1
|
Zhou J, Wu Y, Liu H, Tian W, Castanon RG, Bartlett A, Zhang Z, Yao G, Shi D, Clock B, Marcotte S, Nery JR, Liem M, Claffey N, Boggeman L, Barragan C, Drigo RAE, Weimer AK, Shi M, Cooper-Knock J, Zhang S, Snyder MP, Preissl S, Ren B, O’Connor C, Chen S, Luo C, Dixon JR, Ecker JR. Human Body Single-Cell Atlas of 3D Genome Organization and DNA Methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644697. [PMID: 40196612 PMCID: PMC11974725 DOI: 10.1101/2025.03.23.644697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Higher-order chromatin structure and DNA methylation are critical for gene regulation, but how these vary across the human body remains unclear. We performed multi-omic profiling of 3D genome structure and DNA methylation for 86,689 single nuclei across 16 human tissues, identifying 35 major and 206 cell subtypes. We revealed extensive changes in CG and non-CG methylation across almost all cell types and characterized 3D chromatin structure at an unprecedented cellular resolution. Intriguingly, extensive discrepancies exist between cell types delineated by DNA methylation and genome structure, indicating that the role of distinct epigenomic features in maintaining cell identity may vary by lineage. This study expands our understanding of the diversity of DNA methylation and chromatin structure and offers an extensive reference for exploring gene regulation in human health and disease.
Collapse
Affiliation(s)
- Jingtian Zhou
- Arc Institute, Palo Alto, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Yue Wu
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Wei Tian
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zuolong Zhang
- School of Software, Henan University, Kaifeng, Henan, China
| | - Guocong Yao
- School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Dengxiaoyu Shi
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ben Clock
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samantha Marcotte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R. Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michelle Liem
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Naomi Claffey
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lara Boggeman
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cesar Barragan
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rafael Arrojo e Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Center for Computational Systems Biology, Vanderbilt University, Nashville, TN
- Diabetes Research and Training Center (DRTC), Vanderbilt University Medical Center, Nashville, TN, 37235
| | - Annika K. Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyi Shi
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Departments of Biostatistics & Biomedical Engineering, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Bing Ren
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Carolyn O’Connor
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shengbo Chen
- School of Software, Nanchang University, Nanchang, Jiangxi, China
| | - Chongyuan Luo
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Jesse R. Dixon
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R. Ecker
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
2
|
Petrin AL, Machado-Paula LA, Hinkle A, Hovey L, Awotoye W, Chimenti M, Darbro B, Ribeiro-Bicudo LA, Dabdoub SM, Peter T, Breheny P, Murray JC, Van Otterloo E, Rengasamy Venugopalan S, Moreno-Uribe LM. Familial Oculoauriculovertebral Spectrum: A Genomic Investigation of Autosomal Dominant Inheritance. Cleft Palate Craniofac J 2025:10556656241306202. [PMID: 39819101 DOI: 10.1177/10556656241306202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
OBJECTIVE Oculoauriculovertebral spectrum (OAVS) encompasses abnormalities on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular, and vertebral anomalies. We present genetic findings on a 3-generation family affected with macrostomia, preauricular tags and ptosis following an autosomal dominant pattern. DESIGN We generated whole-genome sequencing data for the proband, affected father, and unaffected paternal grandmother followed by Sanger sequencing on 23 family members for the top candidate gene mutations. We performed parent and sibling-based transmission disequilibrium tests (TDTs) and burden analysis via a penalized linear mixed model, for segregation and mutation burden, respectively. Next, via bioinformatic tools we predicted protein function, mutation pathogenicity, and pathway enrichment to investigate the biological relevance of mutations identified. RESULTS Rare missense mutations in SIX1, KDR/VEGFR2, and PDGFRA showed the best segregation with the OAVS phenotypes in this family. When considering any of the 3 OAVS phenotypes as an outcome, SIX1 had the strongest associations in parent-TDTs and sib-TDTs (P = 0.025, P = 0.052) (unadjusted P-values). Burden analysis identified SIX1 (RC = 0.87) and PDGFRA (RC = 0.98) strongly associated with OAVS severity. Using phenotype-specific outcomes, sib-TDTs identified SIX1 with uni- or bilateral ptosis (P = 0.049) and ear tags (P = 0.01), and PDGFRA and KDR/VEGFR2 with ear tags (both P < 0.01). CONCLUSION SIX1, PDGFRA, and KDR/VEGFR2 are strongly associated to OAVS phenotypes. SIX1 has been previously associated with OAVS ear malformations and is co-expressed with EYA1 during ear development. Efforts to strengthen the genotype-phenotype co-relation underlying the OAVS are key to discover etiology, family counseling, and prevention.
Collapse
Affiliation(s)
- Aline L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Austin Hinkle
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Luke Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Waheed Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Michael Chimenti
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Benjamin Darbro
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Shareef M Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Tabitha Peter
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Patrick Breheny
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Jeffrey C Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric Van Otterloo
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Lina M Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Fox A, Oliva J, Vangipurapu R, Sverdrup FM. SIX transcription factors are necessary for the activation of DUX4 expression in facioscapulohumeral muscular dystrophy. Skelet Muscle 2024; 14:30. [PMID: 39627769 PMCID: PMC11613756 DOI: 10.1186/s13395-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is a common and progressive muscle wasting disease that is characterized by muscle weakness often first noticed in the face, the shoulder girdle and upper arms before progressing to the lower limb muscles. FSHD is caused by the misexpression of the Double Homeobox 4 (DUX4) transcription factor in skeletal muscle. While epigenetic derepression of D4Z4 macrosatellite repeats underlies DUX4 misexpression, our understanding of the complex transcriptional activation of DUX4 is incomplete. METHODS To identify potential DUX4-regulatory factors, we used small interfering RNAs (siRNAs) to knockdown SIX family transcription factors (SIX1, 2, 4, 5) in patient-derived FSHD1 and FSHD2 myoblasts that were differentiated to form multinucleated myotubes. Quantitative real-time polymerase chain reaction was used to measure changes in DUX4 mRNA, DUX4 target gene expression and myogenic markers. Staining for SIX1 and SIX2 with specific antibodies was performed in FSHD myoblasts and myotubes. To assess reciprocal effects of DUX4 on SIX1, 2, and 4 expression, we utilized a doxycycline-inducible DUX4 myoblast cell line. RESULT We show that SIX1, 2 and 4 transcription factors, regulators of embryonic development, muscle differentiation, regeneration and homeostasis, are necessary for myogenic differentiation-dependent DUX4 expression in FSHD muscle cells. Using siRNA, we demonstrate SIX1, SIX2, and SIX4 to be critical factors involved in the induction of DUX4 transcription in differentiating FSHD myotubes in vitro. siRNA dual knockdown of SIX1 and SIX2 resulted in a ~ 98% decrease of DUX4 and DUX4 target genes, suggesting that SIX1 and SIX2 are the most critical in promoting DUX4 expression. Importantly, we show that DUX4 downregulates SIX RNA levels, suggesting negative feedback regulation. CONCLUSIONS In this study, we identified a family of developmental regulators that promote aberrant DUX4 expression in FSHD1 and FSHD2 differentiating muscle cells. Our findings highlight the critical involvement of SIX transcription factors (SIX1, 2, 4) in the pathogenesis of FSHD by serving as necessary factors that function in the promotion of DUX4 expression following epigenetic derepression of the D4Z4 repeats.
