1
|
Yang CC, Hsiao LD, Shih YF, Chang CI, Yang CM. Induction of Heme Oxygenase-1 by 15d-Prostaglandin J2 Mediated via a ROS-Dependent Sp1 and AP-1 Cascade Suppresses Lipopolysaccharide-Triggered Interleukin-6 Expression in Mouse Brain Microvascular Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040719. [PMID: 35453404 PMCID: PMC9024691 DOI: 10.3390/antiox11040719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has been shown to exert antioxidant, anti-inflammatory, and anti-apoptotic effects in various types of cells. Therefore, the induction of HO-1 is an excellent rationale for the development of protective drugs. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) can modulate the expression of antioxidant defense proteins and be beneficial for neuroinflammation. Brain endothelial cells play an important role in the pathophysiology of brain disorders. Whether 15d-PGJ2 can induce HO-1 expression and protect against the inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells remains unclear. Here, we reveal that 15d-PGJ2 stimulated HO-1 protein and mRNA expression in a time- and concentration-dependent manner in bEnd.3 cells, which was attenuated by diphenyleneiodonium chloride (DPI) and MitoTempo. Thus, activation of NADPH oxidase (NOX)- and mitochondria-derived reactive oxygen species (ROS) mediated 15d-PGJ2-induced HO-1 expression. ROS generation could cause phosphorylation of protein kinase C (PKC)δ, leading to HO-1 expression, which was suppressed by Rottlerin (selective inhibitor PKCδ), DPI, and MitoTempo. We further demonstrated that phosphorylation of c-Jun N-terminal kinase (JNK)1/2 participated in 15d-PGJ2-upregulated HO-1 expression, which was blocked by SP600125 or Rottlerin. Moreover, 15d-PGJ2-induced HO-1 expression was mediated through the activation of c-Jun (a subunit of activator protein 1 (AP-1)) and specificity protein 1 (Sp1), leading to their interaction with the HO-1 promoter, revealed by chromatin immunoprecipitation assay, which was attenuated by SP600125, Mithramycin A, or Tanshinone II A. We further verified the anti-inflammatory effect of HO-1 expression. Our results showed that 15d-PGJ2-induced HO-1 could mitigate the lipopolysaccharide-triggered interleukin-6 expression and secretion, as measured by an ELISA assay kit. These results suggest that 15d-PGJ2-induced HO-1 expression is mediated through the activation of NOX- and mitochondria-derived ROS-dependent PKCδ/JNK1/2/Sp1 and the AP-1 signaling pathway and protects against inflammatory responses in bEnd.3 cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ching-I Chang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 2229)
| |
Collapse
|
2
|
Rasheed ZBM, Lee YS, Kim SH, Teoh T, MacIntyre DA, Bennett PR, Sykes L. 15-Deoxy-Delta-12,14-prostaglandin J2 modulates pro-labour and pro-inflammatory responses in human myocytes, vaginal and amnion epithelial cells. Front Endocrinol (Lausanne) 2022; 13:983924. [PMID: 36213265 PMCID: PMC9533017 DOI: 10.3389/fendo.2022.983924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Prematurity is the leading cause of childhood death under the age of five. The aetiology of preterm birth is multifactorial; however, inflammation and infection are the most common causal factors, supporting a potential role for immunomodulation as a therapeutic strategy. 15-Deoxy-Delta-12,14-prostaglandin J2 (15dPGJ2) is an anti-inflammatory prostaglandin and has been shown to delay lipopolysaccharide (LPS) induced preterm labour in mice and improve pup survival. This study explores the immunomodulatory effect of 15dPGJ2 on the transcription factors NF-κB and AP-1, pro-inflammatory cytokines, and contraction associated proteins in human cultured myocytes, vaginal epithelial cell line (VECs) and primary amnion epithelial cells (AECs). METHODS Cells were pre-incubated with 32µM of 15dPGJ2 and stimulated with 1ng/mL of IL-1β as an in vitro model of inflammation. Western immunoblotting was used to detect phosphorylated p-65 and phosphorylated c-Jun as markers of NF-κB and AP-1 activation, respectively. mRNA expression of the pro-inflammatory cytokines IL-6, IL-8, and TNF-α was examined, and protein expression of COX-2 and PGE2 were detected by western immunoblotting and ELISA respectively. Myometrial contractility was examined ex-vivo using a myograph. RESULTS 15dPGJ2 inhibited IL-1β-induced activation of NF-κB and AP-1, and expression of IL-6, IL-8, TNF-α, COX-2 and PGE2 in myocytes, with no effect on myometrial contractility or cell viability. Despite inhibiting IL-1β-induced activation of NF-κB, expression of IL-6, TNF-α, and COX-2, 15dPGJ2 led to activation of AP-1, increased production of PGE2 and increased cell death in VECs and AECs. CONCLUSION We conclude that 15dPGJ2 has differential effects on inflammatory modulation depending on cell type and is therefore unlikely to be a useful therapeutic agent for the prevention of preterm birth.
Collapse
Affiliation(s)
- Zahirrah BM. Rasheed
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yun S. Lee
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Sung H. Kim
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Tg Teoh
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
- The Parasol Foundation Centre for Women’s Health and Cancer Research, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - David A. MacIntyre
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Phillip R. Bennett
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
| | - Lynne Sykes
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- March of Dimes European Preterm Birth Prematurity Research Centre, Imperial College London, London, United Kingdom
- The Parasol Foundation Centre for Women’s Health and Cancer Research, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Lynne Sykes,
| |
Collapse
|
3
|
Bago Á, Íñiguez MA, Serrador JM. Nitric Oxide and Electrophilic Cyclopentenone Prostaglandins in Redox signaling, Regulation of Cytoskeleton Dynamics and Intercellular Communication. Front Cell Dev Biol 2021; 9:673973. [PMID: 34026763 PMCID: PMC8137968 DOI: 10.3389/fcell.2021.673973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) and electrophilic cyclopentenone prostaglandins (CyPG) are local mediators that modulate cellular response to oxidative stress in different pathophysiological processes. In particular, there is increasing evidence about their functional role during inflammation and immune responses. Although the mechanistic details about their relationship and functional interactions are still far from resolved, NO and CyPG share the ability to promote redox-based post-translational modification (PTM) of proteins that play key roles in cellular homeostasis, signal transduction and transcription. NO-induced S-nitrosylation and S-glutathionylation as well as cyclopentenone-mediated adduct formation, are a few of the main PTMs by which intra- and inter-cellular signaling are regulated. There is a growing body of evidence indicating that actin and actin-binding proteins are susceptible to covalent PTM by these agents. It is well known that the actin cytoskeleton is key for the establishment of interactions among leukocytes, endothelial and muscle cells, enabling cellular activation and migration. In this review we analyze the current knowledge about the actions exerted by NO and CyPG electrophilic lipids on the regulation of actin dynamics and cytoskeleton organization, and discuss some open questions regarding their functional relevance in the regulation of intercellular communication.
Collapse
Affiliation(s)
- Ángel Bago
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain
| | - Miguel A Íñiguez
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan M Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain
| |
Collapse
|
4
|
Jeske NA. Dynamic Opioid Receptor Regulation in the Periphery. Mol Pharmacol 2019; 95:463-467. [PMID: 30723091 PMCID: PMC6442319 DOI: 10.1124/mol.118.114637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022] Open
Abstract
Opioids serve a vital role in the current analgesic array of treatment options. They are useful in acute instances involving severe pain associated with trauma, surgery, and terminal diseases such as cancer. In the past three decades, multiple receptor isoforms and conformations have been reported throughout literature. Most of these studies conducted systemic analyses of opioid receptor function, often generalizing findings from receptor systems in central nervous tissue or exogenously expressing immortalized cell lines as common mechanisms throughout physiology. However, a culmination of innovative experimental data indicates that opioid receptor systems are differentially modulated depending on their anatomic expression profile. Importantly, opioid receptors expressed in the peripheral nervous system undergo regulation uncommon to similar receptors expressed in central nervous system tissues. This distinctive characteristic begs one to question whether peripheral opioid receptors maintain anatomically unique roles, and whether they may serve an analgesic advantage in providing pain relief without promoting addiction.
