1
|
Banerjee A, Dass D, Mukherjee S, Kaul M, Harshithkumar R, Bagchi P, Mukherjee A. The 'Oma's of the Gammas-Cancerogenesis by γ-Herpesviruses. Viruses 2024; 16:1928. [PMID: 39772235 PMCID: PMC11680331 DOI: 10.3390/v16121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis. These viral proteins can modulate several cellular pathways, including the NF-κB and JAK/STAT pathways, which play essential roles in cell survival and inflammation. Epigenetic modifications further contribute to EBV- and KSHV-mediated cancerogenesis. Both EBV and KSHV manipulate host cell DNA methylation, histone modification, and chromatin remodeling, the interplay of which contribute to the elevation of oncogene expression and the silencing of the tumor suppressor genes. Immune factors also play a pivotal role in the development of cancer. The γ-herpesviruses have evolved intricate immune evasion strategies, including the manipulation of the major histocompatibility complex (MHC) and the release of cytokines, allowing infected cells to evade immune detection and destruction. In addition, a compromised immune system, such as in HIV/AIDS patients, significantly increases the risk of cancers associated with EBV and KSHV. This review aims to provide a comprehensive overview of the genetic, epigenetic, and immune mechanisms by which γ-herpesviruses drive cancerogenesis, highlighting key molecular pathways and potential therapeutic targets.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Debashree Dass
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Soumik Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Mollina Kaul
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - R. Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Parikshit Bagchi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
- AcSIR—Academy of Scientific & Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
2
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
3
|
Qin Y, Ma X, Guo C, Cai S, Ma H, Zhao L. MeCP2 confers 5-fluorouracil resistance in gastric cancer via upregulating the NOX4/PKM2 pathway. Cancer Cell Int 2022; 22:86. [PMID: 35180871 PMCID: PMC8857846 DOI: 10.1186/s12935-022-02489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Increasing evidence suggests that aberrant methylation is involved in 5-fluorouracil (5-FU) resistance in gastric cancer (GC). Our previous work has identified that Methyl-CpG binding protein 2 (MeCP2) promotes GC progression by binding to the methylation sites of promoter regions of specific genes to affect the downstream signaling pathways. However, the function and molecular mechanisms of MeCP2 in GC 5-FU resistance remain unclear. Methods We detected the expression of MeCP2 in 5-FU-resistant GC cells and examined cell behaviors when MeCP2 was silenced. The molecular mechanisms were explored through chromatin immunoprecipitation (ChIP)-qRT-PCR, luciferase reporter assay, clinical tissue samples analysis, and in vivo tumorigenicity assay. Results MeCP2 was up-regulated in 5-FU-resistant GC cells. Knockdown of MeCP2 enhanced the sensitivity of the cells to 5-FU. Moreover, MeCP2 promoted NOX4 transcription in the cells by binding to the promoter of NOX4. Silencing NOX4 rescued the inductive effect of MeCP2 overexpression on 5-FU sensitivity of GC cells and reduced the expression of NOX4 and PKM2 in MeCP2 overexpressed 5-FU-resistant GC cells. In addition, our in vivo experiments demonstrated that MeCP2 knockdown enhanced 5-FU sensitivity in tumors. Conclusion MeCP2 confers 5-FU resistance in GC cells via upregulating the NOX4/PKM2 pathway, which may lead to a promising therapeutic strategy for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02489-y.
Collapse
Affiliation(s)
- Yannan Qin
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Chen Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Shuang Cai
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hailin Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
DNA methylation status correlates with adult β-cell regeneration capacity. NPJ Regen Med 2021; 6:7. [PMID: 33580013 PMCID: PMC7881134 DOI: 10.1038/s41536-021-00119-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
The role of DNA methylation in β-cell neogenesis is poorly understood. We report that during the process of induced cell reprogramming, methylation content of the Ngn3 and Sox11 genes are diminished. These findings emphasise DNA methylation is a barrier in β-cell regeneration in adulthood, a well described pathophysiological phenomenon of major significance in explaining β-cell deficiency in diabetes in the adult pancreas.
Collapse
|
5
|
Jeyaraj SE, Sivasangari K, García-Colunga J, Rajan KE. Environmental enrichment enhances sociability by regulating glutamate signaling pathway through GR by epigenetic mechanisms in amygdala of Indian field mice Mus booduga. Gen Comp Endocrinol 2021; 300:113641. [PMID: 33017584 DOI: 10.1016/j.ygcen.2020.113641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) dynamically regulates gene expression and synaptic plasticity with positive consequences on behavior. The present study was performed on field-mice to explore the effects of EE on both captive-condition inducing social stress and epigenetic changes of molecules resilience stress. For this purpose, field-mice were caught and allowed to habituate in standard laboratory conditions for 7 days. The next day animals were randomly assigned to three groups: i) mice at short-term standard condition (STSC); which were subjected to social interaction test (SIT) on day 9, ii) mice continuously maintainedfor additional 30 days, with these long-term standard conditions (LTSC), and iii) mice maintained in an EE cage for additional 30 days. After achieving SIT, we examined epigenetic changes of a repertory of molecules associated with resilience stress, by determining their levels by Western blot. Thus, the main findings were that during SIT, EE exerted more social interaction of field-mice with the strangers compared with STSC and LTSC mice. Related with social behavior results, we found that in mice subjected to EE the levels of histone 3 lysine 9 di-methylation (H3K9me2), glucocorticoid receptor (GR), N-methyl-D asparate (NMDA) receptor subunits NR2A and NR2B, postsynaptic density protein-95 (PSD-95), and mature brain-derived neurotrophic factor (mBDNF) were significantly elevated; whereas the levels of DNA methyltransferase-3A (DNMT3A), methyl-CpG-binding protein-2 (MeCP2), repressor element-1 silencing transcription factor (REST), H3K4me2 and lysine demethylase-1A (KDM1A) decreased. These results suggest that enhanced sociability of EE mice could be mediated, in part, by altered expression of molecules regulating glutamate signaling pathway through GR by epigenetic mechanisms.
Collapse
Affiliation(s)
- Soundarrajan Edwin Jeyaraj
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Karunanithi Sivasangari
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
6
|
Zappe K, Cichna-Markl M. Aberrant DNA Methylation of ABC Transporters in Cancer. Cells 2020; 9:cells9102281. [PMID: 33066132 PMCID: PMC7601986 DOI: 10.3390/cells9102281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role in multidrug resistance (MDR) of cancers. They function as efflux pumps, resulting in limited effectiveness or even failure of therapy. Increasing evidence suggests that ABC transporters are also involved in tumor initiation, progression, and metastasis. Tumors frequently show multiple genetic and epigenetic abnormalities, including changes in histone modification and DNA methylation. Alterations in the DNA methylation status of ABC transporters have been reported for a variety of cancer types. In this review, we outline the current knowledge of DNA methylation of ABC transporters in cancer. We give a brief introduction to structure, function, and gene regulation of ABC transporters that have already been investigated for their DNA methylation status in cancer. After giving an overview of the applied methodologies and the CpGs analyzed, we summarize and discuss the findings on aberrant DNA methylation of ABC transporters by cancer types. We conclude our review with the discussion of the potential to target aberrant DNA methylation of ABC transporters for cancer therapy.
Collapse
|
7
|
You D, Richardson JR, Aleksunes LM. Epigenetic Regulation of Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein Transporters by Histone Deacetylase Inhibition. Drug Metab Dispos 2020; 48:459-480. [PMID: 32193359 PMCID: PMC7250367 DOI: 10.1124/dmd.119.089953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) and breast cancer resistance protein (BCRP, ABCG2) are key efflux transporters that mediate the extrusion of drugs and toxicants in cancer cells and healthy tissues, including the liver, kidneys, and the brain. Altering the expression and activity of MDR1 and BCRP influences the disposition, pharmacodynamics, and toxicity of chemicals, including a number of commonly prescribed medications. Histone acetylation is an epigenetic modification that can regulate gene expression by changing the accessibility of the genome to transcriptional regulators and transcriptional machinery. Recently, studies have suggested that pharmacological inhibition of histone deacetylases (HDACs) modulates the expression and function of MDR1 and BCRP transporters as a result of enhanced histone acetylation. This review addresses the ability of HDAC inhibitors to modulate the expression and the function of MDR1 and BCRP transporters and explores the molecular mechanisms by which HDAC inhibition regulates these transporters. While the majority of studies have focused on histone regulation of MDR1 and BCRP in drug-resistant and drug-sensitive cancer cells, emerging data point to similar responses in nonmalignant cells and tissues. Elucidating epigenetic mechanisms regulating MDR1 and BCRP is important to expand our understanding of the basic biology of these two key transporters and subsequent consequences on chemoresistance as well as tissue exposure and responses to drugs and toxicants. SIGNIFICANCE STATEMENT: Histone deacetylase inhibitors alter the expression of key efflux transporters multidrug resistance protein 1 and breast cancer resistance protein in healthy and malignant cells.
