1
|
Mirzaiebadizi A, Shafabakhsh R, Ahmadian MR. Modulating PAK1: Accessory Proteins as Promising Therapeutic Targets. Biomolecules 2025; 15:242. [PMID: 40001545 PMCID: PMC11852631 DOI: 10.3390/biom15020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The p21-activated kinase (PAK1), a serine/threonine protein kinase, is critical in regulating various cellular processes, including muscle contraction, neutrophil chemotaxis, neuronal polarization, and endothelial barrier function. Aberrant PAK1 activity has been implicated in the progression of several human diseases, including cancer, heart disease, and neurological disorders. Increased PAK1 expression is often associated with poor clinical prognosis, invasive tumor characteristics, and therapeutic resistance. Despite its importance, the cellular mechanisms that modulate PAK1 function remain poorly understood. Accessory proteins, essential for the precise assembly and temporal regulation of signaling pathways, offer unique advantages as therapeutic targets. Unlike core signaling components, these modulators can attenuate aberrant signaling without completely abolishing it, potentially restoring signaling to physiological levels. This review highlights PAK1 accessory proteins as promising and novel therapeutic targets, opening new horizons for disease treatment.
Collapse
Affiliation(s)
- Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rana Shafabakhsh
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Sementino E, Hassan D, Bellacosa A, Testa JR. AKT and the Hallmarks of Cancer. Cancer Res 2024; 84:4126-4139. [PMID: 39437156 DOI: 10.1158/0008-5472.can-24-1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Nearly a quarter century ago, Hanahan and Weinberg conceived six unifying principles explaining how normal cells transform into malignant tumors. Their provisional set of biological capabilities acquired during tumor development-cancer hallmarks-would evolve to 14 tenets as knowledge of cancer genomes, molecular mechanisms, and the tumor microenvironment expanded, most recently adding four emerging enabling characteristics: phenotypic plasticity, epigenetic reprogramming, polymorphic microbiomes, and senescent cells. AKT kinases are critical signaling molecules that regulate cellular physiology upon receptor tyrosine kinases and PI3K activation. The complex branching of the AKT signaling network involves several critical downstream nodes that significantly magnify its functional impact, such that nearly every organ system and cell in the body may be affected by AKT activity. Conversely, tumor-intrinsic dysregulation of AKT can have numerous adverse cellular and pathologic ramifications, particularly in oncogenesis, as multiple tumor suppressors and oncogenic proteins regulate AKT signaling. Herein, we review the mounting evidence implicating the AKT pathway in the aggregate of currently recognized hallmarks of cancer underlying the complexities of human malignant diseases. The challenges, recent successes, and likely areas for exciting future advances in targeting this complex pathway are also discussed.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Wilson PG, Abdelmoti L, Gao T, Galperin E. The expression of congenital Shoc2 variants induces AKT-dependent crosstalk activation of the ERK1/2 pathway. Hum Mol Genet 2024; 33:1592-1604. [PMID: 38881369 PMCID: PMC11373329 DOI: 10.1093/hmg/ddae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
The Shoc2 scaffold protein is crucial in transmitting signals within the Epidermal Growth Factor Receptor (EGFR)-mediated Extracellular signal-Regulated Kinase (ERK1/2) pathway. While the significance of Shoc2 in this pathway is well-established, the precise mechanisms through which Shoc2 governs signal transmission remain to be fully elucidated. Hereditary variants in Shoc2 are responsible for Noonan Syndrome with Loose anagen Hair (NSLH). However, due to the absence of known enzymatic activity in Shoc2, directly assessing how these variants affect its function is challenging. ERK1/2 phosphorylation is used as a primary parameter of Shoc2 function, but the impact of Shoc2 mutants on the pathway activation is unclear. This study investigates how the NSLH-associated Shoc2 variants influence EGFR signals in the context of the ERK1/2 and AKT downstream signaling pathways. We show that when the ERK1/2 pathway is a primary signaling pathway activated downstream of EGFR, Shoc2 variants cannot upregulate ERK1/2 phosphorylation to the level of the WT Shoc2. Yet, when the AKT and ERK1/2 pathways were activated, in cells expressing Shoc2 variants, ERK1/2 phosphorylation was higher than in cells expressing WT Shoc2. In cells expressing the Shoc2 NSLH mutants, we found that the AKT signaling pathway triggers the PAK activation, followed by phosphorylation of Raf-1/MEK1/2 and activation of the ERK1/2 signaling axis. Hence, our studies reveal a previously unrecognized feedback regulation downstream of the EGFR and provide additional evidence for the role of Shoc2 as a "gatekeeper" in controlling the selection of downstream effectors within the EGFR signaling network.
Collapse
Affiliation(s)
- Patricia G Wilson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| |
Collapse
|
4
|
Rivera Nieves AM, Wauford BM, Fu A. Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes. Front Mol Biosci 2024; 11:1354199. [PMID: 38404962 PMCID: PMC10884328 DOI: 10.3389/fmolb.2024.1354199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In Type 1 and Type 2 diabetes, pancreatic β-cell survival and function are impaired. Additional etiologies of diabetes include dysfunction in insulin-sensing hepatic, muscle, and adipose tissues as well as immune cells. An important determinant of metabolic health across these various tissues is mitochondria function and structure. This review focuses on the role of mitochondria in diabetes pathogenesis, with a specific emphasis on pancreatic β-cells. These dynamic organelles are obligate for β-cell survival, function, replication, insulin production, and control over insulin release. Therefore, it is not surprising that mitochondria are severely defective in diabetic contexts. Mitochondrial dysfunction poses challenges to assess in cause-effect studies, prompting us to assemble and deliberate the evidence for mitochondria dysfunction as a cause or consequence of diabetes. Understanding the precise molecular mechanisms underlying mitochondrial dysfunction in diabetes and identifying therapeutic strategies to restore mitochondrial homeostasis and enhance β-cell function are active and expanding areas of research. In summary, this review examines the multidimensional role of mitochondria in diabetes, focusing on pancreatic β-cells and highlighting the significance of mitochondrial metabolism, bioenergetics, calcium, dynamics, and mitophagy in the pathophysiology of diabetes. We describe the effects of diabetes-related gluco/lipotoxic, oxidative and inflammation stress on β-cell mitochondria, as well as the role played by mitochondria on the pathologic outcomes of these stress paradigms. By examining these aspects, we provide updated insights and highlight areas where further research is required for a deeper molecular understanding of the role of mitochondria in β-cells and diabetes.
Collapse
Affiliation(s)
- Alejandra María Rivera Nieves
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Brian Michael Wauford
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
5
|
Wilson P, Abdelmoti L, Gao T, Galperin E. The expression of congenital Shoc2 variants induces AKT-dependent feedback activation of the ERK1/2 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573219. [PMID: 38187642 PMCID: PMC10769455 DOI: 10.1101/2023.12.23.573219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The Shoc2 scaffold protein is crucial in transmitting signals within the Epidermal Growth Factor Receptor (EGFR)-mediated Extracellular signal-regulated Kinase (ERK1/2) pathway. While the significance of Shoc2 in this pathway is well-established, the precise mechanisms through which Shoc2 governs signal transmission remain to be fully elucidated. Hereditary mutations in Shoc2 are responsible for Noonan Syndrome with Loose anagen Hair (NSLH). However, due to the absence of known enzymatic activity in Shoc2, directly assessing how these mutations affect its function is challenging. ERK1/2 phosphorylation is used as a primary parameter of Shoc2 function, but the impact of Shoc2 mutants on the pathway activation is unclear. This study investigates how the NSLH-associated Shoc2 variants influence EGFR signals in the context of the ERK1/2 and AKT downstream signaling pathways. We show that when the ERK1/2 pathway is a primary signaling pathway activated downstream of EGFR, Shoc2 variants cannot upregulate ERK1/2 phosphorylation to the level of the WT Shoc2. Yet, when the AKT and ERK1/2 pathways were activated, in cells expressing Shoc2 variants, ERK1/2 phosphorylation was higher than in cells expressing WT Shoc2. We found that, in cells expressing the Shoc2 NSLH mutants, the AKT signaling pathway triggers the PAK activation, followed by phosphorylation and Raf-1/MEK1/2 /ERK1/2 signaling axis activation. Hence, our studies reveal a previously unrecognized feedback regulation downstream of the EGFR and provide evidence for the Shoc2 role as a "gatekeeper" in controlling the selection of downstream effectors within the EGFR signaling network.
Collapse
|
6
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
7
|
Islam M, Jones S, Ellis I. Role of Akt/Protein Kinase B in Cancer Metastasis. Biomedicines 2023; 11:3001. [PMID: 38002001 PMCID: PMC10669635 DOI: 10.3390/biomedicines11113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Metastasis is a critical step in the process of carcinogenesis and a vast majority of cancer-related mortalities result from metastatic disease that is resistant to current therapies. Cell migration and invasion are the first steps of the metastasis process, which mainly occurs by two important biological mechanisms, i.e., cytoskeletal remodelling and epithelial to mesenchymal transition (EMT). Akt (also known as protein kinase B) is a central signalling molecule of the PI3K-Akt signalling pathway. Aberrant activation of this pathway has been identified in a wide range of cancers. Several studies have revealed that Akt actively engages with the migratory process in motile cells, including metastatic cancer cells. The downstream signalling mechanism of Akt in cell migration depends upon the tumour type, sites, and intracellular localisation of activated Akt. In this review, we focus on the role of Akt in the regulation of two events that control cell migration and invasion in various cancers including head and neck squamous cell carcinoma (HNSCC) and the status of PI3K-Akt pathway inhibitors in clinical trials in metastatic cancers.
