1
|
Lui JC, Baron J. Epigenetic Causes of Overgrowth Syndromes. J Clin Endocrinol Metab 2024; 109:312-320. [PMID: 37450557 PMCID: PMC11032252 DOI: 10.1210/clinem/dgad420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Human overgrowth disorders are characterized by excessive prenatal and/or postnatal growth of various tissues. These disorders often present with tall stature, macrocephaly, and/or abdominal organomegaly and are sometimes associated with additional phenotypic abnormalities such as intellectual disability and increased cancer risk. As the genetic etiology of these disorders have been elucidated, a surprising pattern has emerged. Multiple monogenic overgrowth syndromes result from variants in epigenetic regulators: variants in histone methyltransferases NSD1 and EZH2 cause Sotos syndrome and Weaver syndrome, respectively, variants in DNA methyltransferase DNMT3A cause Tatton-Brown-Rahman syndrome, and variants in chromatin remodeler CHD8 cause an autism spectrum disorder with overgrowth. In addition, very recently, a variant in histone reader protein SPIN4 was identified in a new X-linked overgrowth disorder. In this review, we discuss the genetics of these overgrowth disorders and explore possible common underlying mechanisms by which epigenetic pathways regulate human body size.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Youn A, Kim KI, Rabadan R, Tycko B, Shen Y, Wang S. A pan-cancer analysis of driver gene mutations, DNA methylation and gene expressions reveals that chromatin remodeling is a major mechanism inducing global changes in cancer epigenomes. BMC Med Genomics 2018; 11:98. [PMID: 30400878 PMCID: PMC6218985 DOI: 10.1186/s12920-018-0425-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
Background Recent large-scale cancer sequencing studies have discovered many novel cancer driver genes (CDGs) in human cancers. Some studies also suggest that CDG mutations contribute to cancer-associated epigenomic and transcriptomic alterations across many cancer types. Here we aim to improve our understanding of the connections between CDG mutations and altered cancer cell epigenomes and transcriptomes on pan-cancer level and how these connections contribute to the known association between epigenome and transcriptome. Method Using multi-omics data including somatic mutation, DNA methylation, and gene expression data of 20 cancer types from The Cancer Genome Atlas (TCGA) project, we conducted a pan-cancer analysis to identify CDGs, when mutated, have strong associations with genome-wide methylation or expression changes across cancer types, which we refer as methylation driver genes (MDGs) or expression driver genes (EDGs), respectively. Results We identified 32 MDGs, among which, eight are known chromatin modification or remodeling genes. Many of the remaining 24 MDGs are connected to chromatin regulators through either regulating their transcription or physically interacting with them as potential co-factors. We identified 29 EDGs, 26 of which are also MDGs. Further investigation on target genes’ promoters methylation and expression alteration patterns of these 26 overlapping driver genes shows that hyper-methylation of target genes’ promoters are significantly associated with down-regulation of the same target genes and hypo-methylation of target genes’ promoters are significantly associated with up-regulation of the same target genes. Conclusion This finding suggests a pivotal role for genetically driven changes in chromatin remodeling in shaping DNA methylation and gene expression patterns during tumor development. Electronic supplementary material The online version of this article (10.1186/s12920-018-0425-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahrim Youn
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA.,The Jackson Laboratory For Genomic Medicine, Farmington, Connecticut, USA
| | - Kyung In Kim
- The Jackson Laboratory For Genomic Medicine, Farmington, Connecticut, USA
| | - Raul Rabadan
- Department of System Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Benjamin Tycko
- Division of Genetics & Epigenetics, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Yufeng Shen
- Department of System Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA.,Columbia Genome Center, Columbia University, New York, New York, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA.
| |
Collapse
|
3
|
Abstract
Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. The degree to which the arrangement of motif sites within regulatory elements determines their function remains unclear. Here, we show that the positional distribution of TF motif sites within nucleosome-depleted regions of DNA fall into six distinct classes. These patterns are highly consistent across cell types and bring together factors that have similar functional and binding properties. Furthermore, the position of motif sites appears to be related to their known functions. Our results suggest that TFs play distinct roles in forming a functional enhancer, facilitated by their position within a regulatory sequence. Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. TF binding occurs in nucleosome-depleted regions of DNA (NDRs), which generally encompass regions with lengths similar to those protected by nucleosomes. However, less is known about where within these regions specific TFs tend to be found. Here, we characterize the positional bias of inferred binding sites for 103 TFs within ∼500,000 NDRs across 47 cell types. We find that distinct classes of TFs display different binding preferences: Some tend to have binding sites toward the edges, some toward the center, and some at other positions within the NDR. These patterns are highly consistent across cell types, suggesting that they may reflect TF-specific intrinsic structural or functional characteristics. In particular, TF classes with binding sites at NDR edges are enriched for those known to interact with histones and chromatin remodelers, whereas TFs with central enrichment interact with other TFs and cofactors such as p300. Our results suggest distinct regiospecific binding patterns and functions of TF classes within enhancers.
Collapse
|
4
|
Grossman SR, Zhang X, Wang L, Engreitz J, Melnikov A, Rogov P, Tewhey R, Isakova A, Deplancke B, Bernstein BE, Mikkelsen TS, Lander ES. Systematic dissection of genomic features determining transcription factor binding and enhancer function. Proc Natl Acad Sci U S A 2017; 114:E1291-E1300. [PMID: 28137873 PMCID: PMC5321001 DOI: 10.1073/pnas.1621150114] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enhancers regulate gene expression through the binding of sequence-specific transcription factors (TFs) to cognate motifs. Various features influence TF binding and enhancer function-including the chromatin state of the genomic locus, the affinities of the binding site, the activity of the bound TFs, and interactions among TFs. However, the precise nature and relative contributions of these features remain unclear. Here, we used massively parallel reporter assays (MPRAs) involving 32,115 natural and synthetic enhancers, together with high-throughput in vivo binding assays, to systematically dissect the contribution of each of these features to the binding and activity of genomic regulatory elements that contain motifs for PPARγ, a TF that serves as a key regulator of adipogenesis. We show that distinct sets of features govern PPARγ binding vs. enhancer activity. PPARγ binding is largely governed by the affinity of the specific motif site and higher-order features of the larger genomic locus, such as chromatin accessibility. In contrast, the enhancer activity of PPARγ binding sites depends on varying contributions from dozens of TFs in the immediate vicinity, including interactions between combinations of these TFs. Different pairs of motifs follow different interaction rules, including subadditive, additive, and superadditive interactions among specific classes of TFs, with both spatially constrained and flexible grammars. Our results provide a paradigm for the systematic characterization of the genomic features underlying regulatory elements, applicable to the design of synthetic regulatory elements or the interpretation of human genetic variation.
Collapse
Affiliation(s)
- Sharon R Grossman
- Broad Institute, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Health Sciences and Technology, Harvard Medical School, Boston, MA 02215
| | | | - Li Wang
- Broad Institute, Cambridge, MA 02142
| | - Jesse Engreitz
- Broad Institute, Cambridge, MA 02142
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Ryan Tewhey
- Broad Institute, Cambridge, MA 02142
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Alina Isakova
- Institute of Bioengineering, CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Bradley E Bernstein
- Broad Institute, Cambridge, MA 02142
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Tarjei S Mikkelsen
- Broad Institute, Cambridge, MA 02142
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Eric S Lander
- Broad Institute, Cambridge, MA 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Systems Biology, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
5
|
Pradhan RN, Bues JJ, Gardeux V, Schwalie PC, Alpern D, Chen W, Russeil J, Raghav SK, Deplancke B. Dissecting the brown adipogenic regulatory network using integrative genomics. Sci Rep 2017; 7:42130. [PMID: 28181539 PMCID: PMC5299609 DOI: 10.1038/srep42130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Brown adipocytes regulate energy expenditure via mitochondrial uncoupling, which makes them attractive therapeutic targets to tackle obesity. However, the regulatory mechanisms underlying brown adipogenesis are still poorly understood. To address this, we profiled the transcriptome and chromatin state during mouse brown fat cell differentiation, revealing extensive gene expression changes and chromatin remodeling, especially during the first day post-differentiation. To identify putatively causal regulators, we performed transcription factor binding site overrepresentation analyses in active chromatin regions and prioritized factors based on their expression correlation with the bona-fide brown adipogenic marker Ucp1 across multiple mouse and human datasets. Using loss-of-function assays, we evaluated both the phenotypic effect as well as the transcriptomic impact of several putative regulators on the differentiation process, uncovering ZFP467, HOXA4 and Nuclear Factor I A (NFIA) as novel transcriptional regulators. Of these, NFIA emerged as the regulator yielding the strongest molecular and cellular phenotypes. To examine its regulatory function, we profiled the genomic localization of NFIA, identifying it as a key early regulator of terminal brown fat cell differentiation.