Collapse
Affiliation(s)
- Amelia Fox
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Jonathan Oliva
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Rajanikanth Vangipurapu
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Francis M Sverdrup
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Paris JR, Nitta Fernandes FA, Pirri F, Greco S, Gerdol M, Pallavicini A, Benoiste M, Cornec C, Zane L, Haas B, Le Bohec C, Trucchi E. Gene Expression Shifts in Emperor Penguin Adaptation to the Extreme Antarctic Environment. Mol Ecol 2024:e17552. [PMID: 39415606 DOI: 10.1111/mec.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Gene expression can accelerate ecological divergence by rapidly tweaking the response of an organism to novel environments, with more divergent environments exerting stronger selection and supposedly, requiring faster adaptive responses. Organisms adapted to extreme environments provide ideal systems to test this hypothesis, particularly when compared to related species with milder ecological niches. The Emperor penguin (Aptenodytes forsteri) is the only endothermic vertebrate breeding in the harsh Antarctic winter, in stark contrast with the less cold-adapted sister species, the King penguin (A. patagonicus). Assembling the first de novo transcriptomes and analysing multi-tissue (brain, kidney, liver, muscle, skin) RNA-Seq data from natural populations of both species, we quantified the shifts in tissue-enhanced genes, co-expression gene networks, and differentially expressed genes characterising Emperor penguin adaptation to the extreme Antarctic. Our analyses revealed the crucial role played by muscle and liver in temperature homeostasis, fasting, and whole-body energy metabolism (glucose/insulin regulation, lipid metabolism, fatty acid beta-oxidation, and blood coagulation). Repatterning at the regulatory level appears as more important in the brain of the Emperor penguin, showing the lowest signature of differential gene expression, but the largest co-expression gene network shift. Nevertheless, over-expressed genes related to mTOR signalling in the brain and the liver support their central role in cold and fasting responses. Besides contributing to understanding the genetics underlying complex traits, like body energy reservoir management, our results provide a first insight into the role of gene expression in adaptation to one of the most extreme environmental conditions endured by an endotherm.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Flávia A Nitta Fernandes
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Federica Pirri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Marine Benoiste
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Clément Cornec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, University of Lyon, Saint-Etienne, France
| | - Lorenzo Zane
- Department of Biology, University of Padova, Padova, Italy
| | - Brian Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Monaco
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
5
|
Lu J, Zhao P, Ding X, Li H. N-acetylcysteine stimulates the proliferation and differentiation in heat-stressed skeletal muscle cells. J Therm Biol 2024; 124:103958. [PMID: 39182421 DOI: 10.1016/j.jtherbio.2024.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
N-acetylcysteine (NAC) is known for its beneficial effects on health due to its antioxidant and antiapoptotic properties. This study explored the protective effects of NAC against oxidative stress in heat-stressed (HS) skeletal muscle cells and its role in promoting muscle development. NAC reduced the heat shock response by decreasing the expression of heat shock protein 70 (HSP70) in HS-induced muscle cells during proliferation and differentiation. NAC also mitigated HS-induced oxidative stress via increasing the antioxidant enzyme levels and reducing oxidant enzyme levels. Treatment with NAC at 2 mM increased cell viability from 43.68% ± 5.14%-66.69% ± 14.43% and decreased the apoptosis rate from 7.89% ± 0.53%-5.17% ± 0.11% in skeletal muscle cells. Additionally, NAC promoted the proliferation and differentiation of HS-induced skeletal muscle cells by upregulating the expression of PAX7, MYF5, MRF4 and MYHC. These findings suggest that NAC alleviates HS-induced oxidative damage in skeletal muscle cells and support muscle development.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhu Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
7
|
Rich J, Bennaroch M, Notel L, Patalakh P, Alberola J, Issa F, Opolon P, Bawa O, Rondof W, Marchais A, Dessen P, Meurice G, Le-Gall M, Polrot M, Ser-Le Roux K, Mamchaoui K, Droin N, Raslova H, Maire P, Geoerger B, Pirozhkova I. DiPRO1 distinctly reprograms muscle and mesenchymal cancer cells. EMBO Mol Med 2024; 16:1840-1885. [PMID: 39009887 PMCID: PMC11319797 DOI: 10.1038/s44321-024-00097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
We have recently identified the uncharacterized ZNF555 protein as a component of a productive complex involved in the morbid function of the 4qA locus in facioscapulohumeral dystrophy. Subsequently named DiPRO1 (Death, Differentiation, and PROliferation related PROtein 1), our study provides substantial evidence of its role in the differentiation and proliferation of human myoblasts. DiPRO1 operates through the regulatory binding regions of SIX1, a master regulator of myogenesis. Its relevance extends to mesenchymal tumors, such as rhabdomyosarcoma (RMS) and Ewing sarcoma, where DiPRO1 acts as a repressor via the epigenetic regulators TIF1B and UHRF1, maintaining methylation of cis-regulatory elements and gene promoters. Loss of DiPRO1 mimics the host defense response to virus, awakening retrotransposable repeats and the ZNF/KZFP gene family. This enables the eradication of cancer cells, reprogramming the cellular decision balance towards inflammation and/or apoptosis by controlling TNF-α via NF-kappaB signaling. Finally, our results highlight the vulnerability of mesenchymal cancer tumors to si/shDiPRO1-based nanomedicines, positioning DiPRO1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeremy Rich
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Melanie Bennaroch
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Laura Notel
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Polina Patalakh
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Julien Alberola
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Fayez Issa
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Paule Opolon
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Olivia Bawa
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Windy Rondof
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Philippe Dessen
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Guillaume Meurice
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Morgane Le-Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Melanie Polrot
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Karine Ser-Le Roux
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Nathalie Droin
- Genomic Platform, UMS AMMICA US 23 INSERM UAR 3655 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Hana Raslova
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Pascal Maire
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Iryna Pirozhkova
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France.
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France.
| |
Collapse
|
8
|
Petrin AL, Machado-Paula LA, Hinkle A, Hovey L, Awotoye W, Chimenti M, Darbro B, Ribeiro-Bicudo LA, Dabdoub SM, Peter T, Breheny P, Murray J, Van Otterloo E, Rengasamy Venugopalan S, Moreno-Uribe LM. Whole genome sequencing of a family with autosomal dominant features within the oculoauriculovertebral spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24301824. [PMID: 38370836 PMCID: PMC10871465 DOI: 10.1101/2024.02.07.24301824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background Oculoauriculovertebral Spectrum (OAVS) encompasses abnormalities on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular and vertebral anomalies. We present genetic findings on a three-generation family affected with macrostomia, preauricular tags and uni- or bilateral ptosis following an autosomal dominant pattern. Methods We generated whole genome sequencing data for the proband, affected parent and unaffected paternal grandparent followed by Sanger sequencing on 23 family members for the top 10 candidate genes: KCND2, PDGFRA, CASP9, NCOA3, WNT10A, SIX1, MTF1, KDR/VEGFR2, LRRK1, and TRIM2 We performed parent and sibling-based transmission disequilibrium tests and burden analysis via a penalized linear mixed model, for segregation and mutation burden respectively. Next, via bioinformatic tools we predicted protein function, mutation pathogenicity and pathway enrichment to investigate the biological relevance of mutations identified. Results Rare missense mutations in SIX1, KDR/VEGFR2, and PDGFRA showed the best segregation with the OAV phenotypes in this family. When considering any of the 3 OAVS phenotypes as an outcome, SIX1 had the strongest associations in parent-TDTs and sib-TDTs (p=0.025, p=0.052) (unadjusted p-values). Burden analysis identified SIX1 (RC=0.87) and PDGFRA (RC=0.98) strongly associated with OAVS severity. Using phenotype-specific outcomes, sib-TDTs identified SIX1 with uni- or bilateral ptosis (p=0.049) and ear tags (p=0.01), and PDGFRA and KDR/VEGFR2 with ear tags (both p<0.01). Conclusion SIX1, PDGFRA, and KDR/VEGFR2 are strongly associated to OAVS phenotypes. SIX1 has been previously associated with OAVS ear malformations and is co-expressed with EYA1 during ear development. Efforts to strengthen the genotype-phenotype co-relation underlying the OAVS are key to discover etiology, family counseling and prevention.
Collapse
Affiliation(s)
- A L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - L A Machado-Paula
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - A Hinkle
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - L Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - W Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - M Chimenti
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B Darbro
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - S M Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - T Peter
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - P Breheny
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - J Murray
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - E Van Otterloo
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - L M Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Lee S, Yun Y, Cha JH, Han JH, Lee DH, Song JJ, Park MK, Lee JH, Oh SH, Choi BY, Lee SY. Phenotypic and molecular basis of SIX1 variants linked to non-syndromic deafness and atypical branchio-otic syndrome in South Korea. Sci Rep 2023; 13:11776. [PMID: 37479820 PMCID: PMC10361970 DOI: 10.1038/s41598-023-38909-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Branchio-oto-renal (BOR)/branchio-otic (BO) syndrome is a rare disorder and exhibits clinically heterogenous phenotypes, marked by abnormalities in the ear, branchial arch, and renal system. Sporadic cases of atypical BOR/BO syndrome have been recently reported; however, evidence on genotype-phenotype correlations and molecular mechanisms of those cases is lacking. We herein identified five SIX1 heterozygous variants (c.307dupC:p.Leu103Profs*51, c.373G>A:p.Glu125Lys, c.386_391del:p.Tyr129_Cys130del, c.397_399del:p.Glu133del, and c.501G>C:p.Gln167His), including three novel variants, through whole-exome sequencing in five unrelated Korean families. All eight affected individuals with SIX1 variants displayed non-syndromic hearing loss (DFNA23) or atypical BO syndrome. The prevalence of major and minor criteria for BOR/BO syndrome was significantly reduced among individuals with SIX1 variants, compared to 15 BOR/BO syndrome families with EYA1 variants. All SIX1 variants interacted with the EYA1 wild-type; their complexes were localized in the nucleus except for the p.Leu103Profs*51 variant. All mutants also showed obvious but varying degrees of reduction in DNA binding affinity, leading to a significant decrease in transcriptional activity. This study presents the first report of SIX1 variants in South Korea, expanding the genotypic and phenotypic spectrum of SIX1 variants, characterized by DFNA23 or atypical BO syndrome, and refines the diverse molecular aspects of SIX1 variants according to the EYA1-SIX1-DNA complex theory.