Collapse
Affiliation(s)
- Mohammad Islam
- Unit of Cell and Molecular Biology, School of Dentistry, University of Dundee, Park Place, Dundee DD1 4HR, UK; (S.J.); (I.E.)
| | | | | |
Collapse
|
8
|
Xu J, Velleman SG. Critical role of the mTOR pathway in poultry skeletal muscle physiology and meat quality: an opinion paper. Front Physiol 2023; 14:1228318. [PMID: 37476689 PMCID: PMC10354517 DOI: 10.3389/fphys.2023.1228318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
|
9
|
Somanath PR, Chernoff J, Cummings BS, Prasad SM, Homan HD. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers (Basel) 2023; 15:2236. [PMID: 37190165 PMCID: PMC10137274 DOI: 10.3390/cancers15082236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic prostate cancer (mPCa) has limited therapeutic options and a high mortality rate. The p21-activated kinase (PAK) family of proteins is important in cell survival, proliferation, and motility in physiology, and pathologies such as infectious, inflammatory, vascular, and neurological diseases as well as cancers. Group-I PAKs (PAK1, PAK2, and PAK3) are involved in the regulation of actin dynamics and thus are integral for cell morphology, adhesion to the extracellular matrix, and cell motility. They also play prominent roles in cell survival and proliferation. These properties make group-I PAKs a potentially important target for cancer therapy. In contrast to normal prostate and prostatic epithelial cells, group-I PAKs are highly expressed in mPCA and PCa tissue. Importantly, the expression of group-I PAKs is proportional to the Gleason score of the patients. While several compounds have been identified that target group-I PAKs and these are active in cells and mice, and while some inhibitors have entered human trials, as of yet, none have been FDA-approved. Probable reasons for this lack of translation include issues related to selectivity, specificity, stability, and efficacy resulting in side effects and/or lack of efficacy. In the current review, we describe the pathophysiology and current treatment guidelines of PCa, present group-I PAKs as a potential druggable target to treat mPCa patients, and discuss the various ATP-competitive and allosteric inhibitors of PAKs. We also discuss the development and testing of a nanotechnology-based therapeutic formulation of group-I PAK inhibitors and its significant potential advantages as a novel, selective, stable, and efficacious mPCa therapeutic over other PCa therapeutics in the pipeline.
Collapse
Affiliation(s)
- Payaningal R. Somanath
- Department of Clinical & Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- MetasTx LLC, Basking Ridge, NJ 07920, USA
| | - Jonathan Chernoff
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Brian S. Cummings
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sandip M. Prasad
- Morristown Medical Center, Atlantic Health System, Morristown, NJ 07960, USA
| | | |
Collapse
|
10
|
Chan CH, Chiou LW, Lee TY, Liu YR, Hsieh TH, Yang CY, Jeng YM. PAK and PI3K pathway activation confers resistance to KRAS G12C inhibitor sotorasib. Br J Cancer 2023; 128:148-159. [PMID: 36319849 PMCID: PMC9814377 DOI: 10.1038/s41416-022-02032-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND KRAS is a frequently mutated oncogene in human cancer. Clinical studies on the covalent inhibitors of the KRASG12C mutant have reported promising results. However, primary and acquired resistance may limit their clinical use. METHODS Sotorasib-resistant cell lines were established. We explored the signalling pathways activated in these resistant cell lines and their roles in sotorasib resistance. RESULTS The resistant cells exhibited increased cell-matrix adhesion with increased levels of stress fibres and focal adherens. p21-activated kinases (PAKs) were activated in resistant cells, which phosphorylate MEK at serine 298 of MEK and serine 338 of c-Raf to activate the mitogen-activated protein kinase pathway. The PAK inhibitors FRAX597 and FRAX486 in synergy with sotorasib reduced the viability of KRASG12C mutant cancer cells. Furthermore, the PI3K/AKT pathway was constitutively active in sotorasib-resistant cells. The overexpression of constitutively activated PI3K or the knockdown of PTEN resulted in resistance to sotorasib. PI3K inhibitor alpelisib was synergistic with sotorasib in compromising the viability of KRASG12C mutant cancer cells. Moreover, PI3K and PAK pathways formed a mutual positive regulatory loop that mediated sotorasib resistance. CONCLUSIONS Our results indicate that the cell-matrix interaction-dependent activation of PAK mediates resistance to sotorasib through the activation of MAPK and PI3K pathways.
Collapse
Affiliation(s)
- Chien-Hui Chan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Wen Chiou
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Yu Lee
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Minor Kinases with Major Roles in Cytokinesis Regulation. Cells 2022; 11:cells11223639. [PMID: 36429067 PMCID: PMC9688779 DOI: 10.3390/cells11223639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis. Several kinases have been described in the literature, such as cyclin-dependent kinase, polo-like kinase 1, and Aurora B, regulating both furrow ingression and/or abscission. However, others exist, with well-established roles in cell-cycle progression but whose specific role in cytokinesis has been poorly investigated, leading to considering these kinases as "minor" actors in this process. Yet, they deserve additional attention, as they might disclose unexpected routes of cell division regulation. Here, we summarize the role of multifunctional kinases in cytokinesis with a special focus on those with a still scarcely defined function during cell cleavage. Moreover, we discuss their implication in cancer.
Collapse
|
12
|
Kahsay A, Rodriguez-Marquez E, López-Pérez A, Hörnblad A, von Hofsten J. Pax3 loss of function delays tumour progression in kRAS-induced zebrafish rhabdomyosarcoma models. Sci Rep 2022; 12:17149. [PMID: 36229514 PMCID: PMC9561152 DOI: 10.1038/s41598-022-21525-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
Rhabdomyosarcoma is a soft tissue cancer that arises in skeletal muscle due to mutations in myogenic progenitors that lead to ineffective differentiation and malignant transformation. The transcription factors Pax3 and Pax7 and their downstream target genes are tightly linked with the fusion positive alveolar subtype, whereas the RAS pathway is usually involved in the embryonal, fusion negative variant. Here, we analyse the role of Pax3 in a fusion negative context, by linking alterations in gene expression in pax3a/pax3b double mutant zebrafish with tumour progression in kRAS-induced rhabdomyosarcoma tumours. Several genes in the RAS/MAPK signalling pathway were significantly down-regulated in pax3a/pax3b double mutant zebrafish. Progression of rhabdomyosarcoma tumours was also delayed in the pax3a/pax3b double mutant zebrafish indicating that Pax3 transcription factors have an unappreciated role in mediating malignancy in fusion negative rhabdomyosarcoma.
Collapse
Affiliation(s)
- A. Kahsay
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - E. Rodriguez-Marquez
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - A. López-Pérez
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - A. Hörnblad
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - J. von Hofsten
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| |
Collapse
|
13
|
Lakshmanan S, Rajendran R, Jayagandhi S, Rajendran R, Palanisamy T, Manimaran V, Janani Marianne A. Expression of Marker PAK1 in Sinonasal Polyposis. Indian J Otolaryngol Head Neck Surg 2022; 74:1694-1700. [PMID: 36452523 PMCID: PMC9702192 DOI: 10.1007/s12070-021-02822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022] Open
Abstract
Introduction Chronic rhinosinusitis with nasal polyposis involves mucosal lining of nose and paranasal sinuses. Numerous studies studied the mechanism leading to sinonasal polyposis. We attempted study the inflammatory mechanisms responsible for the recruitment and activation of leukocytes. Aim To study and compare the expression of the immunohistochemistry marker PAK1 in sinonasal polyposis and normal nasal mucosa. Material and Methods Prospective observational study done by comparing two groups of 30 each with Group A comprises Sinonasal polyposis and Group B comprises normal nasal mucosa. The specimens were subjected to PAK1 immunohistochemical staining. Results Immunihistrochemical staining showed higher intensity stain in sinonasal polyp when compared to normal nasal mucosa. Conclusion The upregulation of PAK1 in sinonasal polyposis when compared to normal nasal mucosa may indicate an increased cellular proliferation and turnover in the background of chronic inflammation.
Collapse
Affiliation(s)
- Somu Lakshmanan
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| | | | - Sathishkumar Jayagandhi
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| | | | - Thirunavukarasu Palanisamy
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| | - Vinoth Manimaran
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| | - A. Janani Marianne
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| |
Collapse
|
14
|
Tsai PJ, Lai YH, Manne RK, Tsai YS, Sarbassov D, Lin HK. Akt: a key transducer in cancer. J Biomed Sci 2022; 29:76. [PMID: 36180910 PMCID: PMC9526305 DOI: 10.1186/s12929-022-00860-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 01/27/2023] Open
Abstract
Growth factor signaling plays a pivotal role in diverse biological functions, such as cell growth, apoptosis, senescence, and migration and its deregulation has been linked to various human diseases. Akt kinase is a central player transmitting extracellular clues to various cellular compartments, in turn executing these biological processes. Since the discovery of Akt three decades ago, the tremendous progress towards identifying its upstream regulators and downstream effectors and its roles in cancer has been made, offering novel paradigms and therapeutic strategies for targeting human diseases and cancers with deregulated Akt activation. Unraveling the molecular mechanisms for Akt signaling networks paves the way for developing selective inhibitors targeting Akt and its signaling regulation for the management of human diseases including cancer.
