1
|
Tabuloc CA, Cai YD, Kwok RS, Chan EC, Hidalgo S, Chiu JC. CLOCK and TIMELESS regulate rhythmic occupancy of the BRAHMA chromatin-remodeling protein at clock gene promoters. PLoS Genet 2023; 19:e1010649. [PMID: 36809369 PMCID: PMC9983840 DOI: 10.1371/journal.pgen.1010649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/03/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.
Collapse
Affiliation(s)
- Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Elizabeth C. Chan
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
2
|
Jones CA, Tansey WP, Weissmiller AM. Emerging Themes in Mechanisms of Tumorigenesis by SWI/SNF Subunit Mutation. Epigenet Insights 2022; 15:25168657221115656. [PMID: 35911061 PMCID: PMC9329810 DOI: 10.1177/25168657221115656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex uses the energy of ATP hydrolysis to alter contacts between DNA and nucleosomes, allowing regions of the genome to become accessible for biological processes such as transcription. The SWI/SNF chromatin remodeler is also one of the most frequently altered protein complexes in cancer, with upwards of 20% of all cancers carrying mutations in a SWI/SNF subunit. Intense studies over the last decade have probed the molecular events associated with SWI/SNF dysfunction in cancer and common themes are beginning to emerge in how tumor-associated SWI/SNF mutations promote malignancy. In this review, we summarize current understanding of SWI/SNF complexes, their alterations in cancer, and what is known about the impact of these mutations on tumor-relevant transcriptional events. We discuss how enhancer dysregulation is a common theme in SWI/SNF mutant cancers and describe how resultant alterations in enhancer and super-enhancer activity conspire to block development and differentiation while promoting stemness and self-renewal. We also identify a second emerging theme in which SWI/SNF perturbations intersect with potent oncoprotein transcription factors AP-1 and MYC to drive malignant transcriptional programs.
Collapse
Affiliation(s)
- Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
3
|
Feher KM, Kolbanovskiy A, Durandin A, Shim Y, Min JH, Lee YC, Shafirovich V, Mu H, Broyde S, Geacintov NE. The DNA damage-sensing NER repair factor XPC-RAD23B does not recognize bulky DNA lesions with a missing nucleotide opposite the lesion. DNA Repair (Amst) 2020; 96:102985. [PMID: 33035795 PMCID: PMC8423485 DOI: 10.1016/j.dnarep.2020.102985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
The Nucleotide Excision Repair (NER) mechanism removes a wide spectrum of structurally different lesions that critically depend on the binding of the DNA damage sensing NER factor XPC-RAD23B (XPC) to the lesions. The bulky mutagenic benzo[a]pyrene diol epoxide metabolite-derived cis- and trans-B[a]P-dG lesions (G*) adopt base-displaced intercalative (cis) or minor groove (trans) conformations in fully paired DNA duplexes with the canonical C opposite G* (G*:C duplexes). While XPC has a high affinity for binding to these DNA lesions in fully complementary double-stranded DNA, we show here that deleting only the C in the complementary strand opposite the lesion G* embedded in 50-mer duplexes, fully abrogates XPC binding. Accurate values of XPC dissociation constants (KD) were determined by employing an excess of unmodified DNA as a competitor; this approach eliminated the binding and accumulation of multiple XPC molecules to the same DNA duplexes, a phenomenon that prevented the accurate estimation of XPC binding affinities in previous studies. Surprisingly, a detailed comparison of XPC dissociation constants KD of unmodified and lesion-containing G*:Del complexes, showed that the KD values were -2.5-3.6 times greater in the case of G*:Del than in the unmodified G:Del and fully base-paired G:C duplexes. The origins of this unexpected XPC lesion avoidance effect is attributed to the intercalation of the bulky, planar B[a]P aromatic ring system between adjacent DNA bases that thermodynamically stabilize the G*:Del duplexes. The strong lesion-base stacking interactions associated with the absence of the partner base, prevent the DNA structural distortions needed for the binding of the BHD2 and BHD3 β-hairpins of XPC to the deletion duplexes, thus accounting for the loss of XPC binding and the known NER-resistance of G*:Del duplexes.
Collapse
Affiliation(s)
- Katie M Feher
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Alexander Kolbanovskiy
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Alexander Durandin
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Yoonjung Shim
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Yuan Cho Lee
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Vladimir Shafirovich
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA
| | - Hong Mu
- Department of Biology, New York University, 100 Washington Square East, New York, N.Y., 10003-5180, USA
| | - Suse Broyde
- Department of Biology, New York University, 100 Washington Square East, New York, N.Y., 10003-5180, USA
| | - Nicholas E Geacintov
- Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA.
| |
Collapse
|
4
|
5',8-Cyclopurine Lesions in DNA Damage: Chemical, Analytical, Biological, and Diagnostic Significance. Cells 2019; 8:cells8060513. [PMID: 31141888 PMCID: PMC6628319 DOI: 10.3390/cells8060513] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Purine 5′,8-cyclo-2′-deoxynucleosides (cPu) are tandem-type lesions observed among the DNA purine modifications and identified in mammalian cellular DNA in vivo. These lesions can be present in two diasteroisomeric forms, 5′R and 5′S, for each 2′-deoxyadenosine and 2′-deoxyguanosine moiety. They are generated exclusively by hydroxyl radical attack to 2′-deoxyribose units generating C5′ radicals, followed by cyclization with the C8 position of the purine base. This review describes the main recent achievements in the preparation of the cPu molecular library for analytical and DNA synthesis applications for the studies of the enzymatic recognition and repair mechanisms, their impact on transcription and genetic instability, quantitative determination of the levels of lesions in various types of cells and animal model systems, and relationships between the levels of lesions and human health, disease, and aging, as well as the defining of the detection limits and quantification protocols.
