1
|
Maassen A, Steciuk J, Wilga M, Szurmak J, Garbicz D, Sarnowska E, Sarnowski TJ. SWI/SNF-type complexes-transcription factor interplay: a key regulatory interaction. Cell Mol Biol Lett 2025; 30:30. [PMID: 40065228 PMCID: PMC11895388 DOI: 10.1186/s11658-025-00704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
ATP-dependent switch/sucrose nonfermenting-type chromatin remodeling complexes (SWI/SNF CRCs) are multiprotein machineries altering chromatin structure, thus controlling the accessibility of genomic DNA to various regulatory proteins including transcription factors (TFs). SWI/SNF CRCs are highly evolutionarily conserved among eukaryotes. There are three main subtypes of SWI/SNF CRCs: canonical (cBAF), polybromo (pBAF), and noncanonical (ncBAF) in humans and their functional Arabidopsis counterparts SYD-associated SWI/SNF (SAS), MINU-associated SWI/SNF (MAS), and BRAHMA (BRM)-associated SWI/SNF (BAS). Here, we highlight the importance of interplay between SWI/SNF CRCs and TFs in human and Arabidopsis and summarize recent advances demonstrating their role in controlling important regulatory processes. We discuss possible mechanisms involved in TFs and SWI/SNF CRCs-dependent transcriptional control of gene expression. We indicate that Arabidopsis may serve as a valuable model for the identification of evolutionarily conserved SWI/SNF-TF interactions and postulate that further exploration of the TFs and SWI/SNF CRCs-interplay, especially in the context of the role of particular SWI/SNF CRC subtypes, TF type, as well as cell/tissue and conditions, among others, will help address important questions related to the specificity of SWI/SNF-TF interactions and the sequence of events occurring on their target genes.
Collapse
Affiliation(s)
- Anna Maassen
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Wilga
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Szurmak
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elzbieta Sarnowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland.
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
2
|
Mifflin R, Park JE, Lee M, Jena PK, Wan YJY, Barton HA, Aghayev M, Kasumov T, Lin L, Wang X, Novak R, Li F, Huang H, Shriver LP, Lee YK. Microbial products linked to steatohepatitis are reduced by deletion of nuclear hormone receptor SHP in mice. J Lipid Res 2023; 64:100469. [PMID: 37922990 PMCID: PMC10698000 DOI: 10.1016/j.jlr.2023.100469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Deletion of the nuclear hormone receptor small heterodimer partner (Shp) ameliorates the development of obesity and nonalcoholic steatohepatitis (NASH) in mice. Liver-specific SHP plays a significant role in this amelioration. The gut microbiota has been associated with these metabolic disorders, and the interplay between bile acids (BAs) and gut microbiota contributes to various metabolic disorders. Since hepatic SHP is recognized as a critical regulator in BA synthesis, we assessed the involvement of gut microbiota in the antiobesity and anti-NASH phenotype of Shp-/- mice. Shp deletion significantly altered the levels of a few conjugated BAs. Sequencing the 16S rRNA gene in fecal samples collected from separately housed mice revealed apparent dysbiosis in Shp-/- mice. Cohousing Shp-/- mice with WT mice during a Western diet regimen impaired their metabolic improvement and effectively disrupted their distinctive microbiome structure, which became indistinguishable from that of WT mice. While the Western diet challenge significantly increased lipopolysaccharide and phenylacetic acid (PAA) levels in the blood of WT mice, their levels were not increased in Shp-/- mice. PAA was strongly associated with hepatic peroxisome proliferator-activated receptor gamma isoform 2 (Pparg2) activation in mice, which may represent the basis of the molecular mechanism underlying the association of gut bacteria and hepatic steatosis. Shp deletion reshapes the gut microbiota possibly by altering BAs. While lipopolysaccharide and PAA are the major driving forces derived from gut microbiota for NASH development, Shp deletion decreases these signaling molecules via dysbiosis, thereby partially protecting mice from diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Ryan Mifflin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jung Eun Park
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mikang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Hazel A Barton
- Department of Biology, University of Akron, Akron, OH, USA
| | - Mirjavid Aghayev
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Robert Novak
- Department of Pathology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - He Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Leah P Shriver
- Department of Chemistry & Department of Medicine, Center for Metabolomics and Isotope Tracing, Washington University, St. Louis, MO, USA
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
3
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
4
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
5
|
Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Energy Homeostasis of Dairy Animals: Exploiting Their Modulation through Nutrigenomic Interventions. Int J Mol Sci 2021; 22:ijms222212463. [PMID: 34830341 PMCID: PMC8619600 DOI: 10.3390/ijms222212463] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are the nuclear receptors that could mediate the nutrient-dependent transcriptional activation and regulate metabolic networks through energy homeostasis. However, these receptors cannot work properly under metabolic stress. PPARs and their subtypes can be modulated by nutrigenomic interventions, particularly under stress conditions to restore cellular homeostasis. Many nutrients such as polyunsaturated fatty acids, vitamins, dietary amino acids and phytochemicals have shown their ability for potential activation or inhibition of PPARs. Thus, through different mechanisms, all these nutrients can modulate PPARs and are ultimately helpful to prevent various metabolic disorders, particularly in transition dairy cows. This review aims to provide insights into the crucial role of PPARs in energy metabolism and their potential modulation through nutrigenomic interventions to improve energy homeostasis in dairy animals.
Collapse
|
6
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Ma Y, Harris J, Li P, Cao H. Long noncoding RNAs-a new dimension in the molecular architecture of the bile acid/FXR pathway. Mol Cell Endocrinol 2021; 525:111191. [PMID: 33539963 PMCID: PMC8437140 DOI: 10.1016/j.mce.2021.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/15/2022]
Abstract
Bile acids, regarded as the body's detergent for digesting lipids, also function as critical signaling molecules that regulate cholesterol and triglyceride levels in the body. Bile acids are the natural ligands of the nuclear receptor, FXR, which controls an intricate network of cellular pathways to maintain metabolic homeostasis. In recent years, growing evidence supports that many cellular actions of the bile acid/FXR pathway are mediated by long non-coding RNAs (lncRNAs), and lncRNAs are in turn powerful regulators of bile acid levels and FXR activities. In this review, we highlight the substantial progress made in the understanding of the functional and mechanistic role of lncRNAs in bile acid metabolism and how lncRNAs connect bile acid activity to additional metabolic processes. We also discuss the potential of lncRNA studies in elucidating novel molecular mechanisms of the bile acid/FXR pathway and the promise of lncRNAs as potential diagnostic markers and therapeutic targets for diseases associated with altered bile acid metabolism.
Collapse
Affiliation(s)
- Yonghe Ma
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jamie Harris
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Li
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Chiang JY, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. LIVER RESEARCH 2020; 4:47-63. [PMID: 34290896 PMCID: PMC8291349 DOI: 10.1016/j.livres.2020.05.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol 7 alpha-hydroxylase (CYP7A1, EC1.14) is the first and rate-limiting enzyme in the classic bile acid synthesis pathway. Much progress has been made in understanding the transcriptional regulation of CYP7A1 gene expression and the underlying molecular mechanisms of bile acid feedback regulation of CYP7A1 and bile acid synthesis in the last three decades. Discovery of bile acid-activated receptors and their roles in the regulation of lipid, glucose and energy metabolism have been translated to the development of bile acid-based drug therapies for the treatment of liver-related metabolic diseases such as alcoholic and non-alcoholic fatty liver diseases, liver cirrhosis, diabetes, obesity and hepatocellular carcinoma. This review will provide an update on the advances in our understanding of the molecular biology and mechanistic insights of the regulation of CYP7A1 in bile acid synthesis in the last 40 years.