Collapse
Affiliation(s)
- Dahea You
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Jason R Richardson
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Lauren M Aleksunes
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| |
Collapse
|
8
|
Genetic and epigenetic aberrations of ABCB1 synergistically boost the acquisition of taxane resistance in esophageal squamous cancer cells. Biochem Biophys Res Commun 2020; 526:586-591. [PMID: 32247608 DOI: 10.1016/j.bbrc.2020.03.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/19/2020] [Indexed: 02/02/2023]
Abstract
Taxanes are applied as potent chemotherapeutic agents in the treatment of patients with esophageal cancer, but their usefulness is limited, partly because of acquisition of chemoresistance. In our previous study, we established three taxane resistant esophageal cancer cell lines; significant ABCB1 upregulations were found in all three. However, the responsible mechanism(s) still remains an open question. In this study, we explored possible mechanisms that might contribute to upregulation of ABCB1 in taxane resistant cells. ABCB1 gene amplification was found in taxane resistant cell line RTE-1P, but expressional upregulation cannot be explained only by gene amplification, because gene amplification is one order of magnitude or less whereas gene expression is more than two orders of magnitude. In the parental TE-1, ABCB1 expression was upregulated after treatment with 5-azadeoxycytidine and/or trichostatin A; epigenetic mechanisms may be deeply involved. ABCB1 has two promoters; a downstream promoter was found to play the dominant role in taxane resistant esophageal cancer cell lines. Analyses of CpG islands demonstrated that taxane resistant cells showed unmethylated CGI whereas parental cells were dominantly methylated. In conclusion, we propose that both the ABCB1 gene amplification and aberrations in epigenetic mechanisms are responsible for acquisition of taxane resistance in esophageal cancer cells.
Collapse
|
9
|
Li C, Lu W, Yang L, Li Z, Zhou X, Guo R, Wang J, Wu Z, Dong Z, Ning G, Shi Y, Gu Y, Chen P, Hao Z, Han T, Yang M, Wang W, Huang X, Li Y, Gao S, Hu R. MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3. Natl Sci Rev 2020; 7:671-685. [PMID: 34692086 PMCID: PMC8288866 DOI: 10.1093/nsr/nwaa023] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/10/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022] Open
Abstract
Central precocious puberty (CPP) refers to a human syndrome of early puberty initiation with characteristic increase in hypothalamic production and release of gonadotropin-releasing hormone (GnRH). Previously, loss-of-function mutations in human MKRN3, encoding a putative E3 ubiquitin ligase, were found to contribute to about 30% of cases of familial CPP. MKRN3 was thereby suggested to serve as a ‘brake’ of mammalian puberty onset, but the underlying mechanisms remain as yet unknown. Here, we report that genetic ablation of Mkrn3 did accelerate mouse puberty onset with increased production of hypothalamic GnRH1. MKRN3 interacts with and ubiquitinates MBD3, which epigenetically silences GNRH1 through disrupting the MBD3 binding to the GNRH1 promoter and recruitment of DNA demethylase TET2. Our findings have thus delineated a molecular mechanism through which the MKRN3–MBD3 axis controls the epigenetic switch in the onset of mammalian puberty.
Collapse
Affiliation(s)
- Chuanyin Li
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liguang Yang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengwei Li
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyi Zhou
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Rong Guo
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhebao Wu
- Center for Pituitary Tumor, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and E-Institute for Endocrinology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yujiang Shi
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Yinmin Gu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Chen
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijian Hao
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianting Han
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiqiang Yang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yixue Li
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Ronggui Hu
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
10
|
Azharuddin M, Roberg K, Dhara AK, Jain MV, Darcy P, Hinkula J, Slater NKH, Patra HK. Dissecting multi drug resistance in head and neck cancer cells using multicellular tumor spheroids. Sci Rep 2019; 9:20066. [PMID: 31882620 PMCID: PMC6934860 DOI: 10.1038/s41598-019-56273-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
One of the hallmarks of cancers is their ability to develop resistance against therapeutic agents. Therefore, developing effective in vitro strategies to identify drug resistance remains of paramount importance for successful treatment. One of the ways cancer cells achieve drug resistance is through the expression of efflux pumps that actively pump drugs out of the cells. To date, several studies have investigated the potential of using 3-dimensional (3D) multicellular tumor spheroids (MCSs) to assess drug resistance; however, a unified system that uses MCSs to differentiate between multi drug resistance (MDR) and non-MDR cells does not yet exist. In the present report we describe MCSs obtained from post-diagnosed, pre-treated patient-derived (PTPD) cell lines from head and neck squamous cancer cells (HNSCC) that often develop resistance to therapy. We employed an integrated approach combining response to clinical drugs and screening cytotoxicity, monitoring real-time drug uptake, and assessing transporter activity using flow cytometry in the presence and absence of their respective specific inhibitors. The report shows a comparative response to MDR, drug efflux capability and reactive oxygen species (ROS) activity to assess the resistance profile of PTPD MCSs and two-dimensional (2D) monolayer cultures of the same set of cell lines. We show that MCSs provide a robust and reliable in vitro model to evaluate clinical relevance. Our proposed strategy can also be clinically applicable for profiling drug resistance in cancers with unknown resistance profiles, which consequently can indicate benefit from downstream therapy.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Karin Roberg
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden.
- Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Östergötland, Sweden.
| | - Ashis Kumar Dhara
- Department of Electrical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Mayur Vilas Jain
- Division of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | - Padraig Darcy
- Department of Medical and Health Sciences (IMH), Division of Drug Research (LÄFO), Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hirak K Patra
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
You D, Shin HM, Mosaad F, Richardson JR, Aleksunes LM. Brain region-specific regulation of histone acetylation and efflux transporters in mice. J Biochem Mol Toxicol 2019; 33:e22318. [PMID: 30897286 PMCID: PMC6754812 DOI: 10.1002/jbt.22318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP) protect the brain by restricting the passage of chemicals across the blood-brain barrier. Prior studies have demonstrated the epigenetic regulation of MDR1 and BCRP in cancer cells treated with histone deacetylase (HDAC) inhibitors that enhance histone acetylation and gene transcription. In the present study, we tested the in vivo effects of two HDAC inhibitors, valproic acid (VPA; 400 mg/kg) and apicidin (5 mg/kg), on Mdr1 and Bcrp transporter expression in brain regions of adult male mice injected intraperitoneally daily for 7 days. VPA increased Mdr1 protein expression in the striatum (70%) and Bcrp protein in the midbrain (30%). Apicidin enhanced striatal Mdr1 protein (30%) and hippocampal Bcrp protein (20%). Transporter induction correlated with increased histone H3 acetylation in discrete brain regions. In conclusion, HDAC inhibitors upregulate transporter proteins in vivo, which may be important in regulating regional xenobiotic disposition within the brain.
Collapse
Affiliation(s)
- Dahea You
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hye Min Shin
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey
| | - Fatimah Mosaad
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey
| | - Jason R Richardson
- Division of Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey
- Division of Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey
| |
Collapse
|
12
|
Feng Y, Hang W, Sang Z, Li S, Xu W, Miao Y, Xi X, Huang Q. Identification of exosomal and non‑exosomal microRNAs associated with the drug resistance of ovarian cancer. Mol Med Rep 2019; 19:3376-3392. [PMID: 30864705 PMCID: PMC6471492 DOI: 10.3892/mmr.2019.10008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) serve important roles in drug‑resistance; however, exosomal miRNAs associated with drug‑resistance in ovarian cancer (OC) have not been reported to date. The current study aimed to analyze the drug resistance‑associated exosomal miRNAs in original OC cells and their derived exosomes using microarray data downloaded from the Gene Expression Omnibus database (series GSE76449). The chemosensitive OC cell lines SKOV3_ip1, A2780_PAR and HEYA8, as well as the chemoresistant cell lines SKOV3_TR, A2780_CP20 and HEYA8_MDR, were investigated. Differentially expressed miRNAs (DE‑miRNAs) were identified using the limma method, and their mRNA targets were predicted using the miRWalk and LinkedOmics database. Functions of target genes were analyzed with DAVID tool, while TCGA data were used to explore the survival association of identified miRNAs. According to the results, 28 DE‑miRNAs were found to be common in exosomal and original samples of A2780_CP20 cells, among which the functions of 5 miRNAs were predicted (including miR‑146b‑5p, miR‑509‑5p, miR‑574‑3p, miR‑574‑5p and miR‑760). In addition, 16 and 35 DE‑miRNAs were detected for HEYA8_MDR and SKOV3_TR, respectively, with the functions of 4 of these miRNAs predicted for each cell line (HEYA8_MDR: miR‑30a‑3p, miR‑30a‑5p, miR‑612 and miR‑617; SKOV3_TR: miR‑193a‑5p, miR‑423‑3p, miR‑769‑5p and miR‑922). It was also reported that miR‑183‑5p was the only one common miRNA among the three cell lines. Furthermore, miR‑574‑3p, miR‑30a‑5p and miR‑922 may regulate CUL2 to mediate HIF‑1 cancer signaling pathway, while miR‑183‑5p may modulate MECP2, similar to miR‑760, miR‑30a‑5p and miR‑922, to influence cell proliferation. Finally, the downregulated miR‑612 may promote the expression of TEAD3 via the Hippo signaling pathway, and this miRNA was associated with poor prognosis. In conclusion, the findings of the present study suggested several underlying miRNA targets for improving the chemotherapy sensitivity of OC.