Collapse
Affiliation(s)
- Somin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yejin Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ju Hyuen Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Dae Hee Lee
- CTCELLS, Inc., 21, Yuseong-Daero, 1205 Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Genomic Medicine, Precision Medicine & Rare Disease Center, Seoul National University Hospital, Jongno-Gu, Daehak-Ro, 101, Seoul, South Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
10
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
11
|
Sadaki S, Fujita R, Hayashi T, Nakamura A, Okamura Y, Fuseya S, Hamada M, Warabi E, Kuno A, Ishii A, Muratani M, Okada R, Shiba D, Kudo T, Takeda S, Takahashi S. Large Maf transcription factor family is a major regulator of fast type IIb myofiber determination. Cell Rep 2023; 42:112289. [PMID: 36952339 DOI: 10.1016/j.celrep.2023.112289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.
Collapse
Affiliation(s)
- Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayano Nakamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yui Okamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Warabi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akiko Ishii
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
12
|
Bai W, Zhang Y, Ma J, Du M, Xu H, Wang J, Zhang L, Li W, Hou Y, Liu X, Zhang X, Peng Y, Li J, Zhan X, Jiang W, Liu S, Liu X, Li Q, Miao Y, Sui M, Yang Y, Zhang S, Xu Z, Zuo B. FHL3 promotes the formation of fast glycolytic muscle fibers by interacting with YY1 and muscle glycolytic metabolism. Cell Mol Life Sci 2023; 80:27. [PMID: 36602641 PMCID: PMC11073127 DOI: 10.1007/s00018-022-04680-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
The proportions of the various muscle fiber types are important in the regulation of skeletal muscle metabolism, as well as animal meat production. Four-and-a-half LIM domain protein 3 (FHL3) is highly expressed in fast glycolytic muscle fibers and differentially regulates the expression of myosin heavy chain (MyHC) isoforms at the cellular level. Whether FHL3 regulates the transformation of muscle fiber types in vivo and the regulatory mechanism is unclear. In this study, muscle-specific FHL3 transgenic mice were generated by random integration, and lentivirus-mediated gene knockdown or overexpression in muscles of mice or pigs was conducted. Functional analysis showed that overexpression of FHL3 in muscles significantly increased the proportion of fast-twitch myofibers and muscle mass but decreased muscle succinate dehydrogenase (SDH) activity and whole-body oxygen consumption. Lentivirus-mediated FHL3 knockdown in muscles significantly decreased muscle mass and the proportion of fast-twitch myofibers. Mechanistically, FHL3 directly interacted with the Yin yang 1 (YY1) DNA-binding domain, repressed the binding of YY1 to the fast glycolytic MyHC2b gene regulatory region, and thereby promoted MyHC2b expression. FHL3 also competed with EZH2 to bind the repression domain of YY1 and reduced H3K27me3 enrichment in the MyHC2b regulatory region. Moreover, FHL3 overexpression reduced glucose tolerance by affecting muscle glycolytic metabolism, and its mRNA expression in muscle was positively associated with hemoglobin A1c (HbA1c) in patients with type 2 diabetes. Therefore, FHL3 is a novel potential target gene for the treatment of muscle metabolism-related diseases and improvement of animal meat production.
Collapse
Affiliation(s)
- Wei Bai
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yunxia Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jun Ma
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Mengmeng Du
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jian Wang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Lu Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yunqing Hou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xinyue Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianan Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xizhen Zhan
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shengsi Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiao Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qinying Li
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yang Miao
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Mengru Sui
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yuhan Yang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Shenghao Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
13
|
Hardy S, Choo YM, Hamann M, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoblast Function. Mar Drugs 2022; 20:647. [PMID: 36286470 PMCID: PMC9604769 DOI: 10.3390/md20100647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair.
Collapse
Affiliation(s)
- Samantha Hardy
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mark Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Fast and slow myofiber-specific expression profiles are affected by noncoding RNAs in Mongolian horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100942. [PMID: 34823143 DOI: 10.1016/j.cbd.2021.100942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The heterogeneity and plasticity of muscle fibers are essential for the athletic performance of horses, mainly at the adaption of exercises and the effect on muscle diseases. Skeletal muscle fibers can be generally distinguished by their characteristics of contraction as slow and fast type myofibers. The diversity of contractile properties and metabolism enable skeletal muscles to respond to the variable functional requirements. We investigated the muscle fiber composition and metabolic enzyme activities of splenius muscle and gluteus medius muscle from Mongolian horses. The deep RNA-seq analysis of detecting differentially expressed mRNAs, lncRNAs, circRNAs and their correlation analysis from two muscles were performed. Splenius muscle and gluteus medius muscle from Mongolian horses showed a high divergence of myofiber compositions and metabolic enzyme activities. Corresponding to their phenotypic characteristics, 57 differentially expressed long noncoding RNAs and 12 differentially expressed circle RNAs were found between two muscles. The analysis results indicate multiple binding sites were detected in lncRNAs and circRNAs with myofiber-specific expressed miRNAs. Among which we found significant correlations between the above noncoding RNAs, miRNAs, their target genes, myofiber-specific developmental transcript factors, and sarcomere genes. We suggest that the ceRNA mechanism of differentially expressed noncoding RNAs by acting as miRNA sponges could be fine tuners in regulating skeletal muscle fiber composition and transition in horses, which will operate new protective measures of muscle disease and locomotor adaption for racehorses.
Collapse
|
15
|
Zeng C, Shi H, Kirkpatrick LT, Ricome A, Park S, Scheffler JM, Hannon KM, Grant AL, Gerrard DE. Driving an Oxidative Phenotype Protects Myh4 Null Mice From Myofiber Loss During Postnatal Growth. Front Physiol 2022; 12:785151. [PMID: 35283757 PMCID: PMC8908108 DOI: 10.3389/fphys.2021.785151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Postnatal muscle growth is accompanied by increases in fast fiber type compositions and hypertrophy, raising the possibility that a slow to fast transition may be partially requisite for increases in muscle mass. To test this hypothesis, we ablated the Myh4 gene, and thus myosin heavy chain IIB protein and corresponding fibers in mice, and examined its consequences on postnatal muscle growth. Wild-type and Myh4–/– mice had the same number of muscle fibers at 2 weeks postnatal. However, the gastrocnemius muscle lost up to 50% of its fibers between 2 and 4 weeks of age, though stabilizing thereafter. To compensate for the lack of functional IIB fibers, type I, IIA, and IIX(D) fibers increased in prevalence and size. To address whether slowing the slow-to-fast fiber transition process would rescue fiber loss in Myh4–/– mice, we stimulated the oxidative program in muscle of Myh4–/– mice either by overexpression of PGC-1α, a well-established model for fast-to-slow fiber transition, or by feeding mice AICAR, a potent AMP kinase agonist. Forcing an oxidative metabolism in muscle only partially protected the gastrocnemius muscle from loss of fibers in Myh4–/– mice. To explore whether traditional means of stimulating muscle hypertrophy could overcome the muscling deficits in postnatal Myh4–/– mice, myostatin null mice were bred with Myh4–/– mice, or Myh4–/– mice were fed the growth promotant clenbuterol. Interestingly, both genetic and pharmacological stimulations had little impact on mice lacking a functional Myh4 gene suggesting that the existing muscle fibers have maximized its capacity to enlarge to compensate for the lack of its neighboring IIB fibers. Curiously, however, cell signaling events responsible for IIB fiber formation remained intact in the tissue. These findings further show disrupting the slow-to-fast transition of muscle fibers compromises muscle growth postnatally and suggest that type IIB myosin heavy chain expression and its corresponding fiber type may be necessary for fiber maintenance, transition and hypertrophy in mice. The fact that forcing muscle metabolism toward a more oxidative phenotype can partially compensates for the lack of an intact Myh4 gene provides new avenues for attenuating the loss of fast-twitch fibers in aged or diseased muscles.
Collapse
Affiliation(s)
- Caiyun Zeng
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hao Shi
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Laila T. Kirkpatrick
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Aymeric Ricome
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sungkwon Park
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jason M. Scheffler
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Kevin M. Hannon
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Alan L. Grant
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - David E. Gerrard
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
- *Correspondence: David E. Gerrard,
| |
Collapse
|
16
|
Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species. Genes (Basel) 2022; 13:genes13020297. [PMID: 35205343 PMCID: PMC8872339 DOI: 10.3390/genes13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut–brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed.
Collapse
|
17
|
Hsu JY, Danis EP, Nance S, O'Brien JH, Gustafson AL, Wessells VM, Goodspeed AE, Talbot JC, Amacher SL, Jedlicka P, Black JC, Costello JC, Durbin AD, Artinger KB, Ford HL. SIX1 reprograms myogenic transcription factors to maintain the rhabdomyosarcoma undifferentiated state. Cell Rep 2022; 38:110323. [PMID: 35108532 PMCID: PMC8917510 DOI: 10.1016/j.celrep.2022.110323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/21/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric muscle sarcoma characterized by expression of the myogenic lineage transcription factors (TFs) MYOD1 and MYOG. Despite high expression of these TFs, RMS cells fail to terminally differentiate, suggesting the presence of factors that alter their functions. Here, we demonstrate that the developmental TF SIX1 is highly expressed in RMS and critical for maintaining a muscle progenitor-like state. SIX1 loss induces differentiation of RMS cells into myotube-like cells and impedes tumor growth in vivo. We show that SIX1 maintains the RMS undifferentiated state by controlling enhancer activity and MYOD1 occupancy at loci more permissive to tumor growth over muscle differentiation. Finally, we demonstrate that a gene signature derived from SIX1 loss correlates with differentiation status and predicts RMS progression in human disease. Our findings demonstrate a master regulatory role of SIX1 in repression of RMS differentiation via genome-wide alterations in MYOD1 and MYOG-mediated transcription.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA
| | - Etienne P Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | - Stephanie Nance
- Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jenean H O'Brien
- Department of Biology, College of St. Scholastica, Duluth, MN, USA
| | - Annika L Gustafson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Molecular Biology Graduate Program, UC-AMC, Aurora, CO, USA
| | | | - Andrew E Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | - Jared C Talbot
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Sharon L Amacher
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | - Joshua C Black
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | - Adam D Durbin
- Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristin B Artinger
- Department of Craniofacial Biology, UC-AMC, Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA.