Collapse
|
10
|
Gerussi A, Lucà M, Cristoferi L, Ronca V, Mancuso C, Milani C, D'Amato D, O'Donnell SE, Carbone M, Invernizzi P. New Therapeutic Targets in Autoimmune Cholangiopathies. Front Med (Lausanne) 2020; 7:117. [PMID: 32318580 PMCID: PMC7154090 DOI: 10.3389/fmed.2020.00117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022] Open
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are autoimmune cholangiopathies characterized by limited treatment options. A more accurate understanding of the several pathways involved in these diseases has fostered the development of novel and promising targeted drugs. For PBC, the characterization of the role of farnesoid X receptor (FXR) and perixosome-proliferator activated receptor (PPAR) has paved the way to several clinical trials including different molecules with choleretic and antinflammatory action. Conversely, different pathogenetic models have been proposed in PSC such as the "leaky gut" hypothesis, a dysbiotic microbiota or a defect in mechanisms protecting against bile acid toxicity. Along these theories, new treatment approaches have been developed, ranging from drugs interfering with trafficking of lymphocytes from the gut to the liver, fecal microbiota transplantation or new biliary acids with possible immunomodulatory potential. Finally, for both diseases, antifibrotic agents are under investigation. In this review, we will illustrate current understanding of molecular mechanisms in PBC and PSC, focusing on actionable biological pathways for which novel treatments are being developed.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Martina Lucà
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Vincenzo Ronca
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
- National Institute of Health Research Liver Biomedical Research Centre Birmingham, Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Clara Mancuso
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Chiara Milani
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Daphne D'Amato
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Sarah Elizabeth O'Donnell
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
11
|
Shahoei SH, Kim YC, Cler SJ, Ma L, Anakk S, Kemper JK, Nelson ER. Small Heterodimer Partner Regulates Dichotomous T Cell Expansion by Macrophages. Endocrinology 2019; 160:1573-1589. [PMID: 31050726 PMCID: PMC6549582 DOI: 10.1210/en.2019-00025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
The involvement of small heterodimer partner (SHP) in the inhibition of hepatic bile acid synthesis from cholesterol has been established. However, extrahepatic expression of SHP implies that SHP may have regulatory functions other than those in the liver. Here, we find that SHP mRNA expression is high in murine bone marrow cells, suggesting a physiological role within macrophages. Indeed, expression of SHP in macrophages decreases the transcriptional activity and nuclear localization of nuclear factor κB, whereas downregulation of SHP has the opposite effects. Expression of genes associated with macrophage-T cell crosstalk were altered by overexpression or downregulation of SHP. Intriguingly, increasing SHP expression in macrophages resulted in decreased T cell expansion, a hallmark of T cell activation, whereas knockdown of SHP resulted in increased expansion. Analyses of the expanded T cells revealed a dichotomous skewing between effector T cells and regulatory T cells (Tregs), with SHP overexpression reducing Tregs and downregulation of SHP increasing their expansion. The expanded Tregs were confirmed to be suppressive via adoptive transfers. IL-2 and TGF-β, known inducers of Treg differentiation, were found to be regulated by SHP. Furthermore, SHP occupancy at the promoter region of IL-2 was increased after macrophages were challenged with lipopolysaccharide. Neutralizing antibodies to IL-2 and TGF-β inhibited the expansion of Tregs mediated by downregulation of SHP. This study demonstrates that expression and activity of SHP within macrophages can alter T cell fate and identifies SHP as a potential therapeutic target for autoimmune diseases or solid cancers.
Collapse
Affiliation(s)
- Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Samuel J Cler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jongsook K Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Correspondence: Erik R. Nelson, PhD, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue (MC-114), Urbana, Illinois 61801. E-mail:
| |
Collapse
|
12
|
Kim YC, Byun S, Seok S, Guo G, Xu HE, Kemper B, Kemper JK. Small Heterodimer Partner and Fibroblast Growth Factor 19 Inhibit Expression of NPC1L1 in Mouse Intestine and Cholesterol Absorption. Gastroenterology 2019; 156:1052-1065. [PMID: 30521806 PMCID: PMC6409196 DOI: 10.1053/j.gastro.2018.11.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The nuclear receptor subfamily 0 group B member 2 (NR0B2, also called SHP) is expressed at high levels in the liver and intestine. Postprandial fibroblast growth factor 19 (human FGF19, mouse FGF15) signaling increases the transcriptional activity of SHP. We studied the functions of SHP and FGF19 in the intestines of mice, including their regulation of expression of the cholesterol transporter NPC1L1 )NPC1-like intracellular cholesterol transporter 1) and cholesterol absorption. METHODS We performed histologic and biochemical analyses of intestinal tissues from C57BL/6 and SHP-knockout mice and performed RNA-sequencing analyses to identify genes regulated by SHP. The effects of fasting and refeeding on intestinal expression of NPC1L1 were examined in C57BL/6, SHP-knockout, and FGF15-knockout mice. Mice were given FGF19 daily for 1 week; fractional cholesterol absorption, cholesterol and bile acid (BA) levels, and composition of BAs were measured. Intestinal organoids were generated from C57BL/6 and SHP-knockout mice, and cholesterol uptake was measured. Luciferase reporter assays were performed with HT29 cells. RESULTS We found that the genes that regulate lipid and ion transport in intestine, including NPC1L1, were up-regulated and that cholesterol absorption was increased in SHP-knockout mice compared with C57BL/6 mice. Expression of NPC1L1 was reduced in C57BL/6 mice after refeeding after fasting but not in SHP-knockout or FGF15-knockout mice. SHP-knockout mice had altered BA composition compared with C57BL/6 mice. FGF19 injection reduced expression of NPC1L1, decreased cholesterol absorption, and increased levels of hydrophilic BAs, including tauro-α- and -β-muricholic acids; these changes were not observed in SHP-knockout mice. SREBF2 (sterol regulatory element binding transcription factor 2), which regulates cholesterol, activated transcription of NPC1L1. FGF19 signaling led to phosphorylation of SHP, which inhibited SREBF2 activity. CONCLUSIONS Postprandial FGF19 and SHP inhibit SREBF2, which leads to repression of intestinal NPC1L1 expression and cholesterol absorption. Strategies to increase FGF19 signaling to activate SHP might be developed for treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Grace Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - H Eric Xu
- Laboratory of Structure Sciences, Van Andel Research Institute, Grand Rapids, Michigan
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
13
|
Di Ciaula A, Wang DQH, Molina-Molina E, Lunardi Baccetto R, Calamita G, Palmieri VO, Portincasa P. Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Ann Hepatol 2017; 16:s87-s105. [PMID: 29080344 DOI: 10.5604/01.3001.0010.5501] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Bile acids (BAs) regulate the absorption of fat-soluble vitamins, cholesterol and lipids but have also a key role as singalling molecules and in the modulation of epithelial cell proliferation, gene expression and metabolism. These homeostatic pathways, when disrupted, are able to promote local inflammation, systemic metabolic disorders and, ultimately, cancer. The effect of hydrophobic BAs, in particular, can be linked with cancer in several digestive (mainly oesophagus, stomach, liver, pancreas, biliary tract, colon) and extra-digestive organs (i.e. prostate, breast) through a complex series of mechanisms including direct oxidative stress with DNA damage, apoptosis, epigenetic factors regulating gene expression, reduced/increased expression of nuclear receptors (mainly farnesoid X receptor, FXR) and altered composition of gut microbiota, also acting as a common interface between environmental factors (including diet, lifestyle, exposure to toxics) and the molecular events promoting cancerogenesis. Primary prevention strategies (i.e. changes in dietary habits and lifestyle, reduced exposure to environmental toxics) mainly able to modulate gut microbiota and the epigenome, and the therapeutic use of hydrophilic BAs to counterbalance the negative effects of the more hydrophobic BAs might be, in the near future, part of useful tools for cancer prevention and management.
Collapse
Affiliation(s)
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Raquel Lunardi Baccetto
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Vincenzo O Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari. Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
14
|
Byun S, Kim YC, Zhang Y, Kong B, Guo G, Sadoshima J, Ma J, Kemper B, Kemper JK. A postprandial FGF19-SHP-LSD1 regulatory axis mediates epigenetic repression of hepatic autophagy. EMBO J 2017; 36:1755-1769. [PMID: 28446510 DOI: 10.15252/embj.201695500] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Lysosome-mediated autophagy is essential for cellular survival and homeostasis upon nutrient deprivation, but is repressed after feeding. Despite the emerging importance of transcriptional regulation of autophagy by nutrient-sensing factors, the role for epigenetic control is largely unexplored. Here, we show that Small Heterodimer Partner (SHP) mediates postprandial epigenetic repression of hepatic autophagy by recruiting histone demethylase LSD1 in response to a late fed-state hormone, FGF19 (hFGF19, mFGF15). FGF19 treatment or feeding inhibits macroautophagy, including lipophagy, but these effects are blunted in SHP-null mice or LSD1-depleted mice. In addition, feeding-mediated autophagy inhibition is attenuated in FGF15-null mice. Upon FGF19 treatment or feeding, SHP recruits LSD1 to CREB-bound autophagy genes, including Tfeb, resulting in dissociation of CRTC2, LSD1-mediated demethylation of gene-activation histone marks H3K4-me2/3, and subsequent accumulation of repressive histone modifications. Both FXR and SHP inhibit hepatic autophagy interdependently, but while FXR acts early, SHP acts relatively late after feeding, which effectively sustains postprandial inhibition of autophagy. This study demonstrates that the FGF19-SHP-LSD1 axis maintains homeostasis by suppressing unnecessary autophagic breakdown of cellular components, including lipids, under nutrient-rich postprandial conditions.