Collapse
Affiliation(s)
- Yiwen Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Wenzhao Hang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Zhenyu Sang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Shuangdi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Wei Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Yi Miao
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Qian Huang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
13
|
Yakusheva EN, Titov DS. Structure and Function of Multidrug Resistance Protein 1. BIOCHEMISTRY (MOSCOW) 2018; 83:907-929. [DOI: 10.1134/s0006297918080047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Zhu F, Wu Q, Ni Z, Lei C, Li T, Shi Y. miR-19a/b and MeCP2 repress reciprocally to regulate multidrug resistance in gastric cancer cells. Int J Mol Med 2018; 42:228-236. [PMID: 29568890 PMCID: PMC5979884 DOI: 10.3892/ijmm.2018.3581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the improvement in gastric cancer (GC) treatment, multidrug resistance (MDR) is still a significant reason for chemotherapy failure. Our previous studies have demonstrated that miR-19a/b upregulation directly promoted MDR in GC cells. However, the exact regulation and the potential molecule mechanisms have not been fully clarified. In this study, we found that miR-19a/b was directly involved in 5-aza-2'-deoxycytidine (5-Aza-dC) induced MDR of GC cells. Mechanically, demethylation of miR-19a/b repressed methyl CpG binding protein 2 (MeCP2) expression via direct binding at the 3'-untranslated regions, which then alleviated the inhibitory effects of MeCP2 on miR-19a/b expression. Thus, the mutual regulatory network sustains preservation of the expression levels of miR-19a/b. We further demonstrated that miR-19a/b expression was inversely correlated to MeCP2 expression in GC tissues. These data showed an intimate interplay among miR-19a/b methylation, MeCP2 activity, and MDR, revealing a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Fei Zhu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiong Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhen Ni
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chao Lei
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ting Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
15
|
Multiplicity of acquired cross-resistance in paclitaxel-resistant cancer cells is associated with feedback control of TUBB3 via FOXO3a-mediated ABCB1 regulation. Oncotarget 2018; 7:34395-419. [PMID: 27284014 PMCID: PMC5085164 DOI: 10.18632/oncotarget.9118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022] Open
Abstract
Acquired drug resistance is a primary obstacle for effective cancer therapy. The correlation of point mutations in class III β-tubulin (TUBB3) and the prominent overexpression of ATP-binding cassette P-glycoprotein (ABCB1), a multidrug resistance gene, have been protruding mechanisms of resistance to microtubule disruptors such as paclitaxel (PTX) for many cancers. However, the precise underlying mechanism of the rapid onset of cross-resistance to an array of structurally and functionally unrelated drugs in PTX-resistant cancers has been poorly understood. We determined that our established PTX-resistant cancer cells display ABCB1/ABCC1-associated cross-resistance to chemically different drugs such as 5-fluorouracil, docetaxel, and cisplatin. We found that feedback activation of TUBB3 can be triggered through the FOXO3a-dependent regulation of ABCB1, which resulted in the accentuation of induced PTX resistance and encouraged multiplicity in acquired cross-resistance. FOXO3a-directed regulation of P-glycoprotein (P-gp) function suggests that control of ABCB1 involves methylation-dependent activation. Consistently, transcriptional overexpression or downregulation of FOXO3a directs inhibitor-controlled protease-degradation of TUBB3. The functional PI3K/Akt signaling is tightly responsive to FOXO3a activation alongside doxorubicin treatment, which directs FOXO3a arginine hypermethylation. In addition, we found that secretome factors from PTX-resistant cancer cells with acquired cross-resistance support a P-gp-dependent association in multidrug resistance (MDR) development, which assisted the FOXO3a-mediated control of TUBB3 feedback. The direct silencing of TUBB3 reverses induced multiple cross-resistance, reduces drug-resistant tumor mass, and suppresses the impaired microtubule stability status of PTX-resistant cells with transient cross-resistance. These findings highlight the control of the TUBB3 response to ABCB1 genetic suppressors as a mechanism to reverse the profuse development of multidrug resistance in cancer.
Collapse
|
16
|
Keating ST, van Diepen JA, Riksen NP, El-Osta A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia 2018; 61:6-20. [PMID: 29128937 PMCID: PMC6448927 DOI: 10.1007/s00125-017-4490-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 01/01/2023]
Abstract
When it comes to the epigenome, there is a fine line between clarity and confusion-walk that line and you will discover another fascinating level of transcription control. With the genetic code representing the cornerstone of rules for information that is encoded to proteins somewhere above the genome level there is a set of rules by which chemical information is also read. These epigenetic modifications show a different side of the genetic code that is diverse and regulated, hence modifying genetic transcription transiently, ranging from short- to long-term alterations. While this complexity brings exquisite control it also poses a formidable challenge to efforts to decode mechanisms underlying complex disease. Recent technological and computational advances have improved unbiased acquisition of epigenomic patterns to improve our understanding of the complex chromatin landscape. Key to resolving distinct chromatin signatures of diabetic complications is the identification of the true physiological targets of regulatory proteins, such as reader proteins that recognise, writer proteins that deposit and eraser proteins that remove specific chemical moieties. But how might a diverse group of proteins regulate the diabetic landscape from an epigenomic perspective? Drawing from an ever-expanding compendium of experimental and clinical studies, this review details the current state-of-play and provides a perspective of chromatin-dependent mechanisms implicated in diabetic complications, with a special focus on diabetic nephropathy. We hypothesise a codified signature of the diabetic epigenome and provide examples of prime candidates for chemical modification. As for the pharmacological control of epigenetic marks, we explore future strategies to expedite and refine the search for clinically relevant discoveries. We also consider the challenges associated with therapeutic strategies targeting epigenetic pathways.
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| | - Janna A van Diepen
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Assam El-Osta
- Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
17
|
Sokhranyaeva LS, Aniol VA, Gulyaeva NV. [Epigenetic modifications of chromatin in epilepsy: a potential mechanism of pharmacoresistance?]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:17-21. [PMID: 29213033 DOI: 10.17116/jnevro20171179217-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pharmacoresistance in epilepsy is an important problem from both clinical and fundamental perspectives. The existent hypotheses of pharmacoresistance are based on long term plastic rebuilding of the epileptic brain. One of potential mechanisms mediating such protracted changes are alterations of gene expression induced by epigenetic modifications of chromatin in brain cells of epileptic patients. Recently, changes in DNA methylation and histone post-translational modifications were reported in brain tissues of patients with pharmacoresistant epilepsy. Unfortunately, these data remain fragmentary and contradictory, therefore the results of animal models can partially fill this gap. The authors present a short review of the data concerning a potential role of epigenetic modifications in epilepsy.
Collapse
Affiliation(s)
- L S Sokhranyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - V A Aniol
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Mebendazole, an antiparasitic drug, inhibits drug transporters expression in preclinical model of gastric peritoneal carcinomatosis. Toxicol In Vitro 2017; 43:87-91. [PMID: 28606429 DOI: 10.1016/j.tiv.2017.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 01/26/2023]
Abstract
The present study aimed to investigate whether MBZ down-regulates drug transporter expression (ABCB1, ABCC1, SLC47A1). mRNA expression level of ABCB1, ABCC1 and SLC47A1 was evaluated by qPCR and protein expression levels MDR-1 was performed by western blotting in malignant ascites cells (AGP-01) treated with MBZ for 24h. The mRNA expression level of ABCB1 and ABCC1 significantly decreased at a 1.0μM of MBZ compared to negative control, while SLC47A1 extremely decreased at all tested concentrations of MBZ. Protein expression levels MDR-1 significantly decreased at a 1.0μM of MBZ compared to negative control. Therefore, our results showed MBZ may play an important role in inhibiting MDR gene expression in malignant ascites cells.