Collapse
Affiliation(s)
- Nathaniel A Jeske
- Departments of Oral and Maxillofacial Surgery, Pharmacology, and Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
5
|
Mojena M, Povo-Retana A, González-Ramos S, Fernández-García V, Regadera J, Zazpe A, Artaiz I, Martín-Sanz P, Ledo F, Boscá L. Benzylamine and Thenylamine Derived Drugs Induce Apoptosis and Reduce Proliferation, Migration and Metastasis Formation in Melanoma Cells. Front Oncol 2018; 8:328. [PMID: 30191142 PMCID: PMC6115490 DOI: 10.3389/fonc.2018.00328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/05/2023] Open
Abstract
Melanomas are heterogeneous and aggressive tumors, and one of the worse in prognosis. Melanoma subtypes follow distinct pathways until terminal oncogenic transformation. Here, we have evaluated a series of molecules that exhibit potent cytotoxic effects over the murine and human melanoma cell lines B16F10 and MalMe-3M, respectively, both ex vivo and in animals carrying these melanoma cells. Ex vivo mechanistic studies on molecular targets involved in melanoma growth, migration and viability were evaluated in cultured cells treated with these drugs which exhibited potent proapoptotic and cytotoxic effects and reduced cell migration. These drugs altered the Wnt/β-catenin pathway, which is important for the oncogenic phenotype of melanoma cells. In in vivo experiments, male C57BL/6 or nude mice were injected with melanoma cells that rapidly expanded in these animals and, in some cases were able to form metastasis in lungs. Treatment with anti-tumor drugs derived from benzylamine and 2-thiophenemethylamine (F10503LO1 and related compounds) significantly attenuated tumor growth, impaired cell migration, and reduced the metastatic activity. Several protocols of administration were applied, all of them leading to significant reduction in the tumor size and enhanced animal survival. Tumor cells carrying a luciferase transgene allowed a time-dependent study on the progression of the tumor. Molecular analysis of the pathways modified by F10503LO1 and related compounds defined the main relevant targets for tumor regression: the activation of pro-apoptotic and anti-proliferative routes. These data might provide the proof-of-principle and rationale for its further clinical evaluation.
Collapse
Affiliation(s)
- Marina Mojena
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares y Hepáticas y Digestivas, ISC III, Madrid, Spain
| | | | - Javier Regadera
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Zazpe
- R&D+i Department Faes-Farma, Avda Autonomía, Leioa, Spain
| | - Inés Artaiz
- R&D+i Department Faes-Farma, Avda Autonomía, Leioa, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares y Hepáticas y Digestivas, ISC III, Madrid, Spain
| | - Francisco Ledo
- R&D+i Department Faes-Farma, Avda Autonomía, Leioa, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares y Hepáticas y Digestivas, ISC III, Madrid, Spain
| |
Collapse
|
6
|
15-Deoxy-Δ 12,14-prostaglandin J 2 Exerts Antioxidant Effects While Exacerbating Inflammation in Mice Subjected to Ureteral Obstruction. Mediators Inflamm 2017; 2017:3924912. [PMID: 28503033 PMCID: PMC5414590 DOI: 10.1155/2017/3924912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 03/12/2017] [Indexed: 02/01/2023] Open
Abstract
Urinary obstruction is associated with inflammation and oxidative stress, leading to renal dysfunction. Previous studies have shown that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has both antioxidant and anti-inflammatory effects. Using a unilateral ureteral obstruction (UUO) mouse model, we examined the effects of 15d-PGJ2 on oxidative stress and inflammation in the kidney. Mice were subjected to UUO for 3 days and treated with 15d-PGJ2. Protein and RNA expression were examined using immunoblotting and qPCR. 15d-PGJ2 increased NF-E2-related nuclear factor erythroid-2 (Nrf2) protein expression in response to UUO, and heme oxygenase 1 (HO-1), a downstream target of Nrf2, was induced by 15d-PGJ2. Additionally, 15d-PGJ2 prevented protein carbonylation, a UUO-induced oxidative stress marker. Inflammation, measured by nuclear NF-κB, F4/80, and MCP-1, was increased in response to UUO and further increased by 15d-PGJ2. Renal injury was aggravated by 15d-PGJ2 treatment as measured by kidney injury molecule-1 (KIM-1) and cortical caspase 3 content. No effect of 15d-PGJ2 was observed on renal function in mice subjected to UUO. This study illustrates differentiated functioning of 15d-PGJ2 on inflammation and oxidative stress in response to obstructive nephropathy. High concentrations of 15d-PGJ2 protects against oxidative stress during 3-day UUO in mice; however, it aggravates the associated inflammation.
Collapse
|
7
|
Kozlowska AK, Topchyan P, Kaur K, Tseng HC, Teruel A, Hiraga T, Jewett A. Differentiation by NK cells is a prerequisite for effective targeting of cancer stem cells/poorly differentiated tumors by chemopreventive and chemotherapeutic drugs. J Cancer 2017; 8:537-554. [PMID: 28367234 PMCID: PMC5370498 DOI: 10.7150/jca.15989] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/24/2016] [Indexed: 01/04/2023] Open
Abstract
Natural Killer (NK) cells target oral, pancreatic, lung, breast, glioblastoma and melanoma stem-like/poorly differentiated tumors. Differentiation of the abovementioned tumors with supernatants from split-anergized NK cells decreases their susceptibility to NK cells, but increases their sensitivity to cisplatin (CDDP)-mediated cell death. Breast and melanoma tumor cells with CD44 knockdown display enhanced susceptibility to NK cell-mediated lysis, potentially due to decreased differentiation. We also demonstrate that sulindac, a non-steroidal anti-inflammatory drug and a chemopreventive agent, not only limits the growth of oral tumor cells, but also aids in cancer cell elimination by NK cells. Treatment of oral tumors with sulindac, but not adriamycin inversely modulates the expression and function of NFκB and JNK, resulting in a significant down-regulation of IL-6, and VEGF secretion by oral tumor cells. In addition, increased secretion of IL-6 and VEGF is blocked by sulindac during interaction of oral tumors with NK cells. Sulindac treatment prevents synergistic induction of VEGF secretion by the tumor cells after their co-culture with untreated NK cells since non-activated NK cells lack the ability to efficiently kill tumor cells. Moreover, sulindac is able to profoundly reduce VEGF secretion by tumor cells cultured with IL-2 activated NK cells, which are able to significantly lyse the tumor cells. Based on the data presented in this study, we propose the following combinatorial approach for the treatment of stem-like/ poorly differentiated tumors in cancer patients with metastatic disease. Stem-like/ poorly differentiated tumor cells may in part undergo lysis or differentiation after NK cell immunotherapy, followed by treatment of differentiated tumors with chemotherapy and chemopreventive agents to eliminate the bulk of the tumor. This dual approach should limit tumor growth and prevent metastasis.