Collapse
Affiliation(s)
- Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsin Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Dos Sarbassov
- Biology Department, School of Sciences and Humanities, and National Laboratory Astana, Nazarbayev University, Nur-Sultan City, 010000, Kazakhstan.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
15
|
Activation of CD44/PAK1/AKT signaling promotes resistance to FGFR1 inhibition in squamous-cell lung cancer. NPJ Precis Oncol 2022; 6:52. [PMID: 35853934 PMCID: PMC9296622 DOI: 10.1038/s41698-022-00296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Fibroblast growth factor receptor 1 (FGFR1) gene amplification is one of the most prominent and potentially targetable genetic alterations in squamous-cell lung cancer (SQCLC). Highly selective tyrosine kinase inhibitors have been developed to target FGFR1; however, resistance mechanisms originally existing in patients or acquired during treatment have so far led to limited treatment efficiency in clinical trials. In this study we performed a wide-scale phosphoproteomic mass-spectrometry analysis to explore signaling pathways that lead to resistance toward FGFR1 inhibition in lung cancer cells that display (i) intrinsic, (ii) pharmacologically induced and (iii) mutationally induced resistance. Additionally, we correlated AKT activation to CD44 expression in 175 lung cancer patient samples. We identified a CD44/PAK1/AKT signaling axis as a commonly occurring resistance mechanism to FGFR1 inhibition in lung cancer. Co-inhibition of AKT/FGFR1, CD44/FGFR1 or PAK1/FGFR1 sensitized ‘intrinsically resistant’ and ‘induced-resistant’ lung-cancer cells synergetically to FGFR1 inhibition. Furthermore, strong CD44 expression was significantly correlated with AKT activation in SQCLC patients. Collectively, our phosphoproteomic analysis of lung-cancer cells resistant to FGFR1 inhibitor provides a large data library of resistance-associated phosphorylation patterns and leads to the proposal of a common resistance pathway comprising CD44, PAK1 and AKT activation. Examination of CD44/PAK1/AKT activation could help to predict response to FGFR1 inhibition. Moreover, combination between AKT and FGFR1 inhibitors may pave the way for an effective therapy of patients with treatment-resistant FGFR1-dependent lung cancer.
Collapse
|
16
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
17
|
Abstract
The non-catalytic region of tyrosine kinase (Nck) family of adaptors, consisting of Nck1 and Nck2, contributes to selectivity and specificity in the flow of cellular information by recruiting components of signaling networks. Known to play key roles in cytoskeletal remodeling, Nck adaptors modulate host cell-pathogen interactions, immune cell receptor activation, cell adhesion and motility, and intercellular junctions in kidney podocytes. Genetic inactivation of both members of the Nck family results in embryonic lethality; however, viability of mice lacking either one of these adaptors suggests partial functional redundancy. In this Cell Science at a Glance and the accompanying poster, we highlight the molecular organization and functions of the Nck family, focusing on key interactions and pathways, regulation of cellular processes, development, homeostasis and pathogenesis, as well as emerging and non-redundant functions of Nck1 compared to those of Nck2. This article thus aims to provide a timely perspective on the biology of Nck adaptors and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| |
Collapse
|
18
|
Magliozzi JO, Moseley JB. Pak1 kinase controls cell shape through ribonucleoprotein granules. eLife 2021; 10:67648. [PMID: 34282727 PMCID: PMC8318594 DOI: 10.7554/elife.67648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Fission yeast cells maintain a rod shape due to conserved signaling pathways that organize the cytoskeleton for polarized growth. We discovered a mechanism linking the conserved protein kinase Pak1 with cell shape through the RNA-binding protein Sts5. Pak1 (also called Shk1 and Orb2) prevents Sts5 association with P bodies by directly phosphorylating its intrinsically disordered region (IDR). Pak1 and the cell polarity kinase Orb6 both phosphorylate the Sts5 IDR but at distinct residues. Mutations preventing phosphorylation in the Sts5 IDR cause increased P body formation and defects in cell shape and polarity. Unexpectedly, when cells encounter glucose starvation, PKA signaling triggers Pak1 recruitment to stress granules with Sts5. Through retargeting experiments, we reveal that Pak1 localizes to stress granules to promote rapid dissolution of Sts5 upon glucose addition. Our work reveals a new role for Pak1 in regulating cell shape through ribonucleoprotein granules during normal and stressed growth conditions.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
19
|
Liu H, Liu K, Dong Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front Cell Dev Biol 2021; 9:641381. [PMID: 33796531 PMCID: PMC8007885 DOI: 10.3389/fcell.2021.641381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
20
|
Y-27632 Induces Neurite Outgrowth by Activating the NOX1-Mediated AKT and PAK1 Phosphorylation Cascades in PC12 Cells. Int J Mol Sci 2020; 21:ijms21207679. [PMID: 33081375 PMCID: PMC7589331 DOI: 10.3390/ijms21207679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Y-27632 is known as a selective Rho-associated coiled coil-forming kinase (ROCK) inhibitor. Y-27632 has been shown to induce neurite outgrowth in several neuronal cells. However, the precise molecular mechanisms linking neurite outgrowth to Y-27632 are not completely understood. In this study, we examined the ability of Y-27632 to induce neurite outgrowth in PC12 cells and evaluated the signaling cascade. The effect of Y-27632 on the neurite outgrowth was inhibited by reactive oxygen species (ROS) scavengers such as N-acetyl cysteine (NAC) and trolox. Furthermore, Y-27632-induced neurite outgrowth was not triggered by NADPH oxidase 1 (NOX1) knockdown or diphenyleneiodonium (DPI), a NOX inhibitor. Suppression of the Rho-family GTPase Rac1, which is under the negative control of ROCK, with expression of the dominant negative Rac1 mutant (Rac1N17) prevented Y-27632-induced neurite outgrowth. Moreover, the Rac1 inhibitor NSC23766 prevented Y-27632-induced AKT and p21-activated kinase 1 (PAK1) activation. AKT inhibition with MK2206 suppressed Y-27632-induced PAK1 phosphorylation and neurite outgrowth. In conclusion, our results suggest that Rac1/NOX1-dependent ROS generation and subsequent activation of the AKT/PAK1 cascade contribute to Y-27632-induced neurite outgrowth in PC12 cells.
Collapse
|
21
|
Bautista L, Knippler CM, Ringel MD. p21-Activated Kinases in Thyroid Cancer. Endocrinology 2020; 161:bqaa105. [PMID: 32609833 PMCID: PMC7417880 DOI: 10.1210/endocr/bqaa105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
The family of p21-activated kinases (PAKs) are oncogenic proteins that regulate critical cellular functions. PAKs play central signaling roles in the integrin/CDC42/Rho, ERK/MAPK, PI3K/AKT, NF-κB, and Wnt/β-catenin pathways, functioning both as kinases and scaffolds to regulate cell motility, mitosis and proliferation, cytoskeletal rearrangement, and other cellular activities. PAKs have been implicated in both the development and progression of a wide range of cancers, including breast cancer, pancreatic melanoma, thyroid cancer, and others. Here we will discuss the current knowledge on the structure and biological functions of both group I and group II PAKs, as well as the roles that PAKs play in oncogenesis and progression, with a focus on thyroid cancer and emerging data regarding BRAF/PAK signaling.