Collapse
|
19
|
Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat 2017; 32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
|
20
|
Genetic and epigenetic changes in host ABCB1 influences malaria susceptibility to Plasmodium falciparum. PLoS One 2017; 12:e0175702. [PMID: 28422980 PMCID: PMC5397027 DOI: 10.1371/journal.pone.0175702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/30/2017] [Indexed: 01/20/2023] Open
Abstract
Multiple mechanisms such as genetic and epigenetic variations within a key gene may play a role in malarial susceptibility and response to anti-malarial drugs in the population. ABCB1 is one of the well-studied membrane transporter genes that code for the P-glycoprotein (an efflux protein) and whose effect on malaria disease predisposition and susceptibility to drugs remains to be understood. We studied the association of single nucleotide variations in human ABCB1 that influences its function in subjects with uncomplicated and complicated malaria caused by Plasmodium falciparum (Pf). Global DNA methylation and ABCB1 DNA promoter methylation levels were performed along with transcriptional response and protein expression in subjects with malaria and healthy controls. The rs2032582 locus was significantly associated with complicated and combined malaria groups when compared to controls (p < 0.05). Significant DNA methylation difference was noticed between case and control (p < 0.05). In addition, global DNA methylation levels of the host DNA were inversely proportional to parasitemia in individuals with Pf infection. Our study also revealed the correlation between ABCB1 DNA promoter methylation with rs1128503 and rs2032582 polymorphisms in malaria and was related to increased expression of ABCB1 protein levels in complicated malaria group (p < 0.05) when compared to uncomplicated malaria and control groups. The study provides evidence for multiple mechanisms that may regulate the role of host ABCB1 function to mediate aetiology of malaria susceptibility, prognosis and drug response. These may have clinical implications and therapeutic application for various malarial conditions.
Collapse
|
21
|
Gigek CO, Chen ES, Smith MAC. Methyl-CpG-Binding Protein (MBD) Family: Epigenomic Read-Outs Functions and Roles in Tumorigenesis and Psychiatric Diseases. J Cell Biochem 2016. [PMID: 26205787 DOI: 10.1002/jcb.25281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is the study of the heritable changes on gene expression that are responsible for the regulation of development and that have an impact on several diseases. However, it is of equal importance to understand how epigenetic machinery works. DNA methylation is the most studied epigenetic mark and is generally associated with the regulation of gene expression through the repression of promoter activity and by affecting genome stability. Therefore, the ability of the cell to interpret correct methylation marks and/or the correct interpretation of methylation plays a role in many diseases. The major family of proteins that bind methylated DNA is the methyl-CpG binding domain proteins, or the MBDs. Here, we discuss the structure that makes these proteins a family, the main functions and interactions of all protein family members and their role in human disease such as psychiatric disorders and cancer.
Collapse
Affiliation(s)
- Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil.,Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo (UNIFESP), R. Napoleão de Barros, 715, 2º andar, CEP:04024-002, São Paulo, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Arrigoni E, Galimberti S, Petrini M, Danesi R, Di Paolo A. ATP-binding cassette transmembrane transporters and their epigenetic control in cancer: an overview. Expert Opin Drug Metab Toxicol 2016; 12:1419-1432. [PMID: 27459275 DOI: 10.1080/17425255.2016.1215423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Members of the ATP-binding cassette (ABC) transmembrane transporters control the passage of several substrates across cell membranes, including drugs. This means that ABC transporters may exert a significant influence on the kinetics and dynamics of pharmacological agents, being responsible for the occurrence of multidrug-resistant (MDR) phenotype. Pharmacogenetic analyses have shed light on gene expression and polymorphisms as possible markers predictive of transporter activity. However, a non-negligible part of the variability in drug pharmacokinetics and pharmacodynamics still remains. Further research has demonstrated that different epigenetic mechanisms exert a coordinated control over ABC genes, and on the corresponding MDR phenotype. Areas covered: DNA methylation and histone modifications (namely acetylation, methylation, phosphorylation, etc.) significantly impact gene expression, as well as noncoding RNA molecules that are involved in the post-transcriptional control of the ABC transporters ABCB1, ABCC1 and ABCG2. We describe the epigenetic mechanisms of gene expression control for ABC transporters and their relevant association with the MDR phenotype in human cancer. Expert opinion: The clinical meaning of those observations is discussed in the review, highlighting the importance of the epigenetic control of the ABC transporters for the clinical therapeutic outcomes that despite their effects and applications, requires further investigation.
Collapse
Affiliation(s)
- Elena Arrigoni
- a Section of Pharmacology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Sara Galimberti
- b Section of Hematology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Mario Petrini
- b Section of Hematology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Romano Danesi
- a Section of Pharmacology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Antonello Di Paolo
- a Section of Pharmacology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| |
Collapse
|
23
|
Balaji SA, Udupa N, Chamallamudi MR, Gupta V, Rangarajan A. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS One 2016; 11:e0155013. [PMID: 27171227 PMCID: PMC4865144 DOI: 10.1371/journal.pone.0155013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/22/2016] [Indexed: 12/22/2022] Open
Abstract
Increased expression of ABC-family of transporters is associated with chemotherapy failure. Although the drug transporters ABCG2, ABCB1 and ABCC1 have been majorly implicated in cancer drug resistance, recent studies have associated ABCC3 with multi drug resistance and poor clinical response. In this study, we have examined the expression of ABCC3 in breast cancers and studied its role in drug resistance and stemness of breast cancer cells in comparison with the more studied ABCC1. We observed that similar to ABCC1, the transcripts levels of ABCC3 was significantly high in breast cancers compared to adjacent normal tissue. Importantly, expression of both transporters was further increased in chemotherapy treated patient samples. Consistent with this, we observed that treatment of breast cancer cell lines with anti-cancer agents increased their mRNA levels of both ABCC1 and ABCC3. Further, similar to knockdown of ABCC1, knockdown of ABCC3 also significantly increased the retention of chemotherapeutic drugs in breast cancer cells and rendered them more chemo-sensitive. Interestingly, ABCC1 and ABCC3 knockdown cells also showed reduction in the expression of stemness genes, while ABCC3 knockdown additionally led to a reduction in the CD44high/CD24low breast cancer stem-like subpopulation. Consistent with this, their ability to form primary tumours was compromised. Importantly, down-modulation of ABCC3 rendered these cells increasingly susceptible to doxorubicin in xenograft mice models in vivo. Thus, our study highlights the importance of ABCC3 transporters in drug resistance to chemotherapy in the context of breast cancer. Further, these results suggest that combinatorial inhibition of these transporters together with standard chemotherapy can reduce therapy-induced resistance in breast cancer.
Collapse
Affiliation(s)
- Sai A. Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science (IISc), Bangalore, 560012, India
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - Nayanabhirama Udupa
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | | | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science (IISc), Bangalore, 560012, India
| |
Collapse
|
24
|
Berman M, Mattheolabakis G, Suresh M, Amiji M. Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery. Expert Opin Drug Deliv 2016; 13:987-98. [DOI: 10.1080/17425247.2016.1178236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Melissa Berman
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Megha Suresh
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Abbas A, Hall JA, Patterson WL, Ho E, Hsu A, Al-Mulla F, Georgel PT. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines. Biochem Cell Biol 2016; 94:71-81. [DOI: 10.1139/bcb-2015-0038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epidemiologic studies have revealed that diets rich in sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables, are associated with a marked decrease in prostate cancer incidence. The chemo-preventive role of SFN is associated with its histone de-acetylase inhibitor activity. However, the effect of SFN on chromatin composition and dynamic folding, especially in relation to HDAC inhibitor activity, remains poorly understood. In this study, we found that SFN can inhibit the expression and activity of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, in 2 prostate cancer cell lines. This decrease in gene expression is correlated with SFN-induced changes in chromatin structure and composition. The SFN-mediated changes in levels of histone post-translational modifications, more specifically acetylation of histone H3 lysine 18 and di-methylation of histone H3 lysine 4, 2 modifications linked with high risk of prostate cancer recurrence, were associated with regulatory elements within the hTERT promoter region. Chromatin condensation may also play a role in SFN-mediated hTERT repression, since expression and recruitment of MeCP2, a known chromatin compactor, were altered in SFN treated prostate cancer cells. Chromatin immuno-precipitation (ChIP) of MeCP2 showed enrichment over regions of the hTERT promoter with increased nucleosome density. These combined results strongly support a role for SFN in the mediation of epigenetic events leading to the repression of hTERT in prostate cancer cells. This ability of SFN to modify chromatin composition and structure associated with target gene expression provides a new model by which dietary phytochemicals may exert their chemoprevention activity.
