1
|
Beird HC, Cloutier JM, Gokgoz N, Eeles C, Griffin AM, Ingram DR, Wani KM, Segura RL, Cohen L, Ho C, Wunder JS, Andrulis IL, Futreal PA, Haibe-Kains B, Lazar AJ, Wang WL, Przybyl J, Demicco EG. Epigenomic and Transcriptomic Profiling of Solitary Fibrous Tumors Identifies Site-Specific Patterns and Candidate Genes Regulated by DNA Methylation. J Transl Med 2024; 104:102146. [PMID: 39357799 DOI: 10.1016/j.labinv.2024.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
A solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that can arise at any anatomical site and is characterized by recurrent NAB2::STAT6 fusions and metastatic progression in 10% to 30%. The cell of origin has not been identified. Despite some progress in understanding the contribution of heterogeneous fusion types and secondary mutations to SFT biology, epigenetic alterations in extrameningeal SFT remain largely unexplored, and most sarcoma research to date has focused on the use of methylation profiling for tumor classification. We interrogated genome-wide DNA methylation in 79 SFTs to identify informative epigenetic changes. RNA-seq data from targeted panels and data from The Cancer Genome Atlas (TCGA) were used for orthogonal validation of selected findings. In unsupervised clustering analysis, the top 500 most variable cytosine-guanine sites segregated SFTs by primary anatomical site. Differentially methylated genes associated with the primary SFT site included EGFR; TBX15; multiple HOX genes; and their cofactors EBF1, EBF3, and PBX1; as well as RUNX1 and MEIS1. Of the 20 DMGs interrogated on the RNA-seq panel, 12 were significantly differentially expressed according to site. However, except TBX15, most of these also showed differential expression according to NAB2::STAT6 fusion type, suggesting that the fusion oncogene contributes to the transcriptional regulation of these genes. Transcriptomic data confirmed an inverse correlation between gene methylation and the expression of TBX15 in both SFT and TCGA sarcomas. TBX15 also showed differential mRNA expression and 5' UTR methylation between tumors in different anatomical sites in TCGA data. In all analyses, TBX15 methylation and mRNA expression retained the strongest association with tissue of origin in SFT and other sarcomas, suggesting a possible marker to distinguish metastatic tumors from new primaries without genomic profiling. Epigenetic signatures may further help to identify SFT progenitor cells at different anatomical sites.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey M Cloutier
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, Ontario, Canada
| | - Christopher Eeles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anthony M Griffin
- University of Toronto Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Davis R Ingram
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida M Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rossana Lazcano Segura
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luca Cohen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl Ho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay S Wunder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, Ontario, Canada; University of Toronto Musculoskeletal Oncology Unit, Division of Orthopaedic Surgery, Department of Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital Toronto, Ontario, Canada; Department of Molecular Genetics Canada, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joanna Przybyl
- Department of Surgery, McGill University & Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Elizabeth G Demicco
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Nelson TA, Tommasini S, Fretz JA. Deletion of the transcription factor EBF1 in perivascular stroma disrupts skeletal homeostasis and precipitates premature aging of the marrow microenvironment. Bone 2024; 187:117198. [PMID: 39002837 PMCID: PMC11410106 DOI: 10.1016/j.bone.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Early B cell factor 1 (EBF1) is a transcription factor expressed by multiple lineages of stromal cells within the bone marrow. While cultures of Ebf1-deficient cells have been demonstrated to have impaired differentiation into either the osteoblast or adipogenic lineage in vitro by several groups, in vivo there has been a nominal consequence of the loss of EBF1 on skeletal development. In this study we used Prx-cre driven deletion of Ebf1 to eliminate EBF1 from the entire mesenchymal lineage of the skeleton and resolve this discrepancy. We report here that EBF1 is expressed primarily in the Mesenchymal Stem and Progenitor Cell (MSPC)-Adipo, MSPC-Osteo, and the Early Mesenchymal Progenitors, and that loss of EBF1 has a plethora of consequences to maintenance of the skeleton throughout adulthood. Stroma from the Prx-cre;Ebf1fl/fl bones had impaired osteogenic differentiation, an age-dependent loss of CFU-F, and elevated senescence accompanying Ebf1-deletion. New bone formation was reduced after 3 months, and resulted in a quiescent bone environment with fewer osteoblasts and an accompanied reduction in osteoclast-mediated remodeling. Consequently, bones were less ductile at a younger age, and deletion of EBF1 dramatically impaired fracture repair. Disruption of EBF1 in perivascular populations also rearranged the vascular network within these bones and disrupted cytokine signaling from key hematopoietic niches resulting in anemia, reductions in B cells, and myeloid skewing of marrow hematopoietic lineages. Mechanistically we observed disrupted BMP signaling within Ebf1-deficient progenitors with reduced SMAD1-phosphorylation, and elevated secretion of the soluble BMP-inhibitor Gremlin from the MSPC-Adipo cells. Ebf1-deficient progenitors also exhibited posttranslational suppression of glucocorticoid receptor expression. Together, these results suggest that EBF1 signaling is required for mesenchymal progenitor mobilization to maintain the adult skeleton, and that the primary action of EBF1 in the early mesenchymal lineage is to promote proliferation, and differentiation of these perivascular cells to sustain a healthy tissue.
Collapse
Affiliation(s)
- Tracy A Nelson
- Yale School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, United States of America
| | - Stephen Tommasini
- Yale School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, United States of America
| | - Jackie A Fretz
- Yale School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, United States of America.
| |
Collapse
|
3
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
4
|
Hao Z, Jin X, Hickford JGH, Zhou H, Wang L, Wang J, Luo Y, Hu J, Liu X, Li S, Li M, Shi B, Ren C. Screening and identification of lncRNAs in preadipocyte differentiation in sheep. Sci Rep 2024; 14:5260. [PMID: 38438565 PMCID: PMC10912770 DOI: 10.1038/s41598-024-56091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
Studies of preadipocyte differentiation and fat deposition in sheep have mainly focused on functional genes, and with no emphasis placed on the role that long non-coding RNAs (lncRNAs) may have on the activity of those genes. Here, the expression profile of lncRNAs in ovine preadipocyte differentiation was investigated and the differentially expressed lncRNAs were screened on day 0 (D0), day 2(D2) and day 8(D8) of ovine preadipocyte differentiation, with their target genes being predicted. The competing endogenous RNA (ceRNA) regulatory network was constructed by GO and KEGG enrichment analysis for functional annotation, and some differentially expressed lncRNAs were randomly selected to verify the RNA-Seq results by RT-qPCR. In the study, a total of 2517 novel lncRNAs and 3943 known lncRNAs were identified from ovine preadipocytes at the three stages of differentiation, with the highest proportion being intergenic lncRNAs. A total of 3455 lncRNAs were expressed at all three stages of preadipocyte differentiation, while 214, 226 and 228 lncRNAs were uniquely expressed at day 0, day 2 and day 8, respectively. By comparing the expression of the lncRNAs between the three stages of differentiation stages, a total of 405, 272 and 359 differentially expressed lncRNAs were found in D0-vs-D2, D0-vs-D8, and D2-vs-D8, respectively. Functional analysis revealed that the differentially expressed lncRNAs were enriched in signaling pathways related to ovine preadipocyte differentiation, such as mitogen-activated protein kinase (MAPK) pathway, the phosphoinositide 3-kinase protein kinase B (PI3K-Akt) pathway, and the transforming growth factor beta (TGF-β) pathway. In summary, lncRNAs from preadipocytes at different stages of differentiation in sheep were identified and screened using RNA-Seq technology, and the regulatory mechanisms of lncRNAs in preadipocyte differentiation and lipid deposition were explored. This study provides a theoretical reference for revealing the roles of lncRNAs in ovine preadipocyte differentiation and also offers a theoretical basis for further understanding the regulatory mechanisms of ovine preadipocyte differentiation.