Collapse
Affiliation(s)
- Anna Karolina Kozlowska
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA.; Department of Tumor Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Paytsar Topchyan
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Kawaljit Kaur
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Han-Ching Tseng
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Antonia Teruel
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Toru Hiraga
- Department of Histology and Cell Biology Matsumoto Dental University, Gobara-Hirooka, Shiojiri, Nagano, Japan
| | - Anahid Jewett
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Través PG, Pimentel-Santillana M, Rico D, Rodriguez N, Miethke T, Castrillo A, Theodorakis EA, Martín-Sanz P, Palladino MA, Boscá L. Anti-inflammatory actions of acanthoic acid-related diterpenes involve activation of the PI3K p110γ/δ subunits and inhibition of NF-κB. CHEMISTRY & BIOLOGY 2014; 21:955-966. [PMID: 25065531 DOI: 10.1016/j.chembiol.2014.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/29/2014] [Accepted: 06/09/2014] [Indexed: 02/06/2023]
Abstract
The effect of acanthoic acid analogs on the response to proinflammatory challenge was investigated. Some pimarane diterpenes are known activators of the LXRαβ nuclear receptors, but we show here that they also exert a rapid, potent, and selective activation of the p110γ and p110δ subunits of PI3K. Combination of these effects results in an important attenuation of the global transcriptional response to LPS in macrophages. PI3K/Akt activation leads to inhibition of the LPS-dependent stimulation of IKK/NF-κB and p38 and ERK MAPKs. Macrophages from LXRαβ-deficient mice exhibited an inhibition of these pathways similar to the corresponding wild-type cells. Silencing or inhibition of p110γ/δ suppressed the effect of these diterpenes (DTPs) on IKK/NF-κB and MAPKs signaling. Taken together, these data show a multitarget anti-inflammatory mechanism by these DTPs including a selective activation of PI3K isoenzymes.
Collapse
Affiliation(s)
- Paqui G Través
- Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Unidad Asociada Universidad de las Palmas de Gran Canaria, Arturo Duperier 4, 28029 Madrid, Spain
| | - María Pimentel-Santillana
- Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Unidad Asociada Universidad de las Palmas de Gran Canaria, Arturo Duperier 4, 28029 Madrid, Spain
| | - Daniel Rico
- Structural Biology and BioComputing Programme, National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Nuria Rodriguez
- Institut of Microbiology and Hygiene, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Thomas Miethke
- Institut of Microbiology and Hygiene, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Unidad Asociada Universidad de las Palmas de Gran Canaria, Arturo Duperier 4, 28029 Madrid, Spain
| | - Emmanuel A Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Unidad Asociada Universidad de las Palmas de Gran Canaria, Arturo Duperier 4, 28029 Madrid, Spain
| | - Michael A Palladino
- Sierra Mesa Technologies, 3357 Fortuna Ranch Road, Encinitas, CA 92024, USA.
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Unidad Asociada Universidad de las Palmas de Gran Canaria, Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
9
|
Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol Ther 2013; 139:189-212. [PMID: 23583354 DOI: 10.1016/j.pharmthera.2013.04.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/01/2013] [Indexed: 12/12/2022]
Abstract
Inflammation is a beneficial host reaction to tissue damage and has the essential primary purpose of restoring tissue homeostasis. Inflammation plays a major role in containing and resolving infection and may also occur under sterile conditions. The cardinal signs of inflammation dolor, calor, tumor and rubor are intrinsically associated with events including vasodilatation, edema and leukocyte trafficking into the site of inflammation. If uncontrolled or unresolved, inflammation itself can lead to further tissue damage and give rise to chronic inflammatory diseases and autoimmunity with eventual loss of organ function. It is now evident that the resolution of inflammation is an active continuous process that occurs during an acute inflammatory episode. Successful resolution requires activation of endogenous programs with switch from production of pro-inflammatory towards pro-resolving molecules, such as specific lipid mediators and annexin A1, and the non-phlogistic elimination of granulocytes by apoptosis with subsequent removal by surrounding macrophages. These processes ensure rapid restoration of tissue homeostasis. Here, we review recent advances in the understanding of resolution of inflammation, highlighting the pharmacological strategies that may interfere with the molecular pathways which control leukocyte survival and clearance. Such strategies have proved beneficial in several pre-clinical models of inflammatory diseases, suggesting that pharmacological modulation of the resolution process may be useful for the treatment of chronic inflammatory diseases in humans.
Collapse
|
10
|
Freeley M, Kelleher D, Long A. Regulation of Protein Kinase C function by phosphorylation on conserved and non-conserved sites. Cell Signal 2010; 23:753-62. [PMID: 20946954 DOI: 10.1016/j.cellsig.2010.10.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 01/14/2023]
Abstract
Protein Kinase C (PKC) is a family of serine/threonine kinases whose function is influenced by phosphorylation. In particular, three conserved phosphorylation sites known as the activation-loop, the turn-motif and the hydrophobic-motif play important roles in controlling the catalytic activity, stability and intracellular localisation of the enzyme. Prevailing models of PKC phosphorylation suggest that phosphorylation of these sites occurs shortly following synthesis and that these modifications are required for the processing of newly-transcribed PKC to the mature (but still inactive) form; phosphorylation is therefore a priming event that enables catalytic activation in response to lipid second messengers. However, many studies have also demonstrated inducible phosphorylation of PKC isoforms at these sites following stimulation, highlighting that our understanding of PKC phosphorylation and its impact on enzymatic function is incomplete. Furthermore, inducible phosphorylation at these sites is often interpreted as catalytic activation, which could be misleading for some isoforms. Recent studies that include systems-wide phosphoproteomic profiling of cells has revealed a host of additional (and in many cases non-conserved) phosphorylation sites on PKC family members that influence their function. Many of these may in fact be more suitable than previously described sites as surrogate markers of catalytic activation. Here we discuss the role of phosphorylation in controlling PKC function and outline our current understanding of the mechanisms that regulate these phosphorylation sites.
Collapse
Affiliation(s)
- Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | |
Collapse
|
11
|
Narayana Y, Bansal K, Sinha AY, Kapoor N, Puzo G, Gilleron M, Balaji KN. SOCS3 expression induced by PIM2 requires PKC and PI3K signaling. Mol Immunol 2009; 46:2947-54. [DOI: 10.1016/j.molimm.2009.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/11/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
12
|
Paranjpe A, Cacalano NA, Hume WR, Jewett A. N-acetyl cysteine mediates protection from 2-hydroxyethyl methacrylate induced apoptosis via nuclear factor kappa B-dependent and independent pathways: potential involvement of JNK. Toxicol Sci 2009; 108:356-66. [PMID: 19176594 DOI: 10.1093/toxsci/kfp010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mechanisms by which resin based materials induce adverse effects in patients have not been completely elucidated. Here we show that 2-hydroxyethyl methacrylate (HEMA) induces apoptotic cell death in oral keratinocytes. Functional loss and cell death induced by HEMA was significantly inhibited in the presence of N-acetyl cysteine (NAC) treatment. NAC also prevented HEMA mediated decrease in vascular endothelial growth factor secretion. The protective effect of NAC was partly related to its ability to induce NF-kappaB in the cells, since HEMA mediated inhibition of nuclear NF-kappaB expression and function was significantly blocked in the presence of NAC treatment. Moreover, blocking of nuclear translocation of NF-kappaB in oral keratinocytes sensitized these cells to HEMA mediated apoptosis. In addition, since NAC was capable of rescuing close to 50% of NF-kappaB knockdown cells from HEMA mediated cell death, there is, therefore, an NF-kappaB independent pathway of protection from HEMA mediated cell death by NAC. NAC mediated prevention of HEMA induced cell death in NF-kappaB knockdown cells was correlated with a decreased induction of c-Jun N-terminal kinase (JNK) activity since NAC inhibited HEMA mediated increase in JNK levels. Furthermore, the addition of a pharmacologic JNK inhibitor to HEMA treated cells prevented cell death and restored NF-kappaB knockdown cell function significantly. Therefore, NAC protects oral keratinocytes from the toxic effects of HEMA through NF-kappaB dependent and independent pathways. Moreover, our data suggest the potential involvement of JNK pathway in NAC mediated protection.
