1
|
Wang J, Guo P, Wu D, Yi J, Jiang Q, Hu J, Ouyang H. Rejuvenating Hyaline Cartilage with Senescence-Targeting Si-ADAM19 Delivery for Osteoarthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414419. [PMID: 39927476 PMCID: PMC11967805 DOI: 10.1002/advs.202414419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Osteoarthritis (OA) is one of the most common joint degenerative diseases without effective treatment, whose pathology is related to the local accumulation of senescent cells (SnCs). However, existing SnCs-scavenging drugs "senolytics" may lead to the exhaustion of stem and progenitor cells, impairing chondrocyte proliferation and cartilage regeneration. Here, ADAM19, a kind of endopeptidases from the ADAM (a disintegrin and metalloproteinase) family, is identified as a novel target for senescent chondrocyte rejuvenation. ADAM19 is elevated in senescent chondrocytes in both mice and human osteoarthritic joints, as well as in cellular senescence model in vitro. ADAM19 knockdown not only significantly attenuated senescent phenotype of chondrocytes, but also promoted cell proliferation and extracellular matrix synthesis. RNA sequencing revealed ADAM19 may regulate chondrocyte senescence mainly through the PI3K/AKT signal axis. In addition, a senescence-targeting small interfering RNA (siRNA) delivery system is developed for in vivo delivery of therapeutic siRNA. The complex selectively released ADAM19 siRNA in SnCs and performed high silencing effect on target gene. Furthermore, intra-articular (IA) injection of the complex once every two weeks in OA mice effectively reduced SnCs accumulation and promoted hyaline cartilage regeneration. This study provides a promising strategy for the development of regenerative RNA interference therapy.
Collapse
Affiliation(s)
- Jiasheng Wang
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Peng Guo
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Dongmei Wu
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Junzhi Yi
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Qi Jiang
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Jiajie Hu
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
- Zhejiang University‐University of Edinburgh InstituteZhejiang University School of MedicineHaining310058China
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
| |
Collapse
|
2
|
Bar S, Hilsabeck TA, Pattavina B, López-Domínguez JA, Basisty N, Bons J, Watson M, Schilling B, Campisi J, Kapahi P, Sharma A. Inhibition of the metalloprotease ADAM19 as a novel senomorphic strategy to ameliorate gut permeability and senescence markers by modulating senescence-associated secretory phenotype (SASP). Aging (Albany NY) 2025; 17:757-777. [PMID: 40117561 PMCID: PMC11984429 DOI: 10.18632/aging.206224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Accumulation of DNA damage can accelerate aging through cellular senescence. Previously, we established a Drosophila model to investigate the effects of radiation-induced DNA damage on the intestine. In this model, we examined irradiation-responsive senescence in the fly intestine. Through an unbiased genome-wide association study (GWAS) utilizing 156 strains from the Drosophila Genetic Reference Panel (DGRP), we identified meltrin (the drosophila orthologue of mammalian ADAM19) as a potential modulator of the senescence-associated secretory phenotype (SASP). Knockdown of meltrin resulted in reduced gut permeability, DNA damage, and expression of the senescence marker β-galactosidase (SA-β-gal) in the fly gut following irradiation. Additionally, inhibition of ADAM19 in mice using batimastat-94 reduced gut permeability and inflammation in the gut. Our findings extend to human primary fibroblasts, where ADAM19 knockdown or pharmacological inhibition decreased expression of specific SASP factors and SA-β-gal. Furthermore, proteomics analysis of the secretory factor of senescent cells revealed a significant decrease in SASP factors associated with the ADAM19 cleavage site. These data suggest that ADAM19 inhibition could represent a novel senomorphic strategy.
Collapse
Affiliation(s)
- Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Blaine Pattavina
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Jackson Laboratory, Farmington, CT 06032, USA
| | - José Alberto López-Domínguez
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Instituto de Biología Molecular y Celular del Cáncer and Centro de Investigación del Cáncer of Salamanca, University of Salamanca-CSIC, Campus Unamuno s/n, 37007 Salamanca, Spain
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Mark Watson
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Amit Sharma
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- SENS Research Foundation, Mountain View, CA 94041, USA
| |
Collapse
|
3
|
Meng Q, Bao D, Liu S, Huang J, Guo M, Dai B, Ding L, Xie S, Meng M, Lv C, He W, Luo H, Zhu H. ADAM Metallopeptidase domain 19 promotes skin fibrosis in systemic sclerosis via neuregulin-1. Mol Med 2024; 30:269. [PMID: 39716051 DOI: 10.1186/s10020-024-01047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND ADAM19 (ADAM Metallopeptidase Domain 19) is known to be involved in extracellular matrix (ECM) remodeling, yet its specific function in systemic sclerosis (SSc) fibrosis remains unclear. OBJECTIVES This study sought to clarify the role and underlying mechanism of ADAM19 in SSc skin fibrosis. METHODS The expression of ADAM19 was assessed in skin tissues of SSc and wound healing using publicly available transcriptome datasets. This analysis was further validated through real-time PCR, western blot, and immunostaining in our SSc cohort, as well as in a mouse model of hypochlorite (HOCl)-induced fibrosis. To downregulate the expression of ADAM19, ADAM19 siRNA was employed. The influence of ADAM19 on fibroblast transcriptomics was examined using bulk RNA-seq. Data analysis and visualization were conducted using R packages, including edgeR, limma, clusterProfiler, ggplot2, gseaplot2, and complexheatmap. RESULTS ADAM19 exhibited a significant upregulation in skin tissues of SSc patients, as well as in wound healing and a HOCl-induced fibrosis mouse model. Additionally, there was a notable positive correlation between ADAM19 and fibrosis-related genes, local skin score, Modified Rodnan skin score, skin thickness progression rate, and the presence of ARA antibodies in SSc patients. Furthermore, ADAM19 levels were markedly elevated in SSc primary dermal fibroblasts and TGF-β-stimulated healthy controls primary dermal fibroblasts. The downregulation of ADAM19 resulted in the repression of TGF-β-induced ECM deposition and fibroblast activation. ADAM19 was identified as a mediator for the shedding of neuregulin-1 (NRG1) in fibroblasts, a pro-fibrotic cytokine that must be cleaved to exert its function. CONCLUSION ADAM19 plays a role in TGF-β-induced ECM deposition and fibroblast activation by mediating the shedding of NRG1, ultimately contributing to the development of skin fibrosis in SSc.
Collapse
Affiliation(s)
- Qiming Meng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Ding Bao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Sijia Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jing Huang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Muyao Guo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Liqing Ding
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Shasha Xie
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Meng Meng
- Department of Pathology, Xiangya Hospital, Changsha, 410008, P.R. China
| | - Chunliu Lv
- Department of Breast Tumor Plastic Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Weijia He
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
4
|
Li H, House JS, Nichols CE, Gruzdev A, Ward JM, Li JL, Wyss AB, Haque E, Edin ML, Elmore SA, Mahler BW, Degraff LM, Shi M, Zeldin DC, London SJ. Adam19 Deficiency Impacts Pulmonary Function: Human GWAS Follow-up in a Mouse Knockout Model. Lung 2024; 202:659-672. [PMID: 39153120 PMCID: PMC11427501 DOI: 10.1007/s00408-024-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. METHODS We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Mouse body composition was assessed using dual-energy X-ray absorptiometry. Mouse lung function was measured using flexiVent. RESULTS Contrary to prior publications, the KO was not neonatal lethal. KO mice had lower body weight and shorter tibial length than wild-type (WT) mice. Their body composition revealed lower soft weight, fat weight, and bone mineral content. Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. CONCLUSION Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.
Collapse
Affiliation(s)
- Huiling Li
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - John S House
- Biostatistics & Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cody E Nichols
- Whitsell Innovations, Inc., Chapel Hill, North Carolina, USA
| | - Artiom Gruzdev
- Reproductive & Developmental Biology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Annah B Wyss
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ezazul Haque
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Matthew L Edin
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Susan A Elmore
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Beth W Mahler
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Laura M Degraff
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Min Shi
- Biostatistics & Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Darryl C Zeldin
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A3-05, PO Box 12233, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
5
|
Li H, House J, Nichols C, Gruzdev A, Ward J, Li JL, Wyss A, Haque E, Edin M, Elmore S, Mahler B, Degraff L, Shi M, Zeldin D, London S. Adam19 Deficiency Impacts Pulmonary Function: Human GWAS Follow-up in Mouse. RESEARCH SQUARE 2024:rs.3.rs-4207678. [PMID: 38659817 PMCID: PMC11042436 DOI: 10.21203/rs.3.rs-4207678/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Purpose Over 550 loci have been associated with human pulmonary function in genome-wide association studies (GWAS); however, the causal role of most remains uncertain. Single nucleotide polymorphisms in a disintegrin and metalloprotease domain 19 (ADAM19) are consistently related to pulmonary function in GWAS. Thus, we used a mouse model to investigate the causal link between Adam19 and pulmonary function. Methods We created an Adam19 knockout (KO) mouse model and validated the gene targeting using RNA-Seq and RT-qPCR. Contrary to prior publications, the KO was not neonatal lethal. Thus, we phenotyped the Adam19 KO. Results KO mice had lower body weight and shorter tibial length than wild type (WT). Dual-energy X-ray Absorptiometry indicated lower soft weight, fat weight, and bone mineral content in KO mice. In lung function analyses using flexiVent, compared to WT, Adam19 KO had decreased baseline respiratory system elastance, minute work of breathing, tissue damping, tissue elastance, and forced expiratory flow at 50% forced vital capacity but higher FEV0.1 and FVC. Adam19 KO had attenuated tissue damping and tissue elastance in response to methacholine following LPS exposure. Adam19 KO also exhibited attenuated neutrophil extravasation into the airway after LPS administration compared to WT. RNA-Seq analysis of KO and WT lungs identified several differentially expressed genes (Cd300lg, Kpna2, and Pttg1) implicated in lung biology and pathogenesis. Gene set enrichment analysis identified negative enrichment for TNF pathways. Conclusion Our murine findings support a causal role of ADAM19, implicated in human GWAS, in regulating pulmonary function.