Collapse
Affiliation(s)
- Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yang Zhang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jian Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
15
|
Pan X, Kent R, Won KJ, Jeong H. Cholic Acid Feeding Leads to Increased CYP2D6 Expression in CYP2D6-Humanized Mice. Drug Metab Dispos 2017; 45:346-352. [PMID: 28153841 PMCID: PMC5363697 DOI: 10.1124/dmd.116.074013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme, but the factors governing transcriptional regulation of its expression remain poorly understood. Based on previous reports of small heterodimer partner (SHP) playing an important role as a transcriptional repressor of CYP2D6 expression, here we investigated how a known upstream regulator of SHP expression, namely cholestasis triggered by cholic acid (CA) feeding in mice, can lead to altered CYP2D6 expression. To this end, CYP2D6-humanized (Tg-CYP2D6) mice were fed with a CA-supplemented or control diet for 14 days, and hepatic expression of multiple genes was examined. Unexpectedly, CA feeding led to insignificant changes in SHP mRNA but also to significant (2.8-fold) decreases in SHP protein levels. In silico analysis of the SHP gene regulatory region revealed a putative binding site for a microRNA, miR-142-3p. Results from luciferase reporter assays suggest that miR-142-3p targets the SHP gene. Hepatic expression of miR-142-3p was significantly increased in CA-fed mice (∼5-fold), suggesting a potential role of miR-142-3p in the regulation of SHP expression in cholestasis. The decreased SHP protein levels were accompanied by increased expression and activity of CYP2D6 in the liver of CA-fed mice. These results suggest potential roles of differential hepatic levels of bile acids in the transcriptional regulation of CYP2D6 expression.
Collapse
Affiliation(s)
- Xian Pan
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Rebecca Kent
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Kyoung-Jae Won
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunyoung Jeong
- Department of Pharmacy Practice (K.-J.W., H.J.) and Department of Biopharmaceutical Sciences (X.P., R.K., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
16
|
|
17
|
Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis. Nat Commun 2016; 7:12179. [PMID: 27412403 PMCID: PMC4947186 DOI: 10.1038/ncomms12179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
Bile acids (BAs) are recently recognized signalling molecules that profoundly affect metabolism. Because of detergent-like toxicity, BA levels must be tightly regulated. An orphan nuclear receptor, Small Heterodimer Partner (SHP), plays a key role in this regulation, but how SHP senses the BA signal for feedback transcriptional responses is not clearly understood. We show an unexpected function of a nucleoporin, RanBP2, in maintaining BA homoeostasis through SUMOylation of SHP. Upon BA signalling, RanBP2 co-localizes with SHP at the nuclear envelope region and mediates SUMO2 modification at K68, which facilitates nuclear transport of SHP and its interaction with repressive histone modifiers to inhibit BA synthetic genes. Mice expressing a SUMO-defective K68R SHP mutant have increased liver BA levels, and upon BA- or drug-induced biliary insults, these mice exhibit exacerbated cholestatic pathologies. These results demonstrate a function of RanBP2-mediated SUMOylation of SHP in maintaining BA homoeostasis and protecting from the BA hepatotoxicity.
Collapse
|
18
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Zhi X, Zhou XE, Melcher K, Xu HE. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis. J Steroid Biochem Mol Biol 2016; 157:27-40. [PMID: 26159912 DOI: 10.1016/j.jsbmb.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; Autophagy Research Center, University of Texas Southwestern Medical Center, 6000Harry Hines Blvd., Dallas, TX 75390, USA.
| | - X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - H Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; VARI-SIMM Center, Key Laboratory of Receptor Research, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
20
|
Kim YC, Byun S, Zhang Y, Seok S, Kemper B, Ma J, Kemper JK. Liver ChIP-seq analysis in FGF19-treated mice reveals SHP as a global transcriptional partner of SREBP-2. Genome Biol 2015; 16:268. [PMID: 26634251 PMCID: PMC4669652 DOI: 10.1186/s13059-015-0835-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022] Open
Abstract
Background Fibroblast growth factor-19 (FGF19) is an intestinal hormone that mediates postprandial metabolic responses in the liver. The unusual orphan nuclear receptor, small heterodimer partner (SHP), acts as a co-repressor for many transcriptional factors and has been implicated in diverse biological pathways including FGF19-mediated repression of bile acid synthesis. To explore global functions of SHP in mediating FGF19 action, we identify genome-wide SHP binding sites in hepatic chromatin in mice treated with vehicle or FGF19 by ChIP-seq analysis. Results The overall pattern of SHP binding sites between these two groups is similar, but SHP binding is enhanced at the sites by addition of FGF19. SHP binding is detected preferentially in promoter regions that are enriched in motifs for unexpected non-nuclear receptors. We observe global co-localization of SHP sites with published sites for SREBP-2, a master transcriptional activator of cholesterol biosynthesis. FGF19 increases functional interaction between endogenous SHP and SREBP-2 and inhibits SREBP-2 target genes, and these effects were blunted in SHP-knockout mice. Furthermore, FGF19-induced phosphorylation of SHP at Thr-55 is shown to be important for its functional interaction with SREBP-2 and reduction of liver/serum cholesterol levels. Conclusion This study reveals SHP as a global transcriptional partner of SREBP-2 in regulation of sterol biosynthetic gene networks and provides a potential mechanism for cholesterol-lowering action of FGF19. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0835-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yang Zhang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jian Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
21
|
Meng ZX, Wang L, Chang L, Sun J, Bao J, Li Y, Chen YE, Lin JD. A Diet-Sensitive BAF60a-Mediated Pathway Links Hepatic Bile Acid Metabolism to Cholesterol Absorption and Atherosclerosis. Cell Rep 2015; 13:1658-69. [PMID: 26586440 DOI: 10.1016/j.celrep.2015.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 09/14/2015] [Accepted: 10/10/2015] [Indexed: 12/27/2022] Open
Abstract
Dietary nutrients interact with gene networks to orchestrate adaptive responses during metabolic stress. Here, we identify Baf60a as a diet-sensitive subunit of the SWI/SNF chromatin-remodeling complexes in the mouse liver that links the consumption of fat- and cholesterol-rich diet to elevated plasma cholesterol levels. Baf60a expression was elevated in the liver following feeding with a western diet. Hepatocyte-specific inactivation of Baf60a reduced bile acid production and cholesterol absorption, and attenuated diet-induced hypercholesterolemia and atherosclerosis in mice. Baf60a stimulates expression of genes involved in bile acid synthesis, modification, and transport through a CAR/Baf60a feedforward regulatory loop. Baf60a is required for the recruitment of the SWI/SNF chromatin-remodeling complexes to facilitate an activating epigenetic switch on target genes. These studies elucidate a regulatory pathway that mediates the hyperlipidemic and atherogenic effects of western diet consumption.
Collapse
Affiliation(s)
- Zhuo-Xian Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lin Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingxia Sun
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiangyin Bao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Yaqiang Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Zou A, Lehn S, Magee N, Zhang Y. New Insights into Orphan Nuclear Receptor SHP in Liver Cancer. NUCLEAR RECEPTOR RESEARCH 2015; 2. [PMID: 26504773 PMCID: PMC4618403 DOI: 10.11131/2015/101162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Small heterodimer partner (SHP; NR0B2) is a unique orphan nuclear receptor (NR) that contains a putative ligand-binding domain but lacks a DNA-binding domain. SHP is a transcriptional corepressor affecting diverse metabolic processes including bile acid synthesis, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology via interaction with multiple NRs and transcriptional factors (TFs). Hepatocellular carcinoma (HCC) is one of the most deadly human cancers worldwide with few therapeutic options and poor prognosis. Recently, it is becoming clear that SHP plays an antitumor role in the development of liver cancer. In this review, we summarize the most recent findings regarding the new SHP interaction partners, new structural insights into SHP’s gene repressing activity, and SHP protein posttranslational modifications by bile acids. We also discuss the pleiotropic role of SHP in regulating cell proliferation, apoptosis, DNA methylation, and inflammation that are related to antitumor role of SHP in HCC. Improving our understanding of SHP’s antitumor role in the development of liver cancer will provide new insights into developing novel treatments or prevention strategies. Future research will focus on developing more efficacious and specific synthetic SHP ligands for pharmaceutical applications in liver cancer and several metabolic diseases such as hypercholesterolemia, obesity, diabetes, and fatty liver disease.