Collapse
Affiliation(s)
- Luis Bautista
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, and Cancer Biology Program, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| | - Christina M Knippler
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, and Cancer Biology Program, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
- Department of Hematology and Medical Oncology, Emory University and Winship Cancer Institute, Atlanta, Georgia
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, and Cancer Biology Program, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
22
|
Alfaidi M, Bhattarai U, Orr AW. Nck1, But Not Nck2, Mediates Disturbed Flow-Induced p21-Activated Kinase Activation and Endothelial Permeability. J Am Heart Assoc 2020; 9:e016099. [PMID: 32468886 PMCID: PMC7428973 DOI: 10.1161/jaha.120.016099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Alteration in hemodynamic shear stress at atheroprone sites promotes endothelial paracellular pore formation and permeability. The molecular mechanism remains unknown. Methods and Results We show that Nck (noncatalytic region of tyrosine kinase) deletion significantly ameliorates disturbed flow‐induced permeability, and selective isoform depletion suggests distinct signaling mechanisms. Only Nck1 deletion significantly reduces disturbed flow‐induced paracellular pore formation and permeability, whereas Nck2 depletion has no significant effects. Additionally, Nck1 re‐expression, but not Nck2, restores disturbed flow‐induced permeability in Nck1/2 knockout cells, confirming the noncompensating roles. In vivo, using the partial carotid ligation model of disturbed flow, Nck1 knockout prevented the increase in vascular permeability, as assessed by Evans blue and fluorescein isothiocyanate dextran extravasations and leakage of plasma fibrinogen into the vessel wall. Domain swap experiments mixing SH2 (phosphotyrosine binding) and SH3 (proline‐rich binding) domains between Nck1 and Nck2 showed a dispensable role for SH2 domains but a critical role for the Nck1 SH3 domains in rescuing disturbed flow‐induced endothelial permeability. Consistent with this, both Nck1 and Nck2 bind to platelet endothelial adhesion molecule‐1 (SH2 dependent) in response to shear stress, but only Nck1 ablation interferes with shear stress–induced PAK2 (p21‐activated kinase) membrane translocation and activation. A single point mutation into individual Nck1 SH3 domains suggests a role for the first domain of Nck1 in PAK recruitment to platelet endothelial cell adhesion molecule‐1 and activation in response to shear stress. Conclusions This work provides the first evidence that Nck1 but not the highly similar Nck2 plays a distinct role in disturbed flow‐induced vascular permeability by selective p21‐activated kinase activation.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA
| | - Umesh Bhattarai
- Department of Molecular& Cellular Physiology LSU Health-Shreveport LA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA.,Department of Molecular& Cellular Physiology LSU Health-Shreveport LA.,Department of Cell Biology and Anatomy LSU Health-Shreveport LA
| |
Collapse
|
23
|
Kawaguchi M, Dashzeveg N, Cao Y, Jia Y, Liu X, Shen Y, Liu H. Extracellular Domains I and II of cell-surface glycoprotein CD44 mediate its trans-homophilic dimerization and tumor cluster aggregation. J Biol Chem 2020; 295:2640-2649. [PMID: 31969394 PMCID: PMC7049959 DOI: 10.1074/jbc.ra119.010252] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/16/2020] [Indexed: 01/09/2023] Open
Abstract
CD44 molecule (CD44) is a well-known surface glycoprotein on tumor-initiating cells or cancer stem cells. However, its utility as a therapeutic target for managing metastases remains to be fully evaluated. We previously demonstrated that CD44 mediates homophilic interactions for circulating tumor cell (CTC) cluster formation, which enhances cancer stemness and metastatic potential in association with an unfavorable prognosis. Furthermore, CD44 self-interactions activate the P21-activated kinase 2 (PAK2) signaling pathway. Here, we further examined the biochemical properties of CD44 in homotypic tumor cell aggregation. The standard CD44 form (CD44s) mainly assembled as intercellular homodimers (trans-dimers) in tumor clusters rather than intracellular dimers (cis-dimers) present in single cells. Machine learning-based computational modeling combined with experimental mutagenesis tests revealed that the extracellular Domains I and II of CD44 are essential for its trans-dimerization and predicted high-score residues to be required for dimerization. Substitutions of 10 these residues in Domain I (Ser-45, Glu-48, Phe-74, Cys-77, Arg-78, Tyr-79, Ile-88, Arg-90, Asn-94, and Cys-97) or 5 residues in Domain II (Ile-106, Tyr-155, Val-156, Gln-157, and Lys-158) abolished CD44 dimerization and reduced tumor cell aggregation in vitro Importantly, the substitutions in Domain II dramatically inhibited lung colonization in mice. The CD44 dimer-disrupting substitutions decreased downstream PAK2 activation without affecting the interaction between CD44 and PAK2, suggesting that PAK2 activation in tumor cell clusters is CD44 trans-dimer-dependent. These results shed critical light on the biochemical mechanisms of CD44-mediated tumor cell cluster formation and may help inform the development of therapeutic strategies to prevent tumor cluster formation and block cluster-mediated metastases.
Collapse
Affiliation(s)
- Madoka Kawaguchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 6068501, Japan
| | - Nurmaa Dashzeveg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yue Cao
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Xia Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536.
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843.
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
24
|
Post-Treatment with Erinacine A, a Derived Diterpenoid of H. erinaceus, Attenuates Neurotoxicity in MPTP Model of Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9020137. [PMID: 32033220 PMCID: PMC7070543 DOI: 10.3390/antiox9020137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022] Open
Abstract
Hericium erinaceus, a valuable pharmaceutical and edible mushroom, contains potent bioactive compounds such as H. erinaceus mycelium (HEM) and its derived ethanol extraction of erinacine A, which have been found to regulate physiological functions in our previous study. However, HEM or erinacine A with post-treatment regimens also shows effects on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, but its mechanisms remain unknown. By using annexin-V–fluorescein-isothiocyanate (FITC)/propidium iodide staining and a 2’,7’ –dichlorofluorescin diacetate (DCFDA) staining assay, the cell death, cell viability, and reactive oxygen species (ROS) of 1-methyl-4-phenylpyridinium (MMP+)-treated Neuro-2a (N2a) cells with or without erinacine A addition were measured, respectively. Furthermore, signaling molecules for regulating the p21/GADD45 cell death pathways and PAKalpha, p21 (RAC1) activated kinase 1 (PAK1) survival pathways were also detected in the cells treated with MPP+ and erinacine A by Western blots. In neurotoxic animal models of MPTP induction, the effects of HEM or erinacine A and its mechanism in vivo were determined by measuring the TH-positive cell numbers and the protein level of the substantia nigra through a brain histological examination. Our results demonstrated that post-treatment with erinacine A was capable of preventing the cytotoxicity of neuronal cells and the production of ROS in vitro and in vivo through the neuroprotective mechanism for erinacine A to rescue the neurotoxicity through the disruption of the IRE1α/TRAF2 interaction and the reduction of p21 and GADD45 expression. In addition, erinacine A treatment activated the conserved signaling pathways for neuronal survival via the phosphorylation of PAK1, AKT, LIM domain kinase 2 (LIMK2), extracellular signal-regulated kinases (ERK), and Cofilin. Similar changes in the signal molecules also were found in the substantia nigra of the MPTP, which caused TH+ neuron damage after being treated with erinacine A in the post-treatment regimens in a dose-dependent manner. Taken together, our data indicated a novel mechanism for post-treatment with erinacine A to protect from neurotoxicity through regulating neuronal survival and cell death pathways.
Collapse
|
25
|
Grebeňová D, Holoubek A, Röselová P, Obr A, Brodská B, Kuželová K. PAK1, PAK1Δ15, and PAK2: similarities, differences and mutual interactions. Sci Rep 2019; 9:17171. [PMID: 31748572 PMCID: PMC6868145 DOI: 10.1038/s41598-019-53665-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
P21-activated kinases (PAK) are key effectors of the small GTPases Rac1 and Cdc42, as well as of Src family kinases. In particular, PAK1 has several well-documented roles, both kinase-dependent and kinase-independent, in cancer-related processes, such as cell proliferation, adhesion, and migration. However, PAK1 properties and functions have not been attributed to individual PAK1 isoforms: besides the full-length kinase (PAK1-full), a splicing variant lacking the exon 15 (PAK1Δ15) is annotated in protein databases. In addition, it is not clear if PAK1 and PAK2 are functionally overlapping. Using fluorescently tagged forms of human PAK1-full, PAK1Δ15, and PAK2, we analyzed their intracellular localization and mutual interactions. Effects of PAK inhibition (IPA-3, FRAX597) or depletion (siRNA) on cell-surface adhesion were monitored by real-time microimpedance measurement. Both PAK1Δ15 and PAK2, but not PAK1-full, were enriched in focal adhesions, indicating that the C-terminus might be important for PAK intracellular localization. Using coimmunoprecipitation, we documented direct interactions among the studied PAK group I members: PAK1 and PAK2 form homodimers, but all possible heterocomplexes were also detected. Interaction of PAK1Δ15 or PAK2 with PAK1-full was associated with extensive PAK1Δ15/PAK2 cleavage. The impedance measurements indicate, that PAK2 depletion slows down cell attachment to a surface, and that PAK1-full is involved in cell spreading. Altogether, our data suggest a complex interplay among different PAK group I members, which have non-redundant functions.
Collapse
Affiliation(s)
- Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Adam Obr
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague, Czech Republic.
| |
Collapse
|
26
|
Targeting PKCι-PAK1 signaling pathways in EGFR and KRAS mutant adenocarcinoma and lung squamous cell carcinoma. Cell Commun Signal 2019; 17:137. [PMID: 31660987 PMCID: PMC6819333 DOI: 10.1186/s12964-019-0446-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction p21-activated kinase 1 (PAK1) stimulates growth and metastasis in non-small cell lung cancer (NSCLC). Protein kinase C iota (PKCι) is an enzyme highly expressed in NSCLC, regulating PAK1 signaling. In the present study we explored whether the PKCι-PAK1 signaling pathway approach can be an efficient target in different types of NSCLC cell and mouse models. Methods The effect of IPA-3 (PAK1 inhibitor) plus auranofin (PKCι inhibitor) combination was evaluated by cell viability assay, colony formation and western blotting assay, using three types of NSCLC cell lines: EGFR or KRAS mutant adenocarcinoma and squamous cell carcinoma with PAK1 amplification. In addition, for clinical availability, screening for new PAK1 inhibitors was carried out and the compound OTSSP167 was evaluated in combination with auranofin in cell and mice models. Results The combination of IPA-3 or OTSSP167 plus auranofin showed high synergism for inhibiting cell viability and colony formation in three cell lines. Mechanistic characterization revealed that this drug combination abrogated expression and activation of membrane receptors and downstream signaling proteins crucial in lung cancer: EGFR, MET, PAK1, PKCι, ERK1/2, AKT, YAP1 and mTOR. A nude mouse xenograft assay demonstrated that this drug combination strongly suppressed tumor volume compared with single drug treatment. Conclusions Combination of IPA-3 or OTSSP167 and auranofin was highly synergistic in EGFR or KRAS mutant adenocarcinoma and squamous cell carcinoma cell lines and decreased tumor volume in mice models. It is of interest to further test the targeting of PKCι-PAK1 signaling pathways in EGFR mutant, KRAS mutant and squamous NSCLC patients.