Collapse
Affiliation(s)
- Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiayang Jin
- Academic Animal & Veterinary Science, Qinghai University, Xining, China
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gene-Marker Laboratory, Faculty of Agriculture and Life Science, Lincoln University, Lincoln, 7647, New Zealand
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gene-Marker Laboratory, Faculty of Agriculture and Life Science, Lincoln University, Lincoln, 7647, New Zealand
| | - Longbin Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chunyan Ren
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Sigvardsson M. Early B-Cell Factor 1: An Archetype for a Lineage-Restricted Transcription Factor Linking Development to Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:143-156. [PMID: 39017843 DOI: 10.1007/978-3-031-62731-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of highly specialized blood cells from hematopoietic stem cells (HSCs) in the bone marrow (BM) is dependent upon a stringently orchestrated network of stage- and lineage-restricted transcription factors (TFs). Thus, the same stem cell can give rise to various types of differentiated blood cells. One of the key regulators of B-lymphocyte development is early B-cell factor 1 (EBF1). This TF belongs to a small, but evolutionary conserved, family of proteins that harbor a Zn-coordinating motif and an IPT/TIG (immunoglobulin-like, plexins, transcription factors/transcription factor immunoglobulin) domain, creating a unique DNA-binding domain (DBD). EBF proteins play critical roles in diverse developmental processes, including body segmentation in the Drosophila melanogaster embryo, and retina formation in mice. While several EBF family members are expressed in neuronal cells, adipocytes, and BM stroma cells, only B-lymphoid cells express EBF1. In the absence of EBF1, hematopoietic progenitor cells (HPCs) fail to activate the B-lineage program. This has been attributed to the ability of EBF1 to act as a pioneering factor with the ability to remodel chromatin, thereby creating a B-lymphoid-specific epigenetic landscape. Conditional inactivation of the Ebf1 gene in B-lineage cells has revealed additional functions of this protein in relation to the control of proliferation and apoptosis. This may explain why EBF1 is frequently targeted by mutations in human leukemia cases. This chapter provides an overview of the biochemical and functional properties of the EBF family proteins, with a focus on the roles of EBF1 in normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Kim EE, Shekhar A, Ramachandran J, Khodadadi-Jamayran A, Liu FY, Zhang J, Fishman GI. The transcription factor EBF1 non-cell-autonomously regulates cardiac growth and differentiation. Development 2023; 150:dev202054. [PMID: 37787076 PMCID: PMC10652039 DOI: 10.1242/dev.202054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Reciprocal interactions between non-myocytes and cardiomyocytes regulate cardiac growth and differentiation. Here, we report that the transcription factor Ebf1 is highly expressed in non-myocytes and potently regulates heart development. Ebf1-deficient hearts display myocardial hypercellularity and reduced cardiomyocyte size, ventricular conduction system hypoplasia, and conduction system disease. Growth abnormalities in Ebf1 knockout hearts are observed as early as embryonic day 13.5. Transcriptional profiling of Ebf1-deficient embryonic cardiac non-myocytes demonstrates dysregulation of Polycomb repressive complex 2 targets, and ATAC-Seq reveals altered chromatin accessibility near many of these same genes. Gene set enrichment analysis of differentially expressed genes in cardiomyocytes isolated from E13.5 hearts of wild-type and mutant mice reveals significant enrichment of MYC targets and, consistent with this finding, we observe increased abundance of MYC in mutant hearts. EBF1-deficient non-myocytes, but not wild-type non-myocytes, are sufficient to induce excessive accumulation of MYC in co-cultured wild-type cardiomyocytes. Finally, we demonstrate that BMP signaling induces Ebf1 expression in embryonic heart cultures and controls a gene program enriched in EBF1 targets. These data reveal a previously unreported non-cell-autonomous pathway controlling cardiac growth and differentiation.
Collapse
Affiliation(s)
- Eugene E. Kim
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jayalakshmi Ramachandran
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Miyata H, Ishii M, Suehiro F, Komabashiri N, Ikeda N, Sakurai T, Nishimura M. Elucidation of adipogenic differentiation regulatory mechanism in human maxillary/mandibular bone marrow-derived stem cells. Arch Oral Biol 2023; 146:105608. [PMID: 36549198 DOI: 10.1016/j.archoralbio.2022.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aims to investigate the underlying molecular mechanisms that regulate the adipogenic differentiation of maxillary/mandibular bone marrow-derived mesenchymal stem cells (MBMSCs). DESIGN MBMSCs and iliac bone marrow-derived MSCs (IBMSCs) were compared for osteogenic, chondrogenic, and adipogenic differentiation. Cell surface antigen expression was examined using flow cytometry, and stem cell marker expression was assessed using real-time polymerase chain reaction (PCR). Various adipogenic regulatory factors' expression was evaluated using real-time PCR and western blotting. RESULTS No significant differences in cell surface antigen profiles or stem cell marker expression in MBMSCs and IBMSCs were observed. MBMSCs and IBMSCs displayed similar osteogenic and chondrogenic potentials, whereas MBMSCs showed significantly lower adipogenic potentials than those shown by IBMSCs. Expression of CCAAT/enhancer binding protein β (C/EBPβ), C/EBPδ, early B-cell factor 1 (Ebf-1), and Krüppel-like factor 5 (KLF5), which are early adipogenic differentiation factors, was suppressed in MBMSCs compared to that in IBMSCs. Peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which play important roles in the terminal differentiation of adipocytes, was lower in MBMSCs than that in IBMSCs. Furthermore, the level of zinc finger protein 423 (Zfp423), which is involved in the commitment of undifferentiated MSCs to the adipocyte lineage, was significantly lower in MBMSCs than that in IBMSCs. CONCLUSIONS MBMSCs are negatively regulated in the commitment of undifferentiated MSCs to the adipocyte lineage (preadipocytes) as well as in the terminal differentiation of preadipocytes into mature adipocytes. These results may elucidate the site-specific characteristics of MBMSCs.
Collapse
Affiliation(s)
- Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan.
| | - Fumio Suehiro
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Naohiro Komabashiri
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Tomoaki Sakurai
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| |
Collapse
|
8
|
Lakshminarayana L, Veeraraghavan V, Gouthami K, Srihari R, Chowdadenahalli Nagaraja P. Effect of Abutilon indicum (L) Extract on Adipogenesis, Lipolysis and Cholesterol Esterase in 3T3-L1 Adipocyte Cell Lines. Indian J Clin Biochem 2023; 38:22-32. [PMID: 36684487 PMCID: PMC9852410 DOI: 10.1007/s12291-022-01022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 01/25/2023]
Abstract
Abutilon indicum (L) is an Indian traditional plant used for the treatment of diabetes and heart diseases. The present study is to evaluate the functional of A. indicum leaf extract as insulin like character to inhibit lipolysis and stimulates Adipogenesis activity. The ability of the A. indicum leaf extract in anti-obesity effect of Adipogenesis, lipolysis and cholesterol esterase functions can be predicted by using 3T3-L1 adipocyte cell lines. Substances were isolated from A. indicum leaves and the double filtered crude sample were used for Adipogenesis, lipolysis and cholesterol esterase activity using 3T3-L1 adipocytes at different concentrations. We used differential media-I, differential media-II and maintenance media (MM1) at concentrations of 20, 40, 60, 80, 100, 200 and 400 µg/mL respectively. In addition to the extract, there is a significance increase in glycerol release (p < 0.001) compared with crude and reference compounds. Cholesterol esterase activity predicts the IC50 = 27.11 µg/mL of orlistat positive control compare with IC50 = 8.158 µg/mL of crude extract. Based on the observation, A. indicum leaf extract can promotes lipolysis and differentiated adipocytes. It is potentially used as adjuvant in the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Lavanya Lakshminarayana
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064 India
| | - V. Veeraraghavan
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064 India
| | - Kuruvalli Gouthami
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064 India
| | - Renuka Srihari
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bangalore, 560012 India
| | | |
Collapse
|
9
|
Al Madhoun A, Haddad D, Nizam R, Miranda L, Kochumon S, Thomas R, Thanaraj TA, Ahmad R, Bitar MS, Al-Mulla F. Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression. Cells 2022; 11:3937. [PMID: 36497195 PMCID: PMC9738758 DOI: 10.3390/cells11233937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Caveolin-1 (CAV1) is implicated in the pathophysiology of diabetes and obesity. Previously, we demonstrated an association between the CAV1 rs1997623 C > A variant and metabolic syndrome (MetS). Here, we decipher the functional role of rs1997623 in CAV1 gene regulation. A cohort of 38 patients participated in this study. The quantitative MetS scores (siMS) of the participants were computed. CAV1 transcript and protein expression were tested in subcutaneous adipose tissue using RT-PCR and immunohistochemistry. Chromatin immunoprecipitation assays were performed using primary preadipocytes isolated from individuals with different CAV1 rs1997623 genotypes (AA, AC, and CC). The regulatory region flanking the variant was cloned into a luciferase reporter plasmid and expressed in human preadipocytes. Additional knockdown and overexpression assays were carried out. We show a significant correlation between siMS and CAV1 transcript levels and protein levels in human adipose tissue collected from an Arab cohort. We found that the CAV1 rs1997623 A allele generates a transcriptionally active locus and a new transcription factor binding site for early B-cell factor 1 (EBF1), which enhanced CAV1 expression. Our in vivo and in vitro combined study implicates, for the first time, EBF1 in regulating CAV1 expression in individuals harboring the rs1997623 C > A variant.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Dania Haddad
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Lavina Miranda
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Milad S. Bitar
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
10
|
Silva-Vignato B, Cesar ASM, Afonso J, Moreira GCM, Poleti MD, Petrini J, Garcia IS, Clemente LG, Mourão GB, Regitano LCDA, Coutinho LL. Integrative Analysis Between Genome-Wide Association Study and Expression Quantitative Trait Loci Reveals Bovine Muscle Gene Expression Regulatory Polymorphisms Associated With Intramuscular Fat and Backfat Thickness. Front Genet 2022; 13:935238. [PMID: 35991540 PMCID: PMC9386181 DOI: 10.3389/fgene.2022.935238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the architecture of gene expression is fundamental to unravel the molecular mechanisms regulating complex traits in bovine, such as intramuscular fat content (IMF) and backfat thickness (BFT). These traits are economically important for the beef industry since they affect carcass and meat quality. Our main goal was to identify gene expression regulatory polymorphisms within genomic regions (QTL) associated with IMF and BFT in Nellore cattle. For that, we used RNA-Seq data from 193 Nellore steers to perform SNP calling analysis. Then, we combined the RNA-Seq SNP and a high-density SNP panel to obtain a new dataset for further genome-wide association analysis (GWAS), totaling 534,928 SNPs. GWAS was performed using the Bayes B model. Twenty-one relevant QTL were associated with our target traits. The expression quantitative trait loci (eQTL) analysis was performed using Matrix eQTL with the complete SNP dataset and 12,991 genes, revealing a total of 71,033 cis and 36,497 trans-eQTL (FDR < 0.05). Intersecting with QTL for IMF, we found 231 eQTL regulating the expression levels of 117 genes. Within those eQTL, three predicted deleterious SNPs were identified. We also identified 109 eQTL associated with BFT and affecting the expression of 54 genes. This study revealed genomic regions and regulatory SNPs associated with fat deposition in Nellore cattle. We highlight the transcription factors FOXP4, FOXO3, ZSCAN2, and EBF4, involved in lipid metabolism-related pathways. These results helped us to improve our knowledge about the genetic architecture behind important traits in cattle.