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA.
| |
Collapse
|
18
|
Zhou X, Yan Q, Liu L, Chen G, Tang S, He Z, Tan Z. Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring. Anim Biosci 2022; 35:847-857. [PMID: 34991223 PMCID: PMC9066034 DOI: 10.5713/ab.21.0285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined. Methods Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue. Results Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were downregulated (p<0.05) in the restricted offspring. Conclusion Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated.
Collapse
Affiliation(s)
- Xiaoling Zhou
- College of Animal Science, Tarim University, Alaer 843300, China.,Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Qiongxian Yan
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Liling Liu
- College of Animal Science, Tarim University, Alaer 843300, China
| | - Genyuan Chen
- College of Animal Science, Tarim University, Alaer 843300, China
| | - Shaoxun Tang
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Zhixiong He
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Zhiliang Tan
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha 410128, China
| |
Collapse
|
19
|
Yang Q, Chan P. Skeletal Muscle Metabolic Alternation Develops Sarcopenia. Aging Dis 2022; 13:801-814. [PMID: 35656108 PMCID: PMC9116905 DOI: 10.14336/ad.2021.1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is a new type of senile syndrome with progressive skeletal muscle mass loss with age, accompanied by decreased muscle strength and/or muscle function. Sarcopenia poses a serious threat to the health of the elderly and increases the burden of family and society. The underlying pathophysiological mechanisms of sarcopenia are still unclear. Recent studies have shown that changes of skeletal muscle metabolism are the risk factors for sarcopenia. Furthermore, the importance of the skeletal muscle metabolic microenvironment in regulating satellite cells (SCs) is gaining significant attention. Skeletal muscle metabolism has intrinsic relationship with the regulation of skeletal muscle mass and regeneration. This review is to discuss recent findings regarding skeletal muscle metabolic alternation and the development of sarcopenia, hoping to contribute better understanding and treatment of sarcopenia.
Collapse
Affiliation(s)
- Qiumei Yang
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Piu Chan
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China.
- Clinical Center for Parkinson’s Disease, Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson’s Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Piu Chan, Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Beijing 100053, China. .
| |
Collapse
|
20
|
Girgis J, Yang D, Chakroun I, Liu Y, Blais A. Six1 promotes skeletal muscle thyroid hormone response through regulation of the MCT10 transporter. Skelet Muscle 2021; 11:26. [PMID: 34809717 PMCID: PMC8607597 DOI: 10.1186/s13395-021-00281-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Six1 transcription factor is implicated in controlling the development of several tissue types, notably skeletal muscle. Six1 also contributes to muscle metabolism and its activity is associated with the fast-twitch, glycolytic phenotype. Six1 regulates the expression of certain genes of the fast muscle program by directly stimulating their transcription or indirectly acting through a long non-coding RNA. We hypothesized that additional mechanisms of action of Six1 might be at play. METHODS A combined analysis of gene expression profiling and genome-wide location analysis data was performed. Results were validated using in vivo RNA interference loss-of-function assays followed by measurement of gene expression by RT-PCR and transcriptional reporter assays. RESULTS The Slc16a10 gene, encoding the thyroid hormone transmembrane transporter MCT10, was identified as a gene with a transcriptional enhancer directly bound by Six1 and requiring Six1 activity for full expression in adult mouse tibialis anterior, a predominantly fast-twitch muscle. Of the various thyroid hormone transporters, MCT10 mRNA was found to be the most abundant in skeletal muscle, and to have a stronger expression in fast-twitch compared to slow-twitch muscle groups. Loss-of-function of MCT10 in the tibialis anterior recapitulated the effect of Six1 on the expression of fast-twitch muscle genes and led to lower activity of a thyroid hormone receptor-dependent reporter gene. CONCLUSIONS These results shed light on the molecular mechanisms controlling the tissue expression profile of MCT10 and identify modulation of the thyroid hormone signaling pathway as an additional mechanism by which Six1 influences skeletal muscle metabolism.
Collapse
Affiliation(s)
- John Girgis
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dabo Yang
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Imane Chakroun
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Yubing Liu
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Alexandre Blais
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada. .,University of Ottawa Centre for Inflammation, Immunity and Infection (CI3), Ottawa, Ontario, Canada.
| |
Collapse
|
21
|
Bengtsen M, Winje IM, Eftestøl E, Landskron J, Sun C, Nygård K, Domanska D, Millay DP, Meza-Zepeda LA, Gundersen K. Comparing the epigenetic landscape in myonuclei purified with a PCM1 antibody from a fast/glycolytic and a slow/oxidative muscle. PLoS Genet 2021; 17:e1009907. [PMID: 34752468 PMCID: PMC8604348 DOI: 10.1371/journal.pgen.1009907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/19/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023] Open
Abstract
Muscle cells have different phenotypes adapted to different usage, and can be grossly divided into fast/glycolytic and slow/oxidative types. While most muscles contain a mixture of such fiber types, we aimed at providing a genome-wide analysis of the epigenetic landscape by ChIP-Seq in two muscle extremes, the fast/glycolytic extensor digitorum longus (EDL) and slow/oxidative soleus muscles. Muscle is a heterogeneous tissue where up to 60% of the nuclei can be of a different origin. Since cellular homogeneity is critical in epigenome-wide association studies we developed a new method for purifying skeletal muscle nuclei from whole tissue, based on the nuclear envelope protein Pericentriolar material 1 (PCM1) being a specific marker for myonuclei. Using antibody labelling and a magnetic-assisted sorting approach, we were able to sort out myonuclei with 95% purity in muscles from mice, rats and humans. The sorting eliminated influence from the other cell types in the tissue and improved the myo-specific signal. A genome-wide comparison of the epigenetic landscape in EDL and soleus reflected the differences in the functional properties of the two muscles, and revealed distinct regulatory programs involving distal enhancers, including a glycolytic super-enhancer in the EDL. The two muscles were also regulated by different sets of transcription factors; e.g. in soleus, binding sites for MEF2C, NFATC2 and PPARA were enriched, while in EDL MYOD1 and SIX1 binding sites were found to be overrepresented. In addition, more novel transcription factors for muscle regulation such as members of the MAF family, ZFX and ZBTB14 were identified. Complex tissues like skeletal muscle contain a variety of cells which confound the analysis of each cell type when based on homogenates, thus only about half of the cell nuclei in muscles reside inside the muscle cells. We here describe a labelling and sorting technique that allowed us to study the epigenetic landscape in purified muscle cell nuclei leaving the other cell types out. Differences between a fast/glycolytic and a slow/oxidative muscle were studied. While all skeletal muscle fibers have a similar make up and basic function, they differ in their physiology and the way they are used. Thus, some fibers are fast contracting but fatigable, and are used for short lasting explosive tasks such as sprinting. Other fibers are slow and are used for more prolonged tasks such as standing or long distance running. Since fiber type correlate with metabolic profile these features can also be related to metabolic diseases. We here show that the epigenetic landscape differed in gene loci corresponding to the differences in functional properties, and revealed that the two types are enriched in different gene regulatory networks. Exercise can alter muscle phenotype, and the epigenetic landscape might be related to how plastic different properties are.