Collapse
Affiliation(s)
- Huiling Li
- National Institute of Environmental Health Sciences
| | - John House
- National Institute of Environmental Health Sciences
| | | | | | - James Ward
- National Institute of Environmental Health Sciences
| | | | | | - Ezazul Haque
- National Institute of Environmental Health Sciences
| | - Matthew Edin
- National Institute of Environmental Health Sciences
| | - Susan Elmore
- National Institute of Environmental Health Sciences
| | - Beth Mahler
- National Institute of Environmental Health Sciences
| | | | - Min Shi
- National Institute of Environmental Health Sciences
| | | | | |
Collapse
|
6
|
Aydin A, Klenk C, Nemec K, Işbilir A, Martin LM, Zauber H, Rrustemi T, Toka HR, Schuster H, Gong M, Stricker S, Bock A, Bähring S, Selbach M, Lohse MJ, Luft FC. ADAM19 cleaves the PTH receptor and associates with brachydactyly type E. Life Sci Alliance 2024; 7:e202302400. [PMID: 38331475 PMCID: PMC10853454 DOI: 10.26508/lsa.202302400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons. Since we had shown earlier that the extracellular domain of the parathyroid hormone receptor (PTHR1) is subject to an unidentified metalloproteinase cleavage, we tested the hypothesis that ADAM19 is a sheddase for PTHR1. WT ADAM19 cleaved PTHR1, while mutated ADAM-19 did not. We mapped the cleavage site that we verified with mass spectrometry between amino acids 64-65. ADAM-19 cleavage increased Gq and decreased Gs activation. Moreover, perturbed PTHR1 cleavage by ADAM19 increased ß-arrestin2 recruitment, while cAMP accumulation was not altered. We suggest that ADAM19 serves as a regulatory element for PTHR1 and could be responsible for BDE. This sheddase may affect other PTHrP or PTH-related functions.
Collapse
Affiliation(s)
- Atakan Aydin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Christoph Klenk
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Katarina Nemec
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Department of Structural Biology and Center of Excellence for Data-Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ali Işbilir
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lisa M Martin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Trendelina Rrustemi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hakan R Toka
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Herbert Schuster
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Maolian Gong
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Bock
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sylvia Bähring
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- ISAR Bioscience Institute, Munich, Germany
| | - Friedrich C Luft
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
7
|
Meng B, Wang P, Zhao C, Yin G, Meng X, Li L, Cai S, Yan C. Long non-coding RNA LINC00565 regulates ADAM19 expression through sponging microRNA-532-3p, thereby facilitating clear cell renal cell carcinoma progression. CHINESE J PHYSIOL 2023; 66:474-484. [PMID: 38149560 DOI: 10.4103/cjop.cjop-d-23-00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Proven by publications, long non-coding RNAs (lncRNAs) play critical roles in the development of clear cell renal cell carcinoma (ccRCC). Although lncRNA LINC00565 has been implicated in the progression of various cancers, its biological effects on ccRCC remain unknown. This study aimed to investigate the biological functions of LINC00565, as well as its potential mechanism in ccRCC. Here, the expression data of mature microRNAs (miRNAs) (normal: 71, tumor: 545), messenger RNAs (mRNAs), and lncRNAs (normal: 72, tumor: 539) of ccRCC were acquired from The Cancer Genome Atlas (TCGA) database and subjected to differential expression analysis. Quantitative reverse transcriptase polymerase chain reaction analyzed the expression levels of LINC00565, miR-532-3p, and ADAM19 mRNA. TCGA database, dual-luciferase report detection, and Argonaute 2 RNA immunoprecipitation were utilized to confirm the relationships between LINC00565 and miR-532-3p and between miR-532-3p and ADAM19, respectively. The progression of ccRCC cells was determined via CCK-8, colony formation, scratch healing, and transwell assays. Western blot was applied to detect the protein levels of epithelial-mesenchymal transition markers and ADAM19. We herein suggested that LINC00565 was prominently upregulated in ccRCC tissues and cells. Knockdown of LINC00565 repressed cell progression. We further predicted and validated miR-532-3p as a target of LINC00565, and miR-532-3p could target ADAM19. Knockdown of LINC00565 resulted in ADAM19 level downregulation in ccRCC cells and suppressed miR-532-3p could restore ADAM19 level. Thus, the three RNAs constructed a ceRNA network. Overexpressed ADAM19 could eliminate the anticancer effects caused by knocking down LINC00565 on ccRCC cells. In conclusion, LINC00565 upregulated ADAM19 via absorbing miR-532-3p, thereby facilitating the progression of ccRCC cells.
Collapse
Affiliation(s)
- Bin Meng
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Pengfei Wang
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Chaofei Zhao
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Guangwei Yin
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Xin Meng
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Lin Li
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Shengyong Cai
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| | - Chengquan Yan
- Department of Urology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
8
|
Ryu J, Choe N, Kwon DH, Shin S, Lim YH, Yoon G, Kim JH, Kim HS, Lee IK, Ahn Y, Park WJ, Kook H, Kim YK. Circular RNA circSmoc1-2 regulates vascular calcification by acting as a miR-874-3p sponge in vascular smooth muscle cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:645-655. [PMID: 35036071 PMCID: PMC8752879 DOI: 10.1016/j.omtn.2021.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
Vascular calcification (VC), or calcium deposition inside the blood vessels, is common in patients with atherosclerosis, cardiovascular disease, and chronic kidney disease. Although several treatments are available to reduce calcification, the incidence of VC continues to rise. Recently, there have been several reports describing the regulation of circular RNAs (circRNAs) in various diseases. However, the role of circRNAs in VC has not yet been fully explored. Here, we investigated the function of circSmoc1-2, one of the circRNAs generated from the Smoc1 gene, which is downregulated in response to VC. CircSmoc1-2 is localized primarily to the cytoplasm and is resistant to exonuclease digestion. Inhibition of circSmoc1-2 worsens VC, while overexpression of circSmoc1-2 reduces VC, suggesting that circSmoc1-2 can prevent calcification. We went on to investigate the mechanism of circSmoc1-2 as a microRNA sponge and noted that miR-874-3p, the predicted target of circSmoc1-2, promotes VC, while overexpression of circSmoc1-2 reduces VC by suppressing miR-874-3p. Additionally, we identified the potential mRNA target of miR-874-3p as Adam19. In conclusion, we revealed that the circSmoc1-2/miR-874-3p/Adam19 axis regulates VC, suggesting that circSmoc1-2 may be a novel therapeutic target in the treatment of VC.
Collapse
Affiliation(s)
- Juhee Ryu
- Chonnam University Research Institute of Medical Sciences, Jeollanam-do, Republic of Korea
- The BK21 FOUR Center for Glocal Future Biomedical Scientists at Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Duk-Hwa Kwon
- The BK21 FOUR Center for Glocal Future Biomedical Scientists at Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Yeong-Hwan Lim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Gwangho Yoon
- The BK21 FOUR Center for Glocal Future Biomedical Scientists at Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Ji Hye Kim
- Chonnam National University Hwasun Hospital Biomedical Research Institute, Jeollanam-do, Republic of Korea
| | - Hyung Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| |
Collapse
|
9
|
Sivaraj KK, Majev PG, Jeong HW, Dharmalingam B, Zeuschner D, Schröder S, Bixel MG, Timmen M, Stange R, Adams RH. Mesenchymal stromal cell-derived septoclasts resorb cartilage during developmental ossification and fracture healing. Nat Commun 2022; 13:571. [PMID: 35091558 PMCID: PMC8799643 DOI: 10.1038/s41467-022-28142-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Developmental osteogenesis, physiological bone remodelling and fracture healing require removal of matrix and cellular debris. Osteoclasts generated by the fusion of circulating monocytes degrade bone, whereas the identity of the cells responsible for cartilage resorption is a long-standing and controversial question. Here we show that matrix degradation and chondrocyte phagocytosis are mediated by fatty acid binding protein 5-expressing cells representing septoclasts, which have a mesenchymal origin and are not derived from haematopoietic cells. The Notch ligand Delta-like 4, provided by endothelial cells, is necessary for septoclast specification and developmental bone growth. Consistent with the termination of growth, septoclasts disappear in adult and ageing bone, but re-emerge in association with growing vessels during fracture healing. We propose that cartilage degradation is mediated by rare, specialized cells distinct from osteoclasts. Our findings have implications for fracture healing, which is frequently impaired in aging humans.
Collapse
Affiliation(s)
- Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Paul-Georg Majev
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Backialakshmi Dharmalingam
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max-Planck-Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Silke Schröder
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - M Gabriele Bixel
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
10
|
ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:255-363. [PMID: 35659374 PMCID: PMC9231755 DOI: 10.1016/bs.apha.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are two closely related families of proteolytic enzymes. ADAMs are largely membrane-bound enzymes that act as molecular scissors or sheddases of membrane-bound proteins, growth factors, cytokines, receptors and ligands, whereas ADAMTS are mainly secreted enzymes. ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and transmembrane domain. Similarly, ADAMTS family members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but instead of a transmembrane domain they have thrombospondin motifs. Most ADAMs and ADAMTS are activated by pro-protein convertases, and can be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C. Activated ADAMs and ADAMTS participate in numerous vascular processes including angiogenesis, vascular smooth muscle cell proliferation and migration, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs and ADAMTS also play a role in vascular malfunction and cardiovascular diseases such as hypertension, atherosclerosis, coronary artery disease, myocardial infarction, heart failure, peripheral artery disease, and vascular aneurysm. Decreased ADAMTS13 is involved in thrombotic thrombocytopenic purpura and microangiopathies. The activity of ADAMs and ADAMTS can be regulated by endogenous tissue inhibitors of metalloproteinases and other synthetic small molecule inhibitors. ADAMs and ADAMTS can be used as diagnostic biomarkers and molecular targets in cardiovascular disease, and modulators of ADAMs and ADAMTS activity may provide potential new approaches for the management of cardiovascular disorders.