Collapse
Affiliation(s)
- Rachana N Pradhan
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Johannes J Bues
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Vincent Gardeux
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Petra C Schwalie
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Daniel Alpern
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Wanze Chen
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Julie Russeil
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | | | - Bart Deplancke
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Fane M, Harris L, Smith AG, Piper M. Nuclear factor one transcription factors as epigenetic regulators in cancer. Int J Cancer 2017; 140:2634-2641. [PMID: 28076901 DOI: 10.1002/ijc.30603] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/12/2016] [Accepted: 12/29/2016] [Indexed: 12/23/2022]
Abstract
Tumour heterogeneity poses a distinct obstacle to therapeutic intervention. While the initiation of tumours across various physiological systems is frequently associated with signature mutations in genes that drive proliferation and bypass senescence, increasing evidence suggests that tumour progression and clonal diversity is driven at an epigenetic level. The tumour microenvironment plays a key role in driving diversity as cells adapt to demands imposed during tumour growth, and is thought to drive certain subpopulations back to a stem cell-like state. This stem cell-like phenotype primes tumour cells to react to external cues via the use of developmental pathways that facilitate changes in proliferation, migration and invasion. Because the dynamism of this stem cell-like state requires constant chromatin remodelling and rapid alterations at regulatory elements, it is of great therapeutic interest to identify the cell-intrinsic factors that confer these epigenetic changes that drive tumour progression. The nuclear factor one (NFI) family are transcription factors that play an important role in the development of many mammalian organ systems. While all four family members have been shown to act as either oncogenes or tumour suppressors across various cancer models, evidence has emerged implicating them as key epigenetic regulators during development and within tumours. Notably, NFIs have also been shown to regulate chromatin accessibility at distal regulatory elements that drive tumour cell dissemination and metastasis. Here we summarize the role of the NFIs in cancer, focusing largely on the potential mechanisms associated with chromatin remodelling and epigenetic modulation of gene expression.
Collapse
Affiliation(s)
- Mitchell Fane
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia.,Dermatology Research Centre, The University of Queensland, School of Medicine, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Denny SK, Yang D, Chuang CH, Brady JJ, Lim JS, Grüner BM, Chiou SH, Schep AN, Baral J, Hamard C, Antoine M, Wislez M, Kong CS, Connolly AJ, Park KS, Sage J, Greenleaf WJ, Winslow MM. Nfib Promotes Metastasis through a Widespread Increase in Chromatin Accessibility. Cell 2016; 166:328-342. [PMID: 27374332 PMCID: PMC5004630 DOI: 10.1016/j.cell.2016.05.052] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022]
Abstract
Metastases are the main cause of cancer deaths, but the mechanisms underlying metastatic progression remain poorly understood. We isolated pure populations of cancer cells from primary tumors and metastases from a genetically engineered mouse model of human small cell lung cancer (SCLC) to investigate the mechanisms that drive the metastatic spread of this lethal cancer. Genome-wide characterization of chromatin accessibility revealed the opening of large numbers of distal regulatory elements across the genome during metastatic progression. These changes correlate with copy number amplification of the Nfib locus, and differentially accessible sites were highly enriched for Nfib transcription factor binding sites. Nfib is necessary and sufficient to increase chromatin accessibility at a large subset of the intergenic regions. Nfib promotes pro-metastatic neuronal gene expression programs and drives the metastatic ability of SCLC cells. The identification of widespread chromatin changes during SCLC progression reveals an unexpected global reprogramming during metastatic progression.
Collapse
Affiliation(s)
- Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dian Yang
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jing Shan Lim
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara M Grüner
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shin-Heng Chiou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alicia N Schep
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessika Baral
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cécile Hamard
- Service de Pneumologie, Hôpital Tenon-APHP, Université Paris 6 Pierre et Marie Curie, 75020 Paris, France
| | - Martine Antoine
- Service de Pneumologie, Hôpital Tenon-APHP, Université Paris 6 Pierre et Marie Curie, 75020 Paris, France
| | - Marie Wislez
- Service de Pneumologie, Hôpital Tenon-APHP, Université Paris 6 Pierre et Marie Curie, 75020 Paris, France
| | - Christina S Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew J Connolly
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Julien Sage
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| | - Monte M Winslow
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Pjanic M, Schmid CD, Gaussin A, Ambrosini G, Adamcik J, Pjanic P, Plasari G, Kerschgens J, Dietler G, Bucher P, Mermod N. Nuclear Factor I genomic binding associates with chromatin boundaries. BMC Genomics 2013; 14:99. [PMID: 23402308 PMCID: PMC3610271 DOI: 10.1186/1471-2164-14-99] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/26/2013] [Indexed: 12/20/2022] Open
Abstract
Background The Nuclear Factor I (NFI) family of DNA binding proteins (also called CCAAT box transcription factors or CTF) is involved in both DNA replication and gene expression regulation. Using chromatin immuno-precipitation and high throughput sequencing (ChIP-Seq), we performed a genome-wide mapping of NFI DNA binding sites in primary mouse embryonic fibroblasts. Results We found that in vivo and in vitro NFI DNA binding specificities are indistinguishable, as in vivo ChIP-Seq NFI binding sites matched predictions based on previously established position weight matrix models of its in vitro binding specificity. Combining ChIP-Seq with mRNA profiling data, we found that NFI preferentially associates with highly expressed genes that it up-regulates, while binding sites were under-represented at expressed but unregulated genes. Genomic binding also correlated with markers of transcribed genes such as histone modifications H3K4me3 and H3K36me3, even outside of annotated transcribed loci, implying NFI in the control of the deposition of these modifications. Positional correlation between + and - strand ChIP-Seq tags revealed that, in contrast to other transcription factors, NFI associates with a nucleosomal length of cleavage-resistant DNA, suggesting an interaction with positioned nucleosomes. In addition, NFI binding prominently occurred at boundaries displaying discontinuities in histone modifications specific of expressed and silent chromatin, such as loci submitted to parental allele-specific imprinted expression. Conclusions Our data thus suggest that NFI nucleosomal interaction may contribute to the partitioning of distinct chromatin domains and to epigenetic gene expression regulation. NFI ChIP-Seq and input control DNA data were deposited at Gene Expression Omnibus (GEO) repository under accession number GSE15844. Gene expression microarray data for mouse embryonic fibroblasts are on GEO accession number GSE15871.
Collapse
Affiliation(s)
- Milos Pjanic
- Institute of Biotechnology and Center for Biotecghnology UNIL-EPFL, University of Lausanne, 1015, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ray BK, Dhar S, Henry C, Rich A, Ray A. Epigenetic regulation by Z-DNA silencer function controls cancer-associated ADAM-12 expression in breast cancer: cross-talk between MeCP2 and NF1 transcription factor family. Cancer Res 2012; 73:736-44. [PMID: 23135915 DOI: 10.1158/0008-5472.can-12-2601] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A disintegrin and metalloprotease domain-containing protein 12 (ADAM-12) is upregulated in many human cancers and promotes cancer metastasis. Increased urinary level of ADAM-12 in breast and bladder cancers correlates with disease progression. However, the mechanism of its induction in cancer remains less understood. Previously, we reported a Z-DNA-forming negative regulatory element (NRE) in ADAM-12 that functions as a transcriptional suppressor to maintain a low-level expression of ADAM-12 in most normal cells. We now report here that overexpression of ADAM-12 in triple-negative MDA-MB-231 breast cancer cells and breast cancer tumors is likely due to a marked loss of this Z-DNA-mediated transcriptional suppression function. We show that Z-DNA suppressor operates by interaction with methyl-CpG-binding protein, MeCP2, a prominent epigenetic regulator, and two members of the nuclear factor 1 family of transcription factors, NF1C and NF1X. While this tripartite interaction is highly prevalent in normal breast epithelial cells, both in vitro and in vivo, it is significantly lower in breast cancer cells. Western blot analysis has revealed significant differences in the levels of these 3 proteins between normal mammary epithelial and breast cancer cells. Furthermore, we show, by NRE mutation analysis, that interaction of these proteins with the NRE is necessary for effective suppressor function. Our findings unveil a new epigenetic regulatory process in which Z-DNA/MeCP2/NF1 interaction leads to transcriptional suppression, loss of which results in ADAM-12 overexpression in breast cancer cells.