Collapse
Affiliation(s)
- An Zou
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sarah Lehn
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nancy Magee
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
23
|
Kim YC, Fang S, Byun S, Seok S, Kemper B, Kemper JK. Farnesoid X receptor-induced lysine-specific histone demethylase reduces hepatic bile acid levels and protects the liver against bile acid toxicity. Hepatology 2015; 62:220-31. [PMID: 25545350 PMCID: PMC4480214 DOI: 10.1002/hep.27677] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/19/2014] [Indexed: 12/23/2022]
Abstract
UNLABELLED Bile acids (BAs) function as endocrine signaling molecules that activate multiple nuclear and membrane receptor signaling pathways to control fed-state metabolism. Since the detergent-like property of BAs causes liver damage at high concentrations, hepatic BA levels must be tightly regulated. Bile acid homeostasis is regulated largely at the level of transcription by nuclear receptors, particularly the primary BA receptor, farnesoid X receptor, and small heterodimer partner, which inhibits BA synthesis by recruiting repressive histone-modifying enzymes. Although histone modifiers have been shown to regulate BA-responsive genes, their in vivo functions remain unclear. Here, we show that lysine-specific histone demethylase1 (LSD1) is directly induced by BA-activated farnesoid X receptor, is recruited to the BA synthetic genes Cyp7a1 and Cyp8b1 and the BA uptake transporter gene Ntcp, and removes a gene-activation marker, trimethylated histone H3 lysine-4, leading to gene repression. Recruitment of LSD1 was dependent on small heterodimer partner, and LSD1-mediated demethylation of trimethylated histone H3 lysine-4 was required for additional repressive histone modifications, acetylated histone 3 on lysine 9 and 14 deacetylation, and acetylated histone 3 on lysine 9 methylation. A BA overload, feeding 0.5% cholic acid chow for 6 days, resulted in adaptive responses of altered expression of hepatic genes involved in BA synthesis, transport, and detoxification/conjugation. In contrast, adenovirus-mediated downregulation of hepatic LSD1 blunted these responses, which led to substantial increases in liver and serum BA levels, serum alanine aminotransferase and aspartate aminotransferase levels, and hepatic inflammation. CONCLUSION This study identifies LSD1 as a novel histone-modifying enzyme in the orchestrated regulation mediated by the farnesoid X receptor and small heterodimer partner that reduces hepatic BA levels and protects the liver against BA toxicity.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sungsoon Fang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- To whom correspondence should be addressed: J. Kim Kemper, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S. Goodwin Avenue, Urbana, IL 61801,
| |
Collapse
|
24
|
Abstract
While it has long been recognized that bile acids are essential for solubilizing lipophilic nutrients in the small intestine, the discovery in 1999 that bile acids serve as ligands for the nuclear receptor farnesoid X receptor (FXR) opened the floodgates in terms of characterizing their actions as selective signaling molecules. Bile acids act on FXR in ileal enterocytes to induce the expression of fibroblast growth factor (FGF)15/19, an atypical FGF that functions as a hormone. FGF15/19 subsequently acts on a cell surface receptor complex in hepatocytes to repress bile acid synthesis and gluconeogenesis, and to stimulate glycogen and protein synthesis. FGF15/19 also stimulates gallbladder filling. Thus, the bile acid-FXR-FGF15/19 signaling pathway regulates diverse aspects of the postprandial enterohepatic response. Pharmacologically, this endocrine pathway provides exciting new opportunities for treating metabolic disease and bile acid-related disorders such as primary biliary cirrhosis and bile acid diarrhea. Both FXR agonists and FGF19 analogs are currently in clinical trials.
Collapse
Affiliation(s)
- Steven A. Kliewer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA,Address correspondence to SAK () and DJM ()
| | - David J. Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA,Address correspondence to SAK () and DJM ()
| |
Collapse
|
25
|
Nam YS, Kim Y, Joung H, Kwon DH, Choe N, Min HK, Kim YS, Kim HS, Kim DK, Cho YK, Kim YH, Nam KI, Choi HC, Park DH, Suk K, Lee IK, Ahn Y, Lee CH, Choi HS, Eom GH, Kook H. Small heterodimer partner blocks cardiac hypertrophy by interfering with GATA6 signaling. Circ Res 2014; 115:493-503. [PMID: 25015078 DOI: 10.1161/circresaha.115.304388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA-binding domain. Through interactions with other transcription factors, SHP regulates diverse biological events, including glucose metabolism in liver. However, the role of SHP in adult heart diseases has not yet been demonstrated. OBJECTIVE We aimed to investigate the role of SHP in adult heart in association with cardiac hypertrophy. METHODS AND RESULTS The roles of SHP in cardiac hypertrophy were tested in primary cultured cardiomyocytes and in animal models. SHP-null mice showed a hypertrophic phenotype. Hypertrophic stresses repressed the expression of SHP, whereas forced expression of SHP blocked the development of hypertrophy in cardiomyocytes. SHP reduced the protein amount of Gata6 and, by direct physical interaction with Gata6, interfered with the binding of Gata6 to GATA-binding elements in the promoter regions of natriuretic peptide precursor type A. Metformin, an antidiabetic agent, induced SHP and suppressed cardiac hypertrophy. The metformin-induced antihypertrophic effect was attenuated either by SHP small interfering RNA in cardiomyocytes or in SHP-null mice. CONCLUSIONS These results establish SHP as a novel antihypertrophic regulator that acts by interfering with GATA6 signaling. SHP may participate in the metformin-induced antihypertrophic response.
Collapse
Affiliation(s)
- Yoon Seok Nam
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Yoojung Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hosouk Joung
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Duk-Hwa Kwon
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Nakwon Choe
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hyun-Ki Min
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Yong Sook Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hyung-Seok Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Don-Kyu Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Young Kuk Cho
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Yong-Hoon Kim
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Kwang-Il Nam
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hyoung Chul Choi
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Dong Ho Park
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Kyoungho Suk
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - In-Kyu Lee
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Youngkeun Ahn
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Chul-Ho Lee
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hueng-Sik Choi
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Gwang Hyeon Eom
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.)
| | - Hyun Kook
- From the Department of Pharmacology and Medical Research Center for Gene Regulation (Y.S.N., Y.K., H.J., D.-H.K., N.C., H.-K.M., G.H.E., H.K.), Forensic Medicine (H.-S.K.), and Anatomy (K.-I.N.), Chonnam National University Medical School, Gwangju, Korea; Department of Pharmacology, College of Medicine, Yeungnam University, Gyeongsan, Korea (H.C.C.); Departments of Internal Medicine (I.-K.L.), Pharmacology, Brain Science and Engineering Institute (K.S.), and Ophthalmology (D.H.P.), Kyungpook National University School of Medicine, Daegu, Korea; Departments of Cardiology (Y.S.K., Y.A.) and Pediatrics (Y.K.C.), Chonnam National University Hospital, Gwangju, Korea; National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Korea (D.-K.K., H.-S.C.); and Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (Y.-H.K., C.-H.L.).
| |
Collapse
|
26
|
Helsmoortel C, Vulto-van Silfhout AT, Coe BP, Vandeweyer G, Rooms L, van den Ende J, Schuurs-Hoeijmakers JHM, Marcelis CL, Willemsen MH, Vissers LELM, Yntema HG, Bakshi M, Wilson M, Witherspoon KT, Malmgren H, Nordgren A, Annerén G, Fichera M, Bosco P, Romano C, de Vries BBA, Kleefstra T, Kooy RF, Eichler EE, Van der Aa N. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet 2014; 46:380-4. [PMID: 24531329 PMCID: PMC3990853 DOI: 10.1038/ng.2899] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Despite a high heritability, a genetic diagnosis can only be established in a minority of patients with autism spectrum disorder (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities1. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, such as the Rett and Fragile X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next generation sequencing, for the large majority of cases no molecular diagnosis can be established 2-7. Here, we report 10 patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD genes known to date.
Collapse
Affiliation(s)
| | - Anneke T Vulto-van Silfhout
- 1] Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands. [2]
| | - Bradley P Coe
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA. [3]
| | - Geert Vandeweyer
- 1] Department of Medical Genetics, University of Antwerp, Antwerp, Belgium. [2] Biomedical informatics research center Antwerpen (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Edegem, Belgium
| | - Liesbeth Rooms
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | - Janneke H M Schuurs-Hoeijmakers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carlo L Marcelis
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madhura Bakshi
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Westmead, Australia
| | - Kali T Witherspoon
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Helena Malmgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Göran Annerén
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Marco Fichera
- 1] Unit of Neurology, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy. [2] Medical Genetics, University of Catania, Catania, Italy
| | - Paolo Bosco
- Laboratory of Cytogenetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Corrado Romano
- Unit of Pediatrics and Medical Genetics, I.R.C.C.S. Associazione Oasi Maria Santissima, Troina, Italy
| | - Bert B A de Vries
- 1] Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- 1] Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Evan E Eichler
- 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Nathalie Van der Aa
- 1] Department of Medical Genetics, University of Antwerp, Antwerp, Belgium. [2] University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
27
|
Structural insights into gene repression by the orphan nuclear receptor SHP. Proc Natl Acad Sci U S A 2013; 111:839-44. [PMID: 24379397 DOI: 10.1073/pnas.1322827111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP-EID1 interface are highly conserved. Their mutation diminishes SHP-EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors.