Collapse
Affiliation(s)
- Bárbara Silva-Vignato
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Aline Silva Mello Cesar
- Department of Agroindustry, Food, and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | | | | | - Mirele Daiana Poleti
- College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Juliana Petrini
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Ingrid Soares Garcia
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Luan Gaspar Clemente
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Gerson Barreto Mourão
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | | | - Luiz Lehmann Coutinho
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
- *Correspondence: Luiz Lehmann Coutinho,
| |
Collapse
|
11
|
Pagani F, Tratta E, Dell'Era P, Cominelli M, Poliani PL. EBF1 is expressed in pericytes and contributes to pericyte cell commitment. Histochem Cell Biol 2021; 156:333-347. [PMID: 34272603 PMCID: PMC8550016 DOI: 10.1007/s00418-021-02015-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/27/2023]
Abstract
Early B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRβ, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRβ and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-β, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.
Collapse
Affiliation(s)
- Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, P.le Spedali Civili 1, 25125, Brescia, BS, Italy
| | - Elisa Tratta
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, P.le Spedali Civili 1, 25125, Brescia, BS, Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, BS, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, P.le Spedali Civili 1, 25125, Brescia, BS, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, P.le Spedali Civili 1, 25125, Brescia, BS, Italy.
| |
Collapse
|
12
|
Björk C, Subramanian N, Liu J, Acosta JR, Tavira B, Eriksson AB, Arner P, Laurencikiene J. An RNAi Screening of Clinically Relevant Transcription Factors Regulating Human Adipogenesis and Adipocyte Metabolism. Endocrinology 2021; 162:6272286. [PMID: 33963396 PMCID: PMC8197287 DOI: 10.1210/endocr/bqab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Healthy hyperplasic (many but smaller fat cells) white adipose tissue (WAT) expansion is mediated by recruitment, proliferation and/or differentiation of new fat cells. This process (adipogenesis) is controlled by transcriptional programs that have been mostly identified in rodents. OBJECTIVE A systemic investigation of adipogenic human transcription factors (TFs) that are relevant for metabolic conditions has not been revealed previously. METHODS TFs regulated in WAT by obesity, adipose morphology, cancer cachexia, and insulin resistance were selected from microarrays. Their role in differentiation of human adipose tissue-derived stem cells (hASC) was investigated by RNA interference (RNAi) screen. Lipid accumulation, cell number, and lipolysis were measured for all screened factors (148 TFs). RNA (RNAseq), protein (Western blot) expression, insulin, and catecholamine responsiveness were examined in hASC following siRNA treatment of selected target TFs. RESULTS Analysis of TFs regulated by metabolic conditions in human WAT revealed that many of them belong to adipogenesis-regulating pathways. The RNAi screen identified 39 genes that affected fat cell differentiation in vitro, where 11 genes were novel. Of the latter JARID2 stood out as being necessary for formation of healthy fat cell metabolic phenotype by regulating expression of multiple fat cell phenotype-specific genes. CONCLUSION This comprehensive RNAi screening in hASC suggests that a large proportion of WAT TFs that are impacted by metabolic conditions might be important for hyperplastic adipose tissue expansion. The screen also identified JARID2 as a novel TF essential for the development of functional adipocytes.
Collapse
Affiliation(s)
- Christel Björk
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Narmadha Subramanian
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Jianping Liu
- Karolinska High Throughput Center, Department of Medical Biochemistry and Biophysics (MBB), Division of Functional Genomics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Juan Ramon Acosta
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Beatriz Tavira
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Anders B Eriksson
- Karolinska High Throughput Center, Department of Medical Biochemistry and Biophysics (MBB), Division of Functional Genomics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Peter Arner
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Jurga Laurencikiene
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
- Correspondence: Jurga Laurencikiene, PhD, Karolinska Institutet, Lipid laboratory, Dept. of Medicine Huddinge (MedH), NEO, Hälsovägen 9/Blickagången 16, 14183 Huddinge, Sweden.
| |
Collapse
|
13
|
Nipping Adipocyte Inflammation in the Bud. ACTA ACUST UNITED AC 2021; 3. [PMID: 33732506 PMCID: PMC7963359 DOI: 10.20900/immunometab20210012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adipose tissue inflammation continues to represent a significant area of research in immunometabolism. We have identified a transcription factor, EBF1, which crucially regulates the expression of numerous inflammatory loci in adipocytes. However, EBF1 appears to do so without physically binding to these inflammatory genes. Our research is currently focused on understanding this discrepancy, and we believe that future findings could pave the road for drug development aimed to block adipose inflammation at its source.
Collapse
|
14
|
Zhou Q, Xie F, Zhou B, Li C, Kang Y, Wu B, Li L, Dai R. Fetal bovine serum-derived exosomes regulate the adipogenic differentiation of human bone marrow mesenchymal stromal cells in a cross-species manner. Differentiation 2020; 115:11-21. [PMID: 32771719 DOI: 10.1016/j.diff.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/15/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
Fetal bovine serum (FBS) contains a large number of exosomes which may disturb the analysis of exosomes derived from cultured cells. We investigated the effect of FBS-derived exosomes (FBS-Exos) on the adipogenic differentiation of human bone marrow mesenchymal stromal cells (hBM-MSCs) and the underlying molecular mechanism. The uptake of FBS-Exos by hBM-MSCs could be detected by the laser confocal microscopy, and the treatment of exosomes resulted in the decreased lipid droplet formation and reduced expression of genes associated with adipogenic differentiation of hBM-MSCs. miR-1246 was identified as an abundant microRNA in FBS-Exos by public sequencing data identification and RT-qPCR validation. Moreover, miR-1246 overexpression in hBM-MSCs led to decreased adipogenic differentiation level, while miR-1246 knockdown in FBS-Exos attenuated the inhibitory effect on the adipogenic differentiation. Our results indicate that FBS-Exos inhibit the adipogenic differentiation of hBM-MSCs in a cross-species manner and miR-1246 transferred by FBS-Exos partly contributes to this effect.
Collapse
Affiliation(s)
- Qiongfei Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China; Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Changsha, Hunan, 410011, China
| | - Fen Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China; Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Changsha, Hunan, 410011, China; Department of Endocrinology and Metabolism, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, China
| | - Bin Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chan Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China; Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Changsha, Hunan, 410011, China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bo Wu
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China; Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Changsha, Hunan, 410011, China
| | - Lin Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China; Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Changsha, Hunan, 410011, China; Department of Endocrinology and Metabolism, The First Hospital of Changsha, Changsha, Hunan, 410005, China
| | - Ruchun Dai
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China; Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Changsha, Hunan, 410011, China.
| |
Collapse
|
15
|
Angueira AR, Shapira SN, Ishibashi J, Sampat S, Sostre-Colón J, Emmett MJ, Titchenell PM, Lazar MA, Lim HW, Seale P. Early B Cell Factor Activity Controls Developmental and Adaptive Thermogenic Gene Programming in Adipocytes. Cell Rep 2020; 30:2869-2878.e4. [PMID: 32130892 PMCID: PMC7079313 DOI: 10.1016/j.celrep.2020.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Brown adipose tissue (BAT) activity protects animals against hypothermia and represents a potential therapeutic target to combat obesity. The transcription factor early B cell factor-2 (EBF2) promotes brown adipocyte differentiation, but its roles in maintaining brown adipocyte fate and in stimulating BAT recruitment during cold exposure were unknown. We find that the deletion of Ebf2 in adipocytes of mice ablates BAT character and function, resulting in cold intolerance. Unexpectedly, prolonged exposure to cold restores the thermogenic profile and function of Ebf2 mutant BAT. Enhancer profiling and genetic assays identified EBF1 as a candidate regulator of the cold response in BAT. Adipocyte-specific deletion of both Ebf1 and Ebf2 abolishes BAT recruitment during chronic cold exposure. Mechanistically, EBF1 and EBF2 promote thermogenic gene transcription through increasing the expression and activity of ERRα and PGC1α. Together, these studies demonstrate that EBF proteins specify the developmental fate and control the adaptive cold response of brown adipocytes.
Collapse
Affiliation(s)
- Anthony R Angueira
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Suzanne N Shapira
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Samay Sampat
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J Emmett
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hee-Woong Lim
- Department of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Nelson T, Velazquez H, Troiano N, Fretz JA. Early B Cell Factor 1 (EBF1) Regulates Glomerular Development by Controlling Mesangial Maturation and Consequently COX-2 Expression. J Am Soc Nephrol 2019; 30:1559-1572. [PMID: 31405952 DOI: 10.1681/asn.2018070699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/11/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND We recently showed the transcription factor Early B cell factor 1 (EBF1) is essential for the last stages of metanephric development, and that mice globally deficient in EBF1 display impaired maturation of peripheral glomeruli. EBF1 is present within multiple glomerular cell types, including the glomerular mesangium and podocytes. METHODS To identify which cell type is driving the glomerular developmental defects in the global EBF1 knockout mice, we deleted EBF1 from the mesangium/pericytes (Foxd1-cre) or podocytes (Podocin-cre) in mice. RESULTS Deletion of EBF1 from Foxd1 lineage cells resulted in hypoplastic kidneys, poorly differentiated peripheral glomeruli, and decreased proximal tubular mass in the outer cortex. Renal insufficiency was apparent at P21 when proteinuria presents, fibrosis of both the glomeruli and interstitium rapidly progresses, microthrombi appear, and hematuria develops. Approximately half of the Foxd1+, Ebf1 fl/fl mice die before they are 3 months old. Mice with podocyte-targeted deletion of EBF1 exhibited no developmental abnormalities. Mice with Ebf1 deficiency in Foxd1 lineage cells shared characteristics with Ptgs2/COX-2-insufficient models, and mechanistic investigation revealed impaired calcineurin/NFATc1 activation and decreased COX-2 expression. Deletion of COX-2 from the interstitial/mesangial lineage displayed a less severe phenotype than EBF1 deficiency in mice. Overexpressing COX-2 in the EBF1-deficient mice, however, partially restored glomerular development. CONCLUSIONS The results suggest that EBF1 regulates metanephric development at the last stages of glomerular maturation through its actions in the stromal progenitor (Foxd1+) lineage where it mediates proper regulation of calcineurin/NFAT signaling and COX-2 expression.