Collapse
Affiliation(s)
- Bimal K Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
10
|
Conserved Motifs and Prediction of Regulatory Modules in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2012; 2:469-81. [PMID: 22540038 PMCID: PMC3337475 DOI: 10.1534/g3.111.001081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/06/2012] [Indexed: 01/30/2023]
Abstract
Transcriptional regulation, a primary mechanism for controlling the development of multicellular organisms, is carried out by transcription factors (TFs) that recognize and bind to their cognate binding sites. In Caenorhabditis elegans, our knowledge of which genes are regulated by which TFs, through binding to specific sites, is still very limited. To expand our knowledge about the C. elegans regulatory network, we performed a comprehensive analysis of the C. elegans, Caenorhabditis briggsae, and Caenorhabditis remanei genomes to identify regulatory elements that are conserved in all genomes. Our analysis identified 4959 elements that are significantly conserved across the genomes and that each occur multiple times within each genome, both hallmarks of functional regulatory sites. Our motifs show significant matches to known core promoter elements, TF binding sites, splice sites, and poly-A signals as well as many putative regulatory sites. Many of the motifs are significantly correlated with various types of experimental data, including gene expression patterns, tissue-specific expression patterns, and binding site location analysis as well as enrichment in specific functional classes of genes. Many can also be significantly associated with specific TFs. Combinations of motif occurrences allow us to predict the location of cis-regulatory modules and we show that many of them significantly overlap experimentally determined enhancers. We provide access to the predicted binding sites, their associated motifs, and the predicted cis-regulatory modules across the whole genome through a web-accessible database and as tracks for genome browsers.
Collapse
|
11
|
King HA, Trotter KW, Archer TK. Chromatin remodeling during glucocorticoid receptor regulated transactivation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:716-26. [PMID: 22425674 DOI: 10.1016/j.bbagrm.2012.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 12/21/2022]
Abstract
Steroid hormone receptor (SR) signaling leads to widespread changes in gene expression, and aberrant SR signaling can lead to malignancies including breast, prostate, and lung cancers. Chromatin remodeling is an essential component of SR signaling, and defining the process of chromatin and nucleosome remodeling during signaling is critical to the continued development of related therapies. The glucocorticoid receptor (GR) is a key SR that activates numerous promoters including the well defined MMTV promoter. The activation of MMTV by GR provides an excellent model for teasing apart the sequence of events between hormone treatment and changes in gene expression. Comparing hormone-induced transcription from stably integrated promoters with defined nucleosomal structure to that from transiently expressed, unstructured promoters permits key distinctions between interactions that require remodeling and those that do not. The importance of co-activators and histone modifications prior to remodeling and the formation of the preinitiation complex that follows can also be clarified by defining key transition points in the propagation of hormonal signals. Combined with detailed mapping of proteins along the promoter, a temporal and spatial understanding of the signaling and remodeling processes begins to emerge. In this review, we examine SR signaling with a focus on GR activation of the MMTV promoter. We also discuss the ATP-dependent remodeling complex SWI/SNF, which provides the necessary remodeling activity during GR signaling and interacts with several SRs. BRG1, the central ATPase of SWI/SNF, also interacts with a set of BAF proteins that help determine the specialized function and fine-tuned regulation of BRG1 remodeling activity. BRG1 regulation comes from its own subdomains as well as its interactive partners. In particular, the HSA domain region of BRG1 and unique features of its ATPase homology appear to play key roles in regulating remodeling function. Details of the inter-workings of this chromatin remodeling protein continue to be revealed and promise to improve our understanding of the mechanism of chromatin remodeling during steroid hormone signaling. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Heather A King
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
12
|
Oleggini R, Di Donato A. Lysyl oxidase regulates MMTV promoter: indirect evidence of histone H1 involvement. Biochem Cell Biol 2011; 89:522-32. [DOI: 10.1139/o11-049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysyl oxidase (LOX) is the enzyme that facilitates the cross-linking of collagen and elastin, although other functions for this enzyme have been indicated. Of these other functions, we describe herein the ability of LOX to regulate several gene promoters, like collagen III, elastin, and cyclin D1. We have previously demonstrated a specific binding between LOX and histone H1, in vitro. Therefore, we investigated whether LOX would affect the mouse mammary tumor virus (MMTV) promoter and its glucocorticoid regulation, which depends on the phophorylation status of histone H1. Our results show that the over-expression of recombinant human LOX was able to trigger MMTV activity, both in the presence and absence of glucocorticoids. Moreover, we demonstrated that histone H1 from cells expressing recombinant LOX contained isodesmosine and desmosine, indicating specific lysyl-oxidase-dependent lysine modifications. Finally, we were able to co-immunoprecipitate the exogenous LOX and histone H1 from the LOX transfected cells. The data are compatible with a decreased positive charge of histone H1, owing to deamination by LOX of its lysine residues. This event would favor H1 detachment from the target DNA, and consequent opening of the MMTV promoter structure to the activating transcription factors. The presented data, therefore, suggest a possible histone-H1-dependent mechanism for the modulation of MMTV promoter by LOX.
Collapse
|
13
|
Hierarchical cooperativity mediated by chromatin remodeling; the model of the MMTV transcription regulation. J Theor Biol 2011; 287:74-81. [DOI: 10.1016/j.jtbi.2011.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 01/08/2023]
|
14
|
Pham CD, Sims HI, Archer TK, Schnitzler GR. Multiple distinct stimuli increase measured nucleosome occupancy around human promoters. PLoS One 2011; 6:e23490. [PMID: 21853138 PMCID: PMC3154950 DOI: 10.1371/journal.pone.0023490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/18/2011] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes can block access to transcription factors. Thus the precise localization of nucleosomes relative to transcription start sites and other factor binding sites is expected to be a critical component of transcriptional regulation. Recently developed microarray approaches have allowed the rapid mapping of nucleosome positions over hundreds of kilobases (kb) of human genomic DNA, although these approaches have not yet been widely used to measure chromatin changes associated with changes in transcription. Here, we use custom tiling microarrays to reveal changes in nucleosome positions and abundance that occur when hormone-bound glucocorticoid receptor (GR) binds to sites near target gene promoters in human osteosarcoma cells. The most striking change is an increase in measured nucleosome occupancy at sites spanning ∼1 kb upstream and downstream of transcription start sites, which occurs one hour after addition of hormone, but is lost at 4 hours. Unexpectedly, this increase was seen both on GR-regulated and GR-non-regulated genes. In addition, the human SWI/SNF chromatin remodeling factor (a GR co-activator) was found to be important for increased occupancy upon hormone treatment and also for low nucleosome occupancy without hormone. Most surprisingly, similar increases in nucleosome occupancy were also seen on both regulated and non-regulated promoters during differentiation of human myeloid leukemia cells and upon activation of human CD4+ T-cells. These results indicate that dramatic changes in chromatin structure over ∼2 kb of human promoters may occur genomewide and in response to a variety of stimuli, and suggest novel models for transcriptional regulation.
Collapse
Affiliation(s)
- Chuong D. Pham
- AstraZeneca R&D Boston, Waltham, Massachusetts, United States of America
| | - Hillel I. Sims
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Trevor K. Archer
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Gavin R. Schnitzler
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Maksakova IA, Goyal P, Bullwinkel J, Brown JP, Bilenky M, Mager DL, Singh PB, Lorincz MC. H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviral silencing. Epigenetics Chromatin 2011; 4:12. [PMID: 21774827 PMCID: PMC3169442 DOI: 10.1186/1756-8935-4-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/20/2011] [Indexed: 02/01/2023] Open
Abstract
Background Endogenous retroviruses (ERVs) are parasitic sequences whose derepression is associated with cancer and genomic instability. Many ERV families are silenced in mouse embryonic stem cells (mESCs) via SETDB1-deposited trimethylated lysine 9 of histone 3 (H3K9me3), but the mechanism of H3K9me3-dependent repression remains unknown. Multiple proteins, including members of the heterochromatin protein 1 (HP1) family, bind H3K9me2/3 and are involved in transcriptional silencing in model organisms. In this work, we address the role of such H3K9me2/3 "readers" in the silencing of ERVs in mESCs. Results We demonstrate that despite the reported function of HP1 proteins in H3K9me-dependent gene repression and the critical role of H3K9me3 in transcriptional silencing of class I and class II ERVs, the depletion of HP1α, HP1β and HP1γ, alone or in combination, is not sufficient for derepression of these elements in mESCs. While loss of HP1α or HP1β leads to modest defects in DNA methylation of ERVs or spreading of H4K20me3 into flanking genomic sequence, respectively, neither protein affects H3K9me3 or H4K20me3 in ERV bodies. Furthermore, using novel ERV reporter constructs targeted to a specific genomic site, we demonstrate that, relative to Setdb1, knockdown of the remaining known H3K9me3 readers expressed in mESCs, including Cdyl, Cdyl2, Cbx2, Cbx7, Mpp8, Uhrf1 and Jarid1a-c, leads to only modest proviral reactivation. Conclusion Taken together, these results reveal that each of the known H3K9me3-binding proteins is dispensable for SETDB1-mediated ERV silencing. We speculate that H3K9me3 might maintain ERVs in a silent state in mESCs by directly inhibiting deposition of active covalent histone marks.