Collapse
|
5
|
Shafirovich V, Kolbanovskiy M, Kropachev K, Liu Z, Cai Y, Terzidis MA, Masi A, Chatgilialoglu C, Amin S, Dadali A, Broyde S, Geacintov NE. Nucleotide Excision Repair and Impact of Site-Specific 5',8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry 2019; 58:561-574. [PMID: 30570250 PMCID: PMC6373774 DOI: 10.1021/acs.biochem.8b01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N2-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts. The BPDE-dG adducts are also NER-resistant in Rec-NCPs but are good substrates of NER in HeLa-NCPs. The four BPDE-dG adduct samples are excised with different efficiencies in free DNA, but in HeLa-NCPs, the efficiencies are reduced by a common factor of 2.2 ± 0.2 relative to the NER efficiencies in free DNA. The NER response of the BPDE-dG adducts in HeLa-NCPs is not directly correlated with the observed differences in the thermodynamic destabilization of HeLa-NCPs, the Förster resonance energy transfer values, or hydroxyl radical footprint patterns and is weakly dependent on the rotational settings. These and other observations suggest that NER is initiated by the binding of the DNA damage-sensing NER factor XPC-RAD23B to a transiently opened BPDE-modified DNA sequence that corresponds to the known footprint of XPC-DNA-RAD23B complexes (≥30 bp). These observations are consistent with the hypothesis that post-translational modifications and the dimensions and properties of the DNA lesions are the major factors that have an impact on the dynamics and initiation of NER in nucleosomes.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Marina Kolbanovskiy
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Zhi Liu
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Yuquin Cai
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Shantu Amin
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alexander Dadali
- Bronx College of the City University of New York, Bronx, NY 10453, United States
| | - Suse Broyde
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| |
Collapse
|
6
|
Hu J, Selby CP, Adar S, Adebali O, Sancar A. Molecular mechanisms and genomic maps of DNA excision repair in Escherichia coli and humans. J Biol Chem 2017; 292:15588-15597. [PMID: 28798238 DOI: 10.1074/jbc.r117.807453] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nucleotide excision repair is a major DNA repair mechanism in all cellular organisms. In this repair system, the DNA damage is removed by concerted dual incisions bracketing the damage and at a precise distance from the damage. Here, we review the basic mechanisms of excision repair in Escherichia coli and humans and the recent genome-wide mapping of DNA damage and repair in these organisms at single-nucleotide resolution.
Collapse
Affiliation(s)
- Jinchuan Hu
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Christopher P Selby
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Sheera Adar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and.,the Department of Microbiology and Molecular Genetics, Hebrew University-Hadassah Medical School, Ein Kerem 71120, Jerusalem, Israel
| | - Ogun Adebali
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| |
Collapse
|
7
|
Menoni H, Di Mascio P, Cadet J, Dimitrov S, Angelov D. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players. Free Radic Biol Med 2017; 107:159-169. [PMID: 28011149 DOI: 10.1016/j.freeradbiomed.2016.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022]
Abstract
Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin?
Collapse
Affiliation(s)
- Hervé Menoni
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France.
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000 São Paulo, SP, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Stefan Dimitrov
- Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France
| | - Dimitar Angelov
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| |
Collapse
|
8
|
Lim B, Mun J, Kim YS, Kim SY. Variability in Chromatin Architecture and Associated DNA Repair at Genomic Positions Containing Somatic Mutations. Cancer Res 2017; 77:2822-2833. [PMID: 28408367 DOI: 10.1158/0008-5472.can-16-3033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/20/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
Abstract
Dynamic chromatin structures result in differential chemical reactivity to mutational processes throughout the genome. To identify chromatin features responsible for mutagenesis, we compared chromatin architecture around single-nucleotide variants (SNV), insertion/deletions (indels), and their context-matched, nonmutated positions. We found epigenetic differences between genomic regions containing missense SNVs and those containing frameshift indels across multiple cancer types. Levels of active histone marks were higher around frameshift indels than around missense SNV, whereas repressive histone marks exhibited the reverse trend. Accumulation of repressive histone marks and nucleosomes distinguished mutated positions (both SNV and indels) from the context-matched, nonmutated positions, whereas active marks were associated with substitution- and cancer type-specific mutagenesis. We also explained mutagenesis based on genome maintenance mechanisms, including nucleotide excision repair (NER), mismatch repair (MMR), and DNA polymerase epsilon (POLE). Regional NER variation correlated strongly with chromatin features; NER machineries exhibited shifted or depleted binding around SNV, resulting in decreased NER at mutation positions, especially at sites of recurrent mutations. MMR-deficient tumors selectively acquired SNV in regions with high active histone marks, especially H3K36me3, whereas POLE-deficient tumors selectively acquired indels and SNV in regions with low active histone marks. These findings demonstrate the importance of fine-scaled chromatin structures and associated DNA repair mechanisms in mutagenesis. Cancer Res; 77(11); 2822-33. ©2017 AACR.
Collapse
Affiliation(s)
- Byungho Lim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jihyeob Mun
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Yong Sung Kim
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
9
|
Abstract
Chromatin is a highly dynamic structure that imparts structural organization to the genome and regulates the gene expression underneath. The decade long research in deciphering the significance of epigenetics in maintaining cellular integrity has embarked the focus on chromatin remodeling enzymes. These drivers have been categorized as readers, writers and erasers with each having significance of their own. Largely, on the basis of structure, ATP dependent chromatin remodelers have been grouped into 4 families; SWI/SNF, ISWI, IN080 and CHD. It is still unclear to what degree these enzymes are swayed by local DNA sequences when shifting a nucleosome to different positions. The ability of regulating active and repressive transcriptional state via open and close chromatin architecture has been well studied however, the significance of chromatin remodelers in regulating transcription at each step i.e. initiation, elongation and termination require further attention. The authors have highlighted the significance and role of different chromatin remodelers in transcription, DNA repair and histone variant deposition.
Collapse
Affiliation(s)
- Monica Tyagi
- a Kusuma School of Biological Sciences, Indian Institute of Technology Delhi Hauz Khas , New Delhi , India
| | | | | | | |
Collapse
|
10
|
Sancar A. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture). Angew Chem Int Ed Engl 2016; 55:8502-27. [PMID: 27337655 DOI: 10.1002/anie.201601524] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/27/2023]
Abstract
Ultraviolet light damages DNA by converting two adjacent thymines into a thymine dimer which is potentially mutagenic, carcinogenic, or lethal to the organism. This damage is repaired by photolyase and the nucleotide excision repair system in E. coli by nucleotide excision repair in humans. The work leading to these results is presented by Aziz Sancar in his Nobel Lecture.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
11
|
Sancar A. Mechanismen der DNA-Reparatur durch Photolyasen und Exzisionsnukleasen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics; University of North Carolina School of Medicine; Chapel Hill North Carolina USA
| |
Collapse
|
12
|
SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget 2015; 6:732-45. [PMID: 25544751 PMCID: PMC4359251 DOI: 10.18632/oncotarget.2715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/09/2014] [Indexed: 01/09/2023] Open
Abstract
SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function.
Collapse
|
13
|
Abstract
In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review covers the current knowledge of DNA damage and repair in chromatin based on in vitro studies. Specifically, nucleosome assembly affects DNA damage formation in both random sequences and sequences with strong nucleosome-positioning signals such as 5S rDNA. At least three systems have been used to analyze the effect of nucleosome folding on nucleotide excision repair (NER) in vitro: (a) human cell extracts that have to rely on labeling of repair synthesis to monitor DNA repair, due to very low repair efficacy; (b) Xenopus oocyte nuclear extracts, that have very robust DNA repair efficacy, have been utilized to follow direct removal of DNA damage; (c) six purified human DNA repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1) that have been used to reconstitute excision repair in vitro. In general, the results have shown that nucleosome folding inhibits NER and, therefore, its activity must be enhanced by chromatin remodeling factors like SWI/SNF. In addition, binding of transcription factors such as TFIIIA to the 5S rDNA promoter also modulates NER efficacy.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Biochemistry and Center for Cancer Research, Purdue University, 175 S. University Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
14
|
Abstract
How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.