Collapse
|
28
|
Seok S, Kanamaluru D, Xiao Z, Ryerson D, Choi SE, Suino-Powell K, Xu HE, Veenstra TD, Kemper JK. Bile acid signal-induced phosphorylation of small heterodimer partner by protein kinase Cζ is critical for epigenomic regulation of liver metabolic genes. J Biol Chem 2013; 288:23252-63. [PMID: 23824184 PMCID: PMC3743497 DOI: 10.1074/jbc.m113.452037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/01/2013] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are recently recognized key signaling molecules that control integrative metabolism and energy expenditure. BAs activate multiple signaling pathways, including those of nuclear receptors, primarily farnesoid X receptor (FXR), membrane BA receptors, and FXR-induced FGF19 to regulate the fed-state metabolism. Small heterodimer partner (SHP) has been implicated as a key mediator of these BA signaling pathways by recruitment of chromatin modifying proteins, but the key question of how SHP transduces BA signaling into repressive histone modifications at liver metabolic genes remains unknown. Here we show that protein kinase Cζ (PKCζ) is activated by BA or FGF19 and phosphorylates SHP at Thr-55 and that Thr-55 phosphorylation is critical for the epigenomic coordinator functions of SHP. PKCζ is coimmunopreciptitated with SHP and both are recruited to SHP target genes after bile acid or FGF19 treatment. Activated phosphorylated PKCζ and phosphorylated SHP are predominantly located in the nucleus after FGF19 treatment. Phosphorylation at Thr-55 is required for subsequent methylation at Arg-57, a naturally occurring mutation site in metabolic syndrome patients. Thr-55 phosphorylation increases interaction of SHP with chromatin modifiers and their occupancy at selective BA-responsive genes. This molecular cascade leads to repressive modifications of histones at metabolic target genes, and consequently, decreased BA pools and hepatic triglyceride levels. Remarkably, mutation of Thr-55 attenuates these SHP-mediated epigenomic and metabolic effects. This study identifies PKCζ as a novel key upstream regulator of BA-regulated SHP function, revealing the role of Thr-55 phosphorylation in epigenomic regulation of liver metabolism.
Collapse
Affiliation(s)
- Sunmi Seok
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Deepthi Kanamaluru
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Zhen Xiao
- the Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, and
| | - Daniel Ryerson
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Sung-E Choi
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kelly Suino-Powell
- the Laboratory of Structure Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - H. Eric Xu
- the Laboratory of Structure Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Timothy D. Veenstra
- the Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, and
| | - Jongsook Kim Kemper
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
29
|
Prox1 directly interacts with LSD1 and recruits the LSD1/NuRD complex to epigenetically co-repress CYP7A1 transcription. PLoS One 2013; 8:e62192. [PMID: 23626788 PMCID: PMC3633876 DOI: 10.1371/journal.pone.0062192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/20/2013] [Indexed: 12/01/2022] Open
Abstract
Cholesterol 7α-hydroxylase (CYP7A1) catalyzes the first and rate-limiting step in the classical pathway of bile acids synthesis in liver and is crucial for maintaining lipid homeostasis. Hepatocyte nuclear factor 4α (HNF4α) and α1-fetoprotein transcription factor (FTF) are two major transcription factors driving CYP7A1 promoter activity in hepatocytes. Previous researches have shown that Prospero-related homeobox (Prox1) directly interacts with both HNF4α and FTF and potently co-represses CYP7A1 transcription and bile acid synthesis through unidentified mechanisms. In this work, mechanisms involved in Prox1-mediated co-repression were explored by identifying Prox1-associated proteins using immunoprecipitation followed by mass spectrometry (IP-MS) methodology. Multiple components of the epigenetically repressive lysine-specific demethylase 1 (LSD1)/nucleosome remodeling and histone deacetylase (NuRD) complex, most notably LSD1 and histone deacetylase 2 (HDAC2), were found to be associated with Prox1 and GST pulldown assay demonstrated that Prox1 directly interacts with LSD1. Sequential chromatin immunoprecipitation (ChIP) assays showed that Prox1 co-localizes with HNF4α, LSD1 and HDAC2 on CYP7A1 promoter in HepG2 cells. Furthermore, by using ChIP assay on HepG2 cells with endogenous Prox1 knocked down by RNA interference, Prox1 was shown to recruit LSD1 and HDAC2 onto CYP7A1 promoter and cause increased H3K4 demethylation. Finally, bile acids treatment of HepG2 cells, which significantly repressed CYP7A1 transcription, resulted in increased Prox1 and LSD1/NuRD complex occupancy on CYP7A1 promoter with a concurrent increase in H3K4 demethylation and H3/H4 deacetylation. These results showed that Prox1 interacts with LSD1 to recruit the repressive LSD1/NuRD complex to CYP7A1 promoter and co-represses transcription through epigenetic mechanisms. In addition, such Prox1-mediated epigenetic repression is involved in the physiologically essential negative feedback inhibition of CYP7A1 transcription by bile acids.
Collapse
|
30
|
Smith Z, Ryerson D, Kemper JK. Epigenomic regulation of bile acid metabolism: emerging role of transcriptional cofactors. Mol Cell Endocrinol 2013; 368:59-70. [PMID: 22579755 PMCID: PMC3473118 DOI: 10.1016/j.mce.2012.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023]
Abstract
The traditional role of bile acids is to simply facilitate absorption and digestion of lipid nutrients, but bile acids also act as endocrine signaling molecules that activate nuclear and membrane receptors to control integrative metabolism and energy balance. The mechanisms by which bile acid signals are integrated to regulate target genes are, however, largely unknown. Recently emerging evidence has shown that transcriptional cofactors sense metabolic changes and modulate gene transcription by mediating reversible epigenomic post-translational modifications (PTMs) of histones and chromatin remodeling. Importantly, targeting these epigenomic changes has been a successful approach for treating human diseases, especially cancer. Here, we review emerging roles of transcriptional cofactors in the epigenomic regulation of liver metabolism, especially focusing on bile acid metabolism. Targeting PTMs of histones and chromatin remodelers, together with the bile acid-activated receptors, may provide new therapeutic options for bile acid-related disease, such as cholestasis, obesity, diabetes, and entero-hepatic cancers.
Collapse
Affiliation(s)
- Zachary Smith
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | |
Collapse
|
31
|
Maqdasy S, Baptissart M, Vega A, Baron S, Lobaccaro JMA, Volle DH. Cholesterol and male fertility: what about orphans and adopted? Mol Cell Endocrinol 2013; 368:30-46. [PMID: 22766106 DOI: 10.1016/j.mce.2012.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/24/2022]
Abstract
The link between cholesterol homeostasis and male fertility has been clearly suggested in patients who suffer from hyperlipidemia and metabolic syndrome. This has been confirmed by the generation of several transgenic mouse models or in animals fed with high cholesterol diet. Next to the alteration of the endocrine signaling pathways through steroid receptors (androgen and estrogen receptors); "orphan" and "adopted" nuclear receptors, such as the Liver X Receptors (LXRs), the Proliferating Peroxisomal Activated Receptors (PPARs) or the Liver Receptor Homolog-1 (LRH-1), have been involved in this cross-talk. These transcription factors show distinct expression patterns in the male genital tract, explaining the large panel of phenotypes observed in transgenic male mice and highlighting the importance of lipid homesostasis and the complexity of the molecular pathways involved. Increasing our knowledge of the roles of these nuclear receptors in male germ cell differentiation could help in proposing new approaches to either treat infertile men or define new strategies for contraception.
Collapse
|
32
|
Soichot M, Vaast A, Vignau J, Guillemin GJ, Lhermitte M, Broly F, Allorge D. Characterization of functional polymorphisms and glucocorticoid-responsive elements in the promoter of TDO2, a candidate gene for ethanol-induced behavioural disorders. Alcohol Alcohol 2013; 48:415-25. [PMID: 23558111 DOI: 10.1093/alcalc/agt028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS In response to acute ethanol consumption, tryptophan 2,3-dioxygenase (TDO) induces the kynurenine pathway (KP) through a glucocorticoid-mediated mechanism, which could lead to a dramatic accumulation of neurotoxic metabolites in association with serotonin depletion. As a result, interindividual variability in ethanol-induced behavioural disorders, such as black-outs and violent impulsive behaviours (BOVIBs) following binge drinking, could be partly explained by genetic polymorphisms affecting the KP. The aim of this study was to identify polymorphisms on the promoter of the TDO2 gene that could affect expression and/or activity of TDO through glucocorticoid induction. METHODS Polymorphisms were screened using a PCR-sequencing strategy applied to 31 alcohol-dependent patients and 49 unrelated healthy volunteers, and functionally analysed with bioinformatic prediction tools and gene reporter assays in HepG2 and A549 cell lines. RESULTS We identified 12 polymorphisms in the human TDO2 promoter region, 2 of them corresponding to previously unknown single-nucleotide polymorphisms (SNPs) and 3 of them located in putative glucocorticoid-responsive elements (GREs). Gene reporter assays using HepG2 and A549 cell lines confirmed the presence of several functional GREs in the promoter region of TDO2 and revealed that some of the identified polymorphisms affect the promoter activity under glucocorticoid receptor over-expression and dexamethasone exposure conditions. CONCLUSIONS Correlational studies in larger samples could help to determine whether these polymorphisms are responsible for variations of expression and/or activity of TDO, in particular under conditions where release of glucocorticoids is increased, such as acute ethanol intake. If confirmed, such results would be of major interest in explaining part of the interindividual variability observed in behavioural responses to acute ethanol consumption.