Collapse
Affiliation(s)
- Irina A Maksakova
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pjanic M, Pjanic P, Schmid C, Ambrosini G, Gaussin A, Plasari G, Mazza C, Bucher P, Mermod N. Nuclear factor I revealed as family of promoter binding transcription activators. BMC Genomics 2011; 12:181. [PMID: 21473784 PMCID: PMC3082249 DOI: 10.1186/1471-2164-12-181] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 04/07/2011] [Indexed: 12/11/2022] Open
Abstract
Background Multiplex experimental assays coupled to computational predictions are being increasingly employed for the simultaneous analysis of many specimens at the genome scale, which quickly generates very large amounts of data. However, inferring valuable biological information from the comparisons of very large genomic datasets still represents an enormous challenge. Results As a study model, we chose the NFI/CTF family of mammalian transcription factors and we compared the results obtained from a genome-wide study of its binding sites with chromatin structure assays, gene expression microarray data, and in silico binding site predictions. We found that NFI/CTF family members preferentially bind their DNA target sites when they are located around transcription start sites when compared to control datasets generated from the random subsampling of the complete set of NFI binding sites. NFI proteins preferably associate with the upstream regions of genes that are highly expressed and that are enriched in active chromatin modifications such as H3K4me3 and H3K36me3. We postulate that this is a causal association and that NFI proteins mainly act as activators of transcription. This was documented for one member of the family (NFI-C), which revealed as a more potent gene activator than repressor in global gene expression analysis. Interestingly, we also discovered the association of NFI with the tri-methylation of lysine 9 of histone H3, a chromatin marker previously associated with the protection against silencing of telomeric genes by NFI. Conclusion Taken together, we illustrate approaches that can be taken to analyze large genomic data, and provide evidence that NFI family members may act in conjunction with specific chromatin modifications to activate gene expression.
Collapse
Affiliation(s)
- Milos Pjanic
- Institute of Biotechnology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y. 5 Methylation and demethylation of his tone arg and lys residues in chromatin structure and function. Enzymes 2010; 24:123-53. [PMID: 26718039 DOI: 10.1016/s1874-6047(06)80007-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Chromatin is the physiological template of all eukaryotic genomic activities. Histone proteins are the fundamental building elements of chromatin, which are the subject of various posttranslational modifications, including methylation. Adding and removing the methyl moieties from histones plays an important epigenetic role to ensure the release of the appropriate genetic information. Both Lys and Arg residues in histones can be dynamically methylated and demethylated by different enzymes. The processes of adding and removing methyl groups on histone Lys residues are catalyzed by histone Lys methyltransferases (HKMTs) and histone-Lys-specific demethylase (LSD), respectively. Protein Arg methyltransferases (PRMTs) add methyl groups to histone Arg residues. On the other hand, peptidy-larginine deiminases remove the methyl groups in conjunction with the amine group, leaving the citrulline aminoacid in histones. The fate of citrulline residues in histone is currently unknown. Importantly, methylation has been implicated as playing a major role in regulating gene expression to control normal cell growth, proliferation, and differentiation. The steady-state balance of histone methylation is important for the normal development and the health of an organism.
Collapse
Affiliation(s)
- Yanming Wang
- Department of Biochemistry and Molecular Biology Pennsylvania State University 108 Althouse Lab University Park, PA 16802, USA
| |
Collapse
|
18
|
Zhang J, Gao N, DeGraff DJ, Yu X, Sun Q, Case TC, Kasper S, Matusik RJ. Characterization of cis elements of the probasin promoter necessary for prostate-specific gene expression. Prostate 2010; 70:934-51. [PMID: 20209642 PMCID: PMC3712623 DOI: 10.1002/pros.21128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The androgen-regulated probasin (PB) promoter has been used extensively to target transgenes to the prostate in transgenic mice; however, limited data exist on the mechanism that dictates prostate-specific gene expression. Tissue-specific gene expression involves synergistic effects among transcription factors associated in a complex bound to cis-acting DNA elements. METHODS Using comprehensive linker scan mutagenesis, enzyme mobility shift and supershift assays, chromatin immunoprecipitation, and transgenic animal studies, we have extensively characterized the prostate-specific PB promoter. RESULTS We identified a series of nonreceptor transcription factors that are bound to the prostate-specific rat PB promoter. These factors include several ubiquitously distributed proteins known to participate in steroid receptor-mediated transcription. In addition, we identified two tissue-specific DNA elements that are crucial in directing prostate-specific PB expression, and confirmed the functional importance of both elements in transgenic animal studies. These two elements are functionally interchangeable and can be bound by multiple protein complexes, including the forkhead transcription factor FoxA1, a "pioneer factor" that has a restricted distribution to some cells type that are ectoderm and endoderm in origin. Using transgenic mice, we further demonstrate that the minimal PB promoter region (-244/-96 bp) that encompasses these tissue-specific elements results in prostate-specific gene expression in transgenic mice, contains androgen receptor and FoxA1-binding sites, as well as ubiquitous transcription factor binding sites. CONCLUSION We propose that these sequence-specific DNA-binding proteins, including tissue-restricted and ubiquitous factors, create the first level of transcriptional control, which responds to intracellular pathways that directs prostate-specific gene expression.
Collapse
Affiliation(s)
- JianFeng Zhang
- Department of Cell and Developmental Biology, Nashville, TN 37232-2765 USA
| | - Nan Gao
- Department of Cell and Developmental Biology, Nashville, TN 37232-2765 USA
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
| | - David J. DeGraff
- Department of Cell and Developmental Biology, Nashville, TN 37232-2765 USA
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
- Department of Vanderbilt University Medical Center, Nashville, TN 37232-2765 USA
| | - Xiuping Yu
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
| | - Qian Sun
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Nashville, TN 37232-2765 USA
| | - Thomas C. Case
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
| | - Susan Kasper
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267-0056
| | - Robert J. Matusik
- Department of Cell and Developmental Biology, Nashville, TN 37232-2765 USA
- Department of Urologic Surgery, Nashville, TN 37232-2765 USA
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Nashville, TN 37232-2765 USA
- Department of Vanderbilt University Medical Center, Nashville, TN 37232-2765 USA
| |
Collapse
|
19
|
Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell 2010; 38:41-53. [PMID: 20385088 PMCID: PMC3641559 DOI: 10.1016/j.molcel.2010.01.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/11/2009] [Accepted: 01/25/2010] [Indexed: 12/23/2022]
Abstract
High-order chromatin was reconstituted in vitro. This species reflects the criteria associated with transcriptional regulation in vivo. Histone H1 was determinant to formation of condensed structures, with deacetylated histones giving rise to highly compacted chromatin that approximated 30 nm fibers as evidenced by electron microscopy. Using the PEPCK promoter, we validated the integrity of these templates that were refractory to transcription by attaining transcription through the progressive action of the pertinent factors. The retinoic acid receptor binds to highly compacted chromatin, but the NF1 transcription factor binds only after histone acetylation by p300 and SWI/SNF-mediated nucleosome mobilization, reflecting the in vivo case. Mapping studies revealed the same pattern of nucleosomal repositioning on the PEPCK promoter in vitro and in vivo, correlating with NF1 binding and transcription. The reconstitution of such highly compacted "30 nm" chromatin that mimics in vivo characteristics should advance studies of its conversion to a transcriptionally active form.
Collapse
|
20
|
Vicent GP, Zaurin R, Nacht AS, Font-Mateu J, Le Dily F, Beato M. Nuclear factor 1 synergizes with progesterone receptor on the mouse mammary tumor virus promoter wrapped around a histone H3/H4 tetramer by facilitating access to the central hormone-responsive elements. J Biol Chem 2009; 285:2622-31. [PMID: 19940123 DOI: 10.1074/jbc.m109.060848] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Steroid hormones induce transcription of their responsive genes by complex mechanisms including synergism between the hormone receptors and other transcription factors. On the mouse mammary tumor virus (MMTV) promoter progesterone induction is mediated by the reciprocal synergism between progesterone receptor (PR) and the ubiquitous transcription factor nuclear factor 1 (NF1). PR binding mediates ATP-dependent displacement of histone H2A and H2B, enabling NF1 access to its target site. In minichromosomes assembled in vitro NF1 binding facilitates access of PR to the hormone-responsive elements (HREs) by precluding reforming of the histone octamer, but the function of NF1 in living cells remains unclear. Here we show that depleting NF1 by small interfering RNAs or mutating the NF1-binding site significantly compromises transcription of the MMTV promoter. The central HREs 2 and 3 are not needed for ATP-dependent H2A/H2B displacement or NF1 binding but are critical for full PR binding and MMTV transactivation. We found that NF1 binding to the MMTV promoter on a H3/H4 histone tetramer particle exposes the central HREs and facilitates their binding by PR, suggesting a possible mechanism for the reciprocal synergism between PR and NF1.