Collapse
|
15
|
Cannistraro VJ, Pondugula S, Song Q, Taylor JS. Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo. J Biol Chem 2015; 290:26597-609. [PMID: 26354431 DOI: 10.1074/jbc.m115.673301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
Sunlight-induced C to T mutation hot spots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C and 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by the DNA damage bypass polymerase η, thereby defining a probable mechanism for the origin of UV-induced C to T mutations. Deamination rates for T(m)CG CPDs have been found to vary 12-fold with rotational position in a nucleosome in vitro. To determine the influence of nucleosome structure on deamination rates in vivo, we determined the deamination rates of CPDs at TCG sites in a stably positioned nucleosome within the FOS promoter in HeLa cells. A procedure for in vivo hydroxyl radical footprinting with Fe-EDTA was developed, and, together with results from a cytosine methylation protection assay, we determined the translational and rotational positions of the TCG sites. Consistent with the in vitro observations, deamination was slower for one CPD located at an intermediate rotational position compared with two other sites located at outside positions, and all were much faster than for CPDs at non-TCG sites. Photoproduct formation was also highly suppressed at one site, possibly due to its interaction with a histone tail. Thus, it was shown that CPDs of TCG sites deaminate the fastest in vivo and that nucleosomes can modulate both their formation and deamination, which could contribute to the UV mutation hot spots and cold spots.
Collapse
Affiliation(s)
| | - Santhi Pondugula
- From the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Qian Song
- From the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - John-Stephen Taylor
- From the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
16
|
Lindsey-Boltz LA, Kemp MG, Reardon JT, DeRocco V, Iyer RR, Modrich P, Sancar A. Coupling of human DNA excision repair and the DNA damage checkpoint in a defined in vitro system. J Biol Chem 2014; 289:5074-82. [PMID: 24403078 DOI: 10.1074/jbc.m113.542787] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5' to 3' exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5' to 3' exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | | | | | | | | | | | | |
Collapse
|
17
|
Cho I, Tsai PF, Lake RJ, Basheer A, Fan HY. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1-like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet 2013; 9:e1003407. [PMID: 23637612 PMCID: PMC3630089 DOI: 10.1371/journal.pgen.1003407] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
The Cockayne syndrome complementation group B (CSB) protein is essential for transcription-coupled DNA repair, and mutations in CSB are associated with Cockayne syndrome—a devastating disease with complex clinical features, including the appearance of premature aging, sun sensitivity, and numerous neurological and developmental defects. CSB belongs to the SWI2/SNF2 ATP–dependent chromatin remodeler family, but the extent to which CSB remodels chromatin and whether this activity is utilized in DNA repair is unknown. Here, we show that CSB repositions nucleosomes in an ATP–dependent manner in vitro and that this activity is greatly enhanced by the NAP1-like histone chaperones, which we identify as new CSB–binding partners. By mapping functional domains and analyzing CSB derivatives, we demonstrate that chromatin remodeling by the combined activities of CSB and the NAP1-like chaperones is required for efficient transcription-coupled DNA repair. Moreover, we show that chromatin remodeling and repair protein recruitment mediated by CSB are separable activities. The collaboration that we observed between CSB and the NAP1-like histone chaperones adds a new dimension to our understanding of the ways in which ATP–dependent chromatin remodelers and histone chaperones can regulate chromatin structure. Taken together, the results of this study offer new insights into the functions of chromatin remodeling by CSB in transcription-coupled DNA repair as well as the underlying mechanisms of Cockayne syndrome. Cockayne syndrome is a devastating inherited disease; the average life span of those afflicted is 12 years. Cockayne syndrome patients have features of premature aging, are highly sensitive to sunlight, and suffer from numerous developmental and neurological disorders. The majority of Cockayne syndrome patients have mutations in the CSB protein; however, how these mutations can lead to Cockayne syndrome is largely unknown. CSB is essential for transcription-coupled DNA repair—a process that preferentially removes bulky DNA lesions that stall transcription, such as those created by ultraviolet light. In eukaryotes, DNA is packaged into nucleosomes, which consists of DNA wrapped around a set of core histone proteins, and nucleosomes can create barriers to the DNA repair process. In this study, we found that CSB can slide histones along DNA. We also found that histone chaperones, proteins that accept and donate histones, greatly facilitate this process. Importantly, we show that CSB derivatives that are unable to move nucleosomes or collaborate with histone chaperones cannot repair UV-induced DNA lesions. Our study reveals that nucleosome remodeling by CSB is important for transcription-coupled DNA repair and suggests that an inability to efficiently mobilize nucleosomes might contribute to the underlying mechanism of Cockayne syndrome.
Collapse
Affiliation(s)
- Iltaeg Cho
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pei-Fang Tsai
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert J. Lake
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Asjad Basheer
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hua-Ying Fan
- Epigenetics Program, Department of Biochemistry and Biophysics, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Gospodinov A, Herceg Z. Shaping chromatin for repair. Mutat Res 2012; 752:45-60. [PMID: 23085398 DOI: 10.1016/j.mrrev.2012.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
To counteract the adverse effects of various DNA lesions, cells have evolved an array of diverse repair pathways to restore DNA structure and to coordinate repair with cell cycle regulation. Chromatin changes are an integral part of the DNA damage response, particularly with regard to the types of repair that involve assembly of large multiprotein complexes such as those involved in double strand break (DSB) repair and nucleotide excision repair (NER). A number of phosphorylation, acetylation, methylation, ubiquitylation and chromatin remodeling events modulate chromatin structure at the lesion site. These changes demarcate chromatin neighboring the lesion, afford accessibility and binding surfaces to repair factors and provide on-the-spot means to coordinate repair and damage signaling. Thus, the hierarchical assembly of repair factors at a double strand break is mostly due to their regulated interactions with posttranslational modifications of histones. A large number of chromatin remodelers are required at different stages of DSB repair and NER. Remodelers physically interact with proteins involved in repair processes, suggesting that chromatin remodeling is a requisite for repair factors to access the damaged site. Together, recent findings define the roles of histone post-translational modifications and chromatin remodeling in the DNA damage response and underscore possible differences in the requirements for these events in relation to the chromatin context.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France.