Collapse
|
11
|
Nguyen J, Lin YY, Gerecht S. The next generation of endothelial differentiation: Tissue-specific ECs. Cell Stem Cell 2021; 28:1188-1204. [PMID: 34081899 DOI: 10.1016/j.stem.2021.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) sense and respond to fluid flow and regulate immune cell trafficking in all organs. Despite sharing the same mesodermal origin, ECs exhibit heterogeneous tissue-specific characteristics. Human pluripotent stem cells (hPSCs) can potentially be harnessed to capture this heterogeneity and further elucidate endothelium behavior to satisfy the need for increased accuracy and breadth of disease models and therapeutics. Here, we review current strategies for hPSC differentiation to blood vascular ECs and their maturation into continuous, fenestrated, and sinusoidal tissues. We then discuss the contribution of hPSC-derived ECs to recent advances in organoid development and organ-on-chip approaches.
Collapse
Affiliation(s)
- Jane Nguyen
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ying-Yu Lin
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Kang TZE, Zhu L, Yang D, Ding D, Zhu X, Wan YCE, Liu J, Ramakrishnan S, Chan LL, Chan SY, Wang X, Gan H, Han J, Ishibashi T, Li Q, Chan KM. The elevated transcription of ADAM19 by the oncohistone H2BE76K contributes to oncogenic properties in breast cancer. J Biol Chem 2021; 296:100374. [PMID: 33548228 PMCID: PMC7949156 DOI: 10.1016/j.jbc.2021.100374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023] Open
Abstract
The recent discovery of the cancer-associated E76K mutation in histone H2B (H2BE76-to-K) in several types of cancers revealed a new class of oncohistone. H2BE76K weakens the stability of histone octamers, alters gene expression, and promotes colony formation. However, the mechanism linking the H2BE76K mutation to cancer development remains largely unknown. In this study, we knock in the H2BE76K mutation in MDA-MB-231 breast cancer cells using CRISPR/Cas9 and show that the E76K mutant histone H2B preferentially localizes to genic regions. Interestingly, genes upregulated in the H2BE76K mutant cells are enriched for the E76K mutant H2B and are involved in cell adhesion and proliferation pathways. We focused on one H2BE76K target gene, ADAM19 (a disintegrin and metalloproteinase-domain-containing protein 19), a gene highly expressed in various human cancers including breast invasive carcinoma, and demonstrate that H2BE76K directly promotes ADAM19 transcription by facilitating efficient transcription along the gene body. ADAM19 depletion reduced the colony formation ability of the H2BE76K mutant cells, whereas wild-type MDA-MB-231 cells overexpressing ADAM19 mimics the colony formation phenotype of the H2BE76K mutant cells. Collectively, our data demonstrate the mechanism by which H2BE76K deregulates the expression of genes that control oncogenic properties through a combined effect of its specific genomic localization and nucleosome destabilization effect.
Collapse
Affiliation(s)
- Tze Zhen Evangeline Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Lina Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Du Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Peking, China
| | - Dongbo Ding
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoxuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Yi Ching Esther Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Jiaxian Liu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Saravanan Ramakrishnan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Landon Long Chan
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, China
| | - Toyotaka Ishibashi
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Peking, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
14
|
Yumoto T, Kimura M, Nagatomo R, Sato T, Utsunomiya S, Aoki N, Kitaura M, Takahashi K, Takemoto H, Watanabe H, Okano H, Yoshida F, Nao Y, Tomita T. Autism-associated variants of neuroligin 4X impair synaptogenic activity by various molecular mechanisms. Mol Autism 2020; 11:68. [PMID: 32873342 PMCID: PMC7465329 DOI: 10.1186/s13229-020-00373-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several genetic alterations, including point mutations and copy number variations in NLGN genes, have been associated with psychiatric disorders, such as autism spectrum disorder (ASD) and X-linked mental retardation (XLMR). NLGN genes encode neuroligin (NL) proteins, which are adhesion molecules that are important for proper synaptic formation and maturation. Previously, we and others found that the expression level of murine NL1 is regulated by proteolytic processing in a synaptic activity-dependent manner. METHODS In this study, we analyzed the effects of missense variants associated with ASD and XLMR on the metabolism and function of NL4X, a protein which is encoded by the NLGN4X gene and is expressed only in humans, using cultured cells, primary neurons from rodents, and human induced pluripotent stem cell-derived neurons. RESULTS NL4X was found to undergo proteolytic processing in human neuronal cells. Almost all NL4X variants caused a substantial decrease in the levels of mature NL4X and its synaptogenic activity in a heterologous culture system. Intriguingly, the L593F variant of NL4X accelerated the proteolysis of mature NL4X proteins located on the cell surface. In contrast, other variants decreased the cell-surface trafficking of NL4X. Notably, protease inhibitors as well as chemical chaperones rescued the expression of mature NL4X. LIMITATIONS Our study did not reveal whether these dysfunctional phenotypes occurred in individuals carrying NLGN4X variant. Moreover, though these pathological mechanisms could be exploited as potential drug targets for ASD, it remains unclear whether these compounds would have beneficial effects on ASD model animals and patients. CONCLUSIONS These data suggest that reduced amounts of the functional NL4X protein on the cell surface is a common mechanism by which point mutants of the NL4X protein cause psychiatric disorders, although different molecular mechanisms are thought to be involved. Furthermore, these results highlight that the precision medicine approach based on genetic and cell biological analyses is important for the development of therapeutics for psychiatric disorders.
Collapse
Affiliation(s)
- Takafumi Yumoto
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Misaki Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Nagatomo
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shun Utsunomiya
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Natsue Aoki
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Motoji Kitaura
- Research Administration SPRC, R&D General Administration Unit, General Administration Division, Shionogi Administration Service, Osaka, Japan
| | - Koji Takahashi
- Drug Discovery Technology 3, Laboratory for Innovative Therapy Research, Shionogi, Osaka, Japan
| | - Hiroshi Takemoto
- Neuroscience 2, Laboratory for Drug Discovery and Disease Research, Shionogi, Osaka, Japan
- Business-Academia Collaborative Laboratory (Shionogi), Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yosuke Nao
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
15
|
Heib M, Rose-John S, Adam D. Necroptosis, ADAM proteases and intestinal (dys)function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:83-152. [PMID: 32381179 DOI: 10.1016/bs.ircmb.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
16
|
Metalloprotease-Dependent Attenuation of BMP Signaling Restricts Cardiac Neural Crest Cell Fate. Cell Rep 2019; 29:603-616.e5. [DOI: 10.1016/j.celrep.2019.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/12/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
|
17
|
Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 2019; 76:3055-3081. [PMID: 31236626 PMCID: PMC11105368 DOI: 10.1007/s00018-019-03173-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Tobias Brummer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Yuanpeng Zheng
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
- Fondazione Ri.MED, Department of Research, IRCCS-ISMETT, via Tricomi 5, 90127, Palermo, Italy
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany.
- Munich Center for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
18
|
Neri T, Hiriart E, van Vliet PP, Faure E, Norris RA, Farhat B, Jagla B, Lefrancois J, Sugi Y, Moore-Morris T, Zaffran S, Faustino RS, Zambon AC, Desvignes JP, Salgado D, Levine RA, de la Pompa JL, Terzic A, Evans SM, Markwald R, Pucéat M. Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nat Commun 2019; 10:1929. [PMID: 31028265 PMCID: PMC6486645 DOI: 10.1038/s41467-019-09459-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/04/2019] [Indexed: 01/24/2023] Open
Abstract
Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish. There are few human models that can recapitulate valve development in vitro. Here, the authors derive human pre-valvular endocardial cells (HPVCs) from iPSCs and show they can recapitulate early valvulogenesis, and patient derived HPVCs have features of mitral valve prolapse and identified SHH dysregulation.
Collapse
Affiliation(s)
- Tui Neri
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,Istituto di Ricerca Genetica e Biomedica, UOS di Milano, CNR, Rozzano, 20138, Italy
| | - Emilye Hiriart
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Patrick P van Vliet
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92092 92093, USA.,Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, H7G 4W7, QC, Canada.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Emilie Faure
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Russell A Norris
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Batoul Farhat
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Bernd Jagla
- Institut Pasteur - Cytometry and Biomarkers Unit of Technology and Service, Center for Translational Science and Bioinformatics and Biostatistics Hub - C3BI, USR, 3756 IP CNRS, 75015, Paris, France
| | - Julie Lefrancois
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Yukiko Sugi
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Thomas Moore-Morris
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France.,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France.,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada
| | - Stéphane Zaffran
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | | | - Alexander C Zambon
- Department of Biopharmaceutical Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - David Salgado
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02111, USA
| | - Jose Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, E-28029, Spain
| | - André Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55901, USA
| | - Sylvia M Evans
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92092 92093, USA
| | - Roger Markwald
- Department of Anatomy and Cell Biology, Medical University of South Carolina, Charleston, SC, 29401-5703, USA
| | - Michel Pucéat
- INSERM U-1251, MMG, Aix-Marseille University, Marseille, 13885, France. .,LIA (International Associated Laboratory) INSERM, Marseille, U1251-13885, France. .,LIA (International Associated Laboratory) Ste Justine Hospital, Montreal, H7G 4W7, Canada.