Collapse
Affiliation(s)
- Guillermo Pablo Vicent
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Dr Aiguader 88, E-08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Riffel AK, Schuenemann E, Vyhlidal CA. Regulation of the CYP3A4 and CYP3A7 promoters by members of the nuclear factor I transcription factor family. Mol Pharmacol 2009; 76:1104-14. [PMID: 19706729 DOI: 10.1124/mol.109.055699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the established interindividual variability and ontogeny of the CYP3A enzymes, the most abundant phase I drug-metabolizing enzymes in human liver and intestine, the mechanisms that regulate basal expression remain poorly understood. Electrophoretic mobility shift assays using nuclear proteins extracted from human prenatal and postnatal liver samples identified multiple, developmentally distinct nuclear factor I (NFI)-containing protein complexes from human liver bound to sequences from the CYP3A4 (-243/-220) and CYP3A7 (-242/-219) proximal promoters. In addition, a hepatocyte nuclear factor (HNF) 3gamma-containing complex from prenatal liver interacted with CYP3A7-242/-219 but not CYP3A4-243/-220. Cotransfection of HepG2 cells with a CYP3A4 proximal promoter construct and expression vectors for the NFI isoforms NFIA1.1, NFIB2, NFIC1, NFIC2, and NFIX1 enhanced the expression of luciferase activity. In contrast, cotransfection of NFIB2, NFIC1, NFIC2, NFIX1, and NFIX2 reduced the expression of luciferase under the control of the CYP3A7 gene promoter. Mutagenesis of the NFI/HNF3gamma binding sites in the CYP3A7 and CYP3A4 proximal promoters suggests that regulation of basal promoter activity by members of the NFI transcription factor family occur via multiple mechanisms. These results demonstrate that members of the NFI transcription factor family regulate CYP3A4 and CYP3A7 basal expression in an isoform- and promoter-specific manner.
Collapse
Affiliation(s)
- Amanda K Riffel
- Division of Pediatric Clinical Pharmacology and Medical Toxicology, Department of Pediatrics, Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
22
|
Vicent GP, Zaurin R, Nacht AS, Li A, Font-Mateu J, Le Dily F, Vermeulen M, Mann M, Beato M. Two chromatin remodeling activities cooperate during activation of hormone responsive promoters. PLoS Genet 2009; 5:e1000567. [PMID: 19609353 PMCID: PMC2704372 DOI: 10.1371/journal.pgen.1000567] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 06/18/2009] [Indexed: 12/22/2022] Open
Abstract
Steroid hormones regulate gene expression by interaction of their receptors with hormone responsive elements (HREs) and recruitment of kinases, chromatin remodeling complexes, and coregulators to their target promoters. Here we show that in breast cancer cells the BAF, but not the closely related PBAF complex, is required for progesterone induction of several target genes including MMTV, where it catalyzes localized displacement of histones H2A and H2B and subsequent NF1 binding. PCAF is also needed for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark that interacts with the BAF subunits by anchoring the complex to chromatin. In the absence of PCAF, full loading of target promoters with hormone receptors and BAF is precluded, and induction is compromised. Thus, activation of hormone-responsive promoters requires cooperation of at least two chromatin remodeling activities, BAF and PCAF. In order to adapt its gene expression program to the needs of the environment, the cell must access the information stored in the DNA sequence that is tightly packaged into chromatin in the cell nucleus. How the cell manages to do it in a selective maner is still unclear. Here we show that, in breast cancer cells treated with the ovarian hormone progesterone, the hormone receptor recruits to the regulated genes two chromatin remodeling complexes that cooperate in opening the chromatin structure. One of the complexes puts a mark in a chromatin protein that anchors the other complex, enabling full gene activation. The present discovery highlights the importance of the concerted order of events for access to genomic information during activation of gene expression and reveals the intricacies of hormonal gene regulation.
Collapse
Affiliation(s)
- Guillermo Pablo Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Roser Zaurin
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - A. Silvina Nacht
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Ang Li
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Jofre Font-Mateu
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Francois Le Dily
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Michiel Vermeulen
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
- Department of Physiological Chemistry and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
- * E-mail:
| |
Collapse
|
23
|
Burkhart BA, Ivey ML, Archer TK. Long-term low level glucocorticoid exposure induces persistent repression in chromatin. Mol Cell Endocrinol 2009; 298:66-75. [PMID: 19007849 PMCID: PMC2657048 DOI: 10.1016/j.mce.2008.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/07/2008] [Accepted: 10/13/2008] [Indexed: 12/31/2022]
Abstract
Environmental exposure to low concentration hormones can have permanent epigenetic effects in animals and humans. The consequence of long-term low concentration glucocorticoid exposure was investigated in cell culture using glucocorticoid responsive genes organized in alternative chromatin structures. The MMTV promoter is induced by short-term glucocorticoid exposure on either an integrated (normal chromatin) or transient (unstructured chromatin) promoter. Longer hormone treatment causes a transient refractory repression of only the integrated promoter. Exposure to low concentrations of hormone for several passages persistently represses the integrated MMTV and endogenous glucocorticoid responsive promoters. The glucocorticoid receptor cannot bind to persistently repressed promoters. Induction by androgens is also inhibited on the repressed MMTV promoter. Similarly, osmotic stress induction of the endogenous Sgk gene is repressed. Persistent repression by glucocorticoids targets glucocorticoid responsive genes using a chromatin-dependent mechanism that disrupts binding of both GR-dependent and GR-independent transcription complexes.
Collapse
Affiliation(s)
| | | | - Trevor K. Archer
- To whom correspondence should be addressed: Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, Phone (919) 316-4565, FAX (919) 316-4566,
| |
Collapse
|
24
|
Chikhirzhina GI, Al-Shekhadat RI, Chikhirzhina EV. Transcription factors of the NF1 family: Role in chromatin remodeling. Mol Biol 2008. [DOI: 10.1134/s0026893308030023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Xiao Z, Zhang S, Magenheimer BS, Luo J, Quarles LD. Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. J Biol Chem 2008; 283:12624-34. [PMID: 18321855 DOI: 10.1074/jbc.m710407200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polycystin-1 (PC1) may play an important role in skeletogenesis through regulation of the bone-specific transcription factor Runx2-II. In the current study we found that PC1 co-localizes with the calcium channel polycystin-2 (PC2) in primary cilia of MC3T3-E1 osteoblasts. To establish the role of Runx2-II in mediating PC1 effects on bone, we crossed heterozygous Pkd1(m1Bei) and Runx2-II mice to create double heterozygous mice (Pkd1(+/m1Bei)/Runx2-II(+/-)) deficient in both PC1 and Runx2-II. Pkd1(+/m1Bei)/Runx2-II(+/-) mice exhibited additive reductions in Runx2-II expression that was associated with impaired endochondral bone development, defective osteoblast-mediated bone formation, and osteopenia. In addition, we found that basal intracellular calcium levels were reduced in homozygous Pkd1(m1Bei) osteoblasts. In contrast, overexpression of a PC1 C-tail construct increased intracellular calcium and selectively stimulated Runx2-II P1 promoter activity in osteoblasts through a calcium-dependent mechanism. Site-directed mutagenesis of critical amino acids in the coiled-coil domain of PC1 required for coupling to PC2 abolished PC1-mediated Runx2-II P1 promoter activity. Additional promoter analysis mapped the PC1-responsive region to the "osteoblast-specific" enhancer element between -420 and -350 bp that contains NFI and AP-1 binding sites. Chromatin immunoprecipitation assays confirmed the calcium-dependent binding of NFI to this region. These findings indicate that PC1 regulates osteoblast function through intracellular calcium-dependent control of Runx2-II expression. The overall function of the primary cilium-polycystin complex may be to sense and transduce environmental clues into signals regulating osteoblast differentiation and bone development.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
26
|
Hebbar PB, Archer TK. Altered histone H1 stoichiometry and an absence of nucleosome positioning on transfected DNA. J Biol Chem 2008; 283:4595-601. [PMID: 18156629 PMCID: PMC3339569 DOI: 10.1074/jbc.m709121200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The packaging of DNA with histones to form chromatin represents an important and powerful mechanism to regulate gene expression. Critical aspects of chromatin-specific contributions to gene regulation have been revealed by the comparison of the activities from DNA regulatory elements examined both as transiently transfected reporters and stably integrated reporters organized as chromatin. Using the mouse mammary tumor virus (MMTV) promoter as a model, we probed the structural differences between transiently transfected and stably integrated DNA templates. We demonstrated that all four core histones and the linker histone (H1) are associated with the transient template. However, whereas the core histones were present at a similar stoichiometry between the transient and the stable templates, we found that linker histone H1 molecules are fewer on the transient template. By using supercoiling assay, we show that the transient template shows intermediate levels of nucleosomal assembly. Overexpression of H1 resulted in repression of MMTV transcriptional activity and reduced accessibility to restriction endonucleases on the transient MMTV promoter. However, the addition of exogenous H1 failed to impose a normal chromatin structure on the transient template as measured by micrococcal nuclease digestion pattern. Thus, our results suggest that while transiently transfected DNA acquires a full complement of core histones, the underrepresentation of H1 on the transient template is indicative of structural differences between the two templates that may underlie the differences in the mechanisms of activation of the two templates.
