regeneration.
Collapse
Affiliation(s)
- Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology and Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston Houston, TX, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology and Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston Houston, TX, USA
| |
Collapse
|
40
|
Singh SP, Kumar R, Kumari P, Kumar S, Mitra A. Characterization of 5′ Upstream Region and Investigation of TTTTA Deletion in 5′ UTR of Myostatin (MSTN) Gene in Indian Goat Breeds. Anim Biotechnol 2013; 25:55-68. [DOI: 10.1080/10495398.2013.821994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Kumar R, Singh SP, Kumari P, Mitra A. Small interfering RNA (siRNA)-mediated knockdown of myostatin influences the expression of myogenic regulatory factors in caprine foetal myoblasts. Appl Biochem Biotechnol 2013; 172:1714-24. [PMID: 24254256 DOI: 10.1007/s12010-013-0582-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/03/2013] [Indexed: 01/01/2023]
Abstract
Myostatin (MSTN) acts as a negative regulator of skeletal muscle development. Naturally occurring inactivating mutations in the coding region and knockout as well as knockdown of MSTN result in an increase in the muscle mass. However, the effect of MSTN knockdown on the expression of myogenic regulatory factors (MRFs) has not been studied in farm animals including goats. In the present study, using different synthetic siRNAs (n = 3), we demonstrated as high as 69 (p < 0.01) and 89% downregulation of MSTN mRNA and protein in the primary caprine foetal myoblast cells. Further, we also examined the effect of MSTN knockdown on the transcripts of MRFs including MyoD, Myf5 and MYOG. The expression of Myf5 remained unaffected (p = 0.60); however, MSTN downregulation caused a significant (p < 0.05) decrease and increase of MYOG and MyoD expression, respectively. Assessment of OAS1 expression confirmed the absence of any siRNA-elicited interferon response. Our results demonstrate that the downregulation of MSTN expression was accompanied by differential expressions of MRFs without any adverse interferon response. This study also suggests the importance of siRNA-mediated knockdown of MSTN as a potential alternative to increase muscle mass and meat production.
Collapse
Affiliation(s)
- Rohit Kumar
- Genome Analysis Laboratory, Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | | | | | | |
Collapse
|
42
|
Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism. Proc Natl Acad Sci U S A 2013; 110:18162-7. [PMID: 24145431 DOI: 10.1073/pnas.1317049110] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB-dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients.
Collapse
|
43
|
Hauerslev S, Sveen ML, Vissing J, Krag TO. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS One 2013; 8:e66929. [PMID: 23840556 PMCID: PMC3696023 DOI: 10.1371/journal.pone.0066929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/10/2013] [Indexed: 11/19/2022] Open
Abstract
Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal compared to distal muscles. Biopsies were simultaneously obtained from proximal and distal muscles of the same patients with LGMD2I (n = 4) and healthy subjects (n = 4). The level of past muscle regeneration was evaluated by counting internally nucleated fibers and determining actively regenerating fibers by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.
Collapse
Affiliation(s)
- Simon Hauerslev
- Neuromuscular Research Unit, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marie L. Sveen
- Neuromuscular Research Unit, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Neuromuscular Research Unit, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas O. Krag
- Neuromuscular Research Unit, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
44
|
Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostatin. In Vitro Cell Dev Biol Anim 2013; 49:417-23. [DOI: 10.1007/s11626-013-9621-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/16/2013] [Indexed: 01/28/2023]
|
45
|
Valdés JA, Flores S, Fuentes EN, Osorio-Fuentealba C, Jaimovich E, Molina A. IGF-1 induces IP3-dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation. J Cell Physiol 2013; 228:1452-63. [DOI: 10.1002/jcp.24298] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 11/27/2012] [Indexed: 12/20/2022]
|
46
|
Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, Bailey E, Bannasch D, Binns MM, Borges AS, Brama P, da Câmara Machado A, Capomaccio S, Cappelli K, Cothran EG, Distl O, Fox-Clipsham L, Graves KT, Guérin G, Haase B, Hasegawa T, Hemmann K, Hill EW, Leeb T, Lindgren G, Lohi H, Lopes MS, McGivney BA, Mikko S, Orr N, Penedo MCT, Piercy RJ, Raekallio M, Rieder S, Røed KH, Swinburne J, Tozaki T, Vaudin M, Wade CM, McCue ME. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet 2013; 9:e1003211. [PMID: 23349635 PMCID: PMC3547851 DOI: 10.1371/journal.pgen.1003211] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/15/2012] [Indexed: 02/04/2023] Open
Abstract
Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.