Collapse
|
27
|
Combined inhibition of Aurora A and p21-activated kinase 1 as a new treatment strategy in breast cancer. Breast Cancer Res Treat 2019; 177:369-382. [PMID: 31254157 PMCID: PMC6661032 DOI: 10.1007/s10549-019-05329-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/18/2019] [Indexed: 01/01/2023]
Abstract
Purpose The serine-threonine kinases Aurora A (AURKA) and p21-activated kinase 1 (PAK1) are frequently overexpressed in breast tumors, with overexpression promoting aggressive breast cancer phenotypes and poor clinical outcomes. Besides the well-defined roles of these proteins in control of cell division, proliferation, and invasion, both kinases support MAPK kinase pathway activation and can contribute to endocrine resistance by phosphorylating estrogen receptor alpha (ERα). PAK1 directly phosphorylates AURKA and its functional partners, suggesting potential value of inhibiting both kinases activity in tumors overexpressing PAK1 and/or AURKA. Here, for the first time, we evaluated the effect of combining the AURKA inhibitor alisertib and the PAK inhibitor FRAX1036 in preclinical models of breast cancer. Methods Combination of alisertib and FRAX1036 was evaluated in a panel of 13 human breast tumor cell lines and BT474 xenograft model, with assessment of the cell cycle by FACS, and signaling changes by immunohistochemistry and Western blot. Additionally, we performed in silico analysis to identify markers of response to alisertib and FRAX1036. Results Pharmacological inhibition of AURKA and PAK1 synergistically decreased survival of multiple tumor cell lines, showing particular effectiveness in luminal and HER2-enriched models, and inhibited growth and ERα-driven signaling in a BT474 xenograft model. In silico analysis suggested cell lines with dependence on AURKA are most likely to be sensitive to PAK1 inhibition. Conclusion Dual targeting of AURKA and PAK1 may be a promising therapeutic strategy for treatment of breast cancer, with a particular effectiveness in luminal and HER2-enriched tumor subtypes. Electronic supplementary material The online version of this article (10.1007/s10549-019-05329-2) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Revathidevi S, Munirajan AK. Akt in cancer: Mediator and more. Semin Cancer Biol 2019; 59:80-91. [PMID: 31173856 DOI: 10.1016/j.semcancer.2019.06.002] [Citation(s) in RCA: 461] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Akt is a serine/threonine kinase and it participates in the key role of the PI3K signaling pathway. The Akt can be activated by a wide range of growth signals and the biochemical mechanisms leading to Akt activation are well defined. Once activated, Akt modulates the function of many downstream proteins involved in cellular survival, proliferation, migration, metabolism, and angiogenesis. The Akt is a central node of many signaling pathways and it is frequently deregulated in many types of human cancers. In this review, we provide an overview of Akt function and its role in the hallmarks of human cancer. We also discussed various mechanisms of Akt dysregulation in cancers, including epigenetic modifications like methylation, post-transcriptional non-coding RNAs-mediated regulation, and the overexpression and mutation.
Collapse
Affiliation(s)
- Sundaramoorthy Revathidevi
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 113, Tamil Nadu, India
| | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 113, Tamil Nadu, India.
| |
Collapse
|
29
|
Dubrac A, Künzel SE, Künzel SH, Li J, Chandran RR, Martin K, Greif DM, Adams RH, Eichmann A. NCK-dependent pericyte migration promotes pathological neovascularization in ischemic retinopathy. Nat Commun 2018; 9:3463. [PMID: 30150707 PMCID: PMC6110853 DOI: 10.1038/s41467-018-05926-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 07/04/2018] [Indexed: 12/20/2022] Open
Abstract
Pericytes are mural cells that surround capillaries and control angiogenesis and capillary barrier function. During sprouting angiogenesis, endothelial cell-derived platelet-derived growth factor-B (PDGF-B) regulates pericyte proliferation and migration via the platelet-derived growth factor receptor-β (PDGFRβ). PDGF-B overexpression has been associated with proliferative retinopathy, but the underlying mechanisms remain poorly understood. Here we show that abnormal, α-SMA-expressing pericytes cover angiogenic sprouts and pathological neovascular tufts (NVTs) in a mouse model of oxygen-induced retinopathy. Genetic lineage tracing demonstrates that pericytes acquire α-SMA expression during NVT formation. Pericyte depletion through inducible endothelial-specific knockout of Pdgf-b decreases NVT formation and impairs revascularization. Inactivation of the NCK1 and NCK2 adaptor proteins inhibits pericyte migration by preventing PDGF-B-induced phosphorylation of PDGFRβ at Y1009 and PAK activation. Loss of Nck1 and Nck2 in mural cells prevents NVT formation and vascular leakage and promotes revascularization, suggesting PDGFRβ-Y1009/NCK signaling as a potential target for the treatment of retinopathies. Pericytes are perivascular cells that regulate blood vessel formation and function. Here Dubrac et al. show that pericyte recruitment contributes to pathological neovascularisation in a mouse model of ischemic retinopathy, and that this depends on the regulation of PDGF-B signaling by NCK adaptor proteins.
Collapse
Affiliation(s)
- Alexandre Dubrac
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Steffen E Künzel
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sandrine H Künzel
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jinyu Li
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rachana Radhamani Chandran
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kathleen Martin
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Daniel M Greif
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis and University of Münster, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Anne Eichmann
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA. .,INSERM U970, Paris Cardiovascular Research Center, 75015, Paris, France. .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
30
|
WIP-YAP/TAZ as A New Pro-Oncogenic Pathway in Glioma. Cancers (Basel) 2018; 10:cancers10060191. [PMID: 29890731 PMCID: PMC6024887 DOI: 10.3390/cancers10060191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Wild-type p53 (wtp53) is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53) is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein), correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC)-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44), prominin-1 (CD133), yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.
Collapse
|
31
|
Yang S, Li X, Liu X, Ding X, Xin X, Jin C, Zhang S, Li G, Guo H. Parallel comparative proteomics and phosphoproteomics reveal that cattle myostatin regulates phosphorylation of key enzymes in glycogen metabolism and glycolysis pathway. Oncotarget 2018; 9:11352-11370. [PMID: 29541418 PMCID: PMC5834288 DOI: 10.18632/oncotarget.24250] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/23/2017] [Indexed: 01/09/2023] Open
Abstract
MSTN-encoded myostatin is a negative regulator of skeletal muscle development. Here, we utilized the gluteus tissues from MSTN gene editing and wild type Luxi beef cattle which are native breed of cattle in China, performed tandem mass tag (TMT) -based comparative proteomics and phosphoproteomics analyses to investigate the regulatory mechanism of MSTN related to cellular metabolism and signaling pathway in muscle development. Out of 1,315 proteins, 69 differentially expressed proteins (DEPs) were found in global proteomics analysis. Meanwhile, 149 differentially changed phosphopeptides corresponding to 76 unique phosphorylated proteins (DEPPs) were detected from 2,600 identified phosphopeptides in 702 phosphorylated proteins. Bioinformatics analyses suggested that majority of DEPs and DEPPs were closely related to glycolysis, glycogenolysis, and muscle contractile fibre processes. The global discovery results were validated by Multiple Reaction Monitoring (MRM)-based targeted peptide quantitation analysis, western blotting, and muscle glycogen content measurement. Our data revealed that increase in abundance of key enzymes and phosphorylation on their regulatory sites appears responsible for the enhanced glycogenolysis and glycolysis in MSTN-/- . The elevated glycogenolysis was assocaited with an enhanced phosphorylation of Ser1018 in PHKA1, and Ser641/Ser645 in GYS1, which were regulated by upstream phosphorylated AKT-GSK3β pathway and highly consistent with the lower glycogen content in gluteus of MSTN-/- . Collectively, this study provides new insights into the regulatory mechanisms of MSTN involved in energy metabolism and muscle growth.
Collapse
Affiliation(s)
- Shuping Yang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinfeng Liu
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbin Ding
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbo Xin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Congfei Jin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guangpeng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Hong Guo
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
32
|
Abstract
p21-Activated kinase 1 (PAK1) has attracted much attention as a potential therapeutic target due to its central role in many oncogenic signaling pathways, its frequent dysregulation in cancers and neurological disorders, and its tractability as a target for small-molecule inhibition. To date, several PAK1-targeting compounds have been developed as preclinical agents, including one that has been evaluated in a clinical trial. A series of ATP-competitive inhibitors, allosteric inhibitors and peptide inhibitors with distinct biochemical and pharmacokinetic properties represent useful laboratory tools for studies on the role of PAK1 in biology and in disease contexts, and could lead to promising therapeutic agents. Given the central role of PAK1 in vital signaling pathways, future clinical development of PAK1 inhibitors will require careful investigation of their safety and efficacy.
Collapse
|
33
|
De Marco C, Laudanna C, Rinaldo N, Oliveira DM, Ravo M, Weisz A, Ceccarelli M, Caira E, Rizzuto A, Zoppoli P, Malanga D, Viglietto G. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS One 2017; 12:e0178865. [PMID: 28662101 PMCID: PMC5491004 DOI: 10.1371/journal.pone.0178865] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/19/2017] [Indexed: 01/04/2023] Open
Abstract
Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant BioFunctions enriched by the costitutive activation of AKT1-, PI3K- or PTEN-dependent signalling in lung epithelial cells. Expectedly, the analysis of the DEGs common to all three alterations highlighted a group of BioFunctions that included Cell Proliferation of tumor cell lines (14 DEGs), Invasion of cells (10 DEGs) and Migration of tumour cell lines (10 DEGs), with a common core of 5 genes (ATF3, CDKN1A, GDF15, HBEGF and LCN2) that likely represent downstream effectors of the pro-oncogenic activities of PI3K/AKT signalling. Conversely, IPA analysis of exclusive DEGs led to the identification of different downstream effectors that are modulated by mutant AKT1 (TGFBR2, CTSZ, EMP1), mutant PIK3CA (CCND2, CDK2, IGFBP2, TRIB1) and PTEN loss (ASNS, FHL2). These findings not only shed light on the molecular mechanisms that are activated by aberrant signalling through the PI3K/AKT pathway in lung epithelial cells, but also contribute to the identification of previously unrecognised molecules whose regulation takes part in the development of lung cancer.