Collapse
Affiliation(s)
- Tracy Nelson
- Department of Orthopedics and Rehabilitation and
| | - Heino Velazquez
- Division of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | |
Collapse
|
17
|
Chiarella E, Aloisio A, Codispoti B, Nappo G, Scicchitano S, Lucchino V, Montalcini Y, Camarotti A, Galasso O, Greco M, Gasparini G, Mesuraca M, Bond HM, Morrone G. ZNF521 Has an Inhibitory Effect on the Adipogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cell Rev Rep 2019; 14:901-914. [PMID: 29938352 DOI: 10.1007/s12015-018-9830-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitors present in the bone marrow stroma and in subcutaneous abdominal fat, an abundant and easily accessible source of MSCs with the ability to differentiate along multiple lineage pathways. The stem cell-associated transcription co-factor Zinc Finger Protein 521 (ZNF521/zfp521) has been implicated in the control of the homeostasis of hematopoietic, neural and osteo-adipogenic progenitors. Here we document through the analysis of a panel of human adipose-derived stem cells (hADSCs), that ZNF521 strongly inhibits the generation of mature adipocytes. Enforced overexpression of ZNF521 in these cells resulted in a significant delay and reduction in adipocyte differentiation upon exposure to inducers of adipogenesis. Of particular relevance, ZNF521 was able to inhibit the expression of ZNF423, recently identified as an essential commitment factor necessary for the generation of pre-adipocytes. Conversely, silencing of ZNF521 was found to significantly enhance the adipogenic differentiation of hADSCs. Inhibition of adipogenesis by ZNF521 was at least in part due to inhibition of EBF1. Taken together, these results confirm a role for ZNF521 as a key negative regulator of adipocyte differentiation of hADSCs.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy.
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Bruna Codispoti
- Tecnologica Research Institute- Marrelli Hospital, Crotone, Italy
| | - Giovanna Nappo
- UCSF Hellen Diller Cancer Center, University of California, San Francisco, CA, USA
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | | | - Olimpio Galasso
- Department of Orthopaedic & Trauma Surgery, University "Magna Graecia", Catanzaro, Italy
| | - Manfredi Greco
- Department of Plastic Surgery, University "Magna Graecia", Catanzaro, Italy
| | - Giorgio Gasparini
- Department of Orthopaedic & Trauma Surgery, University "Magna Graecia", Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Heather Mandy Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
18
|
Abstract
Understanding adipogenesis, the process of adipocyte development, may provide new ways to treat obesity and related metabolic diseases. Adipogenesis is controlled by coordinated actions of lineage-determining transcription factors and epigenomic regulators. Peroxisome proliferator-activated receptor gamma (PPARγ) and C/EBPα are master "adipogenic" transcription factors. In recent years, a growing number of studies have reported the identification of novel transcriptional and epigenomic regulators of adipogenesis. However, many of these novel regulators have not been validated in adipocyte development in vivo and their working mechanisms are often far from clear. In this minireview, we discuss recent advances in transcriptional and epigenomic regulation of adipogenesis, with a focus on factors and mechanisms shared by both white adipogenesis and brown adipogenesis. Studies on the transcriptional regulation of adipogenesis highlight the importance of investigating adipocyte differentiation in vivo rather than drawing conclusions based on knockdown experiments in cell culture. Advances in understanding of epigenomic regulation of adipogenesis have revealed critical roles of histone methylation/demethylation, histone acetylation/deacetylation, chromatin remodeling, DNA methylation, and microRNAs in adipocyte differentiation. We also discuss future research directions that may help identify novel factors and mechanisms regulating adipogenesis.
Collapse
|
19
|
Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol Rev 2019; 98:1911-1941. [PMID: 30067159 DOI: 10.1152/physrev.00034.2017] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The subcutaneous adipose tissue (SAT) is the largest and best storage site for excess lipids. However, it has a limited ability to expand by recruiting and/or differentiating available precursor cells. When inadequate, this leads to a hypertrophic expansion of the cells with increased inflammation, insulin resistance, and a dysfunctional prolipolytic tissue. Epi-/genetic factors regulate SAT adipogenesis and genetic predisposition for type 2 diabetes is associated with markers of an impaired SAT adipogenesis and development of hypertrophic obesity also in nonobese individuals. We here review mechanisms for the adipose precursor cells to enter adipogenesis, emphasizing the role of bone morphogenetic protein-4 (BMP-4) and its endogenous antagonist gremlin-1, which is increased in hypertrophic SAT in humans. Gremlin-1 is a secreted and a likely important mechanism for the impaired SAT adipogenesis in hypertrophic obesity. Transiently increasing BMP-4 enhances adipogenic commitment of the precursor cells while maintained BMP-4 signaling during differentiation induces a beige/brown oxidative phenotype in both human and murine adipose cells. Adipose tissue growth and development also requires increased angiogenesis, and BMP-4, as a proangiogenic molecule, may also be an important feedback regulator of this. Hypertrophic obesity is also associated with increased lipolysis. Reduced lipid storage and increased release of FFA by hypertrophic SAT are important mechanisms for the accumulation of ectopic fat in the liver and other places promoting insulin resistance. Taken together, the limited expansion and storage capacity of SAT is a major driver of the obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Ann Hammarstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Silvia Gogg
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Shahram Hedjazifar
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Annika Nerstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Ulf Smith
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
20
|
Shapira SN, Seale P. Transcriptional Control of Brown and Beige Fat Development and Function. Obesity (Silver Spring) 2019; 27:13-21. [PMID: 30569639 PMCID: PMC6309799 DOI: 10.1002/oby.22334] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Abstract
Adipose tissue, once viewed as an inert organ of energy storage, is now appreciated to be a central node for the dynamic regulation of systemic metabolism. There are three general types of adipose tissue: white, brown, and brown-in-white or "beige" fat. All three types of adipose tissue communicate extensively with other organs in the body, including skin, liver, pancreas, muscle, and brain, to maintain energy homeostasis. When energy intake chronically exceeds energy expenditure, obesity and its comorbidities can develop. Thus, understanding the molecular mechanisms by which different types of adipose tissues develop and function could uncover new therapies for combating disorders of energy imbalance. In this review, the recent findings on the transcriptional and chromatin-mediated regulation of brown and beige adipose tissue activity are highlighted.
Collapse
Affiliation(s)
- Suzanne N. Shapira
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
21
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
22
|
Matsunaga H, Iwashita M, Shinjo T, Yamashita A, Tsuruta M, Nagasaka S, Taniguchi A, Fukushima M, Watanabe N, Nishimura F. Adipose tissue complement factor B promotes adipocyte maturation. Biochem Biophys Res Commun 2017; 495:740-748. [PMID: 29137982 DOI: 10.1016/j.bbrc.2017.11.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVES It is well-known that the complement system plays an essential role in host immunity. Observational studies have indicated that complement system-related molecules such as complement factor B (CfB) and other components are correlated with obesity and/or insulin resistance parameters. In this study, we investigated the role of adipocyte-derived CfB in adipose tissue metabolism. METHODS We investigated the expression level of complement system-related genes in adipocytes. To understand the role of CfB in adipocyte, we performed Cfb overexpression in 3T3-L1 preadipocytes and generated adipocyte-specific Cfb transgenic mice. RESULTS Cfb expression was markedly enhanced in 3T3-L1 adipocytes co-cultured with macrophages following endotoxin stimulation. In Cfb-overexpressing cells, the expression of adipocyte differentiation/maturation-related genes encoding peroxisome proliferator-activated receptor γ (Pparγ), adipocyte Protein 2 and perilipin was significantly enhanced. Cfb transgenic mice showed a marked increase in the expression of genes encoding Pparγ, perilipin, sterol regulatory element-binding protein 1 c, and Cd36 in the subcutaneous adipose tissue. CONCLUSIONS CfB plays a crucial role in late-phase of adipocyte differentiation and subsequent lipid droplet formation.
Collapse
Affiliation(s)
- Hiroaki Matsunaga
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Misaki Iwashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Takanori Shinjo
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Akiko Yamashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Mitsudai Tsuruta
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Shoichiro Nagasaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Ataru Taniguchi
- Division of Diabetes and Endocrinology, Kyoto Preventive Medical Center, Kyoto, Japan
| | - Mitsuo Fukushima
- Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, Kyoto, Japan
| | - Naoya Watanabe
- Health Care and Promotion Center, Yodogawa Christian Hospital, Osaka, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan.
| |
Collapse
|
23
|
Sun C, Berry WL, Olson LE. PDGFRα controls the balance of stromal and adipogenic cells during adipose tissue organogenesis. Development 2017; 144:83-94. [PMID: 28049691 DOI: 10.1242/dev.135962] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022]
Abstract
Adipose tissue is distributed in depots throughout the body with specialized roles in energy storage and thermogenesis. PDGFRα is a marker of adipocyte precursors, and increased PDGFRα activity causes adipose tissue fibrosis in adult mice. However, the function of PDGFRα during adipose tissue organogenesis is unknown. Here, by analyzing mice with juxtamembrane or kinase domain point mutations that increase PDGFRα activity (V561D or D842V), we found that PDGFRα activation inhibits embryonic white adipose tissue organogenesis in a tissue-autonomous manner. By lineage tracing analysis, we also found that collagen-expressing precursor fibroblasts differentiate into white adipocytes in the embryo. PDGFRα inhibited the formation of adipocytes from these precursors while favoring the formation of stromal fibroblasts. This imbalance between adipocytes and stromal cells was accompanied by overexpression of the cell fate regulator Zfp521. PDGFRα activation also inhibited the formation of juvenile beige adipocytes in the inguinal fat pad. Our data highlight the importance of balancing stromal versus adipogenic cell expansion during white adipose tissue development, with PDGFRα activity coordinating this crucial process in the embryo.