Collapse
Affiliation(s)
- Jessica L Petersen
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nadjar-Boger E, Maccatrozzo L, Radaelli G, Funkenstein B. Genomic cloning and promoter functional analysis of myostatin-2 in shi drum, Umbrina cirrosa: conservation of muscle-specific promoter activity. Comp Biochem Physiol B Biochem Mol Biol 2012. [PMID: 23178682 DOI: 10.1016/j.cbpb.2012.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myostatin (MSTN) is a member of the transforming growth factor-ß superfamily, known as a negative regulator of skeletal muscle development and growth in mammals. In contrast to mammals, fish possess at least two paralogs of MSTN: MSTN-1 and MSTN-2. Here we describe the cloning and sequence analysis of spliced and precursor (unspliced) transcripts as well as the 5' flanking region of MSTN-2 from the marine fish Umbrina cirrosa (ucMSTN-2). In silico analysis revealed numerous putative cis regulatory elements including several E-boxes known as binding sites to myogenic transcription factors. Transient transfection experiments using non-muscle and muscle cell lines showed high transcriptional activity in muscle cells and in differentiated neural cells, in accordance with our previous findings in MSTN-2 promoter from Sparus aurata. Comparative informatics analysis of MSTN-2 from several fish species revealed high conservation of the predicted amino acid sequence as well as the gene structure (exon length) although intron length varied between species. The proximal promoter of MSTN-2 gene was found to be conserved among Perciforms. In conclusion, this study reinforces our conclusion that MSTN-2 promoter is a very strong promoter, especially in muscle cells. In addition, we show that the MSTN-2 gene structure is highly conserved among fishes as is the predicted amino acid sequence of the peptide.
Collapse
Affiliation(s)
- Elisabeth Nadjar-Boger
- Department of Marine Biology & Biotechnology, National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel-Shikmona, P.O.B 8030, Haifa 31080, Israel
| | | | | | | |
Collapse
|
48
|
Fan H, Zhang R, Tesfaye D, Tholen E, Looft C, Hölker M, Schellander K, Cinar MU. Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells. Epigenetics 2012; 7:1379-90. [PMID: 23092945 DOI: 10.4161/epi.22609] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Satellite cells function as skeletal muscle stem cells to support postnatal muscle growth and regeneration following injury or disease. There is great promise for the improvement of muscle performance in livestock and for the therapy of muscle pathologies in humans by the targeting of myostatin (MSTN) in this cell population. Human diet contains many histone deacetylase (HDAC) inhibitors, such as the bioactive component sulforaphane (SFN), whose epigenetic effects on MSTN gene in satellite cells are unknown. Therefore, we aimed to investigate the epigenetic influences of SFN on the MSTN gene in satellite cells. The present work provides the first evidence, which is distinct from the effects of trichostatin A (TSA), that SFN supplementation in vitro not only acts as a HDAC inhibitor but also as a DNA methyltransferase (DNMT) inhibitor in porcine satellite cells. Compared with TSA and 5-aza-2'-deoxycytidine (5-aza-dC), SFN treatment significantly represses MSTN expression, accompanied by strongly attenuated expression of negative feedback inhibitors of the MSTN signaling pathway. miRNAs targeting MSTN are not implicated in posttranscriptional regulation of MSTN. Nevertheless, a weakly enriched myoblast determination (MyoD) protein associated with diminished histone acetylation in the MyoD binding site located in the MSTN promoter region may contribute to the transcriptional repression of MSTN by SFN. These findings reveal a new mode of epigenetic repression of MSTN by the bioactive compound SFN. This novel pharmacological, biological activity of SFN in satellite cells may thus allow for the development of novel approaches to weaken the MSTN signaling pathway, both for therapies of human skeletal muscle disorders and for livestock production improvement.