| |
Collapse
|
19
|
Kothandapani A, Gopalakrishnan K, Kahali B, Reisman D, Patrick SM. Downregulation of SWI/SNF chromatin remodeling factor subunits modulates cisplatin cytotoxicity. Exp Cell Res 2012; 318:1973-86. [PMID: 22721696 PMCID: PMC3408789 DOI: 10.1016/j.yexcr.2012.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 01/23/2023]
Abstract
Chromatin remodeling complex SWI/SNF plays important roles in many cellular processes including transcription, proliferation, differentiation and DNA repair. In this report, we investigated the role of SWI/SNF catalytic subunits Brg1 and Brm in the cellular response to cisplatin in lung cancer and head/neck cancer cells. Stable knockdown of Brg1 and Brm enhanced cellular sensitivity to cisplatin. Repair kinetics of cisplatin DNA adducts revealed that downregulation of Brg1 and Brm impeded the repair of both intrastrand adducts and interstrand crosslinks (ICLs). Cisplatin ICL-induced DNA double strand break repair was also decreased in Brg1 and Brm depleted cells. Altered checkpoint activation with enhanced apoptosis as well as impaired chromatin relaxation was observed in Brg1 and Brm deficient cells. Downregulation of Brg1 and Brm did not affect the recruitment of DNA damage recognition factor XPC to cisplatin DNA lesions, but affected ERCC1 recruitment, which is involved in the later stages of DNA repair. Based on these results, we propose that SWI/SNF chromatin remodeling complex modulates cisplatin cytotoxicity by facilitating efficient repair of the cisplatin DNA lesions.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo – Health Science Campus, Toledo, OH – 43614, USA
| | - Kathirvel Gopalakrishnan
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH – 43614, USA
| | - Bhaskar Kahali
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL – 32610, USA
| | - David Reisman
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL – 32610, USA
| | - Steve M Patrick
- Department of Biochemistry and Cancer Biology, University of Toledo – Health Science Campus, Toledo, OH – 43614, USA
| |
Collapse
|
20
|
The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair. Int J Mol Sci 2012; 13:11954-11973. [PMID: 23109894 PMCID: PMC3472786 DOI: 10.3390/ijms130911954] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/14/2022] Open
Abstract
DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo.
Collapse
|
21
|
Lans H, Marteijn JA, Vermeulen W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 2012; 5:4. [PMID: 22289628 PMCID: PMC3275488 DOI: 10.1186/1756-8935-5-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/30/2012] [Indexed: 12/31/2022] Open
Abstract
The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Medical Genetics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
22
|
Deem AK, Li X, Tyler JK. Epigenetic regulation of genomic integrity. Chromosoma 2012; 121:131-51. [PMID: 22249206 DOI: 10.1007/s00412-011-0358-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Inefficient and inaccurate repair of DNA damage is the principal cause of DNA mutations, chromosomal aberrations, and carcinogenesis. Numerous multiple-step DNA repair pathways exist whose deployment depends on the nature of the DNA lesion. Common to all eukaryotic DNA repair pathways is the need to unravel the compacted chromatin structure to facilitate access of the repair machinery to the DNA and restoration of the original chromatin state afterward. Accordingly, our cells utilize a plethora of coordinated mechanisms to locally open up the chromatin structure to reveal the underlying DNA sequence and to orchestrate the efficient and accurate repair of DNA lesions. Here we review changes to the chromatin structure that are intrinsic to the DNA damage response and the available mechanistic insight into how these chromatin changes facilitate distinct stages of the DNA damage repair pathways to maintain genomic stability.
Collapse
Affiliation(s)
- Angela K Deem
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
23
|
|
24
|
Song Q, Cannistraro VJ, Taylor JS. Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate. J Biol Chem 2010; 286:6329-35. [PMID: 21160086 DOI: 10.1074/jbc.m110.183178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. These mutations are proposed to arise from the insertion of A by DNA polymerase η opposite the T that results from deamination of the methylC ((m)C) within the CPD. Although the frequency of CPD formation and repair is modestly modulated by its rotational position within a nucleosome, the effect of position on the rate of (m)C deamination in a CPD has not been previously studied. We now report that deamination of a T(m)C CPD whose sugar phosphate backbone is positioned against the histone core surface decreases by a factor of 4.7, whereas that of a T(m)C CPD positioned away from the surface increases by a factor of 8.9 when compared with unbound DNA. Because the (m)Cs undergoing deamination are in similar steric environments, the difference in rate appears to be a consequence of a difference in the flexibility and compression of the two sites due to DNA bending. Considering that formation of the CPD positioned away from the surface is also enhanced by a factor of two, a T(m)CG site in this position might be expected to have up to an 84-fold higher probability of resulting in a UV-induced (m)C to T mutation than one positioned against the surface. These results indicate that rotational position may play an important role in the formation of UV-induced C to T mutation hotspots, as well as in the mutagenic mechanism of other DNA lesions.
Collapse
Affiliation(s)
- Qian Song
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
25
|
Sarkar S, Kiely R, McHugh PJ. The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair. ACTA ACUST UNITED AC 2010; 191:1061-8. [PMID: 21135142 PMCID: PMC3002029 DOI: 10.1083/jcb.201006178] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ino80 facilitates restoration of nucleosome structure during NER-mediated repair of UV-induced lesions. Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4–Rad23 and is recruited to chromatin by Rad4 in a UV damage–dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair.
Collapse
Affiliation(s)
- Sovan Sarkar
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, England, UK
| | | | | |
Collapse
|
26
|
Palomera-Sanchez Z, Zurita M. Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage. DNA Repair (Amst) 2010; 10:119-25. [PMID: 21130713 DOI: 10.1016/j.dnarep.2010.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
Abstract
Due to its link with human pathologies, including cancer, the mechanism of Nucleotide Excision Repair (NER) has been extensively studied. Most of the pathway and players have been defined using in vitro reconstitution experiments. However, in vivo, the NER machinery must deal with the presence of organized chromatin, which in some regions, such as heterochromatin, is highly condensed but still susceptible to DNA damage. A series of events involving different chromatin-remodeling factors and histone-modifying enzymes target chromatin regions that contain DNA lesions. CPDs change the structure of the nucleosome, allowing access to factors that can recognize the lesion. Next, DDB1-DDB2 protein complexes, which mono-ubiquitinate histones H2A, H3, and H4, recognize nucleosomes containing DNA lesions. The ubiquitinated nucleosome facilitates the recruitment of ATP-dependent chromatin-remodeling factors and the XPC-HR23B-Centrin 2 complex to the target region. Different ATP-dependent chromatin-remodeling factors, such as SWI/SNF and INO80, have been identified as having roles in the UV irradiation response prior to the action of the NER machinery. Subsequently, remodeling of the nucleosome allows enzymatic reactions by histone-modifying factors that may acetylate, methylate or demethylate specific histone residues. Intriguingly, some of these histone modifications are dependent on p53. These histone modifications and the remodeling of the nucleosome allow the entrance of TFIIH, XPC and other NER factors that remove the damaged strand; then, gap-filling DNA synthesis and ligation reactions are carried out after excision of the oligonucleotide with the lesion. Finally, after DNA repair, the initial chromatin structure has to be reestablished. Therefore, factors that modulate chromatin dynamics contribute to the NER mechanism, and they are significant in the future design of treatments for human pathologies related to genome instability and the appearance of drug-resistant tumors.