| |
Collapse
|
19
|
Zhong S, Khalil RA. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Biochem Pharmacol 2019; 164:188-204. [PMID: 30905657 DOI: 10.1016/j.bcp.2019.03.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
A Disintegrin and Metalloproteinase (ADAM) is a family of proteolytic enzymes that possess sheddase function and regulate shedding of membrane-bound proteins, growth factors, cytokines, ligands and receptors. Typically, ADAMs have a pro-domain, and a metalloproteinase, disintegrin, cysteine-rich and a characteristic transmembrane domain. Most ADAMs are activated by proprotein convertases, but can also be regulated by G-protein coupled receptor agonists, Ca2+ ionophores and protein kinase C activators. A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) is a family of secreted enzymes closely related to ADAMs. Like ADAMs, ADAMTS members have a pro-domain, and a metalloproteinase, disintegrin, and cysteine-rich domain, but they lack a transmembrane domain and instead have characteristic thrombospondin motifs. Activated ADAMs perform several functions and participate in multiple cardiovascular processes including vascular smooth muscle cell proliferation and migration, angiogenesis, vascular cell apoptosis, cell survival, tissue repair, and wound healing. ADAMs may also be involved in pathological conditions and cardiovascular diseases such as atherosclerosis, hypertension, aneurysm, coronary artery disease, myocardial infarction and heart failure. Like ADAMs, ADAMTS have a wide-spectrum role in vascular biology and cardiovascular pathophysiology. ADAMs and ADAMTS activity is naturally controlled by endogenous inhibitors such as tissue inhibitors of metalloproteinases (TIMPs), and their activity can also be suppressed by synthetic small molecule inhibitors. ADAMs and ADAMTS can serve as important diagnostic biomarkers and potential therapeutic targets for cardiovascular disorders. Natural and synthetic inhibitors of ADAMs and ADAMTS could be potential therapeutic tools for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Sheng Zhong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
A disintegrin and metalloprotease 22 accelerates neointima formation by activating ERK signaling. Atherosclerosis 2019; 283:92-99. [PMID: 30822685 DOI: 10.1016/j.atherosclerosis.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/30/2018] [Accepted: 02/01/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Despite the advantage of arterial expansion for life-threatening vascular pathologies, the occurrence of neointima formation remains a prominent complication, with the underlying mechanisms largely unknown. A disintegrin and metalloprotease 22 (ADAM22) belongs to the family of ADAMs that possesses various biological capacities regulating vascular physiopathology. However, little is known about ADAM22 in vascular smooth muscle cell (VSMC)-mediated neointima formation. Here, we aimed to evaluate the potential functional regulation of ADAM22 in neointima formation and to further explore the underlying mechanisms. METHODS In our study, platelet-derived growth factor-BB (PDGF-BB)-induced VSMC proliferation was examined using a 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and a cell counting kit-8 (CCK8) assay, while VSMC migration was detected using a modified Boyden chamber method and a scratch-wound assay. The functional role of ADAM22 in neointima formation was evaluated based on a left carotid artery wire injury model in mice at 14 and 28 days. RESULTS ADAM22 was significantly up-regulated in both PDGF-BB-challenged VSMCs and restenotic arteries of mice. When ADAM22 was overexpressed in VSMCs, cell proliferation, migration and phenotypic switching were simultaneously aggravated, whereas the opposite was observed when ADAM22 was knocked down in vitro. In ADAM22 heterozygote mice, wire-injury induced neointima formation was significantly ameliorated compared to wild-type control mice. Mechanistically, significantly up-regulated ERK phosphorylation is closely involved in the regulatory effects of ADAM22 in neointima formation. Interestingly, an ERK inhibitor largely reversed the aggravated VSMCs migration, proliferation and phenotypic switching induced by ADAM22 overexpression. CONCLUSIONS Our results indicate that ADAM22 accelerates neointima formation by enhancing VSMC migration, proliferation and phenotypic switching via promoting ERK phosphorylation. Suppressing ADAM22 expression may be an effective strategy for ameliorating neointima formation.
Collapse
|
21
|
Urriola-Muñoz P, Lagos-Cabré R, Patiño-García D, Reyes JG, Moreno RD. Bisphenol-A and Nonylphenol Induce Apoptosis in Reproductive Tract Cancer Cell Lines by the Activation of ADAM17. Int J Mol Sci 2018; 19:ijms19082238. [PMID: 30065191 PMCID: PMC6121659 DOI: 10.3390/ijms19082238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
Endocrine-disruptor chemicals (EDCs), such as bisphenol A (BPA) and nonylphenol (NP), have been widely studied due to their negative effects on human and wildlife reproduction. Exposure to BPA or NP is related to cell death, hormonal deregulation, and cancer onset. Our previous studies showed that both compounds induce A Disintegrin And Metalloprotease 17 (ADAM17) activation. Here, we show that BPA and NP induce apoptosis in prostate and ovary cancer cell lines, in a process dependent on ADAM17 activation. ADAM17 knockdown completely prevented apoptosis as well as the shedding of ADAM17 substrates. Both compounds were found to induce an increase in intracellular calcium (Ca2+) only in Ca2+-containing medium, with the NP-treated cells response being more robust than those treated with BPA. Additionally, using a phosphorylated protein microarray, we found that both compounds stimulate common intracellular pathways related to cell growth, differentiation, survival, and apoptosis. These results suggest that BPA and NP could induce apoptosis through ADAM17 by activating different intracellular signaling pathways that may converge in different cellular responses, one of which is apoptosis. These results confirm the capacity of these compounds to induce cell apoptosis in cancer cell lines and uncover ADAM17 as a key regulator of this process in response to EDCs.
Collapse
Affiliation(s)
- Paulina Urriola-Muñoz
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| | - Raúl Lagos-Cabré
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| | - Daniel Patiño-García
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| | - Juan G Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
| | - Ricardo D Moreno
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7820436, Chile.
| |
Collapse
|
22
|
Disintegrin and metalloproteinases (ADAMs and ADAM-TSs), the emerging family of proteases in heart physiology and pathology. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
ADAM19: A Novel Target for Metabolic Syndrome in Humans and Mice. Mediators Inflamm 2017; 2017:7281986. [PMID: 28265178 PMCID: PMC5318628 DOI: 10.1155/2017/7281986] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/12/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with insulin resistance, which may ultimately culminate in type 2 diabetes (T2D). We sought to ascertain whether the human metalloproteinase A Disintegrin and Metalloproteinase 19 (ADAM19) correlates with parameters of the metabolic syndrome in humans and mice. To determine the potential novel role of ADAM19 in the metabolic syndrome, we first conducted microarray studies on peripheral blood mononuclear cells from a well-characterised human cohort. Secondly, we examined the expression of ADAM19 in liver and gonadal white adipose tissue using an in vivo diet induced obesity mouse model. Finally, we investigated the effect of neutralising ADAM19 on diet induced weight gain, insulin resistance in vivo, and liver TNF-α levels. Significantly, we show that, in humans, ADAM19 strongly correlates with parameters of the metabolic syndrome, particularly BMI, relative fat, HOMA-IR, and triglycerides. Furthermore, we identified that ADAM19 expression was markedly increased in the liver and gonadal white adipose tissue of obese and T2D mice. Excitingly, we demonstrate in our diet induced obesity mouse model that neutralising ADAM19 therapy results in weight loss, improves insulin sensitivity, and reduces liver TNF-α levels. Our novel data suggest that ADAM19 is pro-obesogenic and enhances insulin resistance. Therefore, neutralisation of ADAM19 may be a potential therapeutic approach to treat obesity and T2D.
Collapse
|
24
|
An CI, Ichihashi Y, Peng J, Sinha NR, Hagiwara N. Transcriptome Dynamics and Potential Roles of Sox6 in the Postnatal Heart. PLoS One 2016; 11:e0166574. [PMID: 27832192 PMCID: PMC5104335 DOI: 10.1371/journal.pone.0166574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/31/2016] [Indexed: 01/20/2023] Open
Abstract
The postnatal heart undergoes highly coordinated developmental processes culminating in the complex physiologic properties of the adult heart. The molecular mechanisms of postnatal heart development remain largely unexplored despite their important clinical implications. To gain an integrated view of the dynamic changes in gene expression during postnatal heart development at the organ level, time-series transcriptome analyses of the postnatal hearts of neonatal through adult mice (P1, P7, P14, P30, and P60) were performed using a newly developed bioinformatics pipeline. We identified functional gene clusters by principal component analysis with self-organizing map clustering which revealed organized, discrete gene expression patterns corresponding to biological functions associated with the neonatal, juvenile and adult stages of postnatal heart development. Using weighted gene co-expression network analysis with bootstrap inference for each of these functional gene clusters, highly robust hub genes were identified which likely play key roles in regulating expression of co-expressed, functionally linked genes. Additionally, motivated by the role of the transcription factor Sox6 in the functional maturation of skeletal muscle, the role of Sox6 in the postnatal maturation of cardiac muscle was investigated. Differentially expressed transcriptome analyses between Sox6 knockout (KO) and control hearts uncovered significant upregulation of genes involved in cell proliferation at postnatal day 7 (P7) in the Sox6 KO heart. This result was validated by detecting mitotically active cells in the P7 Sox6 KO heart. The current report provides a framework for the complex molecular processes of postnatal heart development, thus enabling systematic dissection of the developmental regression observed in the stressed and failing adult heart.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| | - Jie Peng
- Department of Statistics, University of California Davis, Davis, California, United States of America
| | - Neelima R. Sinha
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, California, United States of America
- * E-mail: (CA); (YI); (NH)
| |
Collapse
|
25
|
A mutation in the THG1L gene in a family with cerebellar ataxia and developmental delay. Neurogenetics 2016; 17:219-225. [PMID: 27307223 DOI: 10.1007/s10048-016-0487-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/29/2016] [Indexed: 12/31/2022]
Abstract
Autosomal-recessive cerebellar atrophy is usually associated with inactivating mutations and early-onset presentation. The underlying molecular diagnosis suggests the involvement of neuronal survival pathways, but many mechanisms are still lacking and most patients elude genetic diagnosis. Using whole exome sequencing, we identified homozygous p.Val55Ala in the THG1L (tRNA-histidine guanylyltransferase 1 like) gene in three siblings who presented with cerebellar signs, developmental delay, dysarthria, and pyramidal signs and had cerebellar atrophy on brain MRI. THG1L protein was previously reported to participate in mitochondrial fusion via its interaction with MFN2. Abnormal mitochondrial fragmentation, including mitochondria accumulation around the nuclei and confinement of the mitochondrial network to the nuclear vicinity, was observed when patient fibroblasts were cultured in galactose containing medium. Culturing cells in galactose containing media promotes cellular respiration by oxidative phosphorylation and the action of the electron transport chain thus stimulating mitochondrial activity. The growth defect of the yeast thg1Δ strain was rescued by the expression of either yeast Thg1 or human THG1L; however, clear growth defect was observed following the expression of the human p.Val55Ala THG1L or the corresponding yeast mutant. A defect in the protein tRNAHis guanylyltransferase activity was excluded by the normal in vitro G-1 addition to either yeast tRNAHis or human mitochondrial tRNAHis in the presence of the THG1L mutation. We propose that homozygosity for the p.Val55Ala mutation in THG1L is the cause of the abnormal mitochondrial network in the patient fibroblasts, likely by interfering with THG1L activity towards MFN2. This may result in lack of mitochondria in the cerebellar Purkinje dendrites, with degeneration of Purkinje cell bodies and apoptosis of granule cells, as reported for MFN2 deficient mice.