Collapse
Affiliation(s)
- Ata Abbas
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV, USA
| | - J. Adam Hall
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV, USA
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| | - William L. Patterson
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV, USA
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| | - Emily Ho
- Oregon State University, School of Biological and Population Health Sciences, Linus Pauling Institute, Corvallis, OR, USA
| | - Anna Hsu
- Oregon State University, School of Biological and Population Health Sciences, Linus Pauling Institute, Corvallis, OR, USA
| | - Fahd Al-Mulla
- Kuwait University, Health Sciences Center, Faculty of Medicine, Molecular Pathology Unit, Kuwait City, Kuwait
| | - Philippe T. Georgel
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV, USA
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| |
Collapse
|
26
|
Cavalieri V, Spinelli G. Ectopic hbox12 Expression Evoked by Histone Deacetylase Inhibition Disrupts Axial Specification of the Sea Urchin Embryo. PLoS One 2015; 10:e0143860. [PMID: 26618749 PMCID: PMC4664418 DOI: 10.1371/journal.pone.0143860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022] Open
Abstract
Dorsal/ventral patterning of the sea urchin embryo depends upon the establishment of a Nodal-expressing ventral organizer. Recently, we showed that spatial positioning of this organizer relies on the dorsal-specific transcription of the Hbox12 repressor. Building on these findings, we determined the influence of the epigenetic milieu on the expression of hbox12 and nodal genes. We find that Trichostatin-A, a potent and selective histone-deacetylases inhibitor, induces histone hyperacetylation in hbox12 chromatin, evoking broad ectopic expression of the gene. Transcription of nodal concomitantly drops, prejudicing dorsal/ventral polarity of the resulting larvae. Remarkably, impairing hbox12 function, either in a spatially-restricted sector or in the whole embryo, specifically rescues nodal transcription in Trichostatin-A-treated larvae. Beyond strengthen the notion that nodal expression is not allowed in the presence of functional Hbox12 in the same cells, these results highlight a critical role of histone deacetylases in regulating the spatial expression of hbox12.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
- Mediterranean Center for Human Health Advanced Biotechnologies (CHAB), University of Palermo, Italy
- * E-mail: (VC); (GS)
| | - Giovanni Spinelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
- * E-mail: (VC); (GS)
| |
Collapse
|
27
|
Koo SH, Lo YL, Yee JY, Lee EJD. Genetic and/or non-genetic causes for inter-individual and inter-cellular variability in transporter protein expression: implications for understanding drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:1821-37. [DOI: 10.1517/17425255.2015.1104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Tomiyasu H, Tsujimoto H. Comparative Aspects of Molecular Mechanisms of Drug Resistance through ABC Transporters and Other Related Molecules in Canine Lymphoma. Vet Sci 2015; 2:185-205. [PMID: 29061940 PMCID: PMC5644633 DOI: 10.3390/vetsci2030185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
The most important causes of treatment failure in canine lymphoma include intrinsic or acquired drug resistance. Thus, elucidation of molecular mechanisms of drug resistance is essential for the establishment of better treatment alternatives for lymphoma patients. The overexpression of drug transporters is one of the most intensively studied mechanisms of drug resistance in many tumors. In canine lymphoma, it has also been shown that the overexpression of drug efflux pumps such as P-glycoprotein is associated with drug-resistant phenotypes. Canine lymphoma has many pathological similarities to human non-Hodgkin’s lymphoma, and they also share similar molecular mechanisms of drug resistance. We have previously demonstrated the association of the overexpression of drug transporters with drug resistance and indicated some molecular mechanisms of the regulation of these transporters’ expressions in canine and human lymphoid tumor cells. However, it has also been indicated that other known or novel drug resistance factors should be explored to overcome drug resistance in lymphoma. In this review, we summarize the recent findings on the molecular mechanisms of drug resistance and possible strategies to develop better treatment modalities for canine lymphoma from the comparative aspects with human lymphoid tumors.
Collapse
Affiliation(s)
- Hirotaka Tomiyasu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1352 Boyd Ave, St. Paul, MN 55108, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
29
|
Mathiyalagan P, Keating ST, Al-Hasani K, El-Osta A. Epigenetic-mediated reprogramming of pancreatic endocrine cells. Antioxid Redox Signal 2015; 22:1483-95. [PMID: 25621632 DOI: 10.1089/ars.2014.6103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Type 1 diabetes (T1D) results from cell-mediated autoimmune destruction of insulin-secreting pancreatic beta cells (β-cells). In the context of T1D, the scarcity of organ donors has driven research to alternate sources of functionally competent, insulin-secreting β-cells as substitute for donor islets to meet the clinical need for transplantation therapy. RECENT ADVANCES Experimental evidence of an inherent plasticity of pancreatic cells has fuelled interest in in vivo regeneration of β-cells. Transcriptional modulation and direct reprogramming of noninsulin secreting pancreatic α-cells to functionally mimic insulin-secreting β-cells is one of the promising avenues to the treatment of diabetes. Recent studies now show that adult progenitor and glucagon(+) α-cells can be converted into β-like cells in vivo, as a result of specific activation of the Pax4 gene in α-cells and curing diabetes in preclinical models. CRITICAL ISSUES The challenge now is to understand the precise developmental transitions mediated by endocrine transcription factors and co-regulatory determinants responsible for pancreatic function and repair. FUTURE DIRECTIONS Epigenetic-mediated regulation of transcription factor binding in pancreatic α-cells by specific drugs to direct reprogramming into functional insulin producing cells could be of potential innovative therapy for the treatment of T1D.
Collapse
Affiliation(s)
- Prabhu Mathiyalagan
- 1 Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | | | |
Collapse
|
30
|
Tomiyasu H, Fujiwara-Igarashi A, Goto-Koshino Y, Fujino Y, Ohno K, Tsujimoto H. Evaluation of DNA methylation profiles of the CpG island of the ABCB1 gene in dogs with lymphoma. Am J Vet Res 2014; 75:835-41. [PMID: 25157887 DOI: 10.2460/ajvr.75.9.835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To examine the DNA methylation status of the ABCB1 gene in tumor cells of dogs with lymphoma. ANIMALS 27 dogs with multicentric B-cell high-grade lymphoma (19 chemotherapy-sensitive dogs and 8 chemotherapy-resistant dogs). PROCEDURES The DNA methylation profile of the CpG island of the ABCB1 gene was analyzed by use of bisulphite sequencing and real-time methylation-specific PCR assay in lymphoma cells. Quantitative reverse transcriptase PCR assay of the ABCB1 gene was conducted to measure the amount of mRNA. Correlation between the amount of ABCB1 mRNA and the methylation rate was examined. RESULTS The CpG island of the ABCB1 gene was hypomethylated in most dogs in both the chemotherapy-sensitive and -resistant groups. No significant difference was detected in the methylation rate between the 2 groups, and no significant correlation was detected between the methylation rate and the mRNA expression level. CONCLUSIONS AND CLINICAL RELEVANCE Expression of the ABCB1 gene was not suppressed by hypermethylation of its CpG island in most dogs with lymphoma regardless of their chemotherapy sensitivity status.