Collapse
Affiliation(s)
- Chengyi Sun
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
24
|
Lara-Ramírez R, Poncelet G, Patthey C, Shimeld SM. The structure, splicing, synteny and expression of lamprey COE genes and the evolution of the COE gene family in chordates. Dev Genes Evol 2017; 227:319-338. [PMID: 28871438 DOI: 10.1007/s00427-017-0591-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 08/20/2017] [Indexed: 10/18/2022]
Abstract
COE genes encode transcription factors that have been found in all metazoans examined to date. They possess a distinctive domain structure that includes a DNA-binding domain (DBD), an IPT/TIG domain and a helix-loop-helix (HLH) domain. An intriguing feature of the COE HLH domain is that in jawed vertebrates it is composed of three helices, compared to two in invertebrates. We report the isolation and expression of two COE genes from the brook lamprey Lampetra planeri and compare these to COE genes from the lampreys Lethenteron japonicum and Petromyzon marinus. Molecular phylogenetic analyses do not resolve the relationship of lamprey COE genes to jawed vertebrate paralogues, though synteny mapping shows that they all derive from duplication of a common ancestral genomic region. All lamprey genes encode conserved DBD, IPT/TIG and HLH domains; however, the HLH domain of lamprey COE-A genes encodes only two helices while COE-B encodes three helices. We also identified COE-B splice variants encoding either two or three helices in the HLH domain, along with other COE-A and COE-B splice variants affecting the DBD and C-terminal transactivation regions. In situ hybridisation revealed expression in the lamprey nervous system including the brain, spinal cord and cranial sensory ganglia. We also detected expression of both genes in mesenchyme in the pharyngeal arches and underlying the notochord. This allows us to establish the primitive vertebrate expression pattern for COE genes and compare this to that of invertebrate chordates and other animals to develop a model for COE gene evolution in chordates.
Collapse
Affiliation(s)
- Ricardo Lara-Ramírez
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
- Centro de Investigación en Ciencias Biológicas Aplicadas, Instituto Literario No. 100, Colonia Centro, CP 50000, Toluca, México
| | - Guillaume Poncelet
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Cédric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
25
|
Li D, Chang X, Connolly JJ, Tian L, Liu Y, Bhoj EJ, Robinson N, Abrams D, Li YR, Bradfield JP, Kim CE, Li J, Wang F, Snyder J, Lemma M, Hou C, Wei Z, Guo Y, Qiu H, Mentch FD, Thomas KA, Chiavacci RM, Cone R, Li B, Sleiman PA, Hakonarson H. A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling. Sci Rep 2017. [PMID: 28630421 PMCID: PMC5476671 DOI: 10.1038/s41598-017-01674-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 × 10-7; OR = 0.7; 95% confidence interval (CI) = 0.61-0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John J Connolly
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora Robinson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Debra Abrams
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yun R Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan P Bradfield
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cecilia E Kim
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jin Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fengxiang Wang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Snyder
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria Lemma
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhi Wei
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yiran Guo
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haijun Qiu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelly A Thomas
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger Cone
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Patrick A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Li Y, Xie Z, Chen L, Yan J, Ma Y, Wang L, Chen Z. Association in a Chinese population of a genetic variation in the early B-cell factor 1 gene with coronary artery disease. BMC Cardiovasc Disord 2017; 17:57. [PMID: 28183271 PMCID: PMC5301365 DOI: 10.1186/s12872-017-0489-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/03/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Early B-cell factor 1 (EBF1) is a transcription factor expressed primarily during early B cell development. Previous studies have shown EBF1 regulates blood glucose and lipid metabolism in mice with diabetes and central adiposity. Recently, a genetic variation (rs36071027) located in an EBF1 gene intron was associated with carotid artery intima-media thickness. However, whether this polymorphism is actually linked with coronary artery disease (CAD) and its severity remains unclear. METHODS This study includes 293 CAD cases and 262 controls without CAD. All participants were devided into two groups based on their coronary angiography results. A polymerase chain reaction-ligase detection reaction was used to identify genotypes at rs36071027, and CAD patients were further divided into subgroups with one-, two-, or three-vessel stenosis reflective of CAD severity. RESULTS The frequency of the rs36071027 TT genotype was significantly higher in CAD cases versus controls (4.8% vs. 1.5%, 95% CI: 1.13-10.81 P = 0.029). Subjects with a variant genotype T allele had an increased risk of CAD compared to C allele carriers (additive model: 95% CI: 1.13-2.23, P = 0.008). After adjustment for cardiovascular risk factors, analysis of the additive and dominant models involving rs36071027 also revealed that T allele carriers had a significantly higher risk for CAD than C allele carriers (additive model: OR 1.56, 95% CI 1.10-2.22, P = 0.013; dominant model: OR 1.60, 95% CI 1.07-2.41, P = 0.023). Furthermore, both diabetes and the CT + TT rs36071027 genotype were significantly associated with three-vessel stenosis. CONCLUSION Our results in a Chinese population suggest that the TT genotype and T alleles in rs36071027 in the EBF1 gene are associated with an increased risk of CAD and its severity.
Collapse
Affiliation(s)
- Yafei Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Zhiyong Xie
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Lei Chen
- Department of Cardiology, Xuzhou Medical University, NO.209 Tongshan Road, Xuzhou, 221000 China
| | - Jianjun Yan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Yao Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Zhong Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital East Campus, No. 222 Huanhu Xisan Road, Pudong New Area, Shanghai, 201306 China
| |
Collapse
|
27
|
Shinjo T, Iwashita M, Yamashita A, Sano T, Tsuruta M, Matsunaga H, Sanui T, Asano T, Nishimura F. IL-17A synergistically enhances TNFα-induced IL-6 and CCL20 production in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2016; 477:241-6. [PMID: 27311858 DOI: 10.1016/j.bbrc.2016.06.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
Interleukin-17A (IL-17A) is known to induce inflammatory responses and to be involved in the pathogenesis of not only autoimmune diseases, but also several metabolic and infectious diseases. In this study, IL-17A is shown to induce IL-6 expression in 3T3-L1 mature adipocytes. Interestingly, we found that IL-17A synergistically amplified TNFα-induced secretion of IL-6 and upregulation of IL-17RA expression in 3T3-L1 adipocytes. Its synergistic effects on IL-6 production were inhibited by pre-treatment with inhibitors of IκBα and JNK. Furthermore, IL-17A cooperatively enhanced LPS-mediated IL-6 production in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. In addition, IL-17A also enhanced CCL20 production in 3T3-L1 adipocytes stimulated with TNFα or co-cultured with LPS-stimulated RAW macrophages. In high-fat diet-fed mouse epididymal adipose tissues, IL-17RA and RORγt mRNA levels were significantly increased and the serum level of CCL20 was also upregulated. Taken together, these data show that, in adipose tissues, IL-17A contributes to exacerbating insulin resistance-enhancing IL-6 production and promotes the infiltration of Th17 cells in cooperation with TNFα; these findings represent a novel hypothesis for the association between IL-17A-producing cells and type 2 diabetes.
Collapse
Affiliation(s)
- Takanori Shinjo
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-0054, Fukuoka, Japan
| | - Misaki Iwashita
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-0054, Fukuoka, Japan
| | - Akiko Yamashita
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-0054, Fukuoka, Japan
| | - Tomomi Sano
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-0054, Fukuoka, Japan
| | - Mitsudai Tsuruta
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-0054, Fukuoka, Japan
| | - Hiroaki Matsunaga
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-0054, Fukuoka, Japan
| | - Terukazu Sanui
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-0054, Fukuoka, Japan
| | - Tomoichiro Asano
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, 734-8553, Hiroshima, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, 812-0054, Fukuoka, Japan.
| |
Collapse
|
28
|
Penkov DN, Akopyan ZA, Kochegura TN, Egorov AD. Transcriptional control of insulin-sensitive glucose carrier Glut4 expression in adipose tissue cells. DOKL BIOCHEM BIOPHYS 2016; 467:145-9. [DOI: 10.1134/s1607672916020186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 11/23/2022]
|
29
|
ZNF423 and ZNF521: EBF1 Antagonists of Potential Relevance in B-Lymphoid Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:165238. [PMID: 26788497 PMCID: PMC4695665 DOI: 10.1155/2015/165238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022]
Abstract
The development of the B-lymphoid cell lineage is tightly controlled by the concerted action of a network of transcriptional and epigenetic regulators. EBF1, a central component of this network, is essential for B-lymphoid specification and commitment as well as for the maintenance of the B-cell identity. Genetic alterations causing loss of function of these B-lymphopoiesis regulators have been implicated in the pathogenesis of B-lymphoid malignancies, with particular regard to B-cell acute lymphoblastic leukaemias (B-ALLs), where their presence is frequently detected. The activity of the B-cell regulatory network may also be disrupted by the aberrant expression of inhibitory molecules. In particular, two multi-zinc finger transcription cofactors named ZNF423 and ZNF521 have been characterised as potent inhibitors of EBF1 and are emerging as potentially relevant contributors to the development of B-cell leukaemias. Here we will briefly review the current knowledge of these factors and discuss the importance of their functional cross talk with EBF1 in the development of B-cell malignancies.