Collapse
Affiliation(s)
- Huitao Fan
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nadjar-Boger E, Hinits Y, Funkenstein B. Structural and functional analysis of myostatin-2 promoter alleles from the marine fish Sparus aurata: evidence for strong muscle-specific promoter activity and post-transcriptional regulation. Mol Cell Endocrinol 2012; 361:51-68. [PMID: 22483947 DOI: 10.1016/j.mce.2012.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 12/24/2022]
Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle growth. In contrast to mammals, fish possess at least two paralogs of MSTN: MSTN-1 and MSTN-2. In this study, we analyzed the structural-functional features of the four variants of Sparus aurata MSTN-2 5'-flanking region: saMSTN-2a, saMSTN-2as, saMSTN-2b and saMSTN-2c. In silico analysis revealed numerous putative cis regulatory elements including several E-boxes known as binding sites to myogenic transcription factors. Transient transfection experiments using non-muscle and muscle cell lines showed surprisingly high transcriptional activity in muscle cells, suggesting the presence of regulatory elements unique to differentiated myotubes. These observations were confirmed by in situ intramuscular injections of promoter DNA followed by reporter gene assays. Moreover, high promoter activity was found in differentiated neural cell, in agreement with MSTN-2 expression in brain. Progressive 5'-deletion analysis, using reporter gene assays, showed that the core promoter is located within the first -127 bp upstream of the ATG, and suggested the presence of regulatory elements that either repress or induce transcriptional activity. Transient transgenic zebrafish provided evidence for saMSTN-2 promoter ability to direct GFP expression to myofibers. Finally, our data shows that although no mature saMSTN-2 mRNA is observed in muscle; unspliced forms accumulate, confirming high level of transcription. In conclusion, our study shows for the first time that MSTN-2 promoter is a very robust promoter, especially in muscle cells.
Collapse
Affiliation(s)
- Elisabeth Nadjar-Boger
- Department of Marine Biology & Biotechnology, National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel-Shikmona, Haifa, Israel
| | | | | |
Collapse
|
50
|
Li J, Deng J, Yu S, Zhang J, Cheng D, Wang H. The virtual element in proximal promoter of porcine myostatin is regulated by myocyte enhancer factor 2C. Biochem Biophys Res Commun 2012; 419:175-81. [PMID: 22342668 DOI: 10.1016/j.bbrc.2012.01.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
Abstract
Myostatin (myostatin) is a member of the transforming growth factor-β superfamily. In this study, we investigated the transcriptional regulation of porcine myostatin expression in C2C12 cells. Sequence analysis of 2kb of the porcine myostatin gene upstream region revealed that it contains 16 E-box motifs. Using a serial deletion strategy, we identified a vital enhancer region between nucleotides -218 and -137 in promoter region of porcine myostatin. Gel-shift assay and deletion analysis result showed F1 site, from nucleotides -206 to -189, was the key element to produce the promoter/nucleus extract complex, which directly interact with transcriptional factor MEF2C. Overexpression of MEF2C increased myostatin promoter activity in dose dependent manner; and whereas introducing of small interfering RNA to MEF2C produced the opposite effect in both myoblasts and myotubes. When endogenous MEF2C was knocked down, the complex of protein/F1 was attenuated, and myostatin mRNA and protein level was also decreased. Thus, we propose that MEF2C could modulate and restrain myogenesis by myostatin activation and myostatin-dependent gene processing in porcine.
Collapse
Affiliation(s)
- Jia Li
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|