Collapse
Affiliation(s)
- Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Chu Y, Wang Y, Zhang G, Chen H, Dowdy SC, Xiong Y, Liu F, Zhang R, Li J, Jiang SW. Chromatin composition alterations and the critical role of MeCP2 for epigenetic silencing of progesterone receptor-B gene in endometrial cancers. Cell Mol Life Sci 2014; 71:3393-408. [PMID: 24531693 PMCID: PMC11113436 DOI: 10.1007/s00018-014-1580-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To understand the epigenetic mechanism underlying the PR-B gene silencing in endometrial cancer (EC) cells, we compared the chromatin composition between transcriptionally active and silenced PR-B genes in EC cell lines and cancer tissues. METHODS Chromatin Immunoprecipitation (ChIP) assay was performed to measure MBD occupancy and histone acetylation/methylation in transcriptionally active and silenced PR-B genes. PR-B-positive/-negative, as well as epigenetic inhibitor-treated/-untreated EC cells were used as study models. Real-time polymerase chain reaction (PCR) and Western blot analysis were applied to measure the mRNA and protein levels of PR-B, MBD, and histones. RESULTS A close association among PR-B methylation, MBD binding and PR-B gene silencing was observed. Treatment with epigenetic inhibitors led to dynamic changes in the PR-B chromatin composition and gene expression. Increased H3/H4 acetylation and H3-K4 methylation, and decreased H3-K9 methylation were found to be associated with re-activation of silenced PR-B genes. MeCP2 knockdown resulted in a decreased MeCP2 binding to PR-B genes and an increased PR-B expression. ChIP analysis of MeCP2 binding to PR-B genes in the PR-B-positive/-negative EC samples confirmed the significant role of MeCP2 in PR-B silencing. CONCLUSION PR-B gene expression is regulated by a concerted action of epigenetic factors including DNA methylation, MBD binding, and histone modifications. MeCP2 occupancy of PR-B genes plays a critical role in PR-B gene silencing. These findings enriched our knowledge of the epigenetic regulation of PR-B expression in EC, and suggested that the epigenetic re-activation of PR-B could be explored as a potential strategy to sensitize the PR-B-negative endometrial cancers to progestational therapy.
Collapse
Affiliation(s)
- Yongli Chu
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000 China
| | - Yanlin Wang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, 256603 China
| | - Guanghua Zhang
- Tianjin Medical University Cancer Hospital, Tianjin, 300060 China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Guangdong, China
| | - Sean C. Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
| | - Yuning Xiong
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
| | - Fengming Liu
- Department of Research and Development, Guangxi Medicinal Botanical Institute, Nanning, 530024 China
| | - Run Zhang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Jinping Li
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
- Curtis & Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Shi-Wen Jiang
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
- Curtis & Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| |
Collapse
|
32
|
Wang XK, He JH, Xu JH, Ye S, Wang F, Zhang H, Huang ZC, To KKW, Fu LW. Afatinib enhances the efficacy of conventional chemotherapeutic agents by eradicating cancer stem-like cells. Cancer Res 2014; 74:4431-45. [PMID: 24972892 DOI: 10.1158/0008-5472.can-13-3553] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer stem cells (CSC) have garnered significant attention as a therapeutic focus, based on evidence that they may represent an etiologic root of treatment-resistant cells. Indeed, expression of the multidrug resistance protein ATP-binding cassette subfamily G member 2 (ABCG2) confers chemoresistance to CSCs, where it serves as a potential biomarker and therapeutic target. Here, we show that afatinib, a small-molecule inhibitor of the tyrosine kinases EGFR, HER2, and HER4, preferentially eliminated side population cells with CSC character, in both cell lines and patient-derived leukemia cells, by decreasing ABCG2 expression. In these cells, afatinib also acted in parallel to suppress self-renewal capacity and tumorigenicity. Combining afatinib with the DNA-damaging drug topotecan enhanced the antitumor effect of topotecan in vitro and in vivo. Mechanistic investigations suggested that ABCG2 suppression by afatinib did not proceed by proteolysis through the ubiquitin-dependent proteosome, lysosome, or calpain. Instead, we found that afatinib increased DNA methyltransferase activity, thereby leading to methylation of the ABCG2 promoter and to a decrease in ABCG2 message level. Taken together, our results advocate the use of afatinib in combination with conventional chemotherapeutic drugs to improve efficacy by improving CSC eradication.
Collapse
Affiliation(s)
- Xiao-kun Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Jie-hua He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Jing-hong Xu
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng Ye
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Zhen-cong Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Li-wu Fu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China. Collaborative Innovation Center for Cancer Medicine, Cancer Center, Guangzhou Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
Tomiyasu H, Goto-Koshino Y, Fujino Y, Ohno K, Tsujimoto H. Epigenetic regulation of the ABCB1 gene in drug-sensitive and drug-resistant lymphoid tumour cell lines obtained from canine patients. Vet J 2014; 199:103-9. [DOI: 10.1016/j.tvjl.2013.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/03/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
|
34
|
Maxwell SS, Pelka GJ, Tam PP, El-Osta A. Chromatin context and ncRNA highlight targets of MeCP2 in brain. RNA Biol 2013; 10:1741-57. [PMID: 24270455 DOI: 10.4161/rna.26921] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The discovery that Rett syndrome (RTT) is caused by mutation of the methyl-CpG-binding-protein MeCP2 provided a major breakthrough in understanding the neurodevelopmental disorder and accelerated MeCP2 research. However, gene regulation by MeCP2 is complicated. The current consensus for MeCP2 remains as a classical repressor complex, with major emphasis on its role in methylation-dependent binding and repression. However, recent evidence indicates additional regulatory roles, suggesting non-classical mechanisms in gene activation. This has opened the field of MeCP2 research and suggests that the gene targets may not be the usual suspects, that is, dependent only on DNA methylation. Here we examine how chromatin binding and sequence preference may confer MeCP2 functionality, and connect relevant pathways in an active genome. Finding both genomic and proteomic evidence to indicate MeCP2 spliceosome interaction, we consequently discovered broad MeCP2 enrichment of the transcriptome while our focus toward long non-coding RNA (lncRNA) revealed MeCP2 association with RNCR3. Our data may indicate an as-yet-unappreciated role between lncRNA and MeCP2. We hypothesize that ncRNA may mediate chromatin-remodeling events by interacting with MeCP2, thereby conferring changes in gene expression. We consider that these results may suggest new mechanisms of gene regulation conferred by MeCP2 and its interactions upon chromatin structure and gene function.
Collapse
Affiliation(s)
- Scott S Maxwell
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC, Australia
| | - Gregory J Pelka
- Embryology Unit; Children's Medical Research Institute; Sydney, NSW, Australia
| | - Patrick Pl Tam
- Embryology Unit; Children's Medical Research Institute; Sydney, NSW, Australia; Sydney Medical School; University of Sydney; Sydney, NSW, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC, Australia; Epigenomic Profiling Facility; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC, Australia; Department of Pathology; The University of Melbourne; Parkville, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences; Monash University; VIC, Australia
| |
Collapse
|
35
|
Kim IW, Han N, Burckart GJ, Oh JM. Epigenetic Changes in Gene Expression for Drug-Metabolizing Enzymes and Transporters. Pharmacotherapy 2013; 34:140-50. [DOI: 10.1002/phar.1362] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul Korea
| | - Nayoung Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul Korea
| | - Gilbert J. Burckart
- Office of Clinical Pharmacology; Office of Translational Sciences; Center for Drug Evaluation and Research; U.S. Food and Drug Administration; Silver Spring Maryland
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul Korea
| |
Collapse
|
36
|
Chan YY, Kalpana S, Chang WC, Chang WC, Chen BK. Expression of aryl hydrocarbon receptor nuclear translocator enhances cisplatin resistance by upregulating MDR1 expression in cancer cells. Mol Pharmacol 2013; 84:591-602. [PMID: 23907215 DOI: 10.1124/mol.113.087197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The identification of molecular pathways in cancer cells is important for understanding the cells' underlying biology and for designing effective cancer therapies. We demonstrate that the expression of aryl hydrocarbon receptor nuclear translocator (ARNT) is critical during the development of cisplatin resistance. The reduced expression of ARNT was correlated with cisplatin-induced cell death in drug-sensitive cells. In addition, suppression of ARNT reversed the characteristics of cisplatin-resistant cells, making these cells cisplatin-sensitive, and significantly enhanced caspase-3 activation, DNA fragmentation, and apoptosis. The inhibition of colony formation, regulated by cisplatin, was more significant in ARNT-knockdown cells than in parental cells. In a xenograft analysis of severe combined immunodeficiency mice, cisplatin also efficiently inhibited ARNT-deficient c4 tumors but not ARNT-containing vT2 tumor formation. Furthermore, the downregulation of multidrug resistance 1 (MDR1) expression and retention of drugs in cells caused by suppression of ARNT, resulting in the resensitization of drug-resistant cells to cisplatin, was observed. When overexpressed, ARNT interacted with Sp1 to enhance the expression of MDR1 through Sp1-binding sites on the MDR1 promoter, resulting in a reversal of the effect of cisplatin on cell death. In addition, ARNT-induced MDR1 expression was inhibited in Sp1-knockdown cells. These results reveal previously unrecognized, multifaceted functions of ARNT in establishing the drug-resistant properties of cancer cells by the upregulation of MDR1, highlighting ARNT's potential as a therapeutic target in an important subset of cancers.