Collapse
Affiliation(s)
- Carmela De Marco
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Carmelo Laudanna
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Nicola Rinaldo
- Biogem scarl, Instituto di Rihe Genetiche "Gaetano Salvatore", Ariano Irpino, Italia
| | - Duarte Mendes Oliveira
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Maria Ravo
- Laboratorio di Medicina Molecolare e Genomica, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi, Italia
| | - Alessandro Weisz
- Laboratorio di Medicina Molecolare e Genomica, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi, Italia
| | - Michele Ceccarelli
- Dipartimento di Studi Biologici e Ambientali, Università del Sannio, Benevento, Italia
| | - Elvira Caira
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Antonia Rizzuto
- Dipartimento di Scienze Mediche e Chirurgiche, Università "Magna Graecia", Catanzaro, Italia
| | - Pietro Zoppoli
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Donatella Malanga
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia.,Biogem scarl, Instituto di Rihe Genetiche "Gaetano Salvatore", Ariano Irpino, Italia
| |
Collapse
|
34
|
Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel ES. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog 2017; 56:1515-1525. [PMID: 28052407 DOI: 10.1002/mc.22611] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
BRAF is a commonly mutated oncogene in various human malignancies and a target of a new class of anti-cancer agents, BRAF-inhibitors (BRAFi). The initial enthusiasm for these agents, based on the early successes in the management of metastatic melanoma, is now challenged by the mounting evidence of intrinsic BRAFi-insensitivity in many BRAF-mutated tumors, by the scarcity of complete responses, and by the inevitable emergence of drug resistance in initially responsive cases. These setbacks put an emphasis on discovering the means to increase the efficacy of BRAFi and to prevent or overcome BRAFi-resistance. We explored the role of p21-activated kinases (PAKs), in particular PAK1, in BRAFi response. BRAFi lowered the levels of active PAK1 in treated cells. An activated form of PAK1 conferred BRAFi-resistance on otherwise sensitive cells, while genetic or pharmacologic suppression of PAK1 had a sensitizing effect. While activation of AKT1 and RAC1 proto-oncogenes increased BRAFi-tolerance, the protective effect was negated in the presence of PAK inhibitors. Furthermore, combining otherwise ineffective doses of PAK- and BRAF-inhibitors synergistically affected intrinsically BRAFi-resistant cells. Considering the high incidence of PAK1 activation in cancers, our findings suggests PAK inhibition as a strategy to augment BRAFi therapy and overcome some of the well-known resistance mechanisms.
Collapse
Affiliation(s)
- Mahamat Babagana
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Sydney Johnson
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Hannah Slabodkin
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Wiam Bshara
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Carl Morrison
- Department of Pathology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York
| |
Collapse
|
35
|
Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene 2016; 605:20-31. [PMID: 28007610 DOI: 10.1016/j.gene.2016.12.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
PAKs, p21-activated kinases, play central roles and act as converging junctions for discrete signals elicited on the cell surface and for a number of intracellular signaling cascades. PAKs phosphorylate a vast number of substrates and act by remodeling cytoskeleton, employing scaffolding, and relocating to distinct subcellular compartments. PAKs affect wide range of processes that are crucial to the cell from regulation of cell motility, survival, redox, metabolism, cell cycle, proliferation, transformation, stress, inflammation, to gene expression. Understandably, their dysregulation disrupts cellular homeostasis and severely impacts key cell functions, and many of those are implicated in a number of human diseases including cancers, neurological disorders, and cardiac disorders. Here we provide an overview of the members of the PAK family and their current status. We give special emphasis to PAK1 and PAK4, the prototypes of groups I and II, for their profound roles in cancer, the nervous system, and the heart. We also highlight other family members. We provide our perspective on the current advancements, their growing importance as strategic therapeutic targets, and our vision on the future of PAKs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India.
| | - Rahul Sanawar
- Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
36
|
Pegylated IFN-α suppresses hepatitis C virus by promoting the DAPK-mTOR pathway. Proc Natl Acad Sci U S A 2016; 113:14799-14804. [PMID: 27930338 DOI: 10.1073/pnas.1618517114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Death-associated protein kinase (DAPK) has been found to be induced by IFN, but its antiviral activity remains elusive. Therefore, we investigated whether DAPK plays a role in the pegylated IFN-α (peg-IFN-α)-induced antiviral activity against hepatitis C virus (HCV) replication. Primary human hepatocytes, Huh-7, and infectious HCV cell culture were used to study the relationship between peg-IFN-α and the DAPK-mammalian target of rapamycin (mTOR) pathways. The activation of DAPK and signaling pathways were determined using immunoblotting. By silencing DAPK and mTOR, we further assessed the role of DAPK and mTOR in the peg-IFN-α-induced suppression of HCV replication. Peg-IFN-α up-regulated the expression of DAPK and mTOR, which was associated with the suppression of HCV replication. Overexpression of DAPK enhanced mTOR expression and then inhibited HCV replication. In addition, knockdown of DAPK reduced the expression of mTOR in peg-IFN-α-treated cells, whereas silencing of mTOR had no effect on DAPK expression, suggesting mTOR may be a downstream effector of DAPK. More importantly, knockdown of DAPK or mTOR significantly mitigated the inhibitory effects of peg-IFN-α on HCV replication. In conclusion, our data suggest that the DAPK-mTOR pathway is critical for anti-HCV effects of peg-IFN-α.
Collapse
|
37
|
Tsigelny IF, Kouznetsova VL, Lian N, Kesari S. Molecular mechanisms of OLIG2 transcription factor in brain cancer. Oncotarget 2016; 7:53074-53101. [PMID: 27447975 PMCID: PMC5288170 DOI: 10.18632/oncotarget.10628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte lineage transcription factor 2 (OLIG2) plays a pivotal role in glioma development. Here we conducted a comprehensive study of the critical gene regulatory networks involving OLIG2. These include the networks responsible for OLIG2 expression, its translocation to nucleus, cell cycle, epigenetic regulation, and Rho-pathway interactions. We described positive feedback loops including OLIG2: loops of epigenetic regulation and loops involving receptor tyrosine kinases. These loops may be responsible for the prolonged oncogenic activity of OLIG2. The proposed schemes for epigenetic regulation of the gene networks involving OLIG2 are confirmed by patient survival (Kaplan-Meier) curves based on the cancer genome atlas (TCGA) datasets. Finally, we elucidate the Coherent-Gene Modules (CGMs) networks-framework of OLIG2 involvement in cancer. We showed that genes interacting with OLIG2 formed eight CGMs having a set of intermodular connections. We showed also that among the genes involved in these modules the most connected hub is EGFR, then, on lower level, HSP90 and CALM1, followed by three lower levels including epigenetic genes KDM1A and NCOR1. The genes on the six upper levels of the hierarchy are involved in interconnections of all eight CGMs and organize functionally defined gene-signaling subnetworks having specific functions. For example, CGM1 is involved in epigenetic control. CGM2 is significantly related to cell proliferation and differentiation. CGM3 includes a number of interconnected helix-loop-helix transcription factors (bHLH) including OLIG2. Many of these TFs are partially controlled by OLIG2. The CGM4 is involved in PDGF-related: angiogenesis, tumor cell proliferation and differentiation. These analyses provide testable hypotheses and approaches to inhibit OLIG2 pathway and relevant feed-forward and feedback loops to be interrogated. This broad approach can be applied to other TFs.
Collapse
Affiliation(s)
- Igor F. Tsigelny
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0752, CA, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Nathan Lian
- REHS, San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
| | - Santosh Kesari
- John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
- Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
| |
Collapse
|
38
|
Varshney P, Dey CS. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells. Mol Cell Endocrinol 2016; 429:50-61. [PMID: 27040307 DOI: 10.1016/j.mce.2016.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
Abstract
P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity.