Collapse
|
26
|
A Disintegrin and Metalloprotease (ADAM): Historical Overview of Their Functions. Toxins (Basel) 2016; 8:122. [PMID: 27120619 PMCID: PMC4848645 DOI: 10.3390/toxins8040122] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of the first disintegrin protein from snake venom and the following identification of a mammalian membrane-anchored metalloprotease-disintegrin implicated in fertilization, almost three decades of studies have identified additional members of these families and several biochemical mechanisms regulating their expression and activity in the cell. Most importantly, new in vivo functions have been recognized for these proteins including cell partitioning during development, modulation of inflammatory reactions, and development of cancers. In this review, we will overview the a disintegrin and metalloprotease (ADAM) family of proteases highlighting some of the major research achievements in the analysis of ADAMs' function that have underscored the importance of these proteins in physiological and pathological processes over the years.
Collapse
|
27
|
Hoyne G, Rudnicka C, Sang QX, Roycik M, Howarth S, Leedman P, Schlaich M, Candy P, Matthews V. Genetic and cellular studies highlight that A Disintegrin and Metalloproteinase 19 is a protective biomarker in human prostate cancer. BMC Cancer 2016; 16:151. [PMID: 26912236 PMCID: PMC4766641 DOI: 10.1186/s12885-016-2178-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/15/2016] [Indexed: 11/22/2022] Open
Abstract
Background Prostate cancer is the second most frequently diagnosed cancer in men worldwide. Current treatments include surgery, androgen ablation and radiation. Introduction of more targeted therapies in prostate cancer, based on a detailed knowledge of the signalling pathways, aims to reduce side effects, leading to better clinical outcomes for the patient. ADAM19 (A Disintegrin And Metalloproteinase 19) is a transmembrane and soluble protein which can regulate cell phenotype through cell adhesion and proteolysis. ADAM19 has been positively associated with numerous diseases, but has not been shown to be a tumor suppressor in the pathogenesis of any human cancers. Our group sought to investigate the role of ADAM19 in human prostate cancer. Methods ADAM19 mRNA and protein levels were assessed in well characterised human prostate cancer cohorts. ADAM19 expression was assessed in normal prostate epithelial cells (RWPE-1) and prostate cancer cells (LNCaP, PC3) using western blotting and immunocytochemistry. Proliferation assays were conducted in LNCaP cells in which ADAM19 was over-expressed. In vitro scratch assays were performed in PC3 cells over-expressing ADAM19. Results Immunohistochemical studies highlighted that ADAM19 protein levels were elevated in normal prostate tissue compared to prostate cancer biopsies. Results from the clinical cohorts demonstrated that high levels of ADAM19 in microarrays are positively associated with lower stage (p = 0.02591) and reduced relapse (p = 0.00277) of human prostate cancer. In vitro, ADAM19 expression was higher in RWPE-1 cells compared to LNCaP cells. In addition, human ADAM19 over-expression reduced LNCaP cell proliferation and PC3 cell migration. Conclusions Taken together, our immunohistochemical and microarray results and cellular studies have shown for the first time that ADAM19 is a protective factor for human prostate cancer. Further, this study suggests that upregulation of ADAM19 expression could be of therapeutic potential in human prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2178-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerard Hoyne
- School of Health Sciences and Institute of Health Science Research, The University of Notre Dame Australia, Fremantle Campus, Australia.
| | | | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA.
| | - Mark Roycik
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA.
| | - Sarah Howarth
- School of Health Sciences and Institute of Health Science Research, The University of Notre Dame Australia, Fremantle Campus, Australia. .,Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Perth, Australia.
| | - Peter Leedman
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Perth, Australia. .,School of Medicine and Pharmacology - Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia.
| | - Markus Schlaich
- School of Medicine and Pharmacology - Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia.
| | - Patrick Candy
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Perth, Australia.
| | - Vance Matthews
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Perth, Australia. .,School of Medicine and Pharmacology - Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia. .,School of Medicine and Pharmacology- Royal Perth Hospital Unit, Level 3, Medical Research Foundation Building, Rear 50 Murray Street, Perth, WA, 6000, Australia.
| |
Collapse
|
28
|
Zhang P, Shen M, Fernandez-Patron C, Kassiri Z. ADAMs family and relatives in cardiovascular physiology and pathology. J Mol Cell Cardiol 2015; 93:186-99. [PMID: 26522853 DOI: 10.1016/j.yjmcc.2015.10.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of membrane-bound proteases. ADAM-TSs (ADAMs with thrombospondin domains) are a close relative of ADAMs that are present in soluble form in the extracellular space. Dysregulated production or function of these enzymes has been associated with pathologies such as cancer, asthma, Alzheimer's and cardiovascular diseases. ADAMs contribute to angiogenesis, hypertrophy and apoptosis in a stimulus- and cell type-dependent manner. Among the ADAMs identified so far (34 in mouse, 21 in human), ADAMs 8, 9, 10, 12, 17 and 19 have been shown to be involved in cardiovascular development or cardiomyopathies; and among the 19 ADAM-TSs, ADAM-TS1, 5, 7 and 9 are important in development of the cardiovascular system, while ADAM-TS13 can contribute to vascular disorders. Meanwhile, there remain a number of ADAMs and ADAM-TSs whose function in the cardiovascular system has not been yet explored. The current knowledge about the role of ADAMs and ADAM-TSs in the cardiovascular pathologies is still quite limited. The most detailed studies have been performed in other cell types (e.g. cancer cells) and organs (nervous system) which can provide valuable insight into the potential functions of ADAMs and ADAM-TSs, their mechanism of action and therapeutic potentials in cardiomyopathies. Here, we review what is currently known about the structure and function of ADAMs and ADAM-TSs, and their roles in development, physiology and pathology of the cardiovascular system.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Mengcheng Shen
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Fernandez-Patron
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
29
|
Matsunaga E, Nambu S, Oka M, Tanaka M, Taoka M, Iriki A. Identification of tool use acquisition-associated genes in the primate neocortex. Dev Growth Differ 2015; 57:484-495. [PMID: 26173833 PMCID: PMC11520950 DOI: 10.1111/dgd.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
Japanese macaques are able to learn how to use rakes to take food after only a few weeks of training. Since tool-use training induced rapid morphological changes in some restricted brain areas, this system will be a good model for studying the neural basis of plasticity in human brains. To examine the mechanisms of tool-use associated brain expansion on the molecular and cellular level, here, we performed comprehensive analysis of gene expressions with microarray. We identified various transcripts showing differential expression between trained and untrained monkeys in the region around the lateral and intraparietal sulci. Among candidates, we focused on genes related to synapse formation and function. Using quantitative reverse transcription-polymerase chain reaction and histochemical analysis, we confirmed at least three genes (ADAM19, SPON2, and WIF1) with statistically different expression levels in neurons and glial cells. Comparative analysis revealed that tool use-associated genes were more obviously expressed in macaque monkeys than marmosets or mice. Thus, our findings suggest that cognitive tasks induce structural changes in the neocortex via gene expression, and that learning-associated genes innately differ with relation to learning ability.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Sanae Nambu
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Mariko Oka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Michio Tanaka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Miki Taoka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| |
Collapse
|
30
|
Liao HF, Mo CF, Wu SC, Cheng DH, Yu CY, Chang KW, Kao TH, Lu CW, Pinskaya M, Morillon A, Lin SS, Cheng WTK, Bourc'his D, Bestor T, Sung LY, Lin SP. Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction 2015; 150:245-56. [PMID: 26159833 DOI: 10.1530/rep-15-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022]
Abstract
Nuclear transfer (NT) is a technique used to investigate the development and reprogramming potential of a single cell. DNA methyltransferase-3-like, which has been characterized as a repressive transcriptional regulator, is expressed in naturally fertilized egg and morula/blastocyst at pre-implantation stages. In this study, we demonstrate that the use of Dnmt3l-knockout (Dnmt3l-KO) donor cells in combination with Trichostatin A treatment improved the developmental efficiency and quality of the cloned embryos. Compared with the WT group, Dnmt3l-KO donor cell-derived cloned embryos exhibited increased cell numbers as well as restricted OCT4 expression in the inner cell mass (ICM) and silencing of transposable elements at the blastocyst stage. In addition, our results indicate that zygotic Dnmt3l is dispensable for cloned embryo development at pre-implantation stages. In Dnmt3l-KO mouse embryonic fibroblasts, we observed reduced nuclear localization of HDAC1, increased levels of the active histone mark H3K27ac and decreased accumulation of the repressive histone marks H3K27me3 and H3K9me3, suggesting that Dnmt3l-KO donor cells may offer a more permissive epigenetic state that is beneficial for NT reprogramming.