Collapse
Affiliation(s)
- Ya-Yi Chan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-Y.C., S.K., B.-K.C.); Department of Clinical Pharmacology and Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacology, Taipei Medical University, Taipei, Taiwan (W.-Chi.C.); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (W.-Cha.C.); Department of Pharmacy, Taipei Medical University-Wanfang Hospital, Taipei, Taiwan (W.-Chi.C.); and Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (B.-K.C.)
| | | | | | | | | |
Collapse
|
37
|
Kobow K, El-Osta A, Blümcke I. The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia 2013; 54 Suppl 2:41-7. [PMID: 23646970 DOI: 10.1111/epi.12183] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seizures cannot be medically controlled in approximately 40% of people with epilepsy. Although we are beginning to understand how to better treat certain seizure types, we still do not know the regulatory events that determine antiepileptic drug resistance. Proposed pathoetiologic mechanisms include altered expression of drug targets (i.e., receptor or ion channel modifications), endothelial drug transporter activation (i.e., increasing drug clearance), or intrinsic severity factors. The latter hypothesis results from an often confirmed clinical observation, that seizure severity is a reliable predictor for the development of pharmacoresistance (PR) in epilepsy. Herein, we propose, that genome modifications that do not involve changes to the DNA sequence per se (i.e., epigenetic changes) could confer PR in patients with epilepsy. Seizures cause excessive neuronal membrane depolarization, which can influence the cellular nucleus; we thus hypothesize that seizures can mediate epigenetic modifications that result in persistent genomic methylation, histone density, and posttranslational modifications, as well as noncoding RNA-based changes. Although experimental evidence is lacking in epilepsy, such mechanisms are well characterized in cancer, either as a result of anticancer drugs themselves or cancer-related intrinsic signals (i.e., noncoding RNAs). We suggest that similar mechanisms also play a role in PR epilepsies. Addressing such epigenetic mechanisms may be a successful strategy to increase the brain's sensitivity to antiepileptic drugs and may even act as disease-modifying treatment.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
38
|
Yu X, Zhao P, Zhang L, Zhang Y. Screening of phage-displayed human liver cDNA library against doxorubicin with drug-immobilized monolithic polyacrylamide cryogel. Biomed Chromatogr 2013; 27:1574-9. [DOI: 10.1002/bmc.2962] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | - Peng Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; 116023; China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; 116023; China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian; 116023; China
| |
Collapse
|
39
|
Ibrahim MA, Srivenugop KS, Rasul KI. Platinum Resistance: The Role of Molecular, Genetic and Epigenetic Factors. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.160.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Itoh Y, Suzuki T, Miyata N. Small-molecular modulators of cancer-associated epigenetic mechanisms. MOLECULAR BIOSYSTEMS 2013; 9:873-96. [DOI: 10.1039/c3mb25410k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Mencalha A, Rodrigues E, Abdelhay E, Fernandez T. Accurate monitoring of promoter gene methylation with high-resolution melting polymerase chain reaction using the ABCB1 gene as a model. GENETICS AND MOLECULAR RESEARCH 2013; 12:714-22. [DOI: 10.4238/2013.march.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Savickiene J, Treigyte G, Borutinskaite VV, Navakauskiene R. Antileukemic activity of combined epigenetic agents, DNMT inhibitors zebularine and RG108 with HDAC inhibitors, against promyelocytic leukemia HL-60 cells. Cell Mol Biol Lett 2012; 17:501-25. [PMID: 22820861 PMCID: PMC6275587 DOI: 10.2478/s11658-012-0024-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/12/2012] [Indexed: 12/12/2022] Open
Abstract
DNMT inhibitors are promising new drugs for cancer therapies. In this study, we have observed the antileukemic action of two diverse DNMT inhibitors, the nucleoside agent zebularine and the non-nucleoside agent RG108, in human promyelocytic leukemia (PML) HL-60 cells. Zebularine but not RG108 caused dose- and time-dependent cell growth inhibition and induction of apoptosis. However, co-treatment with either drug at a non-toxic dose and all trans retinoic acid (RA) reinforced differentiation to granulocytes, while 24 or 48 h-pretreatment with zebularine or RG108 followed by RA alone or in the presence of HDAC inhibitors (sodium phenyl butyrate or BML-210) significantly accelerated and enhanced cell maturation to granulocytes. This occurs in parallel with the expression of a surface biomarker, CD11b, and early changes in histone H4 acetylation and histone H3K4me3 methylation. The application of both drugs to HL-60 cells in continuous or sequential fashion decreased DNMT1 expression, and induced E-cadherin promoter demethylation and reactivation at both the mRNA and the protein levels in association with the induction of granulocytic differentiation. The results confirmed the utility of zebularine and RG108 in combinations with RA and HDAC inhibitors to reinforce differentiation effects in promyelocytic leukemia.
Collapse
Affiliation(s)
- Jurate Savickiene
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius, LT 08662 Lithuania
| | - Grazina Treigyte
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius, LT 08662 Lithuania
| | - Veronika-Viktorija Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius, LT 08662 Lithuania
| | - Ruta Navakauskiene
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, Vilnius, LT 08662 Lithuania
| |
Collapse
|
43
|
Kang HJ, Kim EJ, Kim BG, You CH, Lee SY, Kim DI, Hong YS. Quantitative analysis of cancer-associated gene methylation connected to risk factors in Korean colorectal cancer patients. J Prev Med Public Health 2012; 45:251-8. [PMID: 22880157 PMCID: PMC3412988 DOI: 10.3961/jpmph.2012.45.4.251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/14/2012] [Indexed: 12/20/2022] Open
Abstract
Objectives The purpose of this paper was to elucidate the potential methylation levels of adjacent normal and cancer tissues by comparing them with normal colorectal tissues, and to describe the correlations between the methylation and clinical parameters in Korean colorectal cancer (CRC) patients. Methods Hypermethylation profiles of nine genes (RASSF1, APC, p16INK4a, Twist1, E-cadherin, TIMP3, Smad4, COX2, and ABCB1) were examined with 100 sets of cancer tissues and 14 normal colorectal tissues. We determined the hypermethylation at a given level by a percent of methylation ratio value of 10 using quantitative methylation real-time polymerase chain reaction. Results Nine genes' hypermethylation levels in Korean CRC patient tissues were increased more higher than normal colorectal tissues. However, the amounts of p16INK4a and E-cadherin gene hypermethylation in normal and CRC tissues were not significantly different nor did TIMP3 gene hypermethylation in adjacent normal and cancer tissues differ significantly. The hypermethylation of TIMP3, E-cadherin, ABCB1, and COX2 genes among other genes were abundantly found in normal colorectal tissues. The hypermethylation of nine genes' methylation in cancer tissues was not significantly associated with any clinical parameters. In Cohen's kappa test, it was moderately observed that RASSF1 was related with E-cadherin, and Smad4 with ABCB1 and COX2. Conclusions This study provides evidence for different hypermethylation patterns of cancer-associated genes in normal and CRC tissues, which may serve as useful information on CRC cancer progression.
Collapse
Affiliation(s)
- Ho-Jin Kang
- Department of Preventive Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Toth M, Boros IM, Balint E. Elevated level of lysine 9-acetylated histone H3 at the MDR1 promoter in multidrug-resistant cells. Cancer Sci 2012; 103:659-69. [PMID: 22320423 DOI: 10.1111/j.1349-7006.2012.02215.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/20/2011] [Accepted: 12/29/2011] [Indexed: 12/15/2022] Open
Abstract
Failure of chemotherapy in breast cancer presents a major problem and is often due to elevated expression of ATP binding cassette (ABC)-type transporters, such as MDR1 protein. It has been shown that MDR1/ABCB1 gene expression is regulated at the chromatin level by DNA methylation and histone acetylation. However, the modified histone residues have not been identified and the role of various histone acetyl transferases (HATs) is not fully understood. By studying a breast carcinoma model cell line and its MDR1-overexpressing derivative, we show that the histone 3 lysine 9 (H3K9) acetylation level is elevated 100-fold in the promoter and first exon of the MDR1 gene in the drug-resistant cell line compared to the drug-sensitive cell line. The acetylation level of the other examined lysine residues (H3K4, H3K14, H4K8, and H4K12) is weakly or not at all elevated in the MDR1 locus, although their acetylation is generally increased genome-wide in the drug-resistant cell. Downregulation of the expression of HATs PCAF and GCN5 by RNAi effectively reduces the expression of MDR1. Unexpectedly, treatment with a p300-selective inhibitor (HAT inhibitor II) further increases MDR1 expression and drug efflux in the drug-resistant cells. Our data suggest that repeated exposure to chemotherapy may result in deregulated histone acetylation genome-wide and in the MDR1 promoter.