Collapse
Affiliation(s)
- Mads Bengtsen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kamilla Nygård
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Diana Domanska
- Department of Pathology, University of Oslo, Oslo, Norway
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Leonardo A. Meza-Zepeda
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
22
|
Nair VD, Vasoya M, Nair V, Smith GR, Pincas H, Ge Y, Douglas CM, Esser KA, Sealfon SC. Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle. Genomics 2021; 113:3827-3841. [PMID: 34547403 DOI: 10.1016/j.ygeno.2021.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Chromatin accessibility is a key factor influencing gene expression. We optimized the Omni-ATAC-seq protocol and used it together with RNA-seq to investigate cis-regulatory elements in rat white adipose and skeletal muscle, two tissues with contrasting metabolic functions. While promoter accessibility correlated with RNA expression, integration of the two datasets identified tissue-specific differentially accessible regions (DARs) that predominantly localized in intergenic and intron regions. DARs were mapped to differentially expressed (DE) genes enriched in distinct biological processes in each tissue. Randomly selected DE genes were validated by qPCR. Top enriched motifs in DARs predicted binding sites for transcription factors (TFs) showing tissue-specific up-regulation. The correlation between differential chromatin accessibility at a given TF binding motif and differential expression of target genes further supported the functional relevance of that motif. Our study identified cis-regulatory regions that likely play a major role in the regulation of tissue-specific gene expression in adipose and muscle.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vishnu Nair
- Department of Computer Sciences, Columbia University, New York, NY 10027, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Almasoudi SH, Schlosser G. Eya1 protein distribution during embryonic development of Xenopus laevis. Gene Expr Patterns 2021; 42:119213. [PMID: 34536585 DOI: 10.1016/j.gep.2021.119213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022]
Abstract
Eya1 and other Eya proteins are important regulators of progenitor proliferation, cell differentiation and morphogenesis in all three germ layers. At present, most of our knowledge of Eya1 distribution is based on in situ hybridization for Eya1 mRNA. However, to begin to dissect the mechanisms underlying Eya1 functions, we need a better understanding of the spatiotemporal distribution of Eya1 proteins during embryonic development, their subcellular localization and their levels of expression in various tissues. Here we report the localization of Eya1 protein throughout embryonic development from neural plate stages to tadpole stages of Xenopus laevis using a specific antibody for Xenopus Eya1. Our study confirms the expression of Eya1 protein in cranial placodes, placodally derived sensory primordia (olfactory epithelium, otic vesicle, lateral line primordia) and cranial ganglia, as well as in somites, secondary heart field and pharyngeal endoderm. In addition, we report here a novel expression of Eya1 proteins in scattered epidermal cells in Xenopus. Our findings also reveal that, while being predominantly expressed in nuclei in most expression domains, Eya1 protein is also localized to the cytoplasm, in particular in the early preplacodal ectoderm, some placode-derived ganglia and a subset of epidermal cells. While some cytoplasmic roles of Eya1 have been previously described in other contexts, the functions of cytoplasmic Eya1 in the preplacodal ectoderm, cranial ganglia and epidermal cells remain to be investigated.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland.
| |
Collapse
|
24
|
The Eyes Absent proteins in development and in developmental disorders. Biochem Soc Trans 2021; 49:1397-1408. [PMID: 34196366 PMCID: PMC8286820 DOI: 10.1042/bst20201302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
The Eyes Absent (EYA) transactivator-phosphatase proteins are important contributors to cell-fate determination processes and to the development of multiple organs. The transcriptional regulatory activity as well as the protein tyrosine phosphatase activities of the EYA proteins can independently contribute to proliferation, differentiation, morphogenesis and tissue homeostasis in different contexts. Aberrant EYA levels or activity are associated with numerous syndromic and non-syndromic developmental disorders, as well as cancers. Commensurate with the multiplicity of biochemical activities carried out by the EYA proteins, they impact upon a range of cellular signaling pathways. Here, we provide a broad overview of the roles played by EYA proteins in development, and highlight the molecular signaling pathways known to be linked with EYA-associated organ development and developmental disorders.
Collapse
|
25
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
26
|
Wei X, Franke J, Ost M, Wardelmann K, Börno S, Timmermann B, Meierhofer D, Kleinridders A, Klaus S, Stricker S. Cell autonomous requirement of neurofibromin (Nf1) for postnatal muscle hypertrophic growth and metabolic homeostasis. J Cachexia Sarcopenia Muscle 2020; 11:1758-1778. [PMID: 33078583 PMCID: PMC7749575 DOI: 10.1002/jcsm.12632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a multi-organ disease caused by mutations in neurofibromin 1 (NF1). Amongst other features, NF1 patients frequently show reduced muscle mass and strength, impairing patients' mobility and increasing the risk of fall. The role of Nf1 in muscle and the cause for the NF1-associated myopathy are mostly unknown. METHODS To dissect the function of Nf1 in muscle, we created muscle-specific knockout mouse models for NF1, inactivating Nf1 in the prenatal myogenic lineage either under the Lbx1 promoter or under the Myf5 promoter. Mice were analysed during prenatal and postnatal myogenesis and muscle growth. RESULTS Nf1Lbx1 and Nf1Myf5 animals showed only mild defects in prenatal myogenesis. Nf1Lbx1 animals were perinatally lethal, while Nf1Myf5 animals survived only up to approximately 25 weeks. A comprehensive phenotypic characterization of Nf1Myf5 animals showed decreased postnatal growth, reduced muscle size, and fast fibre atrophy. Proteome and transcriptome analyses of muscle tissue indicated decreased protein synthesis and increased proteasomal degradation, and decreased glycolytic and increased oxidative activity in muscle tissue. High-resolution respirometry confirmed enhanced oxidative metabolism in Nf1Myf5 muscles, which was concomitant to a fibre type shift from type 2B to type 2A and type 1. Moreover, Nf1Myf5 muscles showed hallmarks of decreased activation of mTORC1 and increased expression of atrogenes. Remarkably, loss of Nf1 promoted a robust activation of AMPK with a gene expression profile indicative of increased fatty acid catabolism. Additionally, we observed a strong induction of genes encoding catabolic cytokines in muscle Nf1Myf5 animals, in line with a drastic reduction of white, but not brown adipose tissue. CONCLUSIONS Our results demonstrate a cell autonomous role for Nf1 in myogenic cells during postnatal muscle growth required for metabolic and proteostatic homeostasis. Furthermore, Nf1 deficiency in muscle drives cross-tissue communication and mobilization of lipid reserves.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julia Franke
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Kristina Wardelmann
- Junior Research Group Central Regulation of Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Potsdam, Germany
| | - Stefan Börno
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andre Kleinridders
- Junior Research Group Central Regulation of Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Sigmar Stricker
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
27
|
Dos Santos M, Backer S, Saintpierre B, Izac B, Andrieu M, Letourneur F, Relaix F, Sotiropoulos A, Maire P. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun 2020; 11:5102. [PMID: 33037211 PMCID: PMC7547110 DOI: 10.1038/s41467-020-18789-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.
Collapse
Affiliation(s)
| | - Stéphanie Backer
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | | | - Brigitte Izac
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Frederic Relaix
- Université Paris-Est Creteil, INSERM U955 IMRB., 94000, Creteil, France
| | | | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France.
| |
Collapse
|
28
|
Wurmser M, Chaverot N, Madani R, Sakai H, Negroni E, Demignon J, Saint-Pierre B, Mouly V, Amthor H, Tapscott S, Birchmeier C, Tajbakhsh S, Le Grand F, Sotiropoulos A, Maire P. SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development 2020; 147:dev.185975. [PMID: 32591430 DOI: 10.1242/dev.185975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Pax7 expression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the sine oculis-related homeobox Six1-Six6 genes in vertebrates. Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Here, we tested the hypothesis that Six1 and Six4 could participate in the genesis of myogenic stem cells. We show that fewer PAX7+ cells occupy a satellite cell position between the myofiber and its associated basal lamina in Six1 and Six4 knockout mice (s1s4KO) at E18. However, PAX7+ cells are detected in remaining muscle masses present in the epaxial region of the double mutant embryos and are able to divide and contribute to muscle growth. To further characterize the properties of s1s4KO PAX7+ cells, we analyzed their transcriptome and tested their properties after transplantation in adult regenerating tibialis anterior muscle. Mutant stem cells contribute to hypotrophic myofibers that are not innervated but retain the ability to self-renew.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Nathalie Chaverot
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.,Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Josiane Demignon
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Benjamin Saint-Pierre
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Helge Amthor
- INSERM U1179, LIA BAHN CSM, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | | | | | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Fabien Le Grand
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France.,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS, INSERM, 69008 Lyon, France
| | - Athanassia Sotiropoulos
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| |
Collapse
|
29
|
Bjorkman KK, Guess MG, Harrison BC, Polmear MM, Peter AK, Leinwand LA. miR-206 enforces a slow muscle phenotype. J Cell Sci 2020; 133:jcs243162. [PMID: 32620696 PMCID: PMC7438006 DOI: 10.1242/jcs.243162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Striated muscle is a highly specialized collection of tissues with contractile properties that vary according to functional needs. Although muscle fiber types are established postnatally, lifelong plasticity facilitates stimulus-dependent adaptation. Functional adaptation requires molecular adaptation, which is partially provided by miRNA-mediated post-transcriptional regulation. miR-206 is a muscle-specific miRNA enriched in slow muscles. We investigated whether miR-206 drives the slow muscle phenotype or is merely an outcome. We found that miR-206 expression increases in both physiological (including female sex and endurance exercise) and pathological conditions (muscular dystrophy and adrenergic agonism) that promote a slow phenotype. Consistent with that observation, the slow soleus muscle of male miR-206-knockout mice displays a faster phenotype than wild-type mice. Moreover, left ventricles of male miR-206 knockout mice have a faster myosin profile, accompanied by dilation and systolic dysfunction. Thus, miR-206 appears to be necessary to enforce a slow skeletal and cardiac muscle phenotype and to play a key role in muscle sexual dimorphisms.