Collapse
|
30
|
Shinjo T, Nakatsu Y, Iwashita M, Sano T, Sakoda H, Ishihara H, Kushiyama A, Fujishiro M, Fukushima T, Tsuchiya Y, Kamata H, Nishimura F, Asano T. DPP-IV inhibitor anagliptin exerts anti-inflammatory effects on macrophages, adipocytes, and mouse livers by suppressing NF-κB activation. Am J Physiol Endocrinol Metab 2015; 309:E214-23. [PMID: 26015438 DOI: 10.1152/ajpendo.00553.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) expression in visceral adipose tissue is reportedly increased in obese patients, suggesting an association of DPP-IV with inflammation. In this study, first, lipopolysaccharide (LPS)- or palmitate-induced elevations of inflammatory cytokine mRNA expressions in RAW264.7 macrophages were shown to be significantly suppressed by coincubation with a DPP-IV inhibitor, anagliptin (10 μM), despite low DPP-IV expression in the RAW264.7 cells. Regarding the molecular mechanism, LPS-induced degradation of IκBα and phosphorylations of p65, JNK, and p38, as well as NF-κB and AP-1 promoter activities, were revealed to be suppressed by incubation with anagliptin, indicating suppressive effects of anagliptin on both NF-κB and AP-1 signaling pathways. Anagliptin also acted on 3T3-L1 adipocytes, weakly suppressing the inflammatory cytokine expressions induced by LPS and TNFα. When 3T3-L1 and RAW cells were cocultured and stimulated with LPS, the effects of anagliptin on the suppression of cytokine expressions in 3T3-L1 adipocytes were more marked and became evident at the 10 μM concentration. Anti-inflammatory effects of anagliptin were also observed in vivo on the elevated hepatic and adipose expressions and serum concentrations of inflammatory cytokines in association with the suppression of hepatic NF-κB transcriptional activity in LPS-infused mice. Taking these observations together, the anti-inflammatory properties of anagliptin may be beneficial in terms of preventing exacerbation of diabetes and cardiovascular events.
Collapse
Affiliation(s)
- Takanori Shinjo
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yusuke Nakatsu
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Misaki Iwashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tomomi Sano
- Department of Dental Science for Health Promotion, Division of Cervico-Gnathostomatology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideyuki Sakoda
- Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Tokyo, Japan
| | - Akifumi Kushiyama
- Division of Diabetes and Metabolism, Institute for Adult Disease, Asahi Life Foundation, Tokyo, Japan; and
| | - Midori Fujishiro
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yoshihiro Tsuchiya
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Hideaki Kamata
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tomoichiro Asano
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan;
| |
Collapse
|
31
|
Seale P. Transcriptional Regulatory Circuits Controlling Brown Fat Development and Activation. Diabetes 2015; 64:2369-75. [PMID: 26050669 PMCID: PMC4477361 DOI: 10.2337/db15-0203] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Brown and beige adipose tissue is specialized for heat production and can be activated to reduce obesity and metabolic dysfunction in animals. Recent studies also have indicated that human brown fat activity levels correlate with leanness. This has revitalized interest in brown fat biology and has driven the discovery of many new regulators of brown fat development and function. This review summarizes recent advances in our understanding of the transcriptional mechanisms that control brown and beige fat cell development.
Collapse
Affiliation(s)
- Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Abstract
Obesity and its associated metabolic diseases present a major public health problem around the world. The discovery that thermogenic fat is active in adult humans has sparked a renewal of interest in the study of its development and function and in the feasibility of using modulators of thermogenesis to work against obesity. In recent years, it has been shown that there are at least two distinct types of thermogenic fat cells: brown and beige fat. In this review, we discuss the transcriptional mediators of thermogenesis and the signaling molecules that regulate thermogenic cells. We also review the effects of thermogenic fat activation on whole-body metabolic parameters and evaluate the increasing evidence that activating thermogenesis in humans can be a viable method of ameliorating obesity. In these discussions, we highlight targets that can potentially be stimulated or modified in anti-obesity treatments.
Collapse
Affiliation(s)
- Margo P Emont
- Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA
| | - Hui Yu
- Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA
| | - Jun Wu
- Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA Life Sciences Institute Department of Molecular and Integrative Physiology University of Michigan, 210 Washtenaw Avenue, LSI, RM5115A, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
33
|
Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency. Blood 2015; 125:4052-9. [PMID: 25838350 DOI: 10.1182/blood-2014-12-617282] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
Early B-cell factor 1 (Ebf1) is a transcription factor with documented dose-dependent functions in normal and malignant B-lymphocyte development. To understand more about the roles of Ebf1 in malignant transformation, we investigated the impact of reduced functional Ebf1 dosage on mouse B-cell progenitors. Gene expression analysis suggested that Ebf1 was involved in the regulation of genes important for DNA repair and cell survival. Investigation of the DNA damage in steady state, as well as after induction of DNA damage by UV light, confirmed that pro-B cells lacking 1 functional allele of Ebf1 display signs of increased DNA damage. This correlated to reduced expression of DNA repair genes including Rad51, and chromatin immunoprecipitation data suggested that Rad51 is a direct target for Ebf1. Although reduced dosage of Ebf1 did not significantly increase tumor formation in mice, a dramatic increase in the frequency of pro-B cell leukemia was observed in mice with combined heterozygous mutations in the Ebf1 and Pax5 genes, revealing a synergistic effect of combined dose reduction of these proteins. Our data suggest that Ebf1 controls DNA repair in a dose-dependent manner providing a possible explanation to the frequent involvement of EBF1 gene loss in human leukemia.
Collapse
|
34
|
Wang J, Chitturi J, Ge Q, Laskova V, Wang W, Li X, Ding M, Zhen M, Huang X. The C. elegans COE transcription factor UNC-3 activates lineage-specific apoptosis and affects neurite growth in the RID lineage. Development 2015; 142:1447-57. [PMID: 25790851 DOI: 10.1242/dev.119479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/17/2015] [Indexed: 12/23/2022]
Abstract
Mechanisms that regulate apoptosis in a temporal and lineage-specific manner remain poorly understood. The COE (Collier/Olf/EBF) transcription factors have been implicated in the development of many cell types, including neurons. Here, we show that the sole Caenorhabditis elegans COE protein, UNC-3, together with a histone acetyltransferase, CBP-1/P300, specifies lineage-specific apoptosis and certain aspects of neurite trajectory. During embryogenesis, the RID progenitor cell gives rise to the RID neuron and RID sister cell; the latter undergoes apoptosis shortly after cell division upon expression of the pro-apoptotic gene egl-1. We observe UNC-3 expression in the RID progenitor, and the absence of UNC-3 results in the failure of the RID lineage to express a Pegl-1::GFP reporter and in the survival of the RID sister cell. Lastly, UNC-3 interacts with CBP-1, and cbp-1 mutants exhibit a similar RID phenotype to unc-3. Thus, in addition to playing a role in neuronal terminal differentiation, UNC-3 is a cell lineage-specific regulator of apoptosis.
Collapse
Affiliation(s)
- Jinbo Wang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jyothsna Chitturi
- Lunenfeld and Tanebaum Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1X5
| | - Qinglan Ge
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Valeriya Laskova
- Lunenfeld and Tanebaum Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1X5
| | - Wei Wang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Li
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Ding
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Zhen
- Lunenfeld and Tanebaum Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1X5
| | - Xun Huang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Petrus P, Mejhert N, Gao H, Bäckdahl J, Arner E, Arner P, Rydén M. Low early B-cell factor 1 (EBF1) activity in human subcutaneous adipose tissue is linked to a pernicious metabolic profile. DIABETES & METABOLISM 2015; 41:509-12. [PMID: 25791133 DOI: 10.1016/j.diabet.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
AIM Recently, in both human and murine white adipose tissue (WAT), transcription factor early B-cell factor 1 (EBF1) has been shown to regulate adipocyte differentiation, adipose morphology and triglyceride hydrolysis (lipolysis). This study investigated whether EBF1 expression and biological activity in WAT is related to different metabolic parameters. METHODS In this cross-sectional study of abdominal subcutaneous WAT, EBF1 protein levels were examined in 18 non-obese subjects, while biological activity was determined in 56 obese and non-obese subjects. Results were assessed by anthropometric measures and blood pressure as well as by plasma lipid levels and insulin sensitivity. RESULTS EBF1 protein levels were negatively associated with waist circumference (r=-0.56; P=0.015), but not with body mass index (BMI) or body fat (P=0.10-0.29). Biological activity of EBF1 correlated negatively with plasma triglycerides (r=-0.46; P=0.0005) and plasma insulin (r=-0.39; P=0.0027), but positively with plasma HDL cholesterol (r=0.48; P=0.0002) and insulin sensitivity, as assessed by intravenous insulin tolerance test (r=0.64; P<0.0001). These relationships, except for plasma insulin, remained statistically significant after adjusting for BMI and adipose morphology. EBF1 activity was not associated with age, systolic/diastolic blood pressure or total plasma cholesterol (P=0.17-0.48). In contrast to EBF1 activity, after adjusting for BMI, EBF1 mRNA levels displayed only an association with plasma triglycerides. CONCLUSION Low EBF1 protein expression and activity in abdominal subcutaneous WAT is a BMI-independent marker for several traits associated with the metabolic syndrome. However, whether EBF1 constitutes a novel treatment target remains to be demonstrated.