Collapse
Affiliation(s)
- Avina Paranjpe
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Dental Research Institute, UCLA School of Dentistry and Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
13
|
Cacalano NA, Le D, Paranjpe A, Wang MY, Fernandez A, Evazyan T, Park NH, Jewett A. Regulation of IGFBP6 gene and protein is mediated by the inverse expression and function of c-jun N-terminal kinase (JNK) and NFkappaB in a model of oral tumor cells. Apoptosis 2008; 13:1439-49. [PMID: 18982452 DOI: 10.1007/s10495-008-0270-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study is to identify potential gene and protein targets when nuclear factor kappa B (NFkappaB) and c-jun N-terminal kinase (JNK) were inversely expressed in oral tumors. To determine which genes were regulated synergistically by the inverse expression of NFkappaB and JNK, a pathway specific microarray analysis was performed. While either inhibition of NFkappaB or activation of JNK alone was unable to affect the IGFBP6 gene expression in microarray analysis, concomitant increase in JNK activation in the presence of NFkappaB inhibition increased the expression of this gene significantly. Synergistic increase in IGFBP6 gene expression was also confirmed by RT-PCR and Northern blot analysis of transfected cells. Accordingly, the levels of IGFBP6 protein secretion rose synergistically when JNK was over-expressed in NFkappaB knock down cells. In addition, increased expression of JNK in the absence of NFkappaB resulted in a significant induction of cell death in oral tumors when either left untreated or treated with TNF-alpha and TPA. Moreover, when JNK was inhibited by dominant negative JNK (APF), a significant decrease in cell death could be observed in TNF-alpha and TPA treated NFkappaB knock down oral tumors. Therefore, increased induction of IGFBP6 gene or protein expression in oral tumors could be regarded as a potential predictive marker of tumor sensitivity and could be used for prognostic purposes, since a significant correlation could be observed between increased induction of apoptotic cell death and elevated levels of IGFBP6 in these tumors.
Collapse
Affiliation(s)
- Nicholas A Cacalano
- Department of Radiation Oncology, UCLA School of Dentistry and Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Girón N, Través PG, Rodríguez B, López-Fontal R, Boscá L, Hortelano S, de las Heras B. Suppression of inflammatory responses by labdane-type diterpenoids. Toxicol Appl Pharmacol 2008; 228:179-189. [PMID: 18190942 DOI: 10.1016/j.taap.2007.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/28/2007] [Accepted: 12/03/2007] [Indexed: 02/07/2023]
Abstract
A series of 11 labdane-type diterpenoids (1-11) with various patterns of substitution were tested for potential anti-inflammatory activity. Of these compounds, 4 and 11 were selected to evaluate their influence on targets relevant to the regulation of the inflammatory response. These diterpenoids reduced the production of nitric oxide (NO), prostaglandin E2, and tumor necrosis factor-alpha in LPS-activated RAW 264.7 macrophages, with IC50 in the range 1-10 microM. Inhibition of these inflammatory mediators was related to inhibition of the expression of nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2) at the transcriptional level, as determined by western-blot and RT-PCR. Examination of the effects of these diterpenoids on nuclear factor kappaB signaling showed that both compounds inhibit the phosphorylation of IkappaBalpha and IkappaBbeta, preventing their degradation and the nuclear translocation of the NF-kappaB p65 subunit. Inhibition of IKK activity was also observed. These derivatives displayed significant anti-inflammatory activity in vivo, suppressing mouse ear edema induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) and inhibiting myeloperoxidase activity, an index of neutrophil infiltration. The anti-inflammatory effects of these labdane diterpenoids, together with their low cell toxicity, suggest potential therapeutic applications in the regulation of the inflammatory response.
Collapse
Affiliation(s)
- Natalia Girón
- Departamento de Farmacología Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Sánchez AM, Malagarie-Cazenave S, Olea N, Vara D, Cuevas C, Díaz-Laviada I. Spisulosine (ES-285) induces prostate tumor PC-3 and LNCaP cell death by de novo synthesis of ceramide and PKCζ activation. Eur J Pharmacol 2008; 584:237-45. [DOI: 10.1016/j.ejphar.2008.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 01/21/2008] [Accepted: 02/06/2008] [Indexed: 12/18/2022]
|
16
|
Haworth O, Buckley CD. Resolving the problem of persistence in the switch from acute to chronic inflammation. Proc Natl Acad Sci U S A 2007; 104:20647-8. [PMID: 18093938 PMCID: PMC2409206 DOI: 10.1073/pnas.0710633105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Oliver Haworth
- *Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115; and
| | - Christopher D. Buckley
- Rheumatology Research Group, Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
17
|
Moulakakis C, Adam S, Seitzer U, Schromm AB, Leitges M, Stamme C. Surfactant protein A activation of atypical protein kinase C zeta in IkappaB-alpha-dependent anti-inflammatory immune regulation. THE JOURNAL OF IMMUNOLOGY 2007; 179:4480-91. [PMID: 17878344 DOI: 10.4049/jimmunol.179.7.4480] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pulmonary collectin surfactant protein (SP)-A has a pivotal role in anti-inflammatory modulation of lung immunity. The mechanisms underlying SP-A-mediated inhibition of LPS-induced NF-kappaB activation in vivo and in vitro are only partially understood. We previously demonstrated that SP-A stabilizes IkappaB-alpha, the primary regulator of NF-kappaB, in alveolar macrophages (AM) both constitutively and in the presence of LPS. In this study, we show that in AM and PBMC from IkappaB-alpha knockout/IkappaB-beta knockin mice, SP-A fails to inhibit LPS-induced TNF-alpha production and p65 nuclear translocation, confirming a critical role for IkappaB-alpha in SP-A-mediated LPS inhibition. We identify atypical (a) protein kinase C (PKC) zeta as a pivotal upstream regulator of SP-A-mediated IkappaB-alpha/NF-kappaB pathway modulation deduced from blocking experiments and confirmed by using AM from PKCzeta-/- mice. SP-A transiently triggers aPKCThr(410/403) phosphorylation, aPKC kinase activity, and translocation in primary rat AM. Coimmunoprecipitation experiments reveal that SP-A induces aPKC/p65 binding under constitutive conditions. Together the data indicate that anti-inflammatory macrophage activation via IkappaB-alpha by SP-A critically depends on PKCzeta activity, and thus attribute a novel, stimulus-specific signaling function to PKCzeta in SP-A-modulated pulmonary immune response.