Collapse
Affiliation(s)
- Kristen K Bjorkman
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Martin G Guess
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Brooke C Harrison
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Michael M Polmear
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Angela K Peter
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO 80303, USA
| |
Collapse
|
30
|
Fernandez GJ, Ferreira JH, Vechetti IJ, de Moraes LN, Cury SS, Freire PP, Gutiérrez J, Ferretti R, Dal-Pai-Silva M, Rogatto SR, Carvalho RF. MicroRNA-mRNA Co-sequencing Identifies Transcriptional and Post-transcriptional Regulatory Networks Underlying Muscle Wasting in Cancer Cachexia. Front Genet 2020; 11:541. [PMID: 32547603 PMCID: PMC7272700 DOI: 10.3389/fgene.2020.00541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer cachexia is a metabolic syndrome with alterations in gene regulatory networks that consequently lead to skeletal muscle wasting. Integrating microRNAs-mRNAs omics profiles offers an opportunity to understand transcriptional and post-transcriptional regulatory networks underlying muscle wasting. Here, we used RNA sequencing to simultaneously integrate and explore microRNAs and mRNAs expression profiles in the tibialis anterior (TA) muscles of the Lewis Lung Carcinoma (LLC) model of cancer cachexia. We found 1,008 mRNAs and 18 microRNAs differentially expressed in cachectic mice compared with controls. Although our transcriptomic analysis demonstrated a high heterogeneity in mRNA profiles of cachectic mice, we identified a reduced number of differentially expressed genes that were uniformly regulated within cachectic muscles. This set of uniformly regulated genes is associated with the extracellular matrix (ECM), proteolysis, and inflammatory response. We also used transcriptomic data to perform enrichment analysis of transcriptional factor binding sites in promoter sequences, which revealed activation of the atrophy-related transcription factors NF-κB, Stat3, AP-1, and FoxO. Furthermore, the integration of mRNA and microRNA expression profiles identified post-transcriptional regulation by microRNAs of genes involved in ECM organization, cell migration, transcription factors binding, ion transport, and the FoxO signaling pathway. Our integrative analysis of microRNA-mRNA co-profiles comprehensively characterized regulatory relationships of molecular pathways and revealed microRNAs targeting ECM-associated genes in cancer cachexia.
Collapse
Affiliation(s)
- Geysson Javier Fernandez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil.,Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Juarez Henrique Ferreira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Ivan José Vechetti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Leonardo Nazario de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Jayson Gutiérrez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Renato Ferretti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
31
|
Maire P, Dos Santos M, Madani R, Sakakibara I, Viaut C, Wurmser M. Myogenesis control by SIX transcriptional complexes. Semin Cell Dev Biol 2020; 104:51-64. [PMID: 32247726 DOI: 10.1016/j.semcdb.2020.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
SIX homeoproteins were first described in Drosophila, where they participate in the Pax-Six-Eya-Dach (PSED) network with eyeless, eyes absent and dachsund to drive synergistically eye development through genetic and biochemical interactions. The role of the PSED network and SIX proteins in muscle formation in vertebrates was subsequently identified. Evolutionary conserved interactions with EYA and DACH proteins underlie the activity of SIX transcriptional complexes (STC) both during embryogenesis and in adult myofibers. Six genes are expressed throughout muscle development, in embryonic and adult proliferating myogenic stem cells and in fetal and adult post-mitotic myofibers, where SIX proteins regulate the expression of various categories of genes. In vivo, SIX proteins control many steps of muscle development, acting through feedforward mechanisms: in the embryo for myogenic fate acquisition through the direct control of Myogenic Regulatory Factors; in adult myofibers for their contraction/relaxation and fatigability properties through the control of genes involved in metabolism, sarcomeric organization and calcium homeostasis. Furthermore, during development and in the adult, SIX homeoproteins participate in the genesis and the maintenance of myofibers diversity.
Collapse
Affiliation(s)
- Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | | | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Camille Viaut
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maud Wurmser
- Department of Integrative Medical Biology (IMB), Umeå universitet, Sweden
| |
Collapse
|
32
|
Qin M, Li C, Li Z, Chen W, Zeng Y. Genetic Diversities and Differentially Selected Regions Between Shandong Indigenous Pig Breeds and Western Pig Breeds. Front Genet 2020; 10:1351. [PMID: 32038711 PMCID: PMC6987402 DOI: 10.3389/fgene.2019.01351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
Shandong indigenous pig breeds are an invaluable source of data on genetics in Chinese pigs. However, information on the genetic basis of these breeds remains limited. In this study, we used specific-locus amplified fragment sequencing to conduct whole-genome screening to investigate genetic diversity in Shandong indigenous breeds and Western pig breeds. The results showed that Duroc pigs (DD) had clear genetic relationships with Dapulian pigs (DPL; Fst = 0.4386) and Laiwu pigs (LW; Fst = 0.5134), and DPL and LW were relatively close genetically (Fst = 0.2334). In general, Shandong indigenous breeds showed greater genetic variety than the Western breeds. Both neighbor-joining trees and principal components analyses were able to differentiate the breeds, but population structure analyses indicated that the Western breeds genetically influenced the Shandong indigenous breeds to some extent. A total of 162 differentially selected regions (DSRs) with 841 genes and 157 DSRs with 707 genes were identified in DPL and LW, respectively. Gene annotation of the selected regions identified a series of genes regulating immunity and fat deposition. Our data confirm the rationality and accuracy of the current classification of pig breeds in Shandong province. Our results point to candidate genes in Shandong indigenous pig breeds and further promote the importance of follow-up research on functional verification.
Collapse
Affiliation(s)
- Ming Qin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, China
| | - Chuanhao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, China
| | - Zhixin Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai' an City, China
| |
Collapse
|
33
|
Ramachandran K, Senagolage MD, Sommars MA, Futtner CR, Omura Y, Allred AL, Barish GD. Dynamic enhancers control skeletal muscle identity and reprogramming. PLoS Biol 2019; 17:e3000467. [PMID: 31589602 PMCID: PMC6799888 DOI: 10.1371/journal.pbio.3000467] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 10/17/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscles consist of fibers of differing metabolic activities and contractility, which become remodeled in response to chronic exercise, but the epigenomic basis for muscle identity and adaptation remains poorly understood. Here, we used chromatin immunoprecipitation sequencing of dimethylated histone 3 lysine 4 and acetylated histone 3 lysine 27 as well as transposase-accessible chromatin profiling to dissect cis-regulatory networks across muscle groups. We demonstrate that in vivo enhancers specify muscles in accordance with myofiber composition, show little resemblance to cultured myotube enhancers, and identify glycolytic and oxidative muscle-specific regulators. Moreover, we find that voluntary wheel running and muscle-specific peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc1a) transgenic (mTg) overexpression, which stimulate endurance performance in mice, result in markedly different changes to the epigenome. Exercise predominantly leads to enhancer hypoacetylation, whereas mTg causes hyperacetylation at different sites. Integrative analysis of regulatory regions and gene expression revealed that exercise and mTg are each associated with myocyte enhancer factor (MEF) 2 and estrogen-related receptor (ERR) signaling and transcription of genes promoting oxidative metabolism. However, exercise was additionally associated with regulation by retinoid X receptor (RXR), jun proto-oncogene (JUN), sine oculis homeobox factor (SIX), and other factors. Overall, our work defines the unique enhancer repertoires of skeletal muscles in vivo and reveals that divergent exercise-induced or PGC1α-driven epigenomic programs direct partially convergent transcriptional networks.
Collapse
Affiliation(s)
- Krithika Ramachandran
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Madhavi D. Senagolage
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Meredith A. Sommars
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Christopher R. Futtner
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yasuhiro Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Amanda L. Allred
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Grant D. Barish
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
34
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
35
|
Talbot JC, Teets EM, Ratnayake D, Duy PQ, Currie PD, Amacher SL. Muscle precursor cell movements in zebrafish are dynamic and require Six family genes. Development 2019; 146:dev171421. [PMID: 31023879 PMCID: PMC6550023 DOI: 10.1242/dev.171421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/16/2019] [Indexed: 01/09/2023]
Abstract
Muscle precursors need to be correctly positioned during embryonic development for proper body movement. In zebrafish, a subset of hypaxial muscle precursors from the anterior somites undergo long-range migration, moving away from the trunk in three streams to form muscles in distal locations such as the fin. We mapped long-distance muscle precursor migrations with unprecedented resolution using live imaging. We identified conserved genes necessary for normal precursor motility (six1a, six1b, six4a, six4b and met). These genes are required for movement away from somites and later to partition two muscles within the fin bud. During normal development, the middle muscle precursor stream initially populates the fin bud, then the remainder of this stream contributes to the posterior hypaxial muscle. When we block fin bud development by impairing retinoic acid synthesis or Fgfr function, the entire stream contributes to the posterior hypaxial muscle indicating that muscle precursors are not committed to the fin during migration. Our findings demonstrate a conserved muscle precursor motility pathway, identify dynamic cell movements that generate posterior hypaxial and fin muscles, and demonstrate flexibility in muscle precursor fates.