Collapse
Affiliation(s)
- P Petrus
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - N Mejhert
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - H Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, 14186 Stockholm, Sweden
| | - J Bäckdahl
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - E Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden; RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, Yokohama, 230-0045 Kanagawa, Japan
| | - P Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - M Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, 14186 Stockholm, Sweden.
| |
Collapse
|
36
|
|
37
|
Leucaena leucocephala fruit aqueous extract stimulates adipogenesis, lipolysis, and glucose uptake in primary rat adipocytes. ScientificWorldJournal 2014; 2014:737263. [PMID: 25180205 PMCID: PMC4142670 DOI: 10.1155/2014/737263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/25/2022] Open
Abstract
Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro “insulin-like” activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.
Collapse
|
38
|
A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol Cell 2014; 55:372-82. [PMID: 25002143 DOI: 10.1016/j.molcel.2014.06.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/28/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
Abstract
Brown and beige/brite fats generate heat via uncoupled respiration to defend against cold. The total mass and activity of thermogenic adipose tissues are also tightly linked to systemic energy and nutrient homeostasis. Despite originating from distinct progenitors, brown and beige adipocytes acquire remarkably similar molecular and metabolic characteristics during differentiation through the action of a network of transcription factors and cofactors. How this regulatory network interfaces with long noncoding RNAs (lncRNAs), an emerging class of developmental regulators, remains largely unexplored. Here, we globally profiled lncRNA gene expression during thermogenic adipocyte formation and identified Brown fat lncRNA 1 (Blnc1) as a nuclear lncRNA that promotes brown and beige adipocyte differentiation and function. Blnc1 forms a ribonucleoprotein complex with transcription factor EBF2 to stimulate the thermogenic gene program. Further, Blnc1 itself is a target of EBF2, thereby forming a feedforward regulatory loop to drive adipogenesis toward thermogenic phenotype.
Collapse
|
39
|
Gao H, Mejhert N, Fretz JA, Arner E, Lorente-Cebrián S, Ehrlund A, Dahlman-Wright K, Gong X, Strömblad S, Douagi I, Laurencikiene J, Dahlman I, Daub CO, Rydén M, Horowitz MC, Arner P. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue. Cell Metab 2014; 19:981-92. [PMID: 24856929 PMCID: PMC4109056 DOI: 10.1016/j.cmet.2014.03.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 02/11/2014] [Accepted: 03/26/2014] [Indexed: 01/09/2023]
Abstract
White adipose tissue (WAT) morphology characterized by hypertrophy (i.e., fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance, and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation, and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High-fat diet intervention in Ebf1(+/-) mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy, and insulin resistance.
Collapse
Affiliation(s)
- Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, SE-141 86, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, Stockholm, SE-141 86, Sweden
| | - Jackie A Fretz
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT 06520, USA
| | - Erik Arner
- Department of Medicine (H7), Karolinska Institutet, Stockholm, SE-141 86, Sweden; RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Anna Ehrlund
- Department of Medicine (H7), Karolinska Institutet, Stockholm, SE-141 86, Sweden
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, SE-141 86, Sweden; Science for Life Laboratory, Solna, SE-171 21, Sweden
| | - Xiaowei Gong
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, SE-141 86, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, SE-141 86, Sweden
| | - Iyadh Douagi
- Department of Medicine (H7), Karolinska Institutet, Stockholm, SE-141 86, Sweden
| | - Jurga Laurencikiene
- Department of Medicine (H7), Karolinska Institutet, Stockholm, SE-141 86, Sweden
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institutet, Stockholm, SE-141 86, Sweden
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, SE-141 86, Sweden; RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Stockholm, SE-141 86, Sweden
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Stockholm, SE-141 86, Sweden.
| |
Collapse
|
40
|
Lee JE, Ge K. Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Cell Biosci 2014; 4:29. [PMID: 24904744 PMCID: PMC4046494 DOI: 10.1186/2045-3701-4-29] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022] Open
Abstract
The nuclear receptor PPARγ is a master regulator of adipogenesis. PPARγ is highly expressed in adipose tissues and its expression is markedly induced during adipogenesis. In this review, we describe the current knowledge, as well as future directions, on transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Investigating the molecular mechanisms that control PPARγ expression during adipogenesis is critical for understanding the development of white and brown adipose tissues, as well as pathological conditions such as obesity and diabetes. The robust induction of PPARγ expression during adipogenesis also serves as an excellent model system for studying transcriptional and epigenetic regulation of cell-type-specific gene expression.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Dynamics of mRNA and polysomal abundance in early 3T3-L1 adipogenesis. BMC Genomics 2014; 15:381. [PMID: 24886538 PMCID: PMC4039748 DOI: 10.1186/1471-2164-15-381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Adipogenesis is a complex process, in which immature pre-adipocytes change morphology, micro-anatomy and physiology to become mature adipocytes. These store and accumulate fat and release diverse hormones. Massive changes in protein content and protein composition of the transforming cell take place within a short time-frame. In a previous study we analyzed changes in the abundance of free and polysomal, i.e. ribosome bound, RNAs in the first hours of adipogenesis in the murine cell line 3T3-L1. Here we analyze changes of mRNA levels and their potential contribution to the changing protein pool by determination of mRNA levels and ribosome binding to mRNAs in 3T3-L1 cells stimulated for adipogenesis. We grouped mRNA species into categories with respect to up- or down-regulated transcription and translation and analyzed the groups regarding specific functionalities based on Gene Ontology (GO). Results A shift towards up-regulation of gene expression in early adipogenesis was detected. Genes up-regulated at the transcriptional (TC:up) and translational (TL:up) level (TC:up/TL:up) are very likely involved in control and logistics of translation. Many of them are known to contain a TOP motif. In the TC:up/TL:unchanged group we detected most of the metal binding proteins and metal transporters. In the TC:unchanged/TL:up group several factors of the olfactory receptor family were identified, while in TC:unchanged/TL:down methylation and repair genes are represented. In the TC:down/TL:up group we detected many signaling factors. The TC:down/TL:unchanged group mainly consists of regulatory factors. Conclusions Within the first hours of adipogenesis, changes in transcriptional and translational regulation take place. Notably, genes with a specific biological or molecular function tend to cluster in groups according to their transcriptional and translational regulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-381) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
El-Magd MA, Sayed-Ahmed A, Awad A, Shukry M. Regulation of chick early B-cell factor-1 gene expression in feather development. Acta Histochem 2014; 116:577-82. [PMID: 24365066 DOI: 10.1016/j.acthis.2013.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 01/03/2023]
Abstract
The chick Ebf1 (early B-cell factor-1) gene is a member of a novel family of helix loop helix transcription factors. The expression profile, regulation and significance of this gene have been extensively studied in lymphatic, nervous, adipose and muscular tissues. However, cEbf1 expression, regulation and function in the feather of chick embryo have not yet been investigated. cEbf1 expression was first detected throughout the mesenchymal core of some few feather placodes (D7-D7.5). After feathers became mature and grew distally (D9 and D10), the mesenchymal expression of cEbf1 became confined to the caudal margin of the proximal half of all formed feather buds. Because this dynamic pattern of expression resembles that of Sonic Hedgehog (Shh) protein and bone morphogenetic protein (Bmp4) plus the crucial role of these two major signals in feather development, we hypothesized that cEbf1 expression in the feather may be regulated by Shh and Bmp4. In a feather explant culture system, Shh signals are necessary to initiate and maintain cEbf1 expression in the posterior half of the feather bud, while Bmp4 is crucial for the initial cEbf1 expression in the anterior half of the feather bud. Inhibition of Shh, not only down-regulates cEbf1, but also changes the morphology of feather buds, which become irregular and fused. This is the first study to demonstrate that cEbf1 expression in the feather bud is under the control of Shh and Bmp4 signals and that expression may play a role in the normal development of feathers.
Collapse
|
43
|
YAMADA YOSHIJI, NISHIDA TAMOTSU, HORIBE HIDEKI, OGURI MITSUTOSHI, KATO KIMIHIKO, SAWABE MOTOJI. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation. Int J Mol Med 2014; 33:1355-63. [DOI: 10.3892/ijmm.2014.1692] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/04/2014] [Indexed: 11/05/2022] Open
|
44
|
Wei S, Zhang L, Zhou X, Du M, Jiang Z, Hausman GJ, Bergen WG, Zan L, Dodson MV. Emerging roles of zinc finger proteins in regulating adipogenesis. Cell Mol Life Sci 2013; 70:4569-84. [PMID: 23760207 PMCID: PMC4100687 DOI: 10.1007/s00018-013-1395-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Proteins containing the zinc finger domain(s) are named zinc finger proteins (ZFPs), one of the largest classes of transcription factors in eukaryotic genomes. A large number of ZFPs have been studied and many of them were found to be involved in regulating normal growth and development of cells and tissues through diverse signal transduction pathways. Recent studies revealed that a small but increasing number of ZFPs could function as key transcriptional regulators involved in adipogenesis. Due to the prevalence of obesity and metabolic disorders, the investigation of molecular regulatory mechanisms of adipocyte development must be more completely understood in order to develop novel and long-term impact strategies for ameliorating obesity. In this review, we discuss recent work that has documented that ZFPs are important functional contributors to the regulation of adipogenesis. Taken together, these data lead to the conclusion that ZFPs may become promising targets to combat human obesity.