Collapse
Affiliation(s)
- Zoraya Palomera-Sanchez
- Department of Developmental Genetics, Instituo de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 22250, Mexico
| | | |
Collapse
|
27
|
Abstract
The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA damage by UV radiation. We find that FRET efficiency is reduced in a dose-dependent manner, showing that the presence of UV photoproducts enhances spontaneous unwrapping of DNA from histones. Furthermore, this UV-induced shift in unwrapping dynamics is associated with increased restriction enzyme accessibility of histone-bound DNA after UV treatment. Surprisingly, the increased unwrapping dynamics is even observed in nucleosome core particles containing a single UV lesion at a specific site. These results highlight the potential for increased “intrinsic exposure” of nucleosome-associated DNA lesions in chromatin to repair proteins.
Collapse
Affiliation(s)
- Ming-Rui Duan
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | |
Collapse
|
28
|
Subramanian M, Gonzalez RW, Patil H, Ueda T, Lim JH, Kraemer KH, Bustin M, Bergel M. The nucleosome-binding protein HMGN2 modulates global genome repair. FEBS J 2009; 276:6646-57. [PMID: 19843163 PMCID: PMC3460546 DOI: 10.1111/j.1742-4658.2009.07375.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HMGN family comprises nuclear proteins that bind to nucleosomes and alter the structure of chromatin. Here, we report that DT40 chicken cells lacking either HMGN2 or HMGN1a, or lacking both HMGN1a and HMGN2, are hypersensitive to killing by UV irradiation. Loss of both HMGN1a and HMGN2 or only HMGN2 increases the extent of UV-induced G(2)-M checkpoint arrest and the rate of apoptosis. HMGN null mutant cells showed slower removal of UV-induced DNA lesions from native chromatin, but the nucleotide excision repair remained intact, as measured by host cell reactivation assays. These results identify HMGN2 as a component of the global genome repair subpathway of the nucleotide excision repair pathway, and may indicate that HMGN2 facilitates the ability of the DNA repair proteins to access and repair UV-induced DNA lesions in chromatin. Our finding that HMGNs play a role in global DNA repair expands the role of these proteins in the maintenance of genome integrity.
Collapse
|
29
|
Zhao Q, Wang QE, Ray A, Wani G, Han C, Milum K, Wani AA. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J Biol Chem 2009; 284:30424-32. [PMID: 19740755 DOI: 10.1074/jbc.m109.044982] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accessibility within chromatin is an important factor in the prompt removal of UV-induced DNA damage by nucleotide excision repair (NER). Chromatin remodeling by the SWI/SNF complex has been shown to play an important modulating role in NER in vitro and yeast in vivo. Nevertheless, the molecular basis of cross-talk between SWI/SNF and NER in mammalian cells is not fully understood. Here, we show that knockdown of Brg1, the ATPase subunit of SWI/SNF, negatively affects the elimination of cyclobutane pyrimidine dimers (CPD), but not of pyrimidine (6, 4)pyrimidone photoproducts (6-4PP) following UV irradiation of mammalian cells. Brg1-deficient cells exhibit a lower chromatin relaxation as well as impaired recruitment of downstream NER factors, XPG and PCNA, to UV lesions. However, the assembly of upstream NER factors, DDB2 and XPC, at the damage site was unaffected by Brg1 knockdown. Interestingly, Brg1 interacts with XPC within chromatin and is recruited to UV-damaged sites in a DDB2- and XPC-dependent manner. Also, postirradiation decrease of XPC levels occurred more rapidly in Brg1-deficient than normal cells. Conversely, XPC transcription remained unaltered upon Brg1 knockdown indicating that Brg1 affects the stability of XPC protein following irradiation. Thus, Brg1 facilitates different stages of NER by initially modulating UV-induced chromatin relaxation and stabilizing XPC at the damage sites, and subsequently stimulating the recruitment of XPG and PCNA to successfully culminate the repair.
Collapse
Affiliation(s)
- Qun Zhao
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Tremblay M, Toussaint M, D'Amours A, Conconi A. Nucleotide excision repair and photolyase repair of UV photoproducts in nucleosomes: assessing the existence of nucleosome and non-nucleosome rDNA chromatin in vivo. Biochem Cell Biol 2009; 87:337-46. [PMID: 19234545 DOI: 10.1139/o08-128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The genome is organized into nuclear domains, which create microenvironments that favor distinct chromatin structures and functions (e.g., highly repetitive sequences, centromeres, telomeres, noncoding sequences, inactive genes, RNA polymerase II and III transcribed genes, and the nucleolus). Correlations have been drawn between gene silencing and proximity to a heterochromatic compartment. At the other end of the scale are ribosomal genes, which are transcribed at a very high rate by RNA polymerase I (~60% of total transcription), have a loose chromatin structure, and are clustered in the nucleolus. The rDNA sequences have 2 distinct structures: active rRNA genes, which have no nucleosomes; and inactive rRNA genes, which have nucleosomes. Like DNA transcription and replication, DNA repair is modulated by the structure of chromatin, and the kinetics of DNA repair vary among the nuclear domains. Although research on DNA repair in all chromosomal contexts is important to understand the mechanisms of genome maintenance, this review focuses on nucleotide excision repair and photolyase repair of UV photoproducts in the first-order packing of DNA in chromatin: the nucleosome. In addition, it summarizes the studies that have demonstrated the existence of the 2 rDNA chromatins, and the way this feature of the rDNA locus allows for direct comparison of DNA repair in 2 very different structures: nucleosome and non-nucleosome DNA.
Collapse
Affiliation(s)
- Maxime Tremblay
- Departement de Microbiologie et Infectiologie, Faculte de Medecine, Universite de Sherbrooke, Sherbrooke, QCJ1H5N4, Canada
| | | | | | | |
Collapse
|
31
|
Nag R, Smerdon MJ. Altering the chromatin landscape for nucleotide excision repair. Mutat Res 2009; 682:13-20. [PMID: 19167517 DOI: 10.1016/j.mrrev.2009.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/19/2008] [Accepted: 01/05/2009] [Indexed: 12/15/2022]
Abstract
DNA acts as a 'workbench' for various nuclear processes that occur inside living cells. In eukaryotic cells, DNA is highly compacted in a structural hierarchy with histones and other proteins into chromatin. This compaction affects DNA structure and coordinates the accessibility to site-specific nuclear factors during DNA processing events. DNA repair is no exception to this general rule and several reviews have appeared recently that discuss this topic in detail [1-3]. Here, we focus on recent findings correlating changes in DNA repair with subtle variations in the chromatin landscape.