Collapse
Affiliation(s)
- Marion Soichot
- Equipe d'Accueil 4483, Faculté de Médecine/Pôle Recherche, UDSL, Université Lille-Nord de France, Place de Verdun, 59045, Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Ferrari A, Fiorino E, Giudici M, Gilardi F, Galmozzi A, Mitro N, Cermenati G, Godio C, Caruso D, De Fabiani E, Crestani M. Linking epigenetics to lipid metabolism: focus on histone deacetylases. Mol Membr Biol 2012; 29:257-66. [PMID: 23095054 DOI: 10.3109/09687688.2012.729094] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A number of recent studies revealed that epigenetic modifications play a central role in the regulation of lipid and of other metabolic pathways such as cholesterol homeostasis, bile acid synthesis, glucose and energy metabolism. Epigenetics refers to aspects of genome functions regulated in a DNA sequence-independent fashion. Chromatin structure is controlled by epigenetic mechanisms through DNA methylation and histone modifications. The main modifications are histone acetylation and deacetylation on specific lysine residues operated by two different classes of enzymes: Histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The interaction between these enzymes and histones can activate or repress gene transcription: Histone acetylation opens and activates chromatin, while deacetylation of histones and DNA methylation compact chromatin making it transcriptionally silent. The new evidences on the importance of HDACs in the regulation of lipid and other metabolic pathways will open new perspectives in the comprehension of the pathophysiology of metabolic disorders.
Collapse
Affiliation(s)
- Alessandra Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kir S, Zhang Y, Gerard RD, Kliewer SA, Mangelsdorf DJ. Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo. J Biol Chem 2012; 287:41334-41. [PMID: 23038264 PMCID: PMC3510831 DOI: 10.1074/jbc.m112.421834] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) is a postprandial enterokine induced by the nuclear bile acid receptor, FXR, in ileum. FGF19 inhibits bile acid synthesis in liver through transcriptional repression of cholesterol 7α-hydroxylase (CYP7A1) via a mechanism involving the nuclear receptor SHP. Here, in a series of loss-of-function studies, we show that the nuclear receptors HNF4α and LRH-1 have dual roles in regulating Cyp7a1 in vivo. First, they cooperate in maintaining basal Cyp7a1 expression. Second, they enable SHP binding to the Cyp7a1 promoter and facilitate FGF19-mediated repression of bile acid synthesis. HNF4α and LRH-1 promote active transcription histone marks on the Cyp7a1 promoter that are reversed by FGF19 in a SHP-dependent manner. These findings demonstrate that both HNF4α and LRH-1 are important regulators of Cyp7a1 transcription in vivo.
Collapse
Affiliation(s)
- Serkan Kir
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
35
|
Meaney S. Epigenetic regulation of oxysterol formation. Biochimie 2012; 95:531-7. [PMID: 22986023 DOI: 10.1016/j.biochi.2012.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
Oxysterols are oxygenated derivatives of cholesterol that may be formed by either enzymatic or non-enzymatic mechanisms. Expression of the genes responsible for oxysterol synthesis (GROS) is known to be restricted across different tissues and cell types. Regulation of the transcription of GROS and the activity of their enzyme transcripts has been the subject of intense activity for many years. Recent studies have sought to decipher the mechanism(s) that underpin the restricted expression of the GROS. Available data indicates that epigenetic mechanisms have an important role to play in the control of the expression of GROS. In the current review we summarize the available evidence for the epigenetic regulation of these genes.
Collapse
Affiliation(s)
- Steve Meaney
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
36
|
Jonker JW, Liddle C, Downes M. FXR and PXR: potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol 2012; 130:147-58. [PMID: 21801835 PMCID: PMC4750880 DOI: 10.1016/j.jsbmb.2011.06.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/17/2011] [Accepted: 06/17/2011] [Indexed: 12/17/2022]
Abstract
Cholestatic liver disorders encompass hepatobiliary diseases of diverse etiologies characterized by the accumulation of bile acids, bilirubin and cholesterol as the result of impaired secretion of bile. Members of the nuclear receptor (NR) family of ligand-modulated transcription factors are implicated in the adaptive response to cholestasis. NRs coordinately regulate bile acid and phospholipid transporter genes required for hepatobiliary transport, as well as the phases I and II metabolizing enzymes involved in processing of their substrates. In this review we will focus on FXR and PXR, two members of the NR family whose activities are regulated by bile acids. In addition, we also discuss the potential of pharmacological modulators of these receptors as novel therapies for cholestatic disorders.
Collapse
Affiliation(s)
- Johan W. Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Corresponding author. Tel.: +31 050 361 1261; fax: +31 050 361 1746
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, 10010 Torrey Pines Road, La Jolla, CA 92037, USA
- Corresponding author. Tel.: +1 858 453 4100; fax: +1 858 455 1349
| |
Collapse
|
37
|
A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J Lipids 2012; 2012:304292. [PMID: 22577560 PMCID: PMC3346990 DOI: 10.1155/2012/304292] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/05/2011] [Indexed: 12/29/2022] Open
Abstract
Nuclear receptors (NRs) comprise one of the most abundant classes of transcriptional regulators of metabolic diseases and have emerged as promising pharmaceutical targets. Small heterodimer partner (SHP; NR0B2) is a unique orphan NR lacking a DNA-binding domain but contains a putative ligand-binding domain. SHP is a transcriptional regulator affecting multiple key biological functions and metabolic processes including cholesterol, bile acid, and fatty acid metabolism, as well as reproductive biology and glucose-energy homeostasis. About half of all mammalian NRs and several transcriptional coregulators can interact with SHP. The SHP-mediated repression of target transcription factors includes at least three mechanisms including direct interference with the C-terminal activation function 2 (AF2) coactivator domains of NRs, recruitment of corepressors, or direct interaction with the surface of NR/transcription factors. Future research must focus on synthetic ligands acting on SHP as a potential therapeutic target in a series of metabolic abnormalities. Current understanding about the pleiotropic role of SHP is examined in this paper, and principal metabolic aspects connected with SHP function will be also discussed.
Collapse
|
38
|
|
39
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
40
|
Zhang Y, Bonzo JA, Gonzalez FJ, Wang L. Diurnal regulation of the early growth response 1 (Egr-1) protein expression by hepatocyte nuclear factor 4alpha (HNF4alpha) and small heterodimer partner (SHP) cross-talk in liver fibrosis. J Biol Chem 2011; 286:29635-43. [PMID: 21725089 PMCID: PMC3191004 DOI: 10.1074/jbc.m111.253039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/30/2011] [Indexed: 12/17/2022] Open
Abstract
Early growth response 1 (Egr-1) protein is a critical regulator of genes contributing to liver fibrosis; however, little is known about the upstream transcriptional factors that control its expression. Here we show that Egr-1 expression is tightly regulated by nuclear receptor signaling. Hepatocyte nuclear factor 4α (HNF4α) activated the Egr-1 promoter through three DR1 response elements as identified by trans-activation assays. Deletion of these response elements or knockdown of HNF4α using siRNA largely abrogated Egr-1 promoter activation. HNF4α activity, as well as its enrichment on the Egr-1 promoter, were markedly repressed by small heterodimer partner (SHP) co-expression. Egr-1 mRNA and protein were transiently induced by HNF4α. On the contrary, HNF4α siRNA reduced Egr-1 expression at both the mRNA and protein levels, and overexpression of SHP reversed these effects. Conversely, knockdown of SHP by siRNA elevated Egr-1 protein. Interestingly, Egr-1 mRNA exhibited diurnal fluctuation, which was synchronized to the cyclic expression of SHP and HNF4α after cells were released from serum shock. Unexpectedly, the levels of Egr-1 mRNA and protein were highly up-regulated in Hnf4α(-/-) mice. Both HNF4α and Egr-1 expression were dramatically increased in SHP(-/-) mice with bile duct ligation and in human cirrhotic livers, which was inversely correlated with diminished SHP expression. In conclusion, our study revealed control network for Egr-1 expression through a feedback loop between SHP and HNF4α.