Collapse
Affiliation(s)
- Hung-Fu Liao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chu-Fan Mo
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shinn-Chih Wu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Dai-Han Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chih-Yun Yu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Kai-Wei Chang
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Tzu-Hao Kao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chia-Wei Lu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Marina Pinskaya
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Antonin Morillon
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shih-Shun Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| | - Winston T K Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Déborah Bourc'his
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Timothy Bestor
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Li-Ying Sung
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shau-Ping Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| |
Collapse
|
31
|
Aghababaei M, Beristain AG. The Elsevier Trophoblast Research Award Lecture: Importance of metzincin proteases in trophoblast biology and placental development: a focus on ADAM12. Placenta 2015; 36 Suppl 1:S11-9. [PMID: 25589360 DOI: 10.1016/j.placenta.2014.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/04/2014] [Accepted: 12/17/2014] [Indexed: 10/25/2022]
Abstract
Placental development is a highly regulated process requiring signals from both fetal and maternal uterine compartments. Within this complex system, trophoblasts, placental cells of epithelial lineage, form the maternal-fetal interface controlling nutrient, gas and waste exchange. The commitment of progenitor villous cytotrophoblasts to differentiate into diverse trophoblast subsets is a fundamental process in placental development. Differentiation of trophoblasts into invasive stromal- and vascular-remodeling subtypes is essential for uterine arterial remodeling and placental function. Inadequate placentation, characterized by defects in trophoblast differentiation, may underlie the earliest cellular events driving pregnancy disorders such as preeclampsia and fetal growth restriction. Molecularly, invasive trophoblasts acquire characteristics defined by profound alterations in cell-cell and cell-matrix adhesion, cytoskeletal reorganization and production of proteolytic factors. To date, most studies have investigated the importance of the matrix metalloproteinases (MMPs) and their ability to efficiently remodel components of the extracellular matrix (ECM). However, it is now becoming clear that besides MMPs, other related proteases regulate trophoblast invasion via mechanisms other than ECM turnover. In this review, we will summarize the current knowledge on the regulation of trophoblast invasion by members of the metzincin family of metalloproteinases. Specifically, we will discuss the emerging roles that A Disintegrin and Metalloproteinases (ADAMs) play in placental development, with a particular focus on the ADAM subtype, ADAM12.
Collapse
Affiliation(s)
- Mahroo Aghababaei
- Department of Obstetrics and Gynecology, The University of British Columbia, Canada; The Child and Family Research Institute, Vancouver, Canada
| | - Alexander G Beristain
- Department of Obstetrics and Gynecology, The University of British Columbia, Canada; The Child and Family Research Institute, Vancouver, Canada.
| |
Collapse
|
32
|
Zhang Q, Yu L, Qin D, Huang R, Jiang X, Zou C, Tang Q, Chen Y, Wang G, Wang X, Gao X. Role of microRNA-30c targeting ADAM19 in colorectal cancer. PLoS One 2015; 10:e0120698. [PMID: 25799050 PMCID: PMC4370757 DOI: 10.1371/journal.pone.0120698] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/26/2015] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are deregulated in a number of cancers including colorectal cancer. MiR-30c belongs to miR-30 family, and is involved in a variety of malignant diseases. In this study, we detected the expression of miR-30c in colon cancer cell lines and clinical colon cancer specimens. MiR-30c was shown to be dramatically down-regulated both in cell lines and cancer tissues. Additionally, miR-30c could inhibit cancer cell growth, migration and invasion in vitro. Consistently, stable over-expression of miR-30c inhibited the growth and lung metastasis of colon cancer cell xenografts in vivo. Furthermore, bioinformatics algorithm and luciferase reporter assay indicated ADAM19 as a direct target of miR-30c. Of interest, further experiments demonstrated that inhibition of ADAM19 by miR-30c partially mediated the anti-tumor effect of miR-30c. Overall, our study provides the new insight that miR-30c inhibited colon cancer cells via targeting ADAM19. Thus, miR-30c might serve as a promising therapeutic strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
- Colorectal Cancer Institute of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Lei Yu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
- Colorectal Cancer Institute of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Dandan Qin
- Department of Nephrology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Rui Huang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
- Colorectal Cancer Institute of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Xiaochen Jiang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Qingchao Tang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
- Colorectal Cancer Institute of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Yinggang Chen
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
- Colorectal Cancer Institute of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Guiyu Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
- Colorectal Cancer Institute of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
- * E-mail: (GYW); (XSW); (XG)
| | - Xishan Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
- Colorectal Cancer Institute of Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
- * E-mail: (GYW); (XSW); (XG)
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- * E-mail: (GYW); (XSW); (XG)
| |
Collapse
|
33
|
Review of Molecular and Mechanical Interactions in the Aortic Valve and Aorta: Implications for the Shared Pathogenesis of Aortic Valve Disease and Aortopathy. J Cardiovasc Transl Res 2014; 7:823-46. [DOI: 10.1007/s12265-014-9602-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/30/2014] [Indexed: 01/08/2023]
|
34
|
Dong K, Yao N, Pu Y, He X, Zhao Q, Luan Y, Guan W, Rao S, Ma Y. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs. PLoS One 2014; 9:e110520. [PMID: 25329542 PMCID: PMC4201535 DOI: 10.1371/journal.pone.0110520] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023] Open
Abstract
High altitude environments are of particular interest in the studies of local adaptation as well as their implications in physiology and clinical medicine in human. Some Chinese pig breeds, such as Tibetan pig (TBP) that is well adapted to the high altitude and Dahe pig (DHP) that dwells at the moderate altitude, provide ideal materials to study local adaptation to altitudes. Yet, it is still short of in-depth analysis and understanding of the genetic adaptation to high altitude in the two pig populations. In this study we conducted a genomic scan for selective sweeps using FST to identify genes showing evidence of local adaptations in TBP and DHP, with Wuzhishan pig (WZSP) as the low-altitude reference. Totally, we identified 12 specific selective genes (CCBE1, F2RL1, AGGF1, ZFPM2, IL2, FGF5, PLA2G4A, ADAMTS9, NRBF2, JMJD1C, VEGFC and ADAM19) for TBP and six (OGG1, FOXM, FLT3, RTEL1, CRELD1 and RHOG) for DHP. In addition, six selective genes (VPS13A, GNA14, GDAP1, PARP8, FGF10 and ADAMTS16) were shared by the two pig breeds. Among these selective genes, three (VEGFC, FGF10 and ADAMTS9) were previously reported to be linked to the local adaptation to high altitudes in pigs, while many others were newly identified by this study. Further bioinformatics analysis demonstrated that majority of these selective signatures have some biological functions relevant to the altitude adaptation, for examples, response to hypoxia, development of blood vessels, DNA repair and several hematological involvements. These results suggest that the local adaptation to high altitude environments is sophisticated, involving numerous genes and multiple biological processes, and the shared selective signatures by the two pig breeds may provide an effective avenue to identify the common adaptive mechanisms to different altitudes.
Collapse
Affiliation(s)
- Kunzhe Dong
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Na Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yizhao Luan
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, Guangdong Medical College, Dongguan, China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoqi Rao
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, Guangdong Medical College, Dongguan, China
- * E-mail: (YHM); (SQR)
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YHM); (SQR)
| |
Collapse
|
35
|
London SJ, Gao W, Gharib SA, Hancock DB, Wilk JB, House JS, Gibbs RA, Muzny DM, Lumley T, Franceschini N, North KE, Psaty BM, Kovar CL, Coresh J, Zhou Y, Heckbert SR, Brody JA, Morrison AC, Dupuis J. ADAM19 and HTR4 variants and pulmonary function: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:350-8. [PMID: 24951661 PMCID: PMC4136502 DOI: 10.1161/circgenetics.113.000066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pulmonary function measures of forced expiratory volume in 1 second (FEV1) and its ratio to forced vital capacity (FVC) are used in the diagnosis and monitoring of lung diseases and predict cardiovascular mortality in the general population. Genome-wide association studies (GWASs) have identified numerous loci associated with FEV1 and FEV1/FVC, but the causal variants remain uncertain. We hypothesized that novel or rare variants poorly tagged by GWASs may explain the significant associations between FEV1/FVC and 2 genes: ADAM19 and HTR4. METHODS AND RESULTS We sequenced ADAM19 and its promoter region along with the ≈21-kb portion of HTR4 harboring GWAS single-nucleotide polymorphisms for pulmonary function and analyzed associations with FEV1/FVC among 3983 participants of European ancestry from Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Meta-analysis of common variants in each region identified statistically significant associations (316 tests; P<1.58×10(-4)) with FEV1/FVC for 14 ADAM19 single-nucleotide polymorphisms and 24 HTR4 single-nucleotide polymorphisms. After conditioning on the sentinel GWASs hit in each gene (ADAM19 rs1422795, minor allele frequency=0.33 and HTR4 rs11168048, minor allele frequency=0.40], 1 single-nucleotide polymorphism remained statistically significant (ADAM19 rs13155908, minor allele frequency=0.12; P=1.56×10(-4)). Analysis of rare variants (minor allele frequency <1%) using sequence kernel association test did not identify associations with either region. CONCLUSIONS Sequencing identified 1 common variant associated with FEV1/FVC independent of the sentinel ADAM19 GWAS hit and supports the original HTR4 GWAS findings. Rare variants do not seem to underlie GWAS associations with pulmonary function for common variants in ADAM19 and HTR4.