Collapse
Affiliation(s)
- Ronita Nag
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, United States
| | | |
Collapse
|
32
|
Menoni H, Gasparutto D, Hamiche A, Cadet J, Dimitrov S, Bouvet P, Angelov D. ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A.Bbd nucleosomes. Mol Cell Biol 2007; 27:5949-56. [PMID: 17591702 PMCID: PMC1952146 DOI: 10.1128/mcb.00376-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, base excision repair (BER) is responsible for the repair of oxidatively generated lesions. The mechanism of BER on naked DNA substrates has been studied in detail, but how it operates on chromatin remains unclear. Here we have studied the mechanism of BER by introducing a single 8-oxo-7,8-dihydroguanine (8-oxoG) lesion in the DNA of reconstituted positioned conventional and histone variant H2A.Bbd nucleosomes. We found that 8-oxoguanine DNA glycosylase, apurinic/apyrimidinic endonuclease, and polymerase beta activities were strongly reduced in both types of nucleosomes. In conventional nucleosomes SWI/SNF stimulated the processing of 8-oxoG by each one of the three BER repair factors to efficiencies similar to those for naked DNA. Interestingly, SWI/SNF-induced remodeling, but not mobilization of conventional nucleosomes, was required to achieve this effect. A very weak effect of SWI/SNF on the 8-oxoG BER removal in H2A.Bbd histone variant nucleosomes was observed. The possible implications of our data for the understanding of in vivo mechanisms of BER are discussed.
Collapse
Affiliation(s)
- Hervé Menoni
- Laboratoire Joliot-Curie, CNRS-USR3010, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Thoma F. Repair of UV lesions in nucleosomes--intrinsic properties and remodeling. DNA Repair (Amst) 2007; 4:855-69. [PMID: 15925550 DOI: 10.1016/j.dnarep.2005.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/28/2022]
Abstract
Nucleotide excision repair and reversal of pyrimidine dimers by photolyase (photoreactivation) are two major pathways to remove UV-lesions from DNA. Here, it is discussed how lesions are recognized and removed when the DNA is condensed into nucleosomes. During the recent years it was shown that nucleosomes inhibit photolyase and excision repair in vitro and slow down repair in vivo. The correlation of DNA-repair rates with nucleosome positions in yeast suggests that intrinsic properties of nucleosomes such as mobility and transient unwrapping of nucleosomal DNA facilitate damage recognition. Moreover, it was shown that nucleosome remodeling activities can act on UV-damaged DNA in vitro and facilitate repair suggesting that random remodeling of chromatin might contribute to damage recognition in vivo. Recent work on nucleosome structure and mobility is included to evaluate how nucleosomes accommodate DNA lesions and how nucleosome mobility and remodeling can take place on damaged DNA.
Collapse
Affiliation(s)
- Fritz Thoma
- Institut für Zellbiologie, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| |
Collapse
|
34
|
Gong F, Kwon Y, Smerdon MJ. Nucleotide excision repair in chromatin and the right of entry. DNA Repair (Amst) 2007; 4:884-96. [PMID: 15961354 DOI: 10.1016/j.dnarep.2005.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/22/2022]
Abstract
DNA is packaged with histones and other accessory proteins into chromatin in eukaryotic cells. It is well established that the assembly of DNA into chromatin affects induction of DNA damage as well as repair of the damage. How the DNA repair machinery detects a lesion and 'fixes it' in chromatin has been an intriguing question since the dawn of understanding DNA packaging in chromatin. Direct recognition/binding by damaged DNA binding proteins is one obvious tactic to detect a lesion. Rearrangement of chromatin structure during DNA repair was reported more than two decades ago. This early observation suggests that unfolding of chromatin structure may be required to facilitate DNA repair after lesions are detected. Cells can also exploit DNA processing events to assist DNA repair. Transcription coupled repair (TCR) is such an example. During TCR, an RNA polymerase blocked by a lesion, may act as a signal to recruit DNA repair machinery. Possible roles of histone modification enzymes, ATP-dependent chromatin remodeling complexes and chromatin assembly factors in DNA repair are discussed.
Collapse
Affiliation(s)
- Feng Gong
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | | | | |
Collapse
|
35
|
Osley MA, Tsukuda T, Nickoloff JA. ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 2007; 618:65-80. [PMID: 17291544 PMCID: PMC1904433 DOI: 10.1016/j.mrfmmm.2006.07.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic DNA into chromatin poses a barrier to all processes that require access of enzymes and regulatory factors to their sites of action. While the majority of studies in this area have concentrated on the role of chromatin in the regulation of transcription, there has been a recent emphasis on the relationship of chromatin to DNA damage repair. In this review, we focus on the role of chromatin in nucleotide excision repair (NER) and double-strand break (DSB) repair. NER and DSB repair use very different enzymatic machineries, and these two modes of DNA damage repair are also differentially affected by chromatin. Only a small number of nucleosomes are likely to be involved in NER, while a more extensive region of chromatin is involved in DSB repair. However, a key feature of both NER and DSB repair pathways is the participation of ATP-dependent chromatin remodeling factors at various points in the repair process. We discuss recent data that have identified roles for SWI/SNF-related chromatin remodeling factors in the two repair pathways.
Collapse
Affiliation(s)
- Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
36
|
Gillet LCJ, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006; 106:253-76. [PMID: 16464005 DOI: 10.1021/cr040483f] [Citation(s) in RCA: 470] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ludovic C J Gillet
- Institute for Molecular Cancer Research, University of Zürich, Switzerland
| | | |
Collapse
|
37
|
Klochendler-Yeivin A, Picarsky E, Yaniv M. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol 2006; 26:2661-74. [PMID: 16537910 PMCID: PMC1430322 DOI: 10.1128/mcb.26.7.2661-2674.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gene encoding the SNF5/Ini1 core subunit of the SWI/SNF chromatin remodeling complex is a tumor suppressor in humans and mice, with an essential role in early embryonic development. To investigate further the function of this gene, we have generated a Cre/lox-conditional mouse line. We demonstrate that Snf5 deletion in primary fibroblasts impairs cell proliferation and survival without the expected derepression of most retinoblastoma protein-controlled, E2F-responsive genes. Furthermore, Snf5-deficient cells are hypersensitive to genotoxic stress, display increased aberrant mitotic features, and accumulate phosphorylated p53, leading to elevated expression of a specific subset of p53 target genes, suggesting a role for Snf5 in the DNA damage response. p53 inactivation does not rescue the proliferation defect caused by Snf5 deficiency but reduces apoptosis and strongly accelerates tumor formation in Snf5-heterozygous mice.