Collapse
Affiliation(s)
- Christina Moulakakis
- Department of Immunochemistry and Biochemical Microbiology, Division of Cellular Pneumology, Research Center Borstel, Leibniz Center for Medicine and Bioscience, Borstel, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Wu P, Zhang L, Zhou X, Li Y, Zhang D, Wan J, Ye D. Inflammation pro-resolving potential of 3,4-dihydroxyacetophenone through 15-deoxy-Δ12,14-prostaglandin J2 in murine macrophages. Int Immunopharmacol 2007; 7:1450-9. [PMID: 17761349 DOI: 10.1016/j.intimp.2007.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
3,4-dihydroxyacetophenone (DHAP), an active component isolated from leaves of Tumaodongqing (Ilex Pubescens Hook. Et Arn. Var glaber Chang), is initially used to treat cardiovascular diseases. Previously, we found it had anti-inflammatory effect on macrophages by reducing the production of TNF-alpha in vitro. To further determine whether DHAP could influence inflammatory resolution, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15dPGJ(2)), an arachidonic acid metabolite and also crucial pro-resolving mediator in inflammation, was chosen as the research target. It showed that 10(-5) M DHAP resulted in obvious increase of 15dPGJ(2) in LPS-activated macrophages. Further, inflammation related cytokines and cell apoptosis were also studied. We found DHAP could markedly inhibit LPS-stimulated production of TNF-alpha. However, it could not change the level of IL-10 obviously. At the same time, LPS-triggered apoptosis of macrophage was enhanced by DHAP significantly. After different kinds of cyclooxygenase (COX) inhibitors were administrated, it showed that the effects of DHAP on TNF-alpha and apoptosis were COX-2 dependent. While, inhibition of both COX-1 and COX-2 with indomethacin and administration of 15dPGJ(2) simultaneous reserved the effect of DHAP to inhibit TNF-alpha and enhance apoptosis in LPS-activated macrophages at least partly. The level of COX-2 mRNA and protein were also detected. It was showed that DHAP could increase the expression of COX-2 at both mRNA and protein levels in LPS-activated macrophages. Our results suggest that DHAP could accelerate resolution phase of acute inflammation though enhance the production of 15dPGJ(2), which was also proved to mediate the function of DHAP to inhibit TNF-alpha and enhance apoptosis in vitro. These results are potentially valuable for future use of DHAP.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei Province, 430030, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Identification of conserved domains in the promoter regions of nitric oxide synthase 2: implications for the species-specific transcription and evolutionary differences. BMC Genomics 2007; 8:271. [PMID: 17686182 PMCID: PMC1973084 DOI: 10.1186/1471-2164-8-271] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 08/08/2007] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The majority of the genes involved in the inflammatory response are highly conserved in mammals. These genes are not significantly expressed under normal conditions and are mainly regulated at the transcription and prost-transcriptional level. Transcription from the promoters of these genes is very dependent on NF-kappaB activation, which integrates the response to diverse extracellular stresses. However, in spite of the high conservation of the pattern of promoter regulation in kappaB-regulated genes, there is inter-species diversity in some genes. One example is nitric oxide synthase 2 (NOS-2), which exhibits a species-specific pattern of expression in response to infection or pro-inflammatory challenge. RESULTS We have conducted a comparative genomic analysis of NOS-2 with different bioinformatic approaches. This analysis shows that in the NOS-2 gene promoter the position and the evolutionary divergence of some conserved regions are different in rodents and non-rodent mammals, and in particular in primates. Two not previously described distal regions in rodents that are similar to the unique upstream region responsible of the NF-kappaB activation of NOS-2 in humans are fragmented and translocated to different locations in the rodent promoters. The rodent sequences moreover lack the functional kappaB sites and IFN-gamma response sites present in the homologous human, rhesus monkey and chimpanzee regions. The absence of kappaB binding in these regions was confirmed by electrophoretic mobility shift assays. CONCLUSION The data presented reveal divergence between rodents and other mammals in the location and functionality of conserved regions of the NOS-2 promoter containing NF-kappaB and IFN-gamma response elements.
Collapse
|
20
|
Garin G, Abe JI, Mohan A, Lu W, Yan C, Newby AC, Rhaman A, Berk BC. Flow Antagonizes TNF-α Signaling in Endothelial Cells by Inhibiting Caspase-Dependent PKCζ Processing. Circ Res 2007; 101:97-105. [PMID: 17525369 DOI: 10.1161/circresaha.107.148270] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Unidirectional laminar flow is atheroprotective, in part by inhibiting cytokine-mediated endothelial cell (EC) inflammation and apoptosis. Previously, we showed that flow inhibited TNF-α signaling by preventing activation of JNK. Recently, PKCζ was identified as the PKC isoform most strongly regulated by flow pattern, with increased PKCζ activity in regions of disturbed flow versus unidirectional flow. Interestingly, PKCζ is cleaved by caspases after TNF-α stimulation to generate a 50-kDa truncated form (CATζ, catalytic domain of PKCζ) with a higher kinase activity than the full-length protein. We hypothesized that flow would inhibit TNF-α–mediated PKCζ cleavage and thereby CATζ formation. We found that PKCζ activity was required for TNF-α–mediated JNK and caspase-3 activation in ECs. PKCζ was rapidly cleaved to generate CATζ in cultured bovine and human aortic ECs and in intact rabbit vessels stimulated with TNF-α. This truncated form of PKCζ enhanced JNK and caspase-3 activation. Interestingly, PKCζ cleavage was prevented by inhibitors of PKCζ, JNK, and caspase activities, suggesting that these enzymes, via regulating CATζ formation, modulate caspase-3 activity in ECs. Finally, we found that flow reduced caspase-dependent processing of PKCζ and caspase-3 activation. These results define a novel role for PKCζ as a shared signaling mediator for flow and TNF-α, and important for flow-mediated inhibition of proinflammatory and apoptotic events in ECs.
Collapse
Affiliation(s)
- Gwenaele Garin
- University of Rochester, Cardiovascular Research Institute, Box 679, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sandig H, Pease JE, Sabroe I. Contrary prostaglandins: the opposing roles of PGD2 and its metabolites in leukocyte function. J Leukoc Biol 2007; 81:372-82. [PMID: 17043246 DOI: 10.1189/jlb.0706424] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Traditionally, PGD(2) has been considered to be a pro-inflammatory mediator, acting via classical PG receptors, such as the PGD(2) receptor (DP). PGD(2) is degraded rapidly in vitro and in vivo to a variety of metabolites, the majority of which were thought, until recently, to be physiologically inactive. Several "inactive" metabolites, particularly 15d-PGJ(2), have been shown to have wide-ranging effects on leukocytes and other cell types, however, and a potentially important anti-inflammatory role for PGD(2) has now been recognized, and the complexity of PGD(2) signaling is beginning to be elucidated. PGD(2) and its metabolites are biologically active over a broad concentration range, and, intriquingly, it appears that there are marked concentration-dependent variations in the consequences of signaling by these eicosanoids, which have the potential to exert pro- and anti-inflammatory effects. For example, the actions of PGD(2) can influence multiple stages in the life of the mature eosinophil, from causing its release from the bone marrow to inducing its recruitment and activation and, ultimately, regulating its apoptosis. This review is concerned with the diverse responses induced in leukocytes by PGD(2) and its metabolites and the signaling mechanisms which are thought to be responsible for them.
Collapse
Affiliation(s)
- Hilary Sandig
- Department of Asthma, Allergy and Respiratory Science, King's College London, 5th Floor Thomas Guy House, Guy's Hospital, London, UK.
| | | | | |
Collapse
|
22
|
Monsalve E, Pérez MA, Rubio A, Ruiz-Hidalgo MJ, Baladrón V, García-Ramírez JJ, Gómez JC, Laborda J, Díaz-Guerra MJM. Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. THE JOURNAL OF IMMUNOLOGY 2006; 176:5362-73. [PMID: 16622004 DOI: 10.4049/jimmunol.176.9.5362] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notch signaling has been extensively implicated in cell-fate determination along the development of the immune system. However, a role for Notch signaling in fully differentiated immune cells has not been clearly defined. We have analyzed the expression of Notch protein family members during macrophage activation. Resting macrophages express Notch-1, -2, and -4, as well as the Notch ligands Jagged-1 and -2. After treatment with LPS and/or IFN-gamma, we observed a p38 MAPK-dependent increase in Notch-1 and Jagged-1 mRNA and protein levels. To study the role of Notch signaling in macrophage activation, we forced the transient expression of truncated, active intracellular Notch-1 (Notch-IC) proteins in Raw 264.7 cells and analyzed their effects on the activity of transcription factors involved in macrophage activation. Notch-IC increased STAT-1-dependent transcription. Furthermore, Raw 264.7 Notch-IC stable transfectants increased STAT1-dependent transcription in response to IFN-gamma, leading to higher expression of IFN regulatory factor-1, suppressor of cytokine signaling-1, ICAM-1, and MHC class II proteins. This effect was independent from an increase of STAT1 Tyr or Ser phosphorylation. However, inducible NO synthase expression and NO production decreased under the same conditions. Our results show that Notch up-regulation and subsequent signaling following macrophage activation modulate gene expression patterns known to affect the function of mature macrophages.