Collapse
Affiliation(s)
- Shengjuan Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Lifan Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiang Zhou
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Gary J. Hausman
- Animal Science Department, University of Georgia, Athens, GA 30602-2771 USA
| | - Werner G. Bergen
- Program in Cellular and Molecular Biosciences, Department of Animal Sciences, Auburn University, Auburn, AL 36849 USA
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Michael V. Dodson
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
45
|
Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation. Kidney Int 2013; 85:1091-102. [PMID: 24172684 PMCID: PMC4006322 DOI: 10.1038/ki.2013.433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022]
Abstract
The coordination of multiple cytokines and transcription factors with their downstream signaling pathways have been shown to be integral to nephron maturation. Here we present a completely novel role for the helix-loop-helix transcription factor Early B cell Factor 1 (Ebf1), originally identified for B cell maturation, for the proper maturation of glomerular cells from mesenchymal progenitors. The expression of Ebf1 was both spatially and temporally regulated within the developing cortex and glomeruli. Using Ebf1-null mice we then identified biochemical, metabolic, and histological abnormalities in renal development that arose in the absence of this transcription factor. In the Ebf1 knockout mice the developed kidneys show thinned cortices and reduced glomerular maturation. The glomeruli showed abnormal vascularization and severely effaced podocytes. The mice exhibited early albuminuria and elevated blood urea nitrogen levels. Moreover, the GFR was reduced over 66 percent and the expression of podocyte-derived VEGF-A was decreased compared to wild type control mice. Thus, Ebf1 has a significant and novel role in glomerular development, podocyte maturation, and the maintenance of kidney integrity and function.
Collapse
|
46
|
Le TP, Sun M, Luo X, Kraus WL, Greene GL. Mapping ERβ genomic binding sites reveals unique genomic features and identifies EBF1 as an ERβ interactor. PLoS One 2013; 8:e71355. [PMID: 23951143 PMCID: PMC3738513 DOI: 10.1371/journal.pone.0071355] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/29/2013] [Indexed: 12/31/2022] Open
Abstract
Considerable effort by numerous laboratories has resulted in an improved understanding of estrogen and SERM action mediated by the two estrogen receptors, ERα and ERβ. However, many of the targets for ERβ in cell physiology remain elusive. Here, the C4-12/Flag.ERβ cell line which stably expressed Flag.ERβ is used to study ERβ genomic functions without ERα interference. Mapping ERβ binding sites in these cells reveals ERβ unique distribution and motif enrichment patterns. Accompanying our mapping results, nascent RNA profiling is performed on cells at the same treatment time. The combined results allow the identification of ERβ target genes. Gene ontology analysis reveals that ERβ targets are enriched in differentiation, development and apoptosis. Concurrently, E2 treatment suppresses proliferation in these cells. Within ERβ binding sites, while the most prevalent binding motif is the canonical ERE, motifs of known ER interactors are also enriched in ERβ binding sites. Moreover, among enriched binding motifs are those of GFI, REST and EBF1, which are unique to ERβ binding sites in these cells. Further characterization confirms the association between EBF1 and the estrogen receptors, which favors the N-terminal region of the receptor. Furthermore, EBF1 negatively regulates ERs at the protein level. In summary, by studying ERβ genomic functions in our cell model, we confirm the anti-proliferative role of ERβ and discover the novel cross talk of ERβ with EBF1 which has various implications in normal physiology.
Collapse
Affiliation(s)
- Thien P. Le
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Miao Sun
- Green Center for Reproductive Biology Sciences, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Xin Luo
- Green Center for Reproductive Biology Sciences, University of Texas Southwestern, Dallas, Texas, United States of America
| | - W. Lee Kraus
- Green Center for Reproductive Biology Sciences, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
47
|
Lee HJ, Jang M, Kim H, Kwak W, Park W, Hwang JY, Lee CK, Jang GW, Park MN, Kim HC, Jeong JY, Seo KS, Kim H, Cho S, Lee BY. Comparative Transcriptome Analysis of Adipose Tissues Reveals that ECM-Receptor Interaction Is Involved in the Depot-Specific Adipogenesis in Cattle. PLoS One 2013; 8:e66267. [PMID: 23805208 PMCID: PMC3689780 DOI: 10.1371/journal.pone.0066267] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/02/2013] [Indexed: 11/23/2022] Open
Abstract
Adipocytes mainly function as energy storage and endocrine cells. Adipose tissues showed the biological and genetic difference based on their depots. The difference of adipocytes between depots might be influenced by the inherent genetic programing for adipogenesis. We used RNA-seq technique to investigate the transcriptomes in 3 adipose tissues of omental (O), subcutaneous (S) and intramuscular (I) fats in cattle. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the bovine genome using Tophat2. Differentially expressed genes (DEG) between adipose tissues were detected by EdgeR. We identified 5797, 2156, and 5455 DEGs in the comparison between OI, OS, and IS respectively and also found 5657 DEGs in the comparison between the intramuscular and the combined omental and subcutaneous fats (C) (FDR<0.01). Depot specifically up- and down- regulated DEGs were 853 in S, 48 in I, and 979 in O. The numbers of DEGs and functional annotation studies suggested that I had the different genetic profile compared to other two adipose tissues. In I, DEGs involved in the developmental process (eg. EGR2, FAS, and KLF7) were up-regulated and those in the immune system process were down-regulated. Many DEGs from the adipose tissues were enriched in the various GO terms of developmental process and KEGG pathway analysis showed that the ECM-receptor interaction was one of commonly enriched pathways in all of the 3 adipose tissues and also functioned as a sub-pathway of other enriched pathways. However, genes involved in the ECM-receptor interaction were differentially regulated depending on the depots. Collagens, main ECM constituents, were significantly up-regulated in S and integrins, transmembrane receptors, were up-regulated in I. Different laminins were up-regulated in the different depots. This comparative transcriptome analysis of three adipose tissues suggested that the interactions between ECM components and transmembrane receptors of fat cells depend on the depot specific adipogenesis.
Collapse
Affiliation(s)
- Hyun-Jeong Lee
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Mi Jang
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Jeollanam-do, Republic of Korea
| | - Hyeongmin Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Woori Kwak
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- C&K genomics, Seoul National University Research Park, Seoul, Republic of Korea
| | - WonCheoul Park
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jae Yeon Hwang
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Gul Won Jang
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Mi Na Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Hyeong-Cheol Kim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Jin Young Jeong
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, Republic of Korea
| | - Kang Seok Seo
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Jeollanam-do, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Seoae Cho
- C&K genomics, Seoul National University Research Park, Seoul, Republic of Korea
| | - Bo-Young Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Mueller E. Understanding the variegation of fat: novel regulators of adipocyte differentiation and fat tissue biology. Biochim Biophys Acta Mol Basis Dis 2013; 1842:352-7. [PMID: 23735215 DOI: 10.1016/j.bbadis.2013.05.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/06/2023]
Abstract
The differentiation of uncommitted cells into specialized adipocytes occurs through a cascade of transcriptional events culminating in the induction and activation of the nuclear receptor PPARγ, the central coordinator of fat cell function. Since the discovery of PPARγ, two decades ago, our views of how this molecule is activated have been significantly refined. Beyond the cell, we also now know that diverse signals and regulators control PPARγ function in a fat-depot specific manner. The goal of this article is to review the latest in our understanding of the early and late transcriptional events that regulate adipocyte development and their potential impact on energy storage and expenditure in different fat depots. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Elisabetta Mueller
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Rajakumari S, Wu J, Ishibashi J, Lim HW, Giang AH, Won KJ, Reed RR, Seale P. EBF2 determines and maintains brown adipocyte identity. Cell Metab 2013; 17:562-74. [PMID: 23499423 PMCID: PMC3622114 DOI: 10.1016/j.cmet.2013.01.015] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/03/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
The master transcription factor Pparγ regulates the general differentiation program of both brown and white adipocytes. However, it has been unclear whether Pparγ also controls fat lineage-specific characteristics. Here, we show that early B cell factor-2 (Ebf2) regulates Pparγ binding activity to determine brown versus white adipocyte identity. The Ebf DNA-binding motif was highly enriched within brown adipose-specific Pparγ binding sites that we identified by genome-wide ChIP-Seq. Of the Ebf isoforms, Ebf2 was selectively expressed in brown relative to white adipocytes and was bound at brown adipose-specific Pparγ target genes. When expressed in myoblasts or white preadipose cells, Ebf2 recruited Pparγ to its brown-selective binding sites and reprogrammed cells to a brown fat fate. Brown adipose cells and tissue from Ebf2-deficient mice displayed a loss of brown-specific characteristics and thermogenic capacity. Together, these results identify Ebf2 as a key transcriptional regulator of brown fat cell fate and function.
Collapse
Affiliation(s)
- Sona Rajakumari
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A. Marrow fat and bone--new perspectives. J Clin Endocrinol Metab 2013; 98:935-45. [PMID: 23393168 PMCID: PMC3590487 DOI: 10.1210/jc.2012-3634] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT There is growing interest in the relationship between bone mineral density, bone strength, and fat depots. Marrow adipose tissue, a well-established component of the marrow environment, is metabolically distinct from peripheral fat depots, but its functional significance is unknown. OBJECTIVE In this review, we discuss animal and human data linking the marrow adipose tissue depot to parameters of bone density and integrity as well as the potential significance of marrow adipose tissue in metabolic diseases associated with bone loss, including type 1 diabetes mellitus and anorexia nervosa. Potential hormonal determinants of marrow adipose tissue are also discussed. CONCLUSIONS We conclude that whereas most animal and human data demonstrate an inverse association between marrow adipose tissue and measures of bone density and strength, understanding the functional significance of marrow adipose tissue and its hormonal determinants will be critical to better understanding its role in skeletal integrity and the role of marrow adipose tissue in the pathophysiology of bone loss.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|