Collapse
Affiliation(s)
- Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Emily M Teets
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Phan Q Duy
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
37
|
Das S, Morvan F, Morozzi G, Jourde B, Minetti GC, Kahle P, Rivet H, Brebbia P, Toussaint G, Glass DJ, Fornaro M. ATP Citrate Lyase Regulates Myofiber Differentiation and Increases Regeneration by Altering Histone Acetylation. Cell Rep 2018; 21:3003-3011. [PMID: 29241530 DOI: 10.1016/j.celrep.2017.11.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/07/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023] Open
Abstract
ATP citrate lyase (ACL) plays a key role in regulating mitochondrial function, as well as glucose and lipid metabolism in skeletal muscle. We report here that ACL silencing impairs myoblast and satellite cell (SC) differentiation, and it is accompanied by a decrease in fast myosin heavy chain isoforms and MYOD. Conversely, overexpression of ACL enhances MYOD levels and promotes myogenesis. Myogenesis is dependent on transcriptional but also other mechanisms. We show that ACL regulates the net amount of acetyl groups available, leading to alterations in acetylation of H3(K9/14) and H3(K27) at the MYOD locus, thus increasing MYOD expression. ACL overexpression in murine skeletal muscle leads to improved regeneration after cardiotoxin-mediated damage. Thus, our findings suggest a mechanism for regulating SC differentiation and enhancing regeneration, which might be exploited for devising therapeutic approaches for treating skeletal muscle disease.
Collapse
Affiliation(s)
- Suman Das
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Frederic Morvan
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Giulio Morozzi
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Benjamin Jourde
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Giulia C Minetti
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Peter Kahle
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Helene Rivet
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Pascale Brebbia
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Gauthier Toussaint
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - David J Glass
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mara Fornaro
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland.
| |
Collapse
|
38
|
The application of gene marker-assisted selection and proteomics for the best meat quality criteria and body measurements in Qinchuan cattle breed. Mol Biol Rep 2018; 45:1445-1456. [PMID: 30006771 DOI: 10.1007/s11033-018-4211-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/09/2018] [Indexed: 12/25/2022]
Abstract
In the past few decades, enhancement of animal productivity has been gaining increasing attention among decisions-makers, politicians, mangers, and breeders, because of the increasing of world population and shortage of natural resources. The selection of high productivity animals is the main goal, through the application of genetic improvement programs. The use of molecular genetics has conferred significant breeding advantages over conventional breeding techniques. In this regard, many economic characteristics are controlled by a small number of multiple gene loci, each of which is responsible for trait diversity and hence they are referred to as quantitative trait loci (QTL). Single-nucleotide polymorphisms (SNPs), which have recently been discovered through DNA sequencing, are considered one of the most useful types of genetic marker. SNPs are found where different nucleotides occur at the same position in the DNA sequence. They are found in both coding and noncoding regions of the genome and are present at one SNP in every 1000 b. Strategies for the identification and application of markers are based on reference to examples of loci that can control various traits. Furthermore, markers for growth, body measurements, and meat quality traits are preferred, because they can be used to predict the performance of animals, via blood samples, in the first few days of animal life. Marker-assisted selection using SNPs, such asSIRT1, SIRT2, LPL, CRTC2, SIX4, UCPs, and ZBTB38as selection criteria of body measurements and meat traits in beef cattle, will be beneficial in selection and breeding programs. The proteomic is a novel marker and a new approache of biotechnology which increases the understanding of the biological processes, besides being a remarkable biomarker that interrelated to growth and meat quality traits. Proteomics is a vigorous tool as usage for deduces molecular processes between quality traits and muscle proteins, which are helpful in analyzing the mechanisms of biochemistry that influence quality. So they could be potential biomarker for some meat quality traits. Among them, Actin, Myosin, Heat shock proteins are used a novel approaches in the field of biotechnology to understand the proteomics changes. This review article highlights the novel findings on the potential use of MAS and proteomics as biomarker for the selection for meat quality and carcass traits in Qinchuan cattle breed.
Collapse
|
39
|
Wu WJ, Liu KQ, Li BJ, Dong C, Zhang ZK, Li PH, Huang RH, Wei W, Chen J, Liu HL. Identification of an (AC)n microsatellite in the Six1 gene promoter and its effect on production traits in Pietrain × Duroc × Landrace × Yorkshire pigs. J Anim Sci 2018; 96:17-26. [PMID: 29432614 DOI: 10.1093/jas/skx024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
The Sine oculis homeobox 1 (Six1) gene is important for skeletal muscle growth and fiber specification; therefore, it is considered as a promising candidate gene that may influence porcine growth and meat quality traits. Nevertheless, the association of Six1 with these processes and the mechanisms regulating its expression remain unclear. The objectives of this study were to identify variant sites of Six1 in different pig breeds, conduct association analysis to evaluate the relationship between polymorphisms of these variants and porcine production traits in Pietrain × Duroc × Landrace × Yorkshire commercial pigs, and explore the potential regulatory mechanisms of Six1 affecting production traits. A total of 12 variants were identified, including 10 single- nucleotide variations (SNVs), 1 insertion- deletion (Indel), and 1 (AC)n microsatellite. Association analysis demonstrated that the SNV, g.1595A>G, was significantly associated with meat color (redness, a*); individuals with the G allele had greater a* values (P < 0.05). Moreover, our results demonstrated that the (AC)n polymorphism in the Six1 promoter was significantly associated with weaning weight (P < 0.05), carcass weight (P < 0.05), and thoracic and lumbar back fat (P < 0.01).In addition, we found that the (AC)n variant was closely related with Six1 expression levels and demonstrated this polymorphism on promoter activity by in vitro experiments. Overall, this study provides novel evidence for elucidating the effects of Six1 on porcine production traits as promising candidate and describes two variants with these traits, which are potential reference markers for pig molecular breeding. In addition, our data on the relationship between porcine Six1 expression and the polymorphic (AC)n microsatellite in its promoter may facilitate similar studies in other species.
Collapse
Affiliation(s)
- W J Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - K Q Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - B J Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - C Dong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Z K Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - P H Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - R H Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - W Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - J Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - H L Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Wei D, Raza SHA, Zhang J, Gui L, Rahman SU, Khan R, Hosseini SM, Kaleri HA, Zan L. Polymorphism in promoter of SIX4 gene shows association with its transcription and body measurement traits in Qinchuan cattle. Gene 2018; 656:9-16. [DOI: 10.1016/j.gene.2018.02.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
|
41
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
42
|
Krenn M, Salzer E, Simonitsch-Klupp I, Rath J, Wagner M, Haack TB, Strom TM, Schänzer A, Kilimann MW, Schmidt RLJ, Schmetterer KG, Zimprich A, Boztug K, Hahn A, Zimprich F. Mutations outside the N-terminal part of RBCK1 may cause polyglucosan body myopathy with immunological dysfunction: expanding the genotype-phenotype spectrum. J Neurol 2017; 265:394-401. [PMID: 29260357 PMCID: PMC5808061 DOI: 10.1007/s00415-017-8710-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
A subset of patients with polyglucosan body myopathy was found to have underlying mutations in the RBCK1 gene. Affected patients may display diverse symptoms ranging from skeletal muscular weakness, cardiomyopathy to chronic autoinflammation and immunodeficiency. It was suggested that the exact localization of the mutation within the gene might be responsible for the specific phenotype, with N-terminal mutations causing severe immunological dysfunction and mutations in the middle or C-terminal part leading to a myopathy phenotype. We report the clinical, immunological and genetic findings of two unrelated individuals suffering from a childhood-onset RBCK1-asscociated disease caused by the same homozygous truncating mutation (NM_031229.2:c.896_899del, p.Glu299Valfs*46) in the middle part of the RBCK1 gene. Our patients suffered from a myopathy with cardiac involvement, but in contrast to previous reports on mutations in this part of the gene, also displayed signs of autoinflammation and immunodeficiency. Our report suggests that RBCK1 mutations at locations that were previously thought to lack immunological features may also present with immunological dysfunction later in the disease course. This notably broadens the genotype–phenotype correlation of RBCK1-related polyglucosan body myopathy.
Collapse
Affiliation(s)
- Martin Krenn
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Elisabeth Salzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | | | - Jakob Rath
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Tobias B Haack
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Giessen, Germany
| | - Manfred W Kilimann
- Department of Otolaryngology, Göttingen University Medical School, Göttingen, Germany
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Ralf L J Schmidt
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Zimprich
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Neuropediatrics, Justus Liebig University, Giessen, Germany
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
43
|
Wei DW, Ma XY, Zhang S, Hong JY, Gui LS, Mei CG, Guo HF, Wang L, Ning Y, Zan LS. Characterization of the promoter region of the bovine SIX1 gene: Roles of MyoD, PAX7, CREB and MyoG. Sci Rep 2017; 7:12599. [PMID: 28974698 PMCID: PMC5626756 DOI: 10.1038/s41598-017-12787-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
The SIX1 gene belongs to the family of six homeodomain transcription factors (TFs), that regulates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and mediate skeletal muscle growth and regeneration. Previous studies have demonstrated that SIX1 is positively correlated with body measurement traits (BMTs). However, the transcriptional regulation of SIX1 remains unclear. In the present study, we determined that bovine SIX1 was highly expressed in the longissimus thoracis. To elucidate the molecular mechanisms involved in bovine SIX1 regulation, 2-kb of the 5' regulatory region were obtained. Sequence analysis identified neither a consensus TATA box nor a CCAAT box in the 5' flanking region of bovine SIX1. However, a CpG island was predicted in the region -235 to +658 relative to the transcriptional start site (TSS). An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay in combination with serial deletion constructs of the 5' flanking region, site-directed mutation and siRNA interference demonstrated that MyoD, PAX7 and CREB binding occur in region -689/-40 and play important roles in bovine SIX1 transcription. In addition, MyoG drives SIX1 transcription indirectly via the MEF3 motif. Taken together these interactions suggest a key functional role for SIX1 in mediating skeletal muscle growth in cattle.