Collapse
Affiliation(s)
- Pratibha B Hebbar
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
27
|
Abramovitz L, Shapira T, Ben-Dror I, Dror V, Granot L, Rousso T, Landoy E, Blau L, Thiel G, Vardimon L. Dual role of NRSF/REST in activation and repression of the glucocorticoid response. J Biol Chem 2007; 283:110-119. [PMID: 17984088 DOI: 10.1074/jbc.m707366200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Restriction of glutamine synthetase to the nervous system is mainly achieved through the mutual function of the glucocorticoid receptor and the neural restrictive silencing factor, NRSF/REST. Glucocorticoids induce glutamine synthetase expression in neural tissues while NRSF/REST represses the hormonal response in non-neural cells. NRSF/REST is a modular protein that contains two independent repression domains, at the N and C termini of the molecule, and is dominantly expressed in nonneural cells. Neural tissues express however splice variants, REST4/5, which contain the repression domain at the N, but not at the C terminus of the molecule. Here we show that full-length NRSF/REST or its C-terminal domain can inhibit almost completely the induction of gene transcription by glucocorticoids. By contrast, the N-terminal domain not only fails to repress the hormonal response but rather stimulates it markedly. The inductive activity of the N-terminal domain is mediated by hBrm, which is recruited to the promoter only in the concomitant presence of GR. Importantly, a similar inductive activity is also exerted by the splice variant REST4. These findings raise the possibility that NRSF/REST exhibits a dual role in regulation of glutamine synthetase. It represses gene induction in nonneural cells and enhances the hormonal response, via its splice variant, in the nervous system.
Collapse
Affiliation(s)
- Lilach Abramovitz
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Tamar Shapira
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Iris Ben-Dror
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Vardit Dror
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Limor Granot
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Tal Rousso
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Elad Landoy
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lior Blau
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | - Lily Vardimon
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
28
|
Alikhani-Koupaei R, Fouladkou F, Fustier P, Cenni B, Sharma AM, Deter HC, Frey BM, Frey FJ. Identification of polymorphisms in the human 11beta-hydroxysteroid dehydrogenase type 2 gene promoter: functional characterization and relevance for salt sensitivity. FASEB J 2007; 21:3618-28. [PMID: 17551100 DOI: 10.1096/fj.07-8140com] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.
Collapse
Affiliation(s)
- Rasoul Alikhani-Koupaei
- Nephrology and Hypertension and Clinical Research, University Hospital of Berne, Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hebbar PB, Archer TK. Chromatin-dependent cooperativity between site-specific transcription factors in vivo. J Biol Chem 2006; 282:8284-91. [PMID: 17186943 PMCID: PMC2528297 DOI: 10.1074/jbc.m610554200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accessing binding sites in DNA wrapped around histones in condensed chromatin is an obstacle that transcription factors must overcome to regulate gene expression. Here we demonstrate cooperativity between two transcription factors, the glucocorticoid receptor (GR) and nuclear factor 1 (NF1) to bind the mouse mammary tumor virus promoter organized as regular chromatin in vivo. This cooperativity is not observed when the promoter is introduced transiently into cells. Using RNA interference to deplete NF1 protein levels in the cells, we confirmed that NF1 promotes binding of GR to the promoter. Furthermore, we observed a similar synergism between GR and NF1 binding on the endogenous 11beta-hydroxysteroid dehydrogenase promoter, also regulated by GR and NF1. Our results suggest that the chromatin architecture of the promoters does not permit strong association of GR in the absence of NF1. Therefore we propose that cooperativity among DNA binding factors in binding to their cognate recognition sites in chromatin may be an important feature in the regulation of gene expression.
Collapse
Affiliation(s)
| | - Trevor K. Archer
- To whom correspondence should be addressed: Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, 111 Alexander Dr., MD D4−01, P.O Box 12233, Research Triangle Park, NC 27709. Tel.: 919−316−4565; Fax: 919−316−4566; E-mail:
| |
Collapse
|
30
|
Bowser BS, Morris S, Song MJ, Sun R, Damania B. Characterization of Kaposi's sarcoma-associated herpesvirus (KSHV) K1 promoter activation by Rta. Virology 2006; 348:309-27. [PMID: 16546233 DOI: 10.1016/j.virol.2006.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/07/2005] [Accepted: 02/08/2006] [Indexed: 11/25/2022]
Abstract
The K1 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a 46-kDa transmembrane glycoprotein that possesses transforming properties, initiates signaling pathways in B cells, and prevents apoptosis. Here, we demonstrate a mechanism for activation of the K1 promoter by the Rta transactivator. Electrophoretic mobility shift assay (EMSA) analysis of the K1 promoter demonstrated that purified Rta protein bound to the K1 promoter at three locations, independent of other DNA-binding factors. Transcriptional assays revealed that only two of these Rta DNA-binding sites are functionally significant, and that they could impart Rta responsiveness to a heterologous E4 TATA box promoter. In addition, TATA-binding protein (TBP) bound to a TATA box element located 25 bp upstream of the K1 transcription start site and was also shown to associate with Rta by coimmunoprecipitation analysis. Rta transactivation may therefore be mediated in part through recruitment of TBP to target promoters.
Collapse
Affiliation(s)
- Brian S Bowser
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | |
Collapse
|
31
|
Inayoshi Y, Kaneoka H, Machida Y, Terajima M, Dohda T, Miyake K, Iijima S. Repression of GR-Mediated Expression of the Tryptophan Oxygenase Gene by the SWI/SNF Complex during Liver Development. ACTA ACUST UNITED AC 2005; 138:457-65. [PMID: 16272140 DOI: 10.1093/jb/mvi147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromatin remodeling complex, SWI/SNF, is known to regulate the transcription of several genes by altering the chromatin structure in an ATP-dependent manner. SWI/SNF exclusively contains BRG1 or BRM as an ATPase subunit. In the present study, we studied the role of SWI/SNF containing BRM or BRG1 in the expression of the liver-specific tryptophan oxygenase (TO) and tyrosine aminotransferase genes. Chromatin remodeling factors significantly repressed the expression of these genes induced by glucocorticoid receptor and dexamethasone. Since the repression was not reversed by trichostatin A treatment, it seemed to be independent of the well-known histone deacetylase pathway. Knock-down of BRG1 by small interfering RNA reversed the repression in primary fetal hepatocytes. These results support a model in which SWI/SNF containing BRG1 represses late stage-specific TO gene expression at an early stage of liver development.
Collapse
Affiliation(s)
- Yujin Inayoshi
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Rungaldier S, Nejad Asl SB, Günzburg WH, Salmons B, Rouault F. Abundant authentic MMTV-Env production from a recombinant provirus lacking the major LTR promoter. Virology 2005; 342:201-14. [PMID: 16140354 DOI: 10.1016/j.virol.2005.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 06/22/2005] [Accepted: 07/25/2005] [Indexed: 11/26/2022]
Abstract
As for all retroviruses, the env mRNA is thought to be a singly spliced product of the full-length transcript from the P1 promoter in the MMTV provirus. However, we show that envelope proteins can be produced in an inducible manner in the absence of the P1 promoter from an otherwise complete provirus. Furthermore, we demonstrate in both reporter assays and the proviral context that the R region is necessary for protein production in transiently transfected cells and in a number of independent, stably transfected cell clones. Using 5' RACE, we show that a sequence within the R region functions as a TATA less initiator. The most distal part of the 5' LTR (first 804 bases of the U3 region) is required for the activity of the R-initiator element only when the provirus is integrated. Transfection with a full-length proviral DNA carrying a deletion of P1 in the 5' LTR resulted in the establishment of stable cell clones able to produce Env in a dexamethasone-dependent manner but not infectious virions. We therefore conclude that in the absence of P1, R can drive transcription of the spliced env mRNA but not genomic viral RNA.
Collapse
Affiliation(s)
- Stefanie Rungaldier
- Research Institute of Virology and Biomedicine, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | | | | | | |
Collapse
|
33
|
Chen J, Kinyamu HK, Archer TK. Changes in attitude, changes in latitude: nuclear receptors remodeling chromatin to regulate transcription. Mol Endocrinol 2005; 20:1-13. [PMID: 16002433 DOI: 10.1210/me.2005-0192] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nuclear receptors (NRs) are a large family of ligand-dependent transcription factors that regulate important physiological processes. To activate or repress genes assembled naturally as chromatin, NRs recruit two distinct enzymatic activities, namely histone-modifying enzymes and ATP-dependent chromatin remodeling complexes, to alter local chromatin structure at target gene promoters. In this review, we examine the functional relationship between ATP-dependent chromatin remodeling complexes and NRs in the context of transcriptional regulation. Using the steroid-responsive mouse mammary tumor virus promoter as a model system, we discuss in detail the molecular mechanisms underlying the recruitment of these complexes and subsequent chromatin structure changes catalyzed by this group of enzymes. In addition, we extend the discussion to other NR-regulated promoters including the pS2 promoter. Finally, we summarize specific principles governing this critical relationship, identify unanswered questions and discuss the potential application of these principles in rational drug design.