Collapse
Affiliation(s)
- Stephanie J. London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
| | - Wei Gao
- Dept of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sina A. Gharib
- Center for Lung Biology, Division of Pulmonary & Critical Care Medicine, Dept of Medicine, University of Washington, Seattle, WA
| | - Dana B. Hancock
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
- Behavioral Health Epidemiology Program, Research Triangle Institute, Research Triangle Park, NC
| | - Jemma B. Wilk
- Precision Medicine, Pfizer Global Research & Development, Cambridge, MA
| | - John S. House
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Thomas Lumley
- Dept of Statistics, University of Auckland, Auckland, New Zealand
| | | | - Kari E. North
- Dept of Epidemiology, University of North Carolina, Chapel Hill, NC
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Dept of Medicine, University of Washington, Seattle, WA
- Dept of Epidemiology, University of Washington, Seattle, WA
- Dept of Health Services, University of Washington, Seattle, WA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA
| | - Christie L. Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Josef Coresh
- Dept of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD
| | - Yanhua Zhou
- Dept of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Dept of Medicine, University of Washington, Seattle, WA
- Dept of Epidemiology, University of Washington, Seattle, WA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Dept of Medicine, University of Washington, Seattle, WA
| | - Alanna C. Morrison
- Human Genetics Center; School of Public Health; University of Texas Health Science Center at Houston, Houston, TX
| | - Josée Dupuis
- Dept of Biostatistics, Boston University School of Public Health, Boston, MA
| |
Collapse
|
36
|
Ulu N, Henning RH, Guner S, Zoto T, Duman-Dalkilic B, Duin M, Gurdal H. Intracellular transactivation of epidermal growth factor receptor by α1A-adrenoceptor is mediated by phosphatidylinositol 3-kinase independently of activation of extracellular signal regulated kinases 1/2 and serine-threonine kinases in Chinese hamster ovary cells. J Pharmacol Exp Ther 2013; 347:47-56. [PMID: 23902938 DOI: 10.1124/jpet.113.206243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Transactivation of epidermal growth factor receptor (EGFR) by α1-adrenoceptor (α1-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all α1-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster ovary (CHO) cells stably expressing one subtype of α1-AR were transiently transfected with EGFR. The transactivation mechanism was examined both by coexpression of a chimeric erythropoietin (EPO)-EGFR with an extracellular EPO and intracellular EGFR domain, and by pharmacologic inhibition of external and internal signaling routes. All three α1-AR subtypes transactivated EGFR, which was dependent on the increase in intracellular calcium. The EGFR kinase inhibitor AG1478 [4-(3'-chloroanilino)-6,7-dimethoxyquinazoline] abrogated α1A-AR and α1D-AR induced phosphorylation of EGFR, but both the inhibition of matrix metalloproteinases by GM6001 [(R)-N4-hydroxy-N(1)-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-ethyl]-2-isobutyl-succinamide] or blockade of EGFR by cetuximab did not. Stimulation of α1A-AR and α1D-AR also induced phosphorylation of EPO-EGFR chimeric receptors. Moreover, α1A-AR stimulation enhanced phosphorylation of extracellular signal regulated kinase (ERK) 1/2 and serine-threonine kinases (Akt), which were both unaffected by AG1478, indicating that ERK1/2 and Akt phosphorylation is independent of EGFR transactivation. Accordingly, inhibitors of ERK1/2 or Akt did not influence the α1A-AR-mediated EGFR transactivation. Inhibition of calcium/calmodulin-dependent kinase II (CaMKII), phosphatidylinositol 3-kinase (PI3K), and Src, however, did block EGFR transactivation by α1A-AR and α1D-AR. These findings demonstrate that all α1-AR subtypes transactivate EGFR, which is dependent on an intracellular signaling route involving an increase in calcium and activation of CaMKII, PI3K, and Src, but not the of ERK1/2 and Akt pathways.
Collapse
Affiliation(s)
- Nadir Ulu
- Department of Clinical Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands (N.U., R.H.H., M.D.); Department of Medical Pharmacology, Faculty of Medicine, University of Ufuk, Ankara, Turkey (S.G.); and Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, Ankara, Turkey (T.Z., B.D., H.G.)
| | | | | | | | | | | | | |
Collapse
|
37
|
Christian L, Bahudhanapati H, Wei S. Extracellular metalloproteinases in neural crest development and craniofacial morphogenesis. Crit Rev Biochem Mol Biol 2013; 48:544-60. [PMID: 24066766 DOI: 10.3109/10409238.2013.838203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neural crest (NC) is a population of migratory stem/progenitor cells that is found in early vertebrate embryos. NC cells are induced during gastrulation, and later migrate to multiple destinations and contribute to many types of cells and tissues, such as craniofacial structures, cardiac tissues, pigment cells and the peripheral nervous system. Recently, accumulating evidence suggests that many extracellular metalloproteinases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin motifs (ADAMTSs), play important roles in various stages of NC development. Interference with metalloproteinase functions often causes defects in craniofacial structures, as well as in other cells and tissues that are contributed by NC cells, in humans and other vertebrates. In this review, we summarize the current state of the field concerning the roles of these three families of metalloproteinases in NC development and related tissue morphogenesis, with a special emphasis on craniofacial morphogenesis.
Collapse
Affiliation(s)
- Laura Christian
- Department of Biology, West Virginia University , Morgantown, WV , USA
| | | | | |
Collapse
|
38
|
Przemyslaw L, Boguslaw HA, Elzbieta S, Malgorzata SM. ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis. BMB Rep 2013; 46:139-50. [PMID: 23527857 PMCID: PMC4133867 DOI: 10.5483/bmbrep.2013.46.3.176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ADAM and ADAMTS families, also called adamalysins belong to an important group of extracellular matrix proteins. The ADAMs family belong to both the transmembrane and secreted proteins, while ADAMTS family only contains secreted forms. Adamalysins play an important role in the cell phenotype regulation via their activities in signaling pathways, cell adhesion and migration. The human proteome contains 21 ADAM, and 19 ADAMTS proteins, which are involved in extracellular matrix remodeling, shedding of various substrates such as: adhesion ligands, growth factors, their receptors and diverse cytokines. Recent studies provide evidence that adamalysins play a crucial role in colorectal cancer (CRC) etiopathogenesis. It seems possible that adamalysins might be used as CRC prediction markers or potential pharmaceutical targets. [BMB Reports 2013; 46(3): 139-150]
Collapse
|
39
|
Electrical stimulation accelerates neuromuscular junction formation through ADAM19/neuregulin/ErbB signaling in vitro. Neurosci Lett 2013; 545:29-34. [DOI: 10.1016/j.neulet.2013.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/05/2013] [Accepted: 04/01/2013] [Indexed: 11/27/2022]
|
40
|
Wilson CL, Gough PJ, Chang CA, Chan CK, Frey JM, Liu Y, Braun KR, Chin MT, Wight TN, Raines EW. Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults. Mech Dev 2013; 130:272-89. [PMID: 23354118 DOI: 10.1016/j.mod.2013.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 12/24/2022]
Abstract
Global inactivation of the metalloproteinase ADAM17 during mouse development results in perinatal lethality and abnormalities of the heart, including late embryonic cardiomegaly and thickened semilunar and atrioventricular valves. These defects have been attributed in part to a lack of ADAM17-mediated processing of HB-EGF, as absence of soluble HB-EGF results in similar phenotypes. Because valvular mesenchymal cells are largely derived from cardiac endothelial cells, we generated mice with a floxed Adam17 allele and crossed these animals with Tie2-Cre transgenics to focus on the role of endothelial ADAM17 in valvulogenesis. We find that although hearts from late-stage embryos with ablation of endothelial ADAM17 appear normal, an increase in valve size and cell number is evident, but only in the semilunar cusps. Unlike Hbegf(-/-) valves, ADAM17-null semilunar valves do not differ from controls in acute cell proliferation at embryonic day 14.5 (E14.5), suggesting compensatory processing of HB-EGF. However, levels of the proteoglycan versican are significantly reduced in mutant hearts early in valve remodeling (E12.5). After birth, aortic valve cusps from mutants are not only hyperplastic but also show expansion of the glycosaminoglycan-rich component, with the majority of adults exhibiting aberrant compartmentalization of versican and increased deposition of collagen. The inability of mutant outflow valve precursors to transition into fully mature cusps is associated with decreased postnatal viability, progressive cardiomegaly, and systolic dysfunction. Together, our data indicate that ADAM17 is required in valvular endothelial cells for regulating cell content as well as extracellular matrix composition and organization in semilunar valve remodeling and homeostasis.
Collapse
Affiliation(s)
- Carole L Wilson
- Department of Pathology, University of Washington, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Proteolytic enzymes belonging to the A Disintegin And Metalloproteinase (ADAM) family are able to cleave transmembrane proteins close to the cell surface, in a process referred to as ectodomain shedding. Substrates for ADAMs include growth factors, cytokines, chemokines and adhesion molecules, and, as such, many ADAM proteins play crucial roles in cell-cell adhesion, extracellular and intracellular signaling, cell differentiation and cell proliferation. In this Review, we summarize the fascinating roles of ADAMs in embryonic and adult tissue development in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Silvio Weber
- Heart Research Centre Göttingen, Universitaetsmedizin Göttingen, Department of Cardiology and Pneumology, Georg-August-University Göttingen, Germany
| | | |
Collapse
|
42
|
Abstract
Neuroligin (NLG), a postsynaptic adhesion molecule, is involved in the formation of synapses by binding to a cognate presynaptic ligand, neurexin. Here we report that neuroligin-1 (NLG1) undergoes ectodomain shedding at the juxtamembrane stalk region to generate a secreted form of NLG1 and a membrane-tethered C-terminal fragment (CTF) in adult rat brains in vivo as well as in neuronal cultures. Pharmacological and genetic studies identified ADAM10 as the major protease responsible for NLG1 shedding, the latter being augmented by synaptic NMDA receptor activation or interaction with soluble neurexin ligands. NLG1-CTF was subsequently cleaved by presenilin/γ-secretase. Secretion of soluble NLG1 was significantly upregulated under a prolonged epileptic seizure condition, and inhibition of NLG1 shedding led to an increase in numbers of dendritic spines in neuronal cultures. Collectively, neuronal activity-dependent proteolytic processing of NLG1 may negatively regulate the remodeling of spines at excitatory synapses.
Collapse
|
43
|
Raveau M, Lignon JM, Nalesso V, Duchon A, Groner Y, Sharp AJ, Dembele D, Brault V, Hérault Y. The App-Runx1 region is critical for birth defects and electrocardiographic dysfunctions observed in a Down syndrome mouse model. PLoS Genet 2012; 8:e1002724. [PMID: 22693452 PMCID: PMC3364940 DOI: 10.1371/journal.pgen.1002724] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/05/2012] [Indexed: 01/24/2023] Open
Abstract
Down syndrome (DS) leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post-natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG) with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in Ts65Dn mice. By using a genetic approach consisting of crossing Ts65Dn mice with Ms5Yah mice monosomic for the App-Runx1 genetic interval, we showed that the Ts65Dn viability and ECG were improved by this reduction of gene copy number. Whole-genome expression studies confirmed gene dosage effect in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah hearts and showed an overall perturbation of pathways connected to post-natal lethality (Coq7, Dyrk1a, F5, Gabpa, Hmgn1, Pde10a, Morc3, Slc5a3, and Vwf) and heart function (Tfb1m, Adam19, Slc8a1/Ncx1, and Rcan1). In addition cardiac connexins (Cx40, Cx43) and sodium channel sub-units (Scn5a, Scn1b, Scn10a) were found down-regulated in Ts65Dn atria with additional down-regulation of Cx40 in Ts65Dn ventricles and were likely contributing to conduction defects. All these data pinpoint new cardiac phenotypes in the Ts65Dn, mimicking aspects of human DS features and pathways altered in the mouse model. In addition they highlight the role of the App-Runx1 interval, including Sod1 and Tiam1, in the induction of post-natal lethality and of the cardiac conduction defects in Ts65Dn. These results might lead to new therapeutic strategies to improve the care of DS people.