Collapse
Affiliation(s)
- Da-Wei Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xue-Yao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Song- Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jie-Yun Hong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sheng Gui
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Modern Cattle Biotechnology and Application of National-Local Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chu-Gang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Modern Cattle Biotechnology and Application of National-Local Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong-Fang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li- Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yue- Ning
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
44
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
45
|
The Eya phosphatase: Its unique role in cancer. Int J Biochem Cell Biol 2017; 96:165-170. [PMID: 28887153 DOI: 10.1016/j.biocel.2017.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
The Eya proteins were originally identified as essential transcriptional co-activators of the Six family of homeoproteins. Subsequently, the highly conserved C-terminal domains of the Eya proteins were discovered to act as a Mg2+-dependent Tyr phosphatases, making Eyas the first transcriptional activators to harbor intrinsic phosphatase activity. Only two direct targets of the Eya Tyr phosphatase have been identified: H2AX, whose dephosphorylation directs cells to the DNA repair instead of the apoptotic pathway upon DNA damage, and ERβ, whose dephosphorylation inhibits its anti-tumor transcriptional activity. The Eya Tyr phosphatase mediates breast cancer cell transformation, migration, invasion, as well as metastasis, through targets not yet identified. Intriguingly, the N-terminal domain of Eya contains a separate Ser/Thr phosphatase activity implicated in innate immunity and in regulating c-Myc stability. Thus, Eya proteins are highly complex, containing two separable phosphatase domains and a transcriptional activation domain, thereby influencing tumor progression through multiple mechanisms.
Collapse
|
46
|
Wei DW, Gui LS, Raza SHA, Zhang S, Khan R, Wang L, Guo HF, Zan LS. NRF1 and ZSCAN10 bind to the promoter region of the SIX1 gene and their effects body measurements in Qinchuan cattle. Sci Rep 2017; 7:7867. [PMID: 28801681 PMCID: PMC5554236 DOI: 10.1038/s41598-017-08384-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
The SIX1 homeobox gene belongs to the six homeodomain family and is widely thought to play a principal role in mediating of skeletal muscle development. In the present study, we determined that the bovine SIX1 gene was highly expressed in the longissimus thoracis and physiologically immature individuals. DNA sequencing of 428 individual Qinchuan cattle identified nine single nucleotide polymorphisms (SNPs) in the promoter region of the SIX1 gene. Using a series of 5′ deletion promoter plasmid luciferase reporter assays and 5′-rapid amplification of cDNA end analysis (RACE), two of these SNPs were found to be located in the proximal minimal promoter region −216/−28 relative to the transcriptional start site (TSS). Correlation analysis showed the combined haplotypes H1-H2 (-GG-GA-) was significantly greater in the body measurement traits (BMTs) than the others, which was consistent with the results showing that the transcriptional activity of Hap2 was higher than the others in Qinchuan cattle myoblast cells. Furthermore, the electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation assay (ChIP) demonstrated that NRF1 and ZSCAN10 binding occurred in the promoter region of diplotypes H1-H2 to regulate SIX1 transcriptional activity. This information may be useful for molecular marker-assisted selection (MAS) in cattle breeding.
Collapse
Affiliation(s)
- Da-Wei Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sheng Gui
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong-Fang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,Shaanxi Beef Cattle Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,Modern Cattle Biotechnology and Application of National-Local Engineering Research Center, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
47
|
Duan Y, Li F, Tan B, Yao K, Yin Y. Metabolic control of myofibers: promising therapeutic target for obesity and type 2 diabetes. Obes Rev 2017; 18:647-659. [PMID: 28391659 DOI: 10.1111/obr.12530] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 02/02/2023]
Abstract
Mammalian skeletal muscles are composed of two major fibre types (I and II) that differ in terms of size, metabolism and contractile properties. In general, slow-twitch type I fibres are rich in mitochondria and have a greater insulin sensitivity than fast-twitch type II skeletal muscles. Although not widely appreciated, a forced induction of the slow skeletal muscle phenotype may inhibit the progress of obesity and diabetes. This potentially forms the basis for targeting slow/oxidative myofibers in the treatment of obesity. In this context, a better understanding of the molecular basis of fibre-type specification and plasticity may help to identify potential therapeutic targets for obesity and diabetes.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, China
| |
Collapse
|
48
|
Distinct Fiber Type Signature in Mouse Muscles Expressing a Mutant Lamin A Responsible for Congenital Muscular Dystrophy in a Patient. Cells 2017; 6:cells6020010. [PMID: 28441765 PMCID: PMC5492014 DOI: 10.3390/cells6020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 01/21/2023] Open
Abstract
Specific mutations in LMNA, which encodes nuclear intermediate filament proteins lamins A/C, affect skeletal muscle tissues. Early-onset LMNA myopathies reveal different alterations of muscle fibers, including fiber type disproportion or prominent dystrophic and/or inflammatory changes. Recently, we identified the p.R388P LMNA mutation as responsible for congenital muscular dystrophy (L-CMD) and lipodystrophy. Here, we asked whether viral-mediated expression of mutant lamin A in murine skeletal muscles would be a pertinent model to reveal specific muscle alterations. We found that the total amount and size of muscle fibers as well as the extent of either inflammation or muscle regeneration were similar to wildtype or mutant lamin A. In contrast, the amount of fast oxidative muscle fibers containing myosin heavy chain IIA was lower upon expression of mutant lamin A, in correlation with lower expression of genes encoding transcription factors MEF2C and MyoD. These data validate this in vivo model for highlighting distinct muscle phenotypes associated with different lamin contexts. Additionally, the data suggest that alteration of muscle fiber type identity may contribute to the mechanisms underlying physiopathology of L-CMD related to R388P mutant lamin A.
Collapse
|
49
|
Cai B, Li Z, Ma M, Wang Z, Han P, Abdalla BA, Nie Q, Zhang X. LncRNA-Six1 Encodes a Micropeptide to Activate Six1 in Cis and Is Involved in Cell Proliferation and Muscle Growth. Front Physiol 2017; 8:230. [PMID: 28473774 PMCID: PMC5397475 DOI: 10.3389/fphys.2017.00230] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/31/2017] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in epigenetic regulation of skeletal muscle development. In our previous RNA-seq study (accession number GSE58755), we found that lncRNA-Six1 is an lncRNA that is differentially expressed between White Recessive Rock (WRR) and Xinghua (XH) chicken. In this study, we have further demonstrated that lncRNA-Six1 is located 432 bp upstream of the gene encoding the protein Six homeobox 1 (Six1). A dual-luciferase reporter assay identified that lncRNA-Six1 overlaps the Six1 proximal promoter. In lncRNA-Six1, a micropeptide of about 7.26 kDa was found to play an important role in the lncRNA-Six1 in cis activity. Overexpression of lncRNA-Six1 promoted the mRNA and protein expression level of the Six1 gene, while knockdown of lncRNA-Six1 inhibited Six1 expression. Moreover, tissue expression profiles showed that both the lncRNA-Six1 and the Six1 mRNA were highly expressed in chicken breast tissue. LncRNA-Six1 overexpression promoted cell proliferation and induced cell division. Conversely, its loss of function inhibited cell proliferation and reduced cell viability. Similar effects were observed after overexpression or knockdown of the Six1 gene. In addition, overexpression or knockdown of Six1 promoted or inhibited, respectively, the expression levels of muscle-growth-related genes, such as MYOG, MYHC, MYOD, IGF1R, and INSR. Taken together, these data demonstrate that lncRNA-Six1 carries out cis-acting regulation of the protein-encoding Six1 gene, and encodes a micropeptide to activate Six1 gene, thus promoting cell proliferation and being involved in muscle growth.
Collapse
Affiliation(s)
- Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Manting Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Peigong Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Bahareldin A Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhou, China.,National-Local Joint Engineering Research Center for Livestock BreedingGuangzhou, China
| |
Collapse
|
50
|
Kasper AM, Turner DC, Martin NRW, Sharples AP. Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation. J Cell Physiol 2017; 233:1985-1998. [DOI: 10.1002/jcp.25840] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas M. Kasper
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - Daniel C. Turner
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - Neil R. W. Martin
- Musculoskeletal Biology Research Group, School of Sport, Exercise, and Health Sciences; Loughborough University; Loughborough UK
| | - Adam P. Sharples
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| |
Collapse
|