Collapse
Affiliation(s)
- Jianguang Chen
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
34
|
Chan C, Li L, McCall CE, Yoza BK. Endotoxin Tolerance Disrupts Chromatin Remodeling and NF-κB Transactivation at the IL-1β Promoter. THE JOURNAL OF IMMUNOLOGY 2005; 175:461-8. [PMID: 15972680 DOI: 10.4049/jimmunol.175.1.461] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NF-kappaB family plays a crucial role in the pathogenesis of highly lethal septicemia by modulating transcription of many innate and adaptive immunity genes. Two phases of NF-kappaB activation occur: cytosolic activation and nuclear transactivation. Septicemia with multiorgan failure is associated with chronic activation of cytosolic NF-kappaB with translocation and accumulation of increased levels of nuclear p65 in blood leukocytes. Paradoxically, NF-kappaB-dependent transcription of many proinflammatory genes responding to bacterial LPS endotoxin (LPS) is persistently repressed during septicemia; this phenomenon of LPS tolerance is associated with immunosuppression and poor prognosis. This report suggests an explanation for this paradox. Using an in vitro human leukocyte model and chromatin immunoprecipitation assays, we find that both the cytosolic activation and nuclear transactivation phases of NF-kappaB occur in LPS responsive THP-1 promonocytes with recruitment and binding of NF-kappaB p65 at the IL-1beta promoter. However, transcriptionally repressed LPS-tolerant THP-1 cells do not bind NF-kappaB p65 at the IL-1beta promoter, despite cytosolic activation and accumulation of p65 in the nucleus. In contrast, NF-kappaB p50, which also accumulates in the nucleus, constitutively binds to the IL-1beta promoter NF-kappaB site in both LPS-responsive and LPS-tolerant cells. The level of p65 binding correlates with a binary shift in nucleosome remodeling between histone H3 phosphorylation at serine 10 and methylation of histone H3 at lysine 9. We conclude that LPS tolerance disrupts the transactivating stage of NF-kappaB p65 and altered nucleosome remodeling at the IL-1beta promoter in human leukocytes.
Collapse
Affiliation(s)
- Christopher Chan
- Molecular Genetics Program and Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
35
|
Hsu K, Passey RJ, Endoh Y, Rahimi F, Youssef P, Yen T, Geczy CL. Regulation of S100A8 by glucocorticoids. THE JOURNAL OF IMMUNOLOGY 2005; 174:2318-26. [PMID: 15699168 DOI: 10.4049/jimmunol.174.4.2318] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
S100A8 (A8) has roles in inflammation, differentiation and development and is associated with oxidative defense. Murine A8 (mA8) is up-regulated in macrophages, fibroblasts, and microvascular endothelial cells by LPS. Glucocorticoids (GCs) amplified LPS-induced mA8 in these cells. Relative to stimulation by LPS, GCs increased mA8 gene transcription and mRNA half-life. Enhancement required new protein synthesis, IL-10 and products of the cyclooxygenase-2 pathway, and both ERK1/2 and p38 MAPK. Protein kinase A positively and protein kinase C negatively regulated this process. Promoter analysis indicated element(s) essential for LPS and dexamethasone enhancement colocated within the region -178 to 0 bp. In the absence of glucocorticoid response elements, NF1 motif at -58 is a candidate for mediation of enhancement. Gel shift analysis detected no differences between LPS- and LPS/dexamethasone-treated complexes within this region. GCs increased constitutive levels of A8 and S100A9 (A9) mRNA in human monocytes. The synovial membrane of rheumatoid patients treated with high dose i.v. methylprednisolone contained higher numbers of A8/A9-positive macrophages than pre- or posttreatment samples. Results support the proposal that A8 has anti-inflammatory properties that may be independent of hetero-complex formation with A9 and may also enable localized defense in the absence of overriding deleterious host responses.
Collapse
Affiliation(s)
- Kenneth Hsu
- Inflammatory Diseases Research Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Aoyagi S, Trotter KW, Archer TK. ATP-dependent chromatin remodeling complexes and their role in nuclear receptor-dependent transcription in vivo. VITAMINS AND HORMONES 2005; 70:281-307. [PMID: 15727808 DOI: 10.1016/s0083-6729(05)70009-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that mediate transcription of target genes in chromatin. Modulation of chromatin structure plays an important part in the NR-mediated transcription process. ATP-dependent chromatin remodeling complexes have been shown to be intimately involved in NR-mediated transcription. In this review, we examine the role of chromatin remodeling complexes in facilitating the recruitment of coregulators and basal transcription factors. In addition, the role of subunit specificity within the chromatin remodeling complexes, the complexes' influence on remodeling activity, and complexes' recruitment to the NR-responsive promoters are discussed.
Collapse
Affiliation(s)
- Sayura Aoyagi
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
37
|
Schoneveld OJLM, Gaemers IC, Lamers WH. Mechanisms of glucocorticoid signalling. ACTA ACUST UNITED AC 2004; 1680:114-28. [PMID: 15488991 DOI: 10.1016/j.bbaexp.2004.09.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
It has become increasingly clear that glucocorticoid signalling not only comprises the binding of the glucocorticoid receptor (GR) to its response element (GRE), but also involves indirect regulation glucocorticoid-responsive genes by regulating or interacting with other transcription factors. In addition, they can directly regulate gene expression by binding to negative glucocorticoid response elements (nGREs), to simple GREs, to GREs, or to GREs and GRE half sites (GRE1/2s) that are part of a regulatory unit. A response unit allows a higher level of glucocorticoid induction than simple GREs and, in addition, allows the integration of tissue-specific information with the glucocorticoid response. Presumably, the complexity of such a glucocorticoid response unit (GRU) depends on the number of pathways that integrate at this unit. Because GRUs are often located at distant sites relative to the transcription-start site, the GRU has to find a way to communicate with the basal-transcription machinery. We propose that the activating signal of a distal enhancer can be relayed onto the transcription-initiation complex by coupling elements located proximal to the promoter.
Collapse
Affiliation(s)
- Onard J L M Schoneveld
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | | | | |
Collapse
|
38
|
Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J Clin Invest 2004; 114:1146-57. [PMID: 15489962 PMCID: PMC522246 DOI: 10.1172/jci21647] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The enzyme 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta HSD2) is selectively expressed in aldosterone target tissues, where it confers aldosterone selectivity for the mineralocorticoid receptor by inactivating 11 beta-hydroxyglucocorticoids. Variable activity of 11 beta HSD2 is relevant for blood pressure control and hypertension. The present investigation aimed to elucidate whether an epigenetic mechanism, DNA methylation, accounts for the rigorous control of expression of the gene encoding 11 beta HSD2, HSD11B2. CpG islands covering the promoter and exon 1 of HSD11B2 were found to be densely methylated in tissues and cell lines with low expression but not those with high expression of HSD11B2. Demethylation induced by 5-aza-2'-deoxycytidine and procainamide enhanced the transcription and activity of the 11 beta HSD2 enzyme in human cells in vitro and in rats in vivo. Methylation of HSD11B2 promoter-luciferase constructs decreased transcriptional activity. Methylation of recognition sequences of transcription factors, including those for Sp1/Sp3, Arnt, and nuclear factor 1 (NF1) diminished their DNA-binding activity. Herein NF1 was identified as a strong HSD11B2 stimulatory factor. The effect of NF1 was dependent on the position of CpGs and the combination of CpGs methylated. A methylated-CpG-binding protein complex 1 transcriptional repression interacted directly with the methylated HSD11B2 promoter. These results indicate a role for DNA methylation in HSD11B2 gene repression and suggest an epigenetic mechanism affecting this gene causally linked with hypertension.
Collapse
Affiliation(s)
- Rasoul Alikhani-Koopaei
- Department of Nephrology and Hypertension, University Hospital of Berne, Berne UNK 3010, Switzerland
| | | | | | | |
Collapse
|
39
|
Boonyaratanakornkit J, Chew A, Ryu DDY, Greenhalgh DG, Cho K. Murine endogenous retroviruses and their transcriptional potentials. Mamm Genome 2004; 15:914-23. [PMID: 15672595 DOI: 10.1007/s00335-004-2409-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jerry Boonyaratanakornkit
- Biochemistry and Molecular Biology Graduate Group, University of California at Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
40
|
Kim SY, Choi EC, Woo Jo Y, Henson JW, Kim HS. Transcriptional activation of JC virus early promoter by phorbol ester and interleukin-1β: critical role of nuclear factor-1. Virology 2004; 327:60-9. [PMID: 15327898 DOI: 10.1016/j.virol.2004.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/19/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
JC virus causes the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML) under immunosuppressive states such as AIDS. During the pathogenesis of AIDS, HIV-infected microglia secrete cytokines including interleukin-1 and tumor necrosis factor-alpha (TNF-alpha), which affect neuronal cells resulting in dysfunction of the CNS. We hypothesized that extracellular stimuli released from HIV-infected microglia may reactivate JC virus by affecting neighboring oligodendrocytes. In the present study, we found that phorbol myristate acetate (PMA) and interleukin-1beta (IL-1beta) dramatically increased JC virus transcription in glial cells. Site-directed mutagenesis and gel shift analyses revealed that PMA and IL-1beta strongly induced nuclear factor-1 (NF-1) binding to the JC virus enhancer region, increasing transcriptional activity of the viral early promoter. Additionally, we demonstrated that protein kinase C (PKC) pathways were involved in the PMA/IL-1beta-mediated up-regulation of the JC virus early promoter. These findings may represent one of the possible mechanisms for higher incidence of PML among AIDS patients.