Collapse
Affiliation(s)
- Yuxia Zhang
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132 and
| | - Jessica A. Bonzo
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Frank J. Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Li Wang
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132 and
| |
Collapse
|
41
|
Miao J, Choi SE, Seok SM, Yang L, Zuercher WJ, Xu Y, Willson TM, Xu HE, Kemper JK. Ligand-dependent regulation of the activity of the orphan nuclear receptor, small heterodimer partner (SHP), in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes. Mol Endocrinol 2011; 25:1159-69. [PMID: 21566081 DOI: 10.1210/me.2011-0033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Small heterodimer partner (SHP) plays important roles in diverse biological processes by directly interacting with transcription factors and inhibiting their activities. SHP has been designated an orphan nuclear receptor, but whether its activity can be modulated by ligands has been a long-standing question. Recently, retinoid-related molecules, including 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3Cl-AHPC), were shown to bind to SHP and enhance apoptosis. We have examined whether 3Cl-AHPC acts as an agonist and increases SHP activity in the repression of bile acid biosynthetic CYP7A1 and CYP8B1 genes and delineated the underlying mechanisms. Contrary to this expectation, micromolar concentrations of 3Cl-AHPC increased CYP7A1 expression but indirectly via p38 kinase signaling. Nanomolar concentrations, however, repressed CYP7A1 expression and decreased bile acid levels in HepG2 cells, and little repression was observed when SHP was down-regulated by small hairpin RNA. Mechanistic studies revealed that 3Cl-AHPC bound to SHP, increased the interaction of SHP with liver receptor homologue (LRH)-1, a hepatic activator for CYP7A1 and CYP8B1 genes, and with repressive cofactors, Brahma, mammalian Sin3a, and histone deacetylase-1, and, subsequently, increased the occupancy of SHP and these cofactors at the promoters. Mutation of Leu-100, predicted to contact 3Cl-AHPC within the SHP ligand binding pocket by molecular modeling, severely impaired the increased interaction with LRH-1, and repression of LRH-1 activity mediated by 3Cl-AHPC. 3Cl-AHPC repressed SHP metabolic target genes in a gene-specific manner in human primary hepatocytes and HepG2 cells. These data suggest that SHP may act as a ligand-regulated receptor in metabolic pathways. Modulation of SHP activity by synthetic ligands may be a useful therapeutic strategy.
Collapse
Affiliation(s)
- Ji Miao
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ananthanarayanan M, Li Y, Surapureddi S, Balasubramaniyan N, Ahn J, Goldstein JA, Suchy FJ. Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G771-81. [PMID: 21330447 PMCID: PMC3094144 DOI: 10.1152/ajpgi.00499.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nuclear receptor Farnesoid x receptor (FXR) is a critical regulator of multiple genes involved in bile acid homeostasis. The coactivators attracted to promoters of FXR target genes and epigenetic modifications that occur after ligand binding to FXR have not been completely defined, and it is unknown whether these processes are disrupted during cholestasis. Using a microarray, we identified decreased expression of mixed lineage leukemia 3 (MLL3), a histone H3 lysine 4 (H3K4) lysine methyl transferase at 1 and 3 days of post-common bile duct ligation (CBDL) in mice. Chromatin immunoprecipitation analysis (ChIP) analysis revealed that H3K4me3 of transporter promoters by MLL3 as part of activating signal cointegrator-2 -containing complex (ASCOM) is essential for activation of bile salt export pump (BSEP), multidrug resistance associated protein 2 (MRP2), and sodium taurocholate cotransporting polypeptide (NTCP) genes by FXR and glucocorticoid receptor (GR). Knockdown of nuclear receptor coactivator 6 (NCOA6) or MLL3/MLL4 mRNAs by small interfering RNA treatment led to a decrease in BSEP and NTCP mRNA levels in hepatoma cells. Human BSEP promoter transactivation by FXR/RXR was enhanced in a dose-dependent fashion by NCOA6 cDNA coexpression and decreased by AdsiNCOA6 infection in HepG2 cells. GST-pull down assays showed that domain 3 and 5 of NCOA6 (LXXLL motifs) interacted with FXR and that the interaction with domain 5 was enhanced by chenodeoxycholic acid. In vivo ChIP assays in HepG2 cells revealed ligand-dependent recruitment of ASCOM complex to FXR element in BSEP and GR element in NTCP promoters, respectively. ChIP analysis demonstrated significantly diminished recruitment of ASCOM complex components and H3K4me3 to Bsep and Mrp2 promoter FXR elements in mouse livers after CBDL. Taken together, these data show that the "H3K4me3" epigenetic mark is essential to activation of BSEP, NTCP, and MRP2 genes by nuclear receptors and is downregulated in cholestasis.
Collapse
Affiliation(s)
- M. Ananthanarayanan
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York; ,3Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Yanfeng Li
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York;
| | - S. Surapureddi
- 4Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle, North Carolina
| | - N. Balasubramaniyan
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York; ,2Children's Hospital Research Institute, University of Colorado School of Medicine, Denver, Colorado;
| | - Jaeyong Ahn
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York;
| | - J. A. Goldstein
- 4Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle, North Carolina
| | - Frederick J. Suchy
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York; ,2Children's Hospital Research Institute, University of Colorado School of Medicine, Denver, Colorado;
| |
Collapse
|
43
|
Arginine methylation by PRMT5 at a naturally occurring mutation site is critical for liver metabolic regulation by small heterodimer partner. Mol Cell Biol 2011; 31:1540-50. [PMID: 21262773 DOI: 10.1128/mcb.01212-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Small Heterodimer Partner (SHP) inhibits numerous transcription factors that are involved in diverse biological processes, including lipid and glucose metabolism. In response to increased hepatic bile acids, SHP gene expression is induced and the SHP protein is stabilized. We now show that the activity of SHP is also increased by posttranslational methylation at Arg-57 by protein arginine methyltransferase 5 (PRMT5). Adenovirus-mediated hepatic depletion of PRMT5 decreased SHP methylation and reversed the suppression of metabolic genes by SHP. Mutation of Arg-57 decreased SHP interaction with its known cofactors, Brm, mSin3A, and histone deacetylase 1 (HDAC1), but not with G9a, and decreased their recruitment to SHP target genes in mice. Hepatic overexpression of SHP inhibited metabolic target genes, decreased bile acid and hepatic triglyceride levels, and increased glucose tolerance. In contrast, mutation of Arg-57 selectively reversed the inhibition of SHP target genes and metabolic outcomes. The importance of Arg-57 methylation for the repression activity of SHP provides a molecular basis for the observation that a natural mutation of Arg-57 in humans is associated with the metabolic syndrome. Targeting posttranslational modifications of SHP may be an effective therapeutic strategy by controlling selected groups of genes to treat SHP-related human diseases, such as metabolic syndrome, cancer, and infertility.
Collapse
|
44
|
Nuclear receptor small heterodimer partner in apoptosis signaling and liver cancer. Cancers (Basel) 2011; 3:198-212. [PMID: 24212613 PMCID: PMC3756356 DOI: 10.3390/cancers3010198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/30/2010] [Accepted: 01/04/2011] [Indexed: 01/01/2023] Open
Abstract
Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that contains the dimerization and a putative ligand-binding domain, but lacks the conserved DNA binding domain. SHP exerts its physiological function as an inhibitor of gene transcription through physical interaction with multiple nuclear receptors and transcriptional factors. SHP is a critical transcriptional regulator affecting diverse biological functions, including bile acid, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology. Recently, we and others have demonstrated that SHP is an epigenetically regulated transcriptional repressor that suppresses the development of liver cancer. In this review, we summarize recent major findings regarding the role of SHP in cell proliferation, apoptosis, and DNA methylation, and discuss recent progress in understanding the function of SHP as a tumor suppressor in the development of liver cancer. Future study will be focused on identifying SHP associated novel pro-oncogenes and anti-oncogenes in liver cancer progression and applying the knowledge gained on SHP in liver cancer prevention, diagnosis and treatment.