Collapse
Affiliation(s)
- Pallavi Varshney
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
39
|
Zhang H, Zhou GL. CAP1 (Cyclase-Associated Protein 1) Exerts Distinct Functions in the Proliferation and Metastatic Potential of Breast Cancer Cells Mediated by ERK. Sci Rep 2016; 6:25933. [PMID: 27173014 PMCID: PMC4865817 DOI: 10.1038/srep25933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022] Open
Abstract
The actin-regulating protein CAP1 is implicated in the invasiveness of human cancers. However, the exact role remains elusive and controversial given lines of conflicting evidence. Moreover, a potential role in the proliferative transformation has largely been overlooked. Further establishing the role and dissecting underlying mechanisms are imperative before targeting CAP1 can become a possibility for cancer treatment. Here we report our findings that CAP1 exerts cell type-dependent functions in the invasiveness of breast cancer cells. Depletion of CAP1 in the metastatic MDA-MB-231 and BT-549 cancer cells stimulated the metastatic potential while it actually inhibited it in the non-metastatic MCF-7 cancer cells or in normal cells. Moreover, we demonstrate functions for CAP1 in cancer cell proliferation and anchorage-independent growth, again in a cell context-dependent manner. Importantly, we identify pivotal roles for the ERK-centered signaling in mediating both CAP1 functions. Phosphor mutants of CAP1 at the S307/S309 regulatory site had compromised rescue effects for both the invasiveness and proliferation in CAP1-knockdown cells, suggesting that CAP1 likely mediates upstream cell signals to control both functions. These novel mechanistic insights may ultimately open up avenues for strategies targeting CAP1 in the treatment of breast cancer, tailored for specific types of the highly diverse disease.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA.,Molecular Biosciences Program, Arkansas State University, State University, AR 72467, USA
| | - Guo-Lei Zhou
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA.,Molecular Biosciences Program, Arkansas State University, State University, AR 72467, USA
| |
Collapse
|
40
|
Atomura R, Sanui T, Fukuda T, Tanaka U, Toyoda K, Taketomi T, Yamamichi K, Akiyama H, Nishimura F. Inhibition of Sprouty2 polarizes macrophages toward an M2 phenotype by stimulation with interferon γ and Porphyromonas gingivalis lipopolysaccharide. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:98-110. [PMID: 27042307 PMCID: PMC4768065 DOI: 10.1002/iid3.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 01/10/2023]
Abstract
Periodontitis is a chronic inflammatory disorder caused by specific bacteria residing in the biofilm, particularly Porphyromonas gingivalis (Pg). Sprouty2 (Spry2) functions as a negative regulator of the fibroblast growth factor (FGF) signaling pathway. We previously demonstrated that sequestration of Spry2 induced proliferation and osteogenesis in osteoblastic cells by basic FGF (bFGF) and epidermal growth factor (EGF) stimulation in vitro, but diminished cell proliferation in gingival epithelial cells. In addition, Spry2 knockdown in combination with bFGF and EGF stimulation increases periodontal ligament cell proliferation and migration accompanied by prevention of osteoblastic differentiation. In this study, we investigated the mechanisms through which Spry2 depletion by interferon (IFN) γ and Pg lipopolysaccharide (LPS) stimulation affected the physiology of macrophages in vitro. Transfection of macrophages with Spry2 small‐interfering RNA (siRNA) promoted the expression of genes characteristic of M2 alternative activated macrophages, induced interleukin (IL)‐10 expression, and enhanced arginase activity, even in cells stimulated with IFNγ and Pg LPS. In addition, we found that phosphoinositide 3‐kinase (PI3K) and AKT activation by Spry2 downregulation enhanced efferocytosis of apoptotic cells by increasing Rac1 activation and decreasing nuclear factor kappa B (NFκB) p65 phosphorylation but not signal transducer and activator of transcription 1 (STAT1) phosphorylation. Collectively, our results suggested that topical administration of Spry2 inhibitors may efficiently resolve inflammation in periodontal disease as macrophage‐based anti‐inflammatory immunotherapy and may create a suitable environment for periodontal wound healing. These in vitro findings provide a molecular basis for new therapeutic approaches in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ryo Atomura
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Terukazu Sanui
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Takao Fukuda
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Urara Tanaka
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Kyosuke Toyoda
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center Kurume University School of Medicine Fukuoka Japan
| | - Kensuke Yamamichi
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Hajime Akiyama
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Fusanori Nishimura
- Division of Oral Rehabilitation Department of Periodontology Faculty of Dental Science Kyushu University Fukuoka Japan
| |
Collapse
|
41
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Al-Maghrabi J, Emam E, Gomaa W, Al-Qaydy D, Al-Maghrabi B, Buhmeida A, Abuzenadah A, Al-Qahtani M, Al-Ahwal M. Overexpression of PAK-1 is an independent predictor of disease recurrence in colorectal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15895-15902. [PMID: 26884861 PMCID: PMC4730074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is a significant cause of major morbidity and mortality. PAK-1 is a protein that regulates cytoskeletal dynamics and cell motility. The purpose of the present study is to investigate the relationship between PAK-1 immunoexpression and CRC progression and its validity as an independent prognostic factor. PATIENTS AND METHODS Paraffin blocks of 103 primary CRCs and 37 nodal metastases were retrieved and tissue microarrays were constructed. Immunohistochemistry was performed using anti-PAK-1 antibody. Immunostaining was scored and results were analysed in relation to clinicopathological parameters. RESULTS PAK-1 was overexpressed in primary CRC (P<0.001). No difference between low and high expression in nodal metastasis (P=0.139). There was no difference between PAK-1 immunoexpression in primary and nodal metastasis (P=0.275). High PAK-1 immunoexpression was associated with disease recurrence (P=0.03). However, there was no association with most clinicopathological parameters. PAK-1 overexpression was detected as an independent predictor of disease recurrence (P=0.05). No association was found between PAK-1 immunoexpression and disease free survival (log-rank =1.287, P=0.257). CONCLUSION PAK-1 overexpression may be involved in CRC progression and could be considered an independent predictor of disease recurrence. Further in vivo and in vitro molecular studies are needed to investigate the role of PAK-1 in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Jaudah Al-Maghrabi
- Department of Pathology, King Abdulaziz UniversityJeddah, Saudi Arabia
- Scientific Chair for Colorectal Cancer, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Eman Emam
- Department of Pathology, King Abdulaziz UniversityJeddah, Saudi Arabia
- Department of Pathology, Alexandria UniversityEgypt
| | - Wafaey Gomaa
- Department of Pathology, King Abdulaziz UniversityJeddah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Minia UniversityEl-Minia, Egypt
| | - Doaa Al-Qaydy
- Department of Pathology, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Basim Al-Maghrabi
- Department of Pathology, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Mahmoud Al-Ahwal
- Scientific Chair for Colorectal Cancer, King Abdulaziz UniversityJeddah, Saudi Arabia
- Department of Medicine, King Abdulaziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
43
|
Tanaka U, Sanui T, Fukuda T, Toyoda K, Taketomi T, Atomura R, Yamamichi K, Maeda H, Nishimura F. Sprouty2 inhibition promotes proliferation and migration of periodontal ligament cells. Oral Dis 2015; 21:977-86. [DOI: 10.1111/odi.12369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/16/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022]
Affiliation(s)
- U Tanaka
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - T Sanui
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - T Fukuda
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - K Toyoda
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - T Taketomi
- Dental and Oral Medical Centre; Kurume University School of Medicine; Fukuoka Japan
| | - R Atomura
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - K Yamamichi
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - H Maeda
- Department of Endodontology and Operative Dentistry; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - F Nishimura
- Department of Periodontology; Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| |
Collapse
|
44
|
Siu MKY, Kong DSH, Ngai SYP, Chan HY, Jiang L, Wong ESY, Liu SS, Chan KKL, Ngan HYS, Cheung ANY. p21-Activated Kinases 1, 2 and 4 in Endometrial Cancers: Effects on Clinical Outcomes and Cell Proliferation. PLoS One 2015. [PMID: 26218748 PMCID: PMC4517872 DOI: 10.1371/journal.pone.0133467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
p21-activated kinases (Paks) are serine/threonine protein kinases involved in biological events linked to malignant tumor progression. In this study, expression of Pak1, p-Pak2 Ser20, Pak4, pPak4 Ser474 in 21 normal endometrium, 16 hyperplastic endometrium without atypia, 17 atypical complex hyperplasia and 67 endometrial cancers was assessed by immunohistochemistry and correlated with clinicopathological parameters. We also accessed the proliferative role and downstream targets of Pak1 in endometrial cancer. Pak1 was expressed in cytoplasm whereas Pak4 and p-Pak4 were expressed in both cytoplasm and nucleus of endometrial tissues. In normal endometrium, significantly higher Pak1 (P = 0.028) and cytoplasmic p-Pak2 (P = 0.048) expression was detected in proliferative endometrium than secretory endometrium. Pak1, cytoplasmic and nuclear Pak4 and nuclear p-Pak4 was significantly overexpressed in endometrial cancer when compared to atrophic endometrium (all P<0.05). Moreover, type I endometrioid carcinomas showed significantly higher Pak1 expression than type II non-endometrioid carcinomas (P<0.001). On the other hand, Pak1, Pak4 and p-Pak4 expression negatively correlated with histological grade (all P<0.05) while p-Pak2 and cytoplasmic Pak4 expression inversely correlated with myometrial invasion (all P<0.05). Furthermore, patients with endometrial cancers with lower cytoplasmic Pak4 expression showed poorer survival (P = 0.026). Multivariate analysis showed cytoplasmic Pak4 is an independent prognostic factor. Functionally, knockdown of Pak1, but not Pak4, in endometrial cancer cell line led to reduced cell proliferation along with reduced cyclin D1, estrogen receptor (ERα) and progestogen receptor (PR) expression. Significant correlation between Pak1 and PR expression was also detected in clinical samples. Our findings suggest that Pak1 and cytoplasmic p-Pak2 may promote cell proliferation in normal endometrium during menstral cycle. Pak1, cytoplasmic and nuclear Pak4 and nuclear p-Pak4 are involved in the pathogenesis of endometrial cancer especially in postmenopausal women. Pak1 promote endometrial cancer cell proliferation, particular in type I endometrioid carcinoma. Cytoplasmic Pak4 can be potential prognostic marker in endometrial cancer.