Collapse
Affiliation(s)
- Eva Monsalve
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas (CRIB), Avenida de Almansa No. 14, 02006 Albacete, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Denning GM, Stoll LL. Peroxisome proliferator-activated receptors: potential therapeutic targets in lung disease? Pediatr Pulmonol 2006; 41:23-34. [PMID: 16267824 DOI: 10.1002/ppul.20338] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that play central roles in lipid and glucose homeostasis, cellular differentiation, and the immune/inflammatory response. Growing evidence indicates that changes in expression and activation of PPARs likely modulate conditions as diverse as diabetes, atherosclerosis, cancer, asthma, Parkinson's disease, and Alzheimer's disease. Activation of these receptors by natural or pharmacologic ligands leads to both gene-dependent and gene-independent effects that alter the expression of a wide array of proteins. In the lung, PPARs are expressed by alveolar macrophages, as well as by epithelial, endothelial, and smooth muscle cells. Studies both in vitro and in vivo suggest that PPAR ligands may have anti-inflammatory effects in asthma, pulmonary sarcoidosis, and pulmonary alveolar proteinosis, as well as antiproliferative and antiangiogenic effects in epithelial lung cancers. Further studies to understand the contribution of these receptors to health and disease will be important for determining whether they represent a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Gerene M Denning
- Department of Emergency Medicine, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
24
|
Nikodemova M, Duncan ID, Watters JJ. Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IkappaBalpha degradation in a stimulus-specific manner in microglia. J Neurochem 2005; 96:314-23. [PMID: 16336636 DOI: 10.1111/j.1471-4159.2005.03520.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CNS inflammation mediated by microglial activation can result in neuronal and glial cell death in a variety of neurodegenerative and demyelinating diseases. Minocycline, a second-generation tetracycline, has profound anti-inflammatory properties in the CNS mediated, in part, by inhibition of microglia. MAPK and nuclear factor-kappaB (NF-kappaB) activation are hallmarks of activated microglia and they are critical for the expression of many inflammatory mediators. In the present study, we investigated minocycline effects on activation of p38, c-Jun-N-terminal activated protein kinase (JNK) 1/2 and extracellular signal regulated kinase (ERK) 1/2 MAPKs and inhibitor alpha of NF-kappaB (IkappaBalpha) degradation in BV-2 and primary microglial cells. Our results demonstrate that minocycline has the ability to inhibit all MAPKs but these effects strongly depend on the stimulus used for MAPK activation. Minocycline significantly decreased activation of all lipopolysaccharide-stimulated MAPKs but it was without effect on MAPKs activated by H2O2. Minocycline inhibited JNK1/2 and ERK1/2 but not p38 when stimulated by 2',3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate, indicating that minocycline affects only certain upstream signaling target(s) that are stimulus-specific. Our data also suggest that protein kinase C (PKC) inhibition may be partially involved in the minocycline mechanism of MAPK inhibition. In addition, minocycline attenuated lipopolysaccharide-stimulated degradation of IkappaBalpha implying a possible inhibitory role on NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
25
|
Musiek ES, Milne GL, McLaughlin BA, Morrow JD. Cyclopentenone eicosanoids as mediators of neurodegeneration: a pathogenic mechanism of oxidative stress-mediated and cyclooxygenase-mediated neurotoxicity. Brain Pathol 2005; 15:149-58. [PMID: 15912888 PMCID: PMC2881556 DOI: 10.1111/j.1750-3639.2005.tb00512.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The activation of cyclooxygenase enzymes in the brain has been implicated in the pathogenesis of numerous neurodegenerative conditions. Similarly, oxidative stress is believed to be a major contributor to many forms of neurodegeneration. These 2 distinct processes are united by a common characteristic: the generation of electrophilic cyclopentenone eicosanoids. These cyclopentenone compounds are defined structurally by the presence of an unsaturated carbonyl moiety in their prostane ring, and readily form Michael adducts with cellular thiols, including those found in glutathione and proteins. The cyclopentenone prostaglandins (PGs) PGA2, PGJ2, and 15-deoxy-delta(12,14) PGJ2, enzymatic products of cyclooxygenase-mediated arachidonic acid metabolism, exert a complex array of potent neurodegenerative, neuroprotective, and anti-inflammatory effects. Cyclopentenone isoprostanes (A2/J2-IsoPs), products of non-enzymatic, free radical-mediated arachidonate oxidation, are also highly bioactive, and can exert direct neurodegenerative effects. In addition, cyclopentenone products of docosahexaenoic acid oxidation (cyclopentenone neuroprostanes) are also formed abundantly in the brain. For the first time, the formation and biological actions of these various classes of reactive cyclopentenone eicosanoids are reviewed, with emphasis on their potential roles in neurodegeneration. The accumulating evidence suggests that the formation of cyclopentenone eicosanoids in the brain may represent a novel pathogenic mechanism, which contributes to many neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Beth Ann McLaughlin
- Departments of Pharmacology and
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tenn
| | | |
Collapse
|
26
|
Dallot E, Méhats C, Oger S, Leroy MJ, Breuiller-Fouché M. A role for PKCζ in the LPS-induced translocation NF-κB p65 subunit in cultured myometrial cells. Biochimie 2005; 87:513-21. [PMID: 15935276 DOI: 10.1016/j.biochi.2005.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/28/2005] [Accepted: 02/23/2005] [Indexed: 11/25/2022]
Abstract
Human myometrial cells respond to the endotoxin lipopolysaccharide (LPS) by activation of protein kinase C (PKC) zeta and nuclear translocation of the p65 subunit of NF-kB. Our first objective was to determine the expression of TLR4 in cultured myometrial cells. Positive immunoreactivity observed for TLR4 suggests that myometrial cells have the potential to respond to LPS. To confirm that LPS signals via TLR4, the ability of an anti-TLR4 neutralizing antibody to block LPS-induced translocation of p65 was demonstrated. To determine whether LPS-induced nuclear translocation of p65 is mediated through the PKC pathway, myometrial cells were treated with various inhibitors of the PKC isoforms already characterized in human myometrium. Neither the selective conventional PKC inhibitor nor the inhibitor of PKCdelta affected NF-kB activation. By contrast, we found that treatment of myometrial cells with an antisense against PKCzeta affect LPS-induced nuclear translocation of the p65 subunit of NF-kB. Accordingly, our data support the notion that PKCzeta is essential for LPS-induced NF-kB p65 subunit nuclear translocation in human myometrial cells.