Collapse
Affiliation(s)
- Agnes Klochendler-Yeivin
- Department of Animal and Cell Biology, The Institute for Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
38
|
Ferreiro JA, Powell NG, Karabetsou N, Mellor J, Waters R. Roles for Gcn5p and Ada2p in transcription and nucleotide excision repair at the Saccharomyces cerevisiae MET16 gene. Nucleic Acids Res 2006; 34:976-85. [PMID: 16473851 PMCID: PMC1363778 DOI: 10.1093/nar/gkj501] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/25/2006] [Accepted: 01/25/2006] [Indexed: 11/14/2022] Open
Abstract
Chromatin structure, transcription and repair of cyclobutane pyrimidine dimers at the MET16 gene of wild type, gcn5Delta and ada2Delta Saccharomyces cerevisiae cells were studied under repressing or derepressing conditions. These two components of the SAGA/ADA chromatin remodelling complexes are expendable for the basal transcription of MET16 but are mandatory for its full transcription induction. Despite their influence on transcription neither protein induces major changes in MET16 chromatin structure, but some minor ones occur. Repair at the coding region of the transcribed strand is faster than repair at non-transcribed regions in all strains and either growth condition. Moreover, the more MET16 is transcribed the faster the repair. The data show that by changing the transcription extent the rate of repair at each DNA strand is altered in a different way, confirming that repair at this locus is strongly modulated by its chromatin structure and transcription level. Deletion of GCN5 or ADA2 reduces repair at MET16. The results are discussed in light of the current understanding of Gcn5p and Ada2p functions, and they are the first to report a role for Ada2p in the nucleotide excision repair of the regulatory and transcribed regions of a gene.
Collapse
Affiliation(s)
- J. A. Ferreiro
- Department of Functional Biology, University of OviedoOviedo 33006, Spain
- Department of Obstetrics and Gynaecology, Medical School, Cardiff UniversityCardiff CF14 4XN, UK
- Department of Biochemistry, Oxford UniversityOxford OX1 3QU, UK
- Department of Pathology, Medical School, Cardiff UniversityCardiff CF14 4XN, UK
| | - N. G. Powell
- Department of Obstetrics and Gynaecology, Medical School, Cardiff UniversityCardiff CF14 4XN, UK
| | - N. Karabetsou
- Department of Biochemistry, Oxford UniversityOxford OX1 3QU, UK
| | - J. Mellor
- Department of Biochemistry, Oxford UniversityOxford OX1 3QU, UK
| | - R. Waters
- Department of Pathology, Medical School, Cardiff UniversityCardiff CF14 4XN, UK
| |
Collapse
|
39
|
Reardon JT, Sancar A. Purification and characterization of Escherichia coli and human nucleotide excision repair enzyme systems. Methods Enzymol 2006; 408:189-213. [PMID: 16793370 DOI: 10.1016/s0076-6879(06)08012-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nucleotide excision repair is a multicomponent, multistep enzymatic system that removes a wide spectrum of DNA damage by dual incisions in the damaged strand on both sides of the lesion. The basic steps are damage recognition, dual incisions, resynthesis to replace the excised DNA, and ligation. Each step has been studied in vitro using cell extracts or highly purified repair factors and radiolabeled DNA of known sequence with DNA damage at a defined site. This chapter describes procedures for preparation of DNA substrates designed for analysis of damage recognition, either the 5' or the 3' incision event, excision (resulting from concerted dual incisions), and repair synthesis. Excision in Escherichia coli is accomplished by the three-subunit Uvr(A)BC excision nuclease and in humans by six repair factors: XPA, RPA, XPChR23B, TFIIH, XPFERCC1, and XPG. This chapter outlines methods for expression and purification of these essential repair factors and provides protocols for performing each of the in vitro repair assays with either the E. coli or the human excision nuclease.
Collapse
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, USA
| | | |
Collapse
|
40
|
Yasuda T, Sugasawa K, Shimizu Y, Iwai S, Shiomi T, Hanaoka F. Nucleosomal structure of undamaged DNA regions suppresses the non-specific DNA binding of the XPC complex. DNA Repair (Amst) 2005; 4:389-95. [PMID: 15661662 DOI: 10.1016/j.dnarep.2004.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 10/18/2004] [Indexed: 11/18/2022]
Abstract
The XPC protein complex is a DNA damage detector of human nucleotide excision repair (NER). Although the XPC complex specifically binds to certain damaged sites, it also binds to undamaged DNA in a non-specific manner. The addition of a large excess of undamaged naked DNA competitively inhibited the specific binding of the XPC complex to (6-4) photoproducts and the NER dual incision step in cell-free extracts. In contrast, the addition of undamaged nucleosomal DNA as a competitor suppressed both of these inhibitory effects. Although nucleosomes positioned on the damaged site inhibited the binding of the XPC complex, the presence of nucleosomes in undamaged DNA regions may help specific binding of the XPC complex to damaged sites by excluding its non-specific binding to undamaged DNA regions.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Yu Y, Teng Y, Liu H, Reed SH, Waters R. UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proc Natl Acad Sci U S A 2005; 102:8650-5. [PMID: 15939881 PMCID: PMC1150825 DOI: 10.1073/pnas.0501458102] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin immunoprecipitation with anti-acetyl histone H3 (K9 and K14) and anti-acetyl histone H4 (K5, K8, K12, and K16) antibodies shows that Lys-9 and/or Lys-14 of histone H3, but not the relevant sites of histone H4 in nucleosomes at the repressed MFA2 promoter, are hyperacetylated after UV irradiation. This level of histone hyperacetylation diminishes gradually as repair proceeds. Accompanying this, chromatin in the promoter becomes more accessible to restriction enzymes after UV irradiation and returns to the pre-UV state gradually. UV-related histone hyperacetylation and chromatin remodeling in the MFA2 promoter depend on Gcn5p and partially on Swi2p, respectively. Deletion of GCN5, but not of SWI2, impairs repair of DNA damage in the MFA2 promoter. The post-UV histone modifications and chromatin remodeling at the repressed MFA2 promoter do not activate MFA2 transcriptionally, nor do they require damage recognition by Rad4p or Rad14p. Furthermore, we show that UV irradiation triggers genome-wide histone hyperacetylation at both histone H3 and H4. These experiments indicate that chromatin at a yeast repressed locus undergoes active change after UV radiation treatment and that failure to achieve histone H3 hyperacetylation impairs the repair of DNA damage.