Collapse
|
45
|
Abstract
SIRT1
is a NAD+-dependent deacetylase implicated in longevity and
diverse physiological processes. SIRT1, as a key mediator of beneficial
effects of caloric restriction, regulates lipid and glucose metabolism by
deacetylating metabolic regulators, as well as histones, in response to
nutritional deprivation. Here we discuss how SIRT1 levels are regulated by
microRNAs (miRs) which are emerging as important metabolic regulators; the
recently identified nuclear receptor FXR/SHP cascade pathway that controls
the expression of miR-34a and its target SIRT1; and a FXR/SIRT1 positive
feedback regulatory loop, which is deregulated in metabolic disease
states. The FXR/miR-34a pathway and other miRs controlling SIRT1 may be
useful therapeutic targets for age-related diseases, including metabolic
disorders.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | |
Collapse
|
46
|
Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta Mol Basis Dis 2010; 1812:842-50. [PMID: 21130162 DOI: 10.1016/j.bbadis.2010.11.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 12/26/2022]
Abstract
Abnormally elevated lipid and glucose levels due to the disruption of metabolic homeostasis play causative roles in the development of metabolic diseases. A cluster of metabolic conditions, including dyslipidemia, abdominal obesity, and insulin resistance, is referred to as metabolic syndrome, which has been increasing globally at an alarming rate. The primary nuclear bile acid receptor, Farnesoid X Receptor (FXR, NR1H4), plays important roles in controlling lipid and glucose levels by regulating expression of target genes in response to bile acid signaling in enterohepatic tissues. In this review, I discuss how signal-dependent FXR transcriptional activity is dynamically regulated under normal physiological conditions and how it is dysregulated in metabolic disease states. I focus on the emerging roles of post-translational modifications (PTMs) and transcriptional cofactors in modulating FXR transcriptional activity and pathways. Dysregulation of nuclear receptor transcriptional signaling due to aberrant PTMs and cofactor interactions are key determinants in the development of metabolic diseases. Therefore, targeting such abnormal PTMs and transcriptional cofactors of FXR in disease states may provide a new molecular strategy for development of pharmacological agents to treat metabolic syndrome. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
|
47
|
Zhang Y, Hagedorn CH, Wang L. Role of nuclear receptor SHP in metabolism and cancer. Biochim Biophys Acta Mol Basis Dis 2010; 1812:893-908. [PMID: 20970497 DOI: 10.1016/j.bbadis.2010.10.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023]
Abstract
Small heterodimer partner (SHP, NR0B2) is a unique member of the nuclear receptor (NR) superfamily that contains the dimerization and ligand-binding domain found in other family members, but lacks the conserved DNA-binding domain. The ability of SHP to bind directly to multiple NRs is crucial for its physiological function as a transcriptional inhibitor of gene expression. A wide variety of interacting partners for SHP have been identified, indicating the potential for SHP to regulate an array of genes in different biological pathways. In this review, we summarize studies concerning the structure and target genes of SHP and discuss recent progress in understanding the function of SHP in bile acid, cholesterol, triglyceride, glucose, and drug metabolism. In addition, we review the regulatory role of SHP in microRNA (miRNA) regulation, liver fibrosis and cancer progression. The fact that SHP controls a complex set of genes in multiple metabolic pathways suggests the intriguing possibility of developing new therapeutics for metabolic diseases, including fatty liver, dyslipidemia and obesity, by regulating SHP with small molecules. To achieve this goal, more progress regarding SHP ligands and protein structure will be required. Besides its metabolic regulatory function, studies by us and other groups provide strong evidence that SHP plays a critical role in the development of cancer, particularly liver and breast cancer. An increased understanding of the fundamental mechanisms by which SHP regulates the development of cancers will be critical in applying knowledge of SHP in diagnostic, therapeutic or preventive strategies for specific cancers. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
48
|
Cellanetti M, Gunda V, Wang L, Macchiarulo A, Pellicciari R. Insights into the binding mode and mechanism of action of some atypical retinoids as ligands of the small heterodimer partner (SHP). J Comput Aided Mol Des 2010; 24:943-56. [PMID: 20882396 DOI: 10.1007/s10822-010-9386-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 09/17/2010] [Indexed: 01/03/2023]
Abstract
The Small Heterodimer Partner (SHP) is an orphan nuclear receptor and an atypical member of the nuclear receptor superfamily Since its discovery, a growing body of evidences have pointed out a pivotal role for SHP in the transcriptional regulation of a variety of target genes involved in diverse metabolic pathways. While we have previously developed a homology model of the structure of SHP that was instrumental to identify a putative ligand binding pocket and suggest the possibility of the development of synthetic modulators, others reported that some atypical retinoids may represent the first synthetic ligands for this receptor. In this work, we report a combined computational approach aimed at shedding further lights on the binding mode and mechanism of action of some atypical retinoids as ligands of SHP. The results have been instrumental to design mutagenesis experiments whose preliminary data suggest the presence of a functional site in SHP as defined by residues Phe96, Arg138 and Arg238. While further experimental studies are ongoing, these findings constitute the basis for the design and identification of novel synthetic modulators of SHP functions.
Collapse
Affiliation(s)
- Marco Cellanetti
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Italy
| | | | | | | | | |
Collapse
|
49
|
Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD, Kemper JK. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 2010; 285:33959-70. [PMID: 20817729 DOI: 10.1074/jbc.m110.122978] [Citation(s) in RCA: 407] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The SIRT1 deacetylase inhibits fat synthesis and stimulates fat oxidation in response to fasting, but the underlying mechanisms remain unclear. Here we report that SREBP-1c, a key lipogenic activator, is an in vivo target of SIRT1. SIRT1 interaction with SREBP-1c was increased during fasting and decreased upon feeding, and consistently, SREBP-1c acetylation levels were decreased during fasting in mouse liver. Acetylated SREBP-1c levels were also increased in HepG2 cells treated with insulin and glucose to mimic feeding conditions, and down-regulation of p300 by siRNA decreased the acetylation. Depletion of hepatic SIRT1 by adenoviral siRNA increased acetylation of SREBP-1c with increased lipogenic gene expression. Tandem mass spectrometry and mutagenesis studies revealed that SREBP-1c is acetylated by p300 at Lys-289 and Lys-309. Mechanistic studies using acetylation-defective mutants showed that SIRT1 deacetylates and inhibits SREBP-1c transactivation by decreasing its stability and its occupancy at the lipogenic genes. Remarkably, SREBP-1c acetylation levels were elevated in diet-induced obese mice, and hepatic overexpression of SIRT1 or treatment with resveratrol, a SIRT1 activator, daily for 1 week decreased acetylated SREBP-1c levels with beneficial functional outcomes. These results demonstrate an intriguing connection between elevated SREBP-1c acetylation and increased lipogenic gene expression, suggesting that abnormally elevated SREBP-1c acetylation increases SREBP-1c lipogenic activity in obese mice. Reducing acetylation of SREBP-1c by targeting SIRT1 may be useful for treating metabolic disorders, including fatty liver, obesity, and type II diabetes.
Collapse
Affiliation(s)
- Bhaskar Ponugoti
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhou T, Zhang Y, Macchiarulo A, Yang Z, Cellanetti M, Coto E, Xu P, Pellicciari R, Wang L. Novel polymorphisms of nuclear receptor SHP associated with functional and structural changes. J Biol Chem 2010; 285:24871-81. [PMID: 20516075 PMCID: PMC2915723 DOI: 10.1074/jbc.m110.133280] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/12/2010] [Indexed: 11/06/2022] Open
Abstract
We identified three heterozygous nonsynonymous single nucleotide polymorphisms in the small heterodimer partner (SHP, NROB2) gene in normal subjects and CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)-like patients, including two novel missense mutations (p.R38H, p.K170N) and one of the previously reported polymorphism (p.G171A). Four novel heterozygous mutations were also identified in the intron ((Intron)1265T-->A), 3'-untranslated region ((3'-UTR)101C-->G, (3'-UTR)186T-->C), and promoter ((Pro)-423C-->T) of the SHP gene. The exonic R38H and K170N mutants exhibited impaired nuclear translocation. K170N made SHP more susceptible to ubiquitination mediated degradation and blocked SHP acetylation, which displayed lost repressive activity on its interacting partners ERRgamma and HNF4alpha but not LRH-1. In contrast, G171A increased SHP mRNA and protein expression and maintained normal function. In general, the interaction of SHP mutants with LRH-1 and EID1 was enhanced. K170N also markedly impaired the recruitment of SHP, HNF4alpha, HDAC1, and HDAC3 to the apoCIII promoter. Molecular dynamics simulations of SHP showed that G171A stabilized the nuclear receptor boxes, whereas K170N promoted the conformational destabilization of all the structural elements of the receptor. This study suggests that genetic variations in SHP are common among human subjects and the Lys-170 residue plays a key role in controlling SHP ubiquitination and acetylation associated with SHP protein stability and repressive function.
Collapse
Affiliation(s)
- Taofeng Zhou
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132
- The First Affiliated Hospital, Sun Yat-sen University of Medical Sciences, Guangzhou 510080, China
| | - Yuxia Zhang
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Antonio Macchiarulo
- the Dipartimento Chimica e Tecnologia del Farmaco, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy, and
| | - Zhihong Yang
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Marco Cellanetti
- the Dipartimento Chimica e Tecnologia del Farmaco, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy, and
| | - Eliecer Coto
- the Genetica Molecular, Hospital Central Asturias, 33006 Oviedo, Spain
| | - Pingyi Xu
- The First Affiliated Hospital, Sun Yat-sen University of Medical Sciences, Guangzhou 510080, China
| | - Roberto Pellicciari
- the Dipartimento Chimica e Tecnologia del Farmaco, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy, and
| | - Li Wang
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132
| |
Collapse
|