Collapse
Affiliation(s)
- Emmanuelle Dallot
- Institut National de la Santé et de la Recherche Médicale, Inserm U427, Faculté des Sciences Pharmaceutiques et Biologiques, Université René Descartes, 4, avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | |
Collapse
|
27
|
Chen YC, Shen SC, Tsai SH. Prostaglandin D(2) and J(2) induce apoptosis in human leukemia cells via activation of the caspase 3 cascade and production of reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1743:291-304. [PMID: 15843042 DOI: 10.1016/j.bbamcr.2004.10.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 10/05/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
The presence of prostaglandins (PGs) has been demonstrated in the processes of carcinogenesis and inflammation. In the present study, we found that 12-o-tetradecanoylphorbol 13-acetate (TPA) induced cyclooxygenase 2 (COX-2), but not COX-1, protein expression in HL-60 cells, and the addition of arachidonic acid (AA) in the presence or absence of TPA significantly reduced the viability of HL-60 cells, an effect that was blocked by adding the COX inhibitors, NS398 and aspirin. The AA metabolites, PGD(2) and PGJ(2), but not PGE(2) or PGF(2alpha), reduced the viability of the human HL60 and Jurkat leukemia cells according to the MTT assay and LDH release assay. Apoptotic characteristics including DNA fragmentation, apoptotic bodies, and hypodiploid cells were observed in PGD(2)- and PGJ(2)-treated leukemia cells. A dose- and time-dependent induction of caspase 3 protein procession, and PARP and D4-GDI protein cleavage with activation of caspase 3, but not caspase 1, enzyme activity was detected in HL-60 cells treated with PGD(2) or PGJ(2). Additionally, DNA ladders induced by PGD(2) and PGJ(2) were significantly inhibited by the caspase 3 peptidyl inhibitor, Ac-DEVD-FMK, but not by the caspase 1 peptidyl inhibitor, Ac-YVAD-FMK, in accordance with the blocking of caspase 3, PARP, and D4-GDI protein procession. An increase in intracellular peroxide levels by PGD(2) and PGJ(2) was identified by the DCHF-DA assay, and anti-oxidant N-acetyl cysteine (NAC), mannitol (MAN), and tiron significantly inhibited cell death induced by PGD(2) and PGJ(2) by reducing reactive oxygen species (ROS) production. The PGJ(2) metabolites, 15-deoxy-Delta(12,14)-PGJ(2) and Delta(12)-PGJ(2), exhibited effective apoptosis-inducing activity in HL-60 cells through ROS production via activation of the caspase 3 cascade. The proliferator-activated receptor-gamma (PPAR-gamma) agonists, rosiglitazone (RO), troglitazone (TR), and ciglitazone (CI), induced apoptosis in cells which was blocked by the addition of the PPAR-gamma antagonists, GW9662 and BADGE, via blocking of caspase 3 and PARP cleavage. However, neither GW9662 nor BADGE showed any protective effect on PGD(2)- and PGJ(2)-induced apoptosis. A differential apoptotic effect of PGs through ROS production, followed by activation of the caspase 3 cascade, was demonstrated.
Collapse
Affiliation(s)
- Yen-Chou Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | | | | |
Collapse
|
28
|
Wu W, Mosteller RD, Broek D. Sphingosine kinase protects lipopolysaccharide-activated macrophages from apoptosis. Mol Cell Biol 2004; 24:7359-69. [PMID: 15314148 PMCID: PMC507005 DOI: 10.1128/mcb.24.17.7359-7369.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) signaling is critical for the innate immune response to gram-negative bacteria. Here, evidence is presented for LPS stimulation of sphingosine kinase (SPK) in the RAW 264.7 murine macrophage cell line and rat primary hepatic macrophages (HMs). LPS treatment of RAW 264.7 cells resulted in a time- and dose-dependent activation of SPK and membrane translocation of SPK1. Further, LPS-induced SPK activation was blocked by SPK1-specific small interfering RNA (siRNA). Overexpression of Toll-like receptor 4 and MD2, the receptor and coreceptor of LPS, in HEK 293 cells activated SPK activity in the absence of LPS treatment. Inhibition of SPK by the pharmacological inhibitor N,N-dimethylsphingosine (DMS) or SPK1-specific siRNA blocked LPS stimulation of extracellular signal-regulated kinase 1/2 and p38 but enhanced LPS-induced c-Jun N-terminal kinase activation. The SPK inhibitor DMS and dominant-negative SPK1 also blocked LPS activation of Elk-1 and NF-kappaB reporters in RAW 264.7 cells. Inhibition of SPK sensitized RAW 264.7 cells and HMs to LPS-induced apoptosis. These data demonstrate the critical role of SPK1 in LPS signaling in macrophages and suggest that SPK1 is a potential therapeutic target to block hyperimmune responses induced by gram-negative bacteria.
Collapse
Affiliation(s)
- Weicheng Wu
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine at the University of Southern California, Los Angeles 90089, USA
| | | | | |
Collapse
|
29
|
Grau R, Iñiguez MA, Fresno M. Inhibition of activator protein 1 activation, vascular endothelial growth factor, and cyclooxygenase-2 expression by 15-deoxy-Delta12,14-prostaglandin J2 in colon carcinoma cells: evidence for a redox-sensitive peroxisome proliferator-activated receptor-gamma-independent mechanism. Cancer Res 2004; 64:5162-71. [PMID: 15289320 DOI: 10.1158/0008-5472.can-04-0849] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF) are significantly associated with tumor growth and metastasis. Here we show that phorbol ester-mediated induction of VEGF and COX-2 expression in colon carcinoma cells is inhibited by 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)). This cyclopentenone was able to inhibit activator protein1 (AP-1)-dependent transcriptional induction of COX-2 and VEGF promoters induced by phorbol 12-myristate 13-acetate (PMA) or c-Jun overexpression. 15d-PGJ(2) interfered with at least two steps within the signaling pathway leading to AP-1 activation. First, 15d-PGJ(2) impaired AP-1 binding to a consensus DNA sequence. Second, 15d-PGJ(2) selectively inhibited c-Jun NH(2) terminal kinase (JNK) but not extracellular signal-regulated kinase or p38 mitogen-activated protein kinase activation induced by PMA. This led to a decreased ability of JNK to phosphorylate c-Jun and to activate its transactivating activity. Inhibition of AP-1 activation and COX-2 or VEGF transcriptional induction by this cyclopentenone was found to be independent of peroxisome proliferator-activated receptor-gamma (PPARgamma) because it was not affected by either expression of a dominant negative form of PPARgamma or the use of a PPARgamma antagonist. In contrast, we have found that the effects of 15d-PGJ(2) on AP-1 activation may occur through its ability to induce intracellular oxidative stress. The antioxidant N-acetylcysteine significantly reversed the inhibition by 15d-PGJ(2) of AP-1 activity and COX-2 or VEGF transcriptional induction. Together, these findings provide new insight into the antitumoral properties of 15d-PGJ(2) through the inhibition of the induction of AP-1-dependent genes involved in tumor progression, such as COX-2 and VEGF.
Collapse
Affiliation(s)
- Raquel Grau
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
30
|
Cuschieri J, Umanskiy K, Solomkin J. PKC-ζ is essential for endotoxin-induced macrophage activation1,2. J Surg Res 2004; 121:76-83. [PMID: 15313379 DOI: 10.1016/j.jss.2004.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Indexed: 11/15/2022]
Abstract
BACKGROUND A critical element in sepsis-induced tissue injury is the release of pro-inflammatory mediators from LPS-activated macrophages. The cellular mechanisms involved in this process remain incompletely understood. The aim of the current study was to further clarify the mechanism of LPS activation through the TLR4 receptor complex by examining the roles of the various isoforms of PKC. MATERIALS AND METHODS Differentiated THP-1 cells were subjected to LPS stimulation. Selected cells were pretreated with various concentrations of Gö6983 to inhibit conventional, novel, and atypical PKC isoforms. Lipid raft, cellular, and nuclear proteins were then extracted and analyzed by Western blot and EMSA for components of the TLR4 pathway. Supernatants harvested under the various conditions were analyzed by ELISA for the production of TNF-alpha. RESULTS LPS stimulation led to the mobilization of TLR4 to lipid rafts followed by phosphorylation and activation of IRAK, ERK 1/2, p38, and JNK/SAPK. Subsequently, LPS induced the activation of NF-kappaB and AP-1. Activation of these TLR4-signaling components resulted in the production of TNF-alpha. Inhibition of conventional and novel PKC isoforms had no significant effect on macrophage activation. Inhibition of the atypical PKC, PKC-zeta, was associated with significant attenuation in the mobilization of TLR4 to lipid rafts, the activation of all TLR4-signaling components, and the production of TNF-alpha. CONCLUSION This study demonstrates that the atypical PKC isoform, PKC-zeta, is critical to regulation of LPS-induced TLR4 lipid raft mobilization within macrophages, TLR4-signaling, and TNF-alpha production. Although the mechanism of its activation remains unresolved, it appears that modulation of PKC-zeta activity during Gram-negative infections may limit associated inflammatory-induced morbidity.