Collapse
Affiliation(s)
- Yachuan Yu
- Department of Pathology, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Hamimes S, Arakawa H, Stasiak AZ, Kierzek AM, Hirano S, Yang YG, Takata M, Stasiak A, Buerstedde JM, Van Dyck E. RDM1, a Novel RNA Recognition Motif (RRM)-containing Protein Involved in the Cell Response to Cisplatin in Vertebrates. J Biol Chem 2005; 280:9225-35. [PMID: 15611051 DOI: 10.1074/jbc.m412874200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of cellular proteins has the ability to recognize DNA lesions induced by the anti-cancer drug cisplatin, with diverse consequences on their repair and on the therapeutic effectiveness of this drug. We report a novel gene involved in the cell response to cisplatin in vertebrates. The RDM1 gene (for RAD52 Motif 1) was identified while searching databases for sequences showing similarities to RAD52, a protein involved in homologous recombination and DNA double-strand break repair. Ablation of RDM1 in the chicken B cell line DT40 led to a more than 3-fold increase in sensitivity to cisplatin. However, RDM1-/- cells were not hypersensitive to DNA damages caused by ionizing radiation, UV irradiation, or the alkylating agent methylmethane sulfonate. The RDM1 protein displays a nucleic acid binding domain of the RNA recognition motif (RRM) type. By using gel-shift assays and electron microscopy, we show that purified, recombinant chicken RDM1 protein interacts with single-stranded DNA as well as double-stranded DNA, on which it assembles filament-like structures. Notably, RDM1 recognizes DNA distortions induced by cisplatin-DNA adducts in vitro. Finally, human RDM1 transcripts are abundant in the testis, suggesting a possible role during spermatogenesis.
Collapse
Affiliation(s)
- Samia Hamimes
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kysela B, Chovanec M, Jeggo PA. Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase IV-dependent ligation in the presence of histone H1. Proc Natl Acad Sci U S A 2005; 102:1877-82. [PMID: 15671175 PMCID: PMC548527 DOI: 10.1073/pnas.0401179102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA nonhomologous end-joining in vivo requires the DNA-dependent protein kinase (DNA-PK) and DNA ligase IV/XRCC4 (LX) complexes. Here, we have examined the impact of histone octamers and linker histone H1 on DNA end-joining in vitro. Packing of the DNA substrate into dinucleosomes does not significantly inhibit ligation by LX. However, LX ligation activity is substantially reduced by the incorporation of linker histones. This inhibition is independent of the presence of core histone octamers and cannot be restored by addition of Ku alone but can be partially rescued by DNA-PK. The kinase activity of DNA-PK is essential for the recovery of end-joining. DNA-PK efficiently phosphorylates histone H1. Phosphorylated histone H1 has a reduced affinity for DNA and a decreased capacity to inhibit end-joining. Our findings raise the possibility that DNA-PK may act as a linker histone kinase by phosphorylating linker histones in the vicinity of a DNA break and coupling localized histone H1 release from DNA ends, with the recruitment of LX to carry out double-stranded ligation. Thus, by using histone H1-bound DNA as a template, we have reconstituted the end-joining step of DNA nonhomologous end-joining in vitro with a requirement for DNA-PK.
Collapse
Affiliation(s)
- Boris Kysela
- Genome Damage and Stability Center, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | | | | |
Collapse
|
44
|
Reardon JT, Sancar A. Nucleotide Excision Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:183-235. [PMID: 16096029 DOI: 10.1016/s0079-6603(04)79004-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
45
|
Takata KI, Shimanouchi K, Yamaguchi M, Murakami S, Ishikawa G, Takeuchi R, Kanai Y, Ruike T, Nakamura RI, Abe Y, Sakaguchi K. Damaged DNA binding protein 1 in Drosophila defense reactions. Biochem Biophys Res Commun 2004; 323:1024-31. [PMID: 15381102 DOI: 10.1016/j.bbrc.2004.08.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Indexed: 10/26/2022]
Abstract
We have focused attention on functions of Drosophila damaged DNA binding protein 1 (D-DDB1) in Drosophila hematopoiesis and previously reported that its whole body dsRNA over-expression using a GAL4-UAS targeted expression system results in melanotic tumors and complete lethality. Since the lesions appear to arise as a normal and heritable response to abnormal development, forming groups of cells that are recognized by the immune system and encapsulated in melanized cuticle, D-DDB1 appears to be an essential development-associated factor in Drosophila. To probe the possibility that it contributes to hemocyte development, we used a collagen promoter-GAL4 strain to over-express dsRNA of D-DDB1 in Drosophila hemocytes. The D-DDB1 gene silencing caused melanotic tumors and mortality at the end of larval development. Similarly, it interfered with melanization and synthesis of antimicrobial peptides. Transgenic flies with D-DDB1 gene silencing were found to accumulate abnormal large blood cells, reminiscent of human leukemia, suggesting that D-DDB1 has functions in hemocyte development.
Collapse
Affiliation(s)
- Kei-ichi Takata
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu Rev Biochem 2004; 73:39-85. [PMID: 15189136 DOI: 10.1146/annurev.biochem.73.011303.073723] [Citation(s) in RCA: 2391] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA.
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester 01605, USA.
| | | |
Collapse
|
48
|
Allard S, Masson JY, Côté J. Chromatin remodeling and the maintenance of genome integrity. ACTA ACUST UNITED AC 2004; 1677:158-64. [PMID: 15020056 DOI: 10.1016/j.bbaexp.2003.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/06/2003] [Accepted: 10/06/2003] [Indexed: 12/18/2022]
Abstract
DNA damage of any type is threatening for a cell. If lesions are left unrepaired, genomic instability can arise, faithful transmission of genetic information is greatly compromised eventually leading the cell to undergo apoptosis or carcinogenesis. In order to access/detect and repair these damages, repair factors must circumvent the natural repressive barrier of chromatin. This review will present recent progress showing the intricate link between chromatin, its remodeling and the DNA repair process. Several studies demonstrated that one of the first events following specific types of DNA damage is the phosphorylation of histone H2A. This mark or the damage itself are responsible for the association of chromatin-modifying complexes near damaged DNA. These complexes are able to change the chromatin structure around the wounded DNA in order to allow the repair machinery to gain access and repair the lesion. Chromatin modifiers include ATP-dependent remodelers such as SWI/SNF and Rad54 as well as histone acetyltransferases (HATs) like SAGA/NuA4-related complexes and p300/CBP, which have been shown to facilitate DNA accessibility and repair in different pathways leading to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Stéphane Allard
- Centre de Recherche en Cancérologie de l'Université Laval, Hôtel-Dieu de Québec (CHUQ), 9 rue McMahon, Québec, Canada G1R 2J6
| | | | | |
Collapse
|
49
|
Sancar A, Reardon JT. Nucleotide excision repair in E. coli and man. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:43-71. [PMID: 15588839 DOI: 10.1016/s0065-3233(04)69002-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|