Collapse
Affiliation(s)
- Matthieu Raveau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, France
| | - Jacques M. Lignon
- Immunologie et Embryologie Moléculaire, CNRS Université d'Orléans, UMR6218, Orléans, France
| | - Valérie Nalesso
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, France
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, France
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Doulaye Dembele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, France
| | - Véronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, France
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, France
- Transgénèse et Archivage d'Animaux Modèles, CNRS, UPS44, Orléans, France
- Institut Clinique de la Souris, Illkirch, France
- * E-mail:
| |
Collapse
|
44
|
VanDusen NJ, Firulli AB. Twist factor regulation of non-cardiomyocyte cell lineages in the developing heart. Differentiation 2012; 84:79-88. [PMID: 22516205 DOI: 10.1016/j.diff.2012.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/14/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
The heart is a complex organ that is composed of numerous cell types, which must integrate their programs for proper specification, differentiation and cardiac morphogenesis. During cardiogenesis members of the Twist-family of basic helix-loop-helix (bHLH) transcription factors play distinct roles within cardiac lineages such as the endocardium and extra-cardiac lineages such as the cardiac neural crest (cNCC) and epicardium. While the study of these cell populations is often eclipsed by that of cardiomyocytes, the contributions of non-cardiomyocytes to development and disease are increasingly being appreciated as both dynamic and essential. This review summarizes what is known regarding Twist-family bHLH function in extra-cardiac cell populations and the endocardium, with a focus on regulatory mechanisms, downstream targets, and expression profiles. Improving our understanding of the molecular pathways that Twist-family bHLH factors mediate in these lineages will be necessary to ascertain how their dysfunction leads to congenital disease and adult pathologies such as myocardial infarctions and cardiac fibroblast induced fibrosis. Indeed, this knowledge will prove to be critical to clinicians seeking to improve current treatments.
Collapse
Affiliation(s)
- Nathan J VanDusen
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|
45
|
Wei S, Xu G, Bridges LC, Williams P, Nakayama T, Shah A, Grainger RM, White JM, DeSimone DW. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development. Dev Biol 2011; 363:147-54. [PMID: 22227340 DOI: 10.1016/j.ydbio.2011.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye development in Xenopus tropicalis. Knockdown of ADAM13 results in reduced expression of eye field markers pax6 and rx1, as well as that of the pan-neural marker sox2. Activation of canonical Wnt signaling or inhibition of forward EfnB signaling rescues the eye defects caused by loss of ADAM13, suggesting that ADAM13 functions through regulation of the EfnB-Wnt pathway interaction. Downstream of Wnt, the head inducer Cerberus was identified as an effector that mediates ADAM13 function in early eye field formation. Furthermore, ectopic expression of the Wnt target gene snail2 restores cerberus expression and rescues the eye defects caused by ADAM13 knockdown. Together these data suggest an important role of ADAM13-regulated Wnt activity in eye development in Xenopus.
Collapse
Affiliation(s)
- Shuo Wei
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 2011; 91:472-85. [PMID: 22138087 DOI: 10.1016/j.ejcb.2011.09.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 09/08/2011] [Indexed: 01/14/2023] Open
Abstract
Within the vasculature the disintegrins and metalloproteinases (ADAMs) 8, 9, 10, 12, 15, 17, 19, 28 and 33 are expressed on endothelial cells, smooth muscle cells and on leukocytes. As surface-expressed proteases they mediate cleavage of vascular surface molecules at an extracellular site close to the membrane. This process is termed shedding and leads to the release of a soluble substrate ectodomain thereby critically modulating the biological function of the substrate. In the vasculature several surface molecules undergo ADAM-mediated shedding including tumour necrosis factor (TNF) α, interleukin (IL) 6 receptor α, L-selectin, vascular endothelial (VE)-cadherin, the transmembrane CX3C-chemokine ligand (CX3CL) 1, Notch, transforming growth factor (TGF) and heparin-binding epidermal growth factor (HB-EGF). These substrates play distinct roles in vascular biology by promoting inflammation, permeability changes, leukocyte recruitment, resolution of inflammation, regeneration and/or neovascularisation. Especially ADAM17 and ADAM10 are capable of cleaving many substrates with diverse function within the vasculature, whereas other ADAMs have a more restricted substrate range. Therefore, targeting ADAM17 or ADAM10 by pharmacologic inhibition or gene knockout not only attenuates the inflammatory response in animal models but also affects tissue regeneration and neovascularisation. Recent discoveries indicate that other ADAMs (e.g. ADAM8 and 9) also play important roles in vascular biology but appear to have more selective effects on vascular responses (e.g. on neovascularisation only). Although, targeting of ADAM17 and ADAM10 in inflammatory diseases is still a promising approach, temporal and spatial as well as substrate-specific inhibition approaches are required to minimise undesired side effects on vascular cells.
Collapse
|
47
|
Goldmuntz E, Paluru P, Glessner J, Hakonarson H, Biegel JA, White PS, Gai X, Shaikh TH. Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. CONGENIT HEART DIS 2011; 6:592-602. [PMID: 22010865 DOI: 10.1111/j.1747-0803.2011.00582.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Multiple genetic syndromes are caused by recurrent chromosomal microdeletions or microduplications. The increasing use of high-resolution microarrays in clinical analysis has allowed the identification of previously undetectable submicroscopic copy number variants (CNVs) associated with genetic disorders. We hypothesized that patients with congenital heart disease and additional dysmorphic features or other anomalies would be likely to harbor previously undetected CNVs, which might identify new disease loci or disease-related genes for various cardiac defects. DESIGN Copy number analysis with single nucleotide polymorphism-based, oligonucleotide microarrays was performed on 58 patients with congenital heart disease and other dysmorphic features and/or other anomalies. The observed CNVs were validated using independent techniques and validated CNVs were further analyzed using computational algorithms and comparison with available control CNV datasets in order to assess their pathogenic potential. RESULTS Potentially pathogenic CNVs were detected in twelve of 58 patients (20.7%), ranging in size from 240 Kb to 9.6 Mb. These CNVs contained between 1 and 55 genes, including NRP1, NTRK3, MESP1, ADAM19, and HAND1, all of which are known to participate in cardiac development. CONCLUSIONS Genome-wide analysis in patients with congenital heart disease and additional phenotypes has identified potentially pathogenic CNVs affecting genes involved in cardiac development. The identified variant loci and the genes within them warrant further evaluation in similarly syndromic and nonsyndromic cardiac cohorts.
Collapse
Affiliation(s)
- Elizabeth Goldmuntz
- Divisions of Cardiology Human Genetics Oncology Center for Applied Genomics Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hoehndorf R, Schofield PN, Gkoutos GV. PhenomeNET: a whole-phenome approach to disease gene discovery. Nucleic Acids Res 2011; 39:e119. [PMID: 21737429 PMCID: PMC3185433 DOI: 10.1093/nar/gkr538] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 12/25/2022] Open
Abstract
Phenotypes are investigated in model organisms to understand and reveal the molecular mechanisms underlying disease. Phenotype ontologies were developed to capture and compare phenotypes within the context of a single species. Recently, these ontologies were augmented with formal class definitions that may be utilized to integrate phenotypic data and enable the direct comparison of phenotypes between different species. We have developed a method to transform phenotype ontologies into a formal representation, combine phenotype ontologies with anatomy ontologies, and apply a measure of semantic similarity to construct the PhenomeNET cross-species phenotype network. We demonstrate that PhenomeNET can identify orthologous genes, genes involved in the same pathway and gene-disease associations through the comparison of mutant phenotypes. We provide evidence that the Adam19 and Fgf15 genes in mice are involved in the tetralogy of Fallot, and, using zebrafish phenotypes, propose the hypothesis that the mammalian homologs of Cx36.7 and Nkx2.5 lie in a pathway controlling cardiac morphogenesis and electrical conductivity which, when defective, cause the tetralogy of Fallot phenotype. Our method implements a whole-phenome approach toward disease gene discovery and can be applied to prioritize genes for rare and orphan diseases for which the molecular basis is unknown.
Collapse
Affiliation(s)
- Robert Hoehndorf
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
49
|
Drosophila metalloproteases in development and differentiation: The role of ADAM proteins and their relatives. Eur J Cell Biol 2011; 90:770-8. [DOI: 10.1016/j.ejcb.2011.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
50
|
Lu Y, Liu YZ, Liu PY, Dvornyk V, Deng HW. A bootstrap-based regression method for comprehensive discovery of differential gene expressions: an application to the osteoporosis study. Eur J Med Genet 2011; 54:e560-4. [PMID: 21843665 DOI: 10.1016/j.ejmg.2011.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
UNLABELLED A common purpose of microarray experiments is to study the variation in gene expression across the categories of an experimental factor such as tissue types and drug treatments. However, it is not uncommon that the studied experimental factor is a quantitative variable rather than categorical variable. Loss of information would occur by comparing gene-expression levels between groups that are factitiously defined according to the quantitative threshold values of an experimental factor. Additionally, lack of control for some sensitive clinical factors may bring serious false positive or negative findings. In the present study, we described a bootstrap-based regression method for analyzing gene-expression data from the non-categorical microarray experiments. To illustrate the utility of this method, we applied it to our recent gene-expression study of circulating monocytes in subjects with a wide range of variations in bone mineral density (BMD). This method allows a comprehensive discovery of gene expressions associated with osteoporosis-related traits while controlling other common confounding factors such as height, weight and age. Several genes identified in our study are involved in osteoblast and osteoclast functions and bone remodeling and/or menopause-associated estrogen-dependent pathways, which provide important clues to understand the etiology of osteoporosis. AVAILABILITY SAS code is available from the authors upon request.
Collapse
Affiliation(s)
- Yan Lu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, PR China
| | | | | | | | | |
Collapse
|