Collapse
Affiliation(s)
- Joseph Cuschieri
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, ML 558, Cincinnati, OH 45267-0558, USA
| | | | | |
Collapse
|
31
|
Teusch N, Lombardo E, Eddleston J, Knaus UG. The low molecular weight GTPase RhoA and atypical protein kinase Czeta are required for TLR2-mediated gene transcription. THE JOURNAL OF IMMUNOLOGY 2004; 173:507-14. [PMID: 15210811 DOI: 10.4049/jimmunol.173.1.507] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell cycle progression, cell adhesion, and motility. In this study, we report that stimulation of TLR2 in human epithelial and monocytic cells leads to rapid and transient activation of RhoA. RhoA cooperated with the canonical I-kappaB kinase-mediated pathway that induces the release of NF-kappaB, in regulating the trans activation of the NF-kappaB subunit p65/RelA by affecting Ser(311) phosphorylation, and subsequent cytokine production. Another consequence of TLR2 stimulation by bacterial derived products was the activation of atypical protein kinase C (PKC) zeta and association of this protein kinase with RhoA. Inhibition of PKCzeta decreased NF-kappaB activation and p65/RelA trans activation without affecting I-kappaBalpha degradation. The observation of a transient, stimulus-dependent association of RhoA with PKCzeta suggests that RhoA mediates at least partially its effect on gene transcription through atypical PKC. In contrast to previous studies, identifying Rac1-PI3K as an upstream element in TLR2-initiated response to NF-kappaB, PI3K signaling was not required for RhoA or PKCzeta activity. These results indicate that multiple GTPase-regulated pathways emerge from stimulated Toll receptors, controlling different aspects of NF-kappaB-mediated gene transcription.
Collapse
Affiliation(s)
- Nicole Teusch
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
32
|
Gilroy DW, Lawrence T, Perretti M, Rossi AG. Inflammatory Resolution: new opportunities for drug discovery. Nat Rev Drug Discov 2004; 3:401-16. [PMID: 15136788 DOI: 10.1038/nrd1383] [Citation(s) in RCA: 570] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Derek W Gilroy
- William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | | | |
Collapse
|
33
|
Zhang Y, Chen F. Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK). Cancer Res 2004; 64:1902-5. [PMID: 15026320 DOI: 10.1158/0008-5472.can-03-3361] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK) are activated simultaneously under a variety of stress conditions. They also share several common signaling pathways for their activation in response to cytokines or growth factors. Recent studies, however, demonstrated a new form of interplay between these two allies. Inhibition of NF-kappaB by ikkbeta or rela gene deficiency sensitizes stress responses through enhanced or prolonged activation of JNK. Conversely, sustained activation of NF-kappaB inhibits cytokine-induced JNK activation. The mechanisms of how NF-kappaB and JNK become rivals for each other are under extensive debate.
Collapse
Affiliation(s)
- Yadong Zhang
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | | |
Collapse
|
34
|
Pérez-Sala D, Cernuda-Morollón E, Cañada FJ. Molecular Basis for the Direct Inhibition of AP-1 DNA Binding by 15-Deoxy-Δ12,14-prostaglandin J2. J Biol Chem 2003; 278:51251-60. [PMID: 14532268 DOI: 10.1074/jbc.m309409200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclopentenone prostaglandins may interfere with cellular functions by multiple mechanisms. The cyclopentenone 15-deoxy-Delta 12,14-prostaglandin J2 (15d-PGJ2) has been reported to inhibit the activity of the transcription factor AP-1 in several experimental settings. We have explored the possibility of a direct interaction of 15d-PGJ2 with AP-1 proteins. Here we show that 15d-PGJ2 covalently modifies c-Jun and directly inhibits the DNA binding activity of AP-1. The modification of c-Jun occurs both in vitro and in intact cells as detected by labeling with biotinylated 15d-PGJ2 and mass spectrometry analysis. Attachment of the cyclopentenone prostaglandin occurs at cysteine 269, which is located in the c-Jun DNA binding domain. In addition, 15d-PGJ2 can promote the oligomerization of a fraction of c-Jun through the formation of intermolecular disulfide bonds or 15d-PGJ2-bonded dimers. Our results identify a novel site of interaction of 15d-PGJ2 with the AP-1 activation pathway that may contribute to the complex effects of cyclopentenone prostaglandins on the cellular response to pro-inflammatory agents. They also show the first evidence for the induction of protein cross-linking by 15d-PGJ2.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| | | | | |
Collapse
|
35
|
Uhlig U, Fehrenbach H, Lachmann RA, Goldmann T, Lachmann B, Vollmer E, Uhlig S. Phosphoinositide 3-OH kinase inhibition prevents ventilation-induced lung cell activation. Am J Respir Crit Care Med 2003; 169:201-8. [PMID: 14578214 DOI: 10.1164/rccm.200303-343oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In acute respiratory distress syndrome patients, protective ventilation strategies reduce mortality and proinflammatory mediator levels. It has been suggested that some of the side effects of mechanical ventilation are caused by the excessive release of mediators capable of causing pulmonary inflammation and tissue destruction (biotrauma). Selective inhibition of this process might be used to minimize the side effects of artificial mechanical ventilation. This study was designed to identify the cell types and specific signaling mechanisms that are activated by ventilation with increased pressure/volume (overventilation). In isolated perfused mouse lungs, overventilation caused nuclear translocation of nuclear factor-kappaB (NF-kappaB) and enhanced expression of interleukin-6 mRNA in alveolar macrophages and alveolar epithelial type II cells. The phosphoinositide 3-OH kinase inhibitor Ly294002 prevented nuclear translocation of NF-kappaB and the subsequent release of interleukin-6 and macrophage inflammatory protein-2alpha in overventilated but not in endotoxic lungs. Similar results were obtained in rats in vivo, where Ly294002 prevented NF-kappaB activation by overventilation but not by endotoxin. These findings show that alveolar macrophages and alveolar epithelial type II cells contribute to the ventilation-induced release of proinflammatory mediators and that selective inhibition of this process is possible without inhibiting the activation of NF-kappaB by endotoxin.
Collapse
|
36
|
Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T. Inducible cyclooxygenase-derived 15-deoxy(Delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J 2003; 17:2269-71. [PMID: 14563690 DOI: 10.1096/fj.02-1162fje] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Failure of acute inflammation to resolve leads to persistence of the inflammatory response and may contribute to the development of chronic inflammation. Thus, an understanding of inflammatory resolution will provide insight into the etiology of chronic inflammation. In an acute pleurisy, polymorphonuclear leukocytes (PMNs) were found to predominate at the onset of the lesion but decreased in number by undergoing apoptosis, the principal mechanism by which PMNs died in this model. PMNs were progressively replaced by monocytes, which differentiated into macrophages. As with PMNs, macrophages also underwent programmed cell death leading to an abatement of the inflammatory response and eventual resolution. It was found that apoptosis of both these inflammatory cell types was mediated by pro-resolving cyclooxygenase 2-derived 15deoxyDelta12-14PGJ2, which is uniquely expressed during active resolution. Although PMN programmed cell death is well understood, the observation that macrophages apoptose during resolution of acute inflammation is less well described. These results provide insight into the mechanisms that switch off acute inflammation and prevent complications of wound healing and potentially the development of immune-mediated chronic inflammation.
Collapse
Affiliation(s)
- Derek W Gilroy
- Department of Experimental Pathology, William Harvey Research Institute, St. Bartholomew's & The Royal London School of Medicine and Dentistry, London EC1M 6BQ, UK.
| | | | | | | | | | | |
Collapse
|