Collapse
Affiliation(s)
- Monika Toth
- Institute for Plant Genomics, Human Biotechnology and Bioenergy (BAYGEN), Bay Zoltan Foundation for Applied Research, Szeged, Hungary
| | | | | |
Collapse
|
45
|
Quantitative analysis of multiple gene promoter methylation in Korean non-small cell lung cancer patients and its association study with cancer risk factor and survival. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-012-0004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Wilting RH, Dannenberg JH. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat 2012; 15:21-38. [PMID: 22356866 DOI: 10.1016/j.drup.2012.01.008] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resistance of cancer cells to chemotherapeutics and emerging targeted drugs is a devastating problem in the treatment of cancer patients. Multiple mechanisms contribute to drug resistance such as increased drug efflux, altered drug metabolism, secondary mutations in drug targets, and activation of downstream or parallel signal transduction pathways. The rapid kinetics, the reversibility of acquired drug resistance and the absence of genetic mutations suggest an epigenetic basis for drug insensitivity. Similar to the cellular variance seen in the human body, epigenetic mechanisms, through reversible histone modifications and DNA methylation patterns, generate a variety of transcriptional states resulting in a dynamic heterogeneous tumor cell population. Consequently, epigenomes favoring survival in the presence of a drug by aberrant transcription of drug transporters, DNA-repair enzymes and pro-apoptotic factors render cytotoxic and targeted drugs ineffective and allow selection of rare drug-resistant tumor cells. Recent advances in charting cancer genomes indeed strongly indicate a role for epigenetic regulators in driving cancer, which may result in the acquisition of additional (epi)genetic modifications leading to drug resistance. These observations have important clinical consequences as they provide an opportunity for "epigenetic drugs" to change reversible drug-resistance-associated epigenomes to prevent or reverse non-responsiveness to anti-cancer drugs.
Collapse
Affiliation(s)
- Roel H Wilting
- Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Division of Gene Regulation, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
47
|
Chen KG, Sikic BI. Molecular pathways: regulation and therapeutic implications of multidrug resistance. Clin Cancer Res 2012; 18:1863-9. [PMID: 22344233 DOI: 10.1158/1078-0432.ccr-11-1590] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multidrug transporters constitute major mechanisms of MDR in human cancers. The ABCB1 (MDR1) gene encodes a well-characterized transmembrane transporter, termed P-glycoprotein (P-gp), which is expressed in many normal human tissues and cancers. P-gp plays a major role in the distribution and excretion of drugs and is involved in intrinsic and acquired drug resistance of cancers. The regulation of ABCB1 expression is complex and has not been well studied in a clinical setting. In this review, we elucidate molecular signaling and epigenetic interactions that govern ABCB1 expression and the development of MDR in cancer. We focus on acquired expression of ABCB1 that is associated with genomic instability of cancer cells, including mutational events that alter chromatin structures, gene rearrangements, and mutations in tumor suppressor proteins (e.g., mutant p53), which guard the integrity of genome. In addition, epigenetic modifications of the ABCB1 proximal and far upstream promoters by either demethylation of DNA or acetylation of histone H3 play a pivotal role in inducing ABCB1 expression. We describe a molecular network that coordinates genetic and epigenetic events leading to the activation of ABCB1. These mechanistic insights provide additional translational targets and potential strategies to deal with clinical MDR.
Collapse
Affiliation(s)
- Kevin G Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5151., USA
| | | |
Collapse
|
48
|
Zhu K, Chen L, Han X, Wang J, Wang J. Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells. Oncol Rep 2012; 27:1027-34. [PMID: 22245869 PMCID: PMC3583405 DOI: 10.3892/or.2012.1633] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/09/2011] [Indexed: 12/13/2022] Open
Abstract
Development of multidrug resistance (MDR) remains a major hurdle to successful cancer chemotherapy and MDR1/P-gp overexpression is believed to be mainly responsible for MDR of tumor cells. Twist1, which is a highly conserved transcription factor that belongs to the family of basic helix-loop-helix proteins, has been shown to be a major regulator of the epithelial-mesenchymal transition (EMT), and therefore promotes carcinoma metastasis. Recently, a novel function of Twist1 was reported to confer radioresistance or chemoresistance in cervical cancer. However, mechanisms of such efficacy are not completely elucidated. In the present study, we firstly analyzed the relationship between Twist1 and MDR1/P-gp expression in human cervical cancer specimens and demonstrated a positive correlation between Twist1 and MDR1/P-gp expression in the same patient. Additionally, we provide the first evidence that silencing of Twist1 by RNAi downregulated MDR1/P-gp expression in HeLa cervical cancer cells, suppressed the cell proliferation, inhibited Rhodamine123 efflux activity of cells and sensitized cells to cisplatin treatment. Collectively, these findings suggest that Twist1-mediated modulation of MDR1/P-gp expression plays an important role in sensitization of cervical cancer cells to cisplatin, and also indicate a novel therapeutic strategy to overcome drug resistance through inactivation of Twist1 expression in cervical cancer.
Collapse
Affiliation(s)
- Kexiu Zhu
- Department of Obstetrics and Gynecology, First Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | |
Collapse
|
49
|
Sun WJ, Zhou X, Zheng JH, Lu MD, Nie JY, Yang XJ, Zheng ZQ. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2012; 44:80-91. [PMID: 22194016 DOI: 10.1093/abbs/gmr113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone acetyltransferases and deacetylases are two groups of enzymes whose opposing activities govern the dynamic levels of reversible acetylation on specific lysine residues of histones and many other proteins. Gastrointestinal (GI) carcinogenesis is a major cause of morbidity and mortality worldwide. In addition to genetic and environmental factors, the role of epigenetic abnormalities such as aberrant histone acetylation has been recognized to be pivotal in regulating benign tumorigenesis and eventual malignant transformation. Here we provide an overview of histone acetylation, list the major groups of histone acetyltransferases and deacetylases, and cover in relatively more details the recent studies that suggest the links of these enzymes to GI carcinogenesis. As potential novel therapeutics for GI and other cancers, histone deacetylase inhibitors are also discussed.
Collapse
Affiliation(s)
- Wei-Jian Sun
- The 2nd Affiliated Hospital, Wenzhou Medical College, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Savickiene J, Treigyte G, Jonusiene V, Bruzaite R, Borutinskaite VV, Navakauskiene R. Epigenetic changes by zebularine leading to enhanced differentiation of human promyelocytic leukemia NB4 and KG1 cells. Mol Cell Biochem 2011; 359:245-61. [PMID: 21842375 DOI: 10.1007/s11010-011-1019-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/27/2011] [Indexed: 01/07/2023]
Abstract
Aberrant DNA methylation is a critical epigenetic process involved in gene expression of tumor cells. Diverse DNA methyltransferase inhibitors are being studied as potential anticancer drugs, and there is interest in developing novel and more effective DNMTIs. We evaluated zebularine, a stable and low-toxic cytidine analog, effects on human promyelocytic leukemia cell lines, NB4 and KG1. Zebularine caused a dose- and time-dependent NB4 and KG1 cell growth inhibition, did not induce myeloid differentiation but triggered concentration-dependent apoptosis as manifested by procaspase-3 and PAR-1 cleavage and the occurrence of early apoptosis detected by Annexin-V-propidium iodide. Zebularine co-treatment with all-trans retinoic acid (RA) at pharmacological dose (1 μM for NB4 cells) and higher (3 μM for KG1 cells) increased granulocytic differentiation in both cell lines. Pretreatment for 24 or 48 h with zebularine before the treatment with different doses of RA alone or RA with histone deacetylase inhibitors, phenyl butyrate, and BML-210, resulted in significant acceleration and enhancement of differentiation and cell cycle arrest at G0/1. Zebularine alone or in sequential combination with RA decreased expression of DNMT1, caused fast and time-dependent expression of pan-cadherin and partial demethylation of E-cadherin but not tumor suppressor p15. When used in combination with RA, zebularine increased expression of both genes transcript and protein. Zebularine induced regional chromatin remodeling by local histone H4 acetylation and histone H3-K4 methylation in promoter sites of methylated E-cadherin and also in the promoter of unmethylated p21 as evidenced by chromatin immunoprecipitation assay. Our results extend the spectrum of zebularine effects and the evaluation its utility in acute myeloid leukemia therapy based on epigenetics.
Collapse
Affiliation(s)
- Jurate Savickiene
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Mokslininkų St. 12, 08662, Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|