Collapse
Affiliation(s)
- Michelle K. Y. Siu
- Department of Pathology, The University of Hong Kong, Hong Kong, HKSAR, China
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, HKSAR, China
- * E-mail: (MKYS); (ANYC)
| | - Daniel S. H. Kong
- Department of Pathology, The University of Hong Kong, Hong Kong, HKSAR, China
| | - Sheila Y. P. Ngai
- Department of Pathology, The University of Hong Kong, Hong Kong, HKSAR, China
| | - Hoi Yan Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, HKSAR, China
| | - Lili Jiang
- Department of Pathology, The University of Hong Kong, Hong Kong, HKSAR, China
| | - Esther S. Y. Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, HKSAR, China
| | - Stephanie S. Liu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, HKSAR, China
| | - Karen K. L. Chan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, HKSAR, China
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, HKSAR, China
| | - Annie N. Y. Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong, HKSAR, China
- * E-mail: (MKYS); (ANYC)
| |
Collapse
|
45
|
Fortier AM, Asselin E, Cadrin M. Functional specificity of Akt isoforms in cancer progression. Biomol Concepts 2015; 2:1-11. [PMID: 25962016 DOI: 10.1515/bmc.2011.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Akt/PKB kinases are central mediators of cell homeostasis. There are three highly homologous Akt isoforms, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ. Hyperactivation of Akt signaling is a key node in the progression of a variety of human cancer, by modulating tumor growth, chemoresistance and cancer cell migration, invasion and metastasis. It is now clear that, to understand the mechanisms on how Akt affects specific cancer cells, it is necessary to consider the relative importance of each of the three Akt isoforms in the altered cells. Akt1 is involved in tumor growth, cancer cell invasion and chemoresistance and is the predominant altered isoform found in various carcinomas. Akt2 is related to cancer cell invasion, metastasis and survival more than tumor induction. Most of the Akt2 alterations are observed in breast, ovarian, pancreatic and colorectal carcinomas. As Akt3 expression is limited to some tissues, its implication in tumor growth and resistance to drugs mostly occurs in melanomas, gliomas and some breast carcinomas. To explain how Akt isoforms can play different or even opposed roles, three mechanisms have been proposed: tissue-specificity expression/activation of Akt isoforms, distinct effect on same substrate as well as specific localization through the cyto-skeleton network. It is becoming clear that to develop an effective anticancer Akt inhibitor drug, it is necessary to target the specific Akt isoform which promotes the progression of the specific tumor.
Collapse
|
46
|
pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1. PLoS One 2015; 10:e0127876. [PMID: 25955155 PMCID: PMC4425470 DOI: 10.1371/journal.pone.0127876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/21/2015] [Indexed: 11/30/2022] Open
Abstract
Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing.
Collapse
|
47
|
Olaisen C, Müller R, Nedal A, Otterlei M. PCNA-interacting peptides reduce Akt phosphorylation and TLR-mediated cytokine secretion suggesting a role of PCNA in cellular signaling. Cell Signal 2015; 27:1478-87. [PMID: 25797046 DOI: 10.1016/j.cellsig.2015.03.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 01/14/2023]
Abstract
Proliferating cell nuclear antigen (PCNA), commonly known as a nuclear protein essential for regulation of DNA replication, DNA repair, and epigenetics, has recently been associated with multiple cytosolic functions. Many proteins containing one of the two known PCNA-interacting motifs, the AlkB homologue 2 PCNA interacting motif (APIM) and the PCNA-interacting peptide (PIP)-box, are considered to be mainly cytosolic. APIM is found in more than 20 kinases and/or associated proteins including several direct or indirect members of the mitogen-activated protein kinase (MAPK) and PI3K/Akt pathways. Mass spectrometry analysis of PCNA-pull downs verified that many cytosolic proteins involved in the MAPK and PI3K/Akt pathways are in complex with PCNA. Furthermore, treatment of cells with a PCNA-interacting APIM-containing peptide (APIM-peptide) reduced Akt phosphorylation in human peripheral blood monocytes and a human keratinocyte cell line (HaCaT). Additionally, the APIM-peptide strongly reduced the cytokine secretion from monocytes stimulated with toll like receptor (TLR) ligands and potentiated the effects of MAPK and PI3K/Akt inhibitors. Interestingly, the protein level of the APIM-containing PKR/RIG-1 activator protein (PACT) was initially strongly reduced in HaCaT cells stimulated with APIM-peptide in combination with the TLR ligand polyinosinic-polycytidylic acid (polyIC). Our results suggest that PCNA has a platform role in cytosol affecting cellular signaling.
Collapse
Affiliation(s)
- Camilla Olaisen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Rebekka Müller
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Aina Nedal
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| |
Collapse
|
48
|
Balasubramaniam SL, Gopalakrishnapillai A, Gangadharan V, Duncan RL, Barwe SP. Sodium-calcium exchanger 1 regulates epithelial cell migration via calcium-dependent extracellular signal-regulated kinase signaling. J Biol Chem 2015; 290:12463-73. [PMID: 25770213 DOI: 10.1074/jbc.m114.629519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/16/2022] Open
Abstract
Na(+)/Ca(2+) exchanger-1 (NCX1) is a major calcium extrusion mechanism in renal epithelial cells enabling the efflux of one Ca(2+) ion and the influx of three Na(+) ions. The gradient for this exchange activity is provided by Na,K-ATPase, a hetero-oligomer consisting of a catalytic α-subunit and a regulatory β-subunit (Na,K-β) that also functions as a motility and tumor suppressor. We showed earlier that mice with heart-specific ablation (KO) of Na,K-β had a specific reduction in NCX1 protein and were ouabain-insensitive. Here, we demonstrate that Na,K-β associates with NCX1 and regulates its localization to the cell surface. Madin-Darby canine kidney cells with Na,K-β knockdown have reduced NCX1 protein and function accompanied by 2.1-fold increase in free intracellular calcium and a corresponding increase in the rate of cell migration. Increased intracellular calcium up-regulated ERK1/2 via calmodulin-dependent activation of PI3K. Both myosin light chain kinase and Rho-associated kinase acted as mediators of ERK1/2-dependent migration. Restoring NCX1 expression in β-KD cells reduced migration rate and ERK1/2 activation, suggesting that NCX1 functions downstream of Na,K-β in regulating cell migration. In parallel, inhibition of NCX1 by KB-R7943 in Madin-Darby canine kidney cells, LLC-PK1, and human primary renal epithelial cells (HREpiC) increased ERK1/2 activation and cell migration. This increased migration was associated with high myosin light chain phosphorylation by PI3K/ERK-dependent mechanism in HREpiC cells. These data confirm the role of NCX1 activity in regulating renal epithelial cell migration.
Collapse
Affiliation(s)
- Sona Lakshme Balasubramaniam
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Anilkumar Gopalakrishnapillai
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 and
| | - Vimal Gangadharan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Sonali P Barwe
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
49
|
The roles of akt isoforms in the regulation of podosome formation in fibroblasts and extracellular matrix invasion. Cancers (Basel) 2015; 7:96-111. [PMID: 25575302 PMCID: PMC4381253 DOI: 10.3390/cancers7010096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal cells employ actin-based membrane protrusions called podosomes and invadopodia for cross-tissue migration during normal human development such as embryogenesis and angiogenesis, and in diseases such as atherosclerosis plaque formation and cancer cell metastasis. The Akt isoforms, downstream effectors of phosphatidylinositol 3 kinase (PI3K), play crucial roles in cell migration and invasion, but their involvement in podosome formation and cell invasion is not known. In this study, we have used Akt1 and/or Akt2 knockout mouse embryonic fibroblasts and Akt3-targeted shRNA to determine the roles of the three Akt isoforms in Src and phorbol ester-induced podosome formation, and extracellular matrix (ECM) digestion. We found that deletion or knockdown of Akt1 significantly reduces Src-induced formation of podosomes and rosettes, and ECM digestion, while suppression of Akt2 has little effect. In contrast, Akt3 knockdown by shRNA increases Src-induced podosome/rosette formation and ECM invasion. These data suggest that Akt1 promotes, while Akt3 suppresses, podosome formation induced by Src, and Akt2 appears to play an insignificant role. Interestingly, both Akt1 and Akt3 suppress, while Akt2 enhances, phorbol ester-induced podosome formation. These data show that Akt1, Akt2 and Akt3 play different roles in podosome formation and ECM invasion induced by Src or phorbol ester, thus underscoring the importance of cell context in the roles of Akt isoforms in cell invasion.
Collapse
|
50
|
Hammer A, Diakonova M. Tyrosyl phosphorylated serine-threonine kinase PAK1 is a novel regulator of prolactin-dependent breast cancer cell motility and invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:97-137. [PMID: 25472536 DOI: 10.1007/978-3-319-12114-7_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite efforts to discover the cellular pathways regulating breast cancer metastasis, little is known as to how prolactin (PRL) cooperates with extracellular environment and cytoskeletal proteins to regulate breast cancer cell motility and invasion. We implicated serine-threonine kinase p21-activated kinase 1 (PAK1) as a novel target for PRL-activated Janus-kinase 2 (JAK2). JAK2-dependent PAK1 tyrosyl phosphorylation plays a critical role in regulation of both PAK1 kinase activity and scaffolding properties of PAK1. Tyrosyl phosphorylated PAK1 facilitates PRL-dependent motility via at least two mechanisms: formation of paxillin/GIT1/βPIX/pTyr-PAK1 complexes resulting in increased adhesion turnover and phosphorylation of actin-binding protein filamin A. Increased adhesion turnover is the basis for cell migration and phosphorylated filamin A stimulates the kinase activity of PAK1 and increases actin-regulating activity to facilitate cell motility. Tyrosyl phosphorylated PAK1 also stimulates invasion of breast cancer cells in response to PRL and three-dimensional (3D) collagen IV via transcription and secretion of MMP-1 and MMP-3 in a MAPK-dependent manner. These data illustrate the complex interaction between PRL and the cell microenvironment in breast cancer cells and suggest a pivotal role for PRL/PAK1 signaling in breast cancer metastasis.
Collapse
Affiliation(s)
- Alan Hammer
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|