Collapse
Affiliation(s)
- So-Young Kim
- Department of Neuroscience, Ewha Institute of Neuroscience and Medical Research Center, Ewha Womans University School of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
41
|
Givens ML, Kurotani R, Rave-Harel N, Miller NLG, Mellon PL. Phylogenetic footprinting reveals evolutionarily conserved regions of the gonadotropin-releasing hormone gene that enhance cell-specific expression. Mol Endocrinol 2004; 18:2950-66. [PMID: 15319450 PMCID: PMC2932476 DOI: 10.1210/me.2003-0437] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reproductive function is controlled by the hypothalamic neuropeptide, GnRH, which serves as the central regulator of the hypothalamic-pituitary-gonadal axis. GnRH expression is limited to a small population of neurons in the hypothalamus. Targeting this minute population of neurons (as few as 800 in the mouse) requires regulatory elements upstream of the GnRH gene that remain to be fully characterized. Previously, we have identified an evolutionarily conserved promoter region (-173 to +1) and an enhancer (-1863 to -1571) in the rat gene that targets a subset of the GnRH neurons in vivo. In the present study, we used phylogenetic sequence comparison between human and rodents and analysis of the transcription factor clusters within conserved regions in an attempt to identify additional upstream regulatory elements. This approach led to the characterization of a new upstream enhancer that regulates expression of GnRH in a cell-specific manner. Within this upstream enhancer are nine binding sites for Octamer-binding transcription factor 1 (OCT1), known to be an important transcriptional regulator of GnRH gene expression. In addition, we have identified nuclear factor I (NF1) binding to multiple elements in the GnRH-regulatory regions, each in close proximity to OCT1. We show that OCT1 and NF1 physically and functionally interact. Moreover, the OCT1 and NF1 binding sites in the regulatory regions appear to be essential for appropriate GnRH gene expression. These findings indicate a role for this upstream enhancer and novel OCT1/NF1 complexes in neuron-restricted expression of the GnRH gene.
Collapse
Affiliation(s)
- Marjory L Givens
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0674, USA
| | | | | | | | | |
Collapse
|
42
|
Delgado-Olguín P, Rosas-Vargas H, Recillas-Targa F, Zentella-Dehesa A, Bermúdez de León M, Cisneros B, Salamanca F, Coral-Vázquez R. NFI-C2 negatively regulates α-sarcoglycan promoter activity in C2C12 myoblasts. Biochem Biophys Res Commun 2004; 319:1032-9. [PMID: 15184085 DOI: 10.1016/j.bbrc.2004.05.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Indexed: 10/26/2022]
Abstract
alpha-Sarcoglycan striated muscle-specific protein is a member of the sarcoglycan-sarcospan complex. Positive and negative transcriptional regulation of sarcoglycan genes are important in sarcoglycan's intracellular localization and sarcolemmal stability. In the present work we assessed the function of NFI transcription factors in the regulation of alpha-sarcoglycan promoter through the C2C12 cell line differentiation. NFI factors act alternatively as activators and negative modulators of alpha-sarcoglycan promoter activity. In myoblasts NFI-A1.1 and NFI-B2 are activators, whereas NFI-C2 and NFI-X2 are negative regulators. In myotubes, all NFI members are activators, being NFI-C2 the less potent. We identified the alpha-sarcoglycan promoter NFI-C2 response element by testing progressive deletion constructs and point mutations in C2C12 cells over-expressing NFI-C2. Gel-shift and chromatin immunoprecipitation experiments demonstrated that NFI factors are indeed interacting in vitro and in vivo with the binding sequence. These results suggest a NFI role in C2C12 cell differentiation.
Collapse
Affiliation(s)
- Paul Delgado-Olguín
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kinyamu HK, Archer TK. Modifying chromatin to permit steroid hormone receptor-dependent transcription. ACTA ACUST UNITED AC 2004; 1677:30-45. [PMID: 15020043 DOI: 10.1016/j.bbaexp.2003.09.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 02/07/2023]
Abstract
Lipophilic hormones, including steroids, exert their physiological effects through binding to high-affinity superfamily of steroid hormone receptor (SR) proteins that function as ligand-dependent DNA binding transcription factors. To date, SR proteins are among a few transcription factors shown to directly interact with higher order chromatin structures to regulate gene expression. To perturb chromatin, SRs employ enzymatic multicomplexes that can either remodel or modify chromatin. Here we examine the current state of knowledge concerning multicomplex chromatin remodeling/modification machines and SR-dependent transcription. We will focus on the role of these protein-protein and chromatin-protein interactions in vivo with the MMTV promoter as a primary model. In addition, we discuss emerging evidence implicating chaperone proteins and proteasome degradation machinery in SR-mediated gene regulation within chromatin.
Collapse
Affiliation(s)
- H Karimi Kinyamu
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, PO Box 12233 (MD E4-06), Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
44
|
Chi Y, Senyuk V, Chakraborty S, Nucifora G. EVI1 promotes cell proliferation by interacting with BRG1 and blocking the repression of BRG1 on E2F1 activity. J Biol Chem 2003; 278:49806-11. [PMID: 14555651 DOI: 10.1074/jbc.m309645200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
EVI1 is a complex protein required for embryogenesis and inappropriately expressed in many types of human myeloid leukemia. Earlier we showed that the forced expression of EVI1 in murine hematopoietic precursor cells leads to their abnormal differentiation and increased proliferation. In this report, we show that EVI1 physically interacts with BRG1 and its functional homolog BRM in mammalian cells. We found that the C terminus of EVI1 interacts strongly with BRG1 and that the central and C-terminal regions of BRG1 are involved in EVI1-BRG1 interaction. Using reporter gene assays, we demonstrate that EVI1 activates the E2F1 promoter in NIH3T3 cells but not in BRG1-negative SW13 cells. Ectopic expression of BRG1 is able to repress the E2F1 promoter in vector-transfected SW13 cells but not in EVI1-transfected SW13 cells. Finally, we show that EVI1 up-regulates cell proliferation in BRG1-positive 32Dcl3 cells but not in BRG1-negative SW13 cells. Taken together, these data support the hypothesis that the interaction with BRG1 is important for up-regulation of cell-growth by EVI1.
Collapse
Affiliation(s)
- Yiqing Chi
- Department of Pathology and The Cancer Center, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Eukaryotic DNA is organized in a complex structure called chromatin. Although a primary function of chromatin is compaction of DNA, this must done such that the underlying DNA is potentially accessible to factor-mediated regulatory responses. Chromatin structure clearly plays a dominant role in regulating much of eukaryotic transcription. The demonstration that reversible covalent modification of the core histones contribute to transcriptional activation and repression by altering chromatin structure and the identification of numerous ATP-dependent chromatin remodeling enzymes provide strong support for this view. Chromatin is much more dynamic than was previously thought and regulation of the dynamic properties of chromatin is a key aspect of gene regulation. This review will focus on recent attempts to elucidate the specific contribution of histone H1 to chromatin-mediated regulation of gene expression.
Collapse
Affiliation(s)
- David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, 39216, USA.
| |
Collapse
|
46
|
Hebbar PB, Archer TK. Chromatin remodeling by nuclear receptors. Chromosoma 2003; 111:495-504. [PMID: 12743713 DOI: 10.1007/s00412-003-0232-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Revised: 12/20/2002] [Accepted: 12/20/2002] [Indexed: 10/22/2022]
Abstract
The eukaryotic genome is structurally organized into nucleosomes to form chromatin, which regulates gene expression, in part, by controlling the accessibility of regulatory factors. When packaged as chromatin, many promoters are transcriptionally repressed, thus reducing the access of transcription factors to their binding sites. However, nuclear receptors (NRs) are a group of transcription factors that have the ability to access their binding sites in this repressive chromatin structure. Nuclear receptors are able to bind to their sites and recruit chromatin-remodeling proteins such as ATP-dependent chromatin-remodeling complexes and histone-modifying enzymes, resulting in transcriptional activation. In this review, we present the role of NRs in recruiting these chromatin-modifying enzymes by means of an extensively studied model system, the glucocorticoid receptor-mediated transactivation of the mouse mammary tumor virus (MMTV) promoter. We use these findings as a template to begin to understand the effect of chromatin changes on gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Pratibha B Hebbar
- Chromatin and Gene Expression Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Science, 111 Alexander Drive, MD-E4-06, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|