1
|
Lei JQ, Xie QL, Li QP, Qin SY, Wu JH, Jiang HX, Yu B, Luo W. Resveratrol Alleviates Liver Fibrosis by Targeting Cross-Talk Between TLR2/MyD88/ERK and NF-κB/NLRP3 Inflammasome Pathways in Macrophages. J Biochem Mol Toxicol 2025; 39:e70208. [PMID: 40079280 DOI: 10.1002/jbt.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/07/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Resveratrol alleviates liver fibrosis in mice by upregulating IL-10 to reprogram the macrophage phenotype; however, the mechanism remains to be elucidated. Building on our previous work, in this study, we aimed to determine the role of the TLR2/MyD88/ERK and NF-κB/NLRP3 inflammasome pathways in mediating the effects of resveratrol on liver fibrosis and macrophage polarization. We investigated the expression of cytokines in these inflammasome pathways in a mouse model of liver fibrosis and resveratrol-treated macrophages. The results showed that expression of TLR2, MyD88, ERK, and NF-κB1 in liver tissues was increased in the fourth week after treatment with resveratrol but decreased in the fifth week. Similar results were obtained for the NF-κB/NLRP3 inflammasome pathway. The results also showed that cytokines in both the TLR2/MyD88/ERK and NF-κB/NLRP3 inflammasome pathways in macrophages were elevated after 24 h and reduced after 36 h of treatment with resveratrol. Immunofluorescence and nucleocytoplasmic separation assays showed that resveratrol inhibited the translocation of NF-κB from the cytoplasm to the nucleus in macrophages, and increased NF-κB1 was associated with inhibition of the TLR2/MyD88/ERK pathway. Silencing NF-κB1 increased the expression of TLR2, MyD88, and ERK. In conclusion, the TLR2/MyD88/ERK and NF-κB/NLRP3 inflammasome pathways are involved in the effect of resveratrol on macrophage polarization and the subsequent modulation of liver fibrosis. NF-κB1 acts as the common cytokine that coordinates the crosstalk between the two pathways. Our findings highlight the potential of the members of these pathways as therapeutic targets toward the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jin-Qing Lei
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qing-Li Xie
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qing-Ping Li
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan-Yu Qin
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiao-Hua Wu
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bing Yu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Luo
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Yang M, Yu Q, Yang L, Qian H, Sun Q, Li M, Yang Y. Screening the effective components of Lysionotus pauciflorus Maxim. on the treatment of LPS induced acute lung injury mice by integrated UHPLC-Q-TOF-MS/MS and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118887. [PMID: 39374881 DOI: 10.1016/j.jep.2024.118887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is an inflammatory reaction produced through various injury-causing factors acting on the lungs in a direct or indirect way, with a high morbidity and mortality rate. A review of clinical experience has revealed that Lysionotus pauciflorus Maxim (LP) has a significant therapeutic effect on ALI. However, the comprehensive effective components of LP are uncertain, and the mechanisms, especially the potential therapeutic target for anti-ALI, are still unknown. AIMS OF THE STUDY In vitro and in vivo validation of the pharmacodynamics of LP in the treatment of ALI and exploration of its potential mechanism of action based on network pharmacology, molecular docking and experimental validation. MATERIALS AND METHODS Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was employed to identify the ingredients of LP extracts. The potential bioactive ingredients, key targets and signalling pathways were identified by network pharmacology, based on the results of the mass spectrometry analysis. Subsequently, molecular docking was performed on the screened core components and key targets to calculate their molecular binding energies and binding potentials, and to explore the mutual binding modes of small-molecule ligands and large-molecule proteins. Finally, lipopolysaccharide (LPS)-induced RAW264.7 cell model and ALI mice model were used to validate the therapeutic effects and potential mechanism of LP extract towards ALI. RESULTS From the mass spectrometry results of LP extracts, a total of 89 chemical components were identified, including 46 phenylethanol glycosides, 26 flavonoids, 9 organic acids and their derivatives and 8 other compounds. And furthermore 39 core active components were screened by network pharmacology. The top 10 core components (4 phenylethanol glycosides, 6 flavonoids) have been screened in the composition -target-disease network, and 37 core targets related to LP efficacy were obtained by fitting PPI network analysis. 10 signalling pathways and their targets associated with LP treatment of ALI were obtained by GO/KEGG analysis, indicating that LP could regulate TLR4 and NF-κB signalling pathways through 4 key targets, namely NFKB1, RELA, TLR4 and TNF. The results of the molecular docking procedure indicated a strong affinity, with the binding energies between each component and the target site being less than -6 kcal/mol. The binding modes included Hydrogen Bonds, Pi-Pi interaction, Hydrophobic Interactions, Salt Bridges, Pi-cation interactions. These observations were subsequently validated in vitro and in vivo experiments. The outcomes of in vitro and in vivo experiments demonstrated that LP was effective in reducing the infiltration of inflammatory bacteria in lung tissues and attenuated the expression of pro-inflammatory cytokines in LPS-stimulated mice bronchoalveolar lavage fluid (BALF) and RAW264.7 cells. Furthermore, LP inhibited the expression and phosphorylation of TLR4 protein and NF-κB protein, thus playing a role in the prevention of ALI. CONCLUSIONS In this study, mass spectrometry analysis was combined with biomolecular networks to initially elucidate the potential of LP to treat ALI by modulating the TLR4/NF-κB pathway. This offers a definitive experimental basis for the development of new LP drugs.
Collapse
Affiliation(s)
- Mingyu Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China; Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People's Republic of China
| | - Qihua Yu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China; Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People's Republic of China
| | - Liyong Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China
| | - Haibing Qian
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People's Republic of China
| | - Qingwen Sun
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China; Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People's Republic of China
| | - Mengyu Li
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China; Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People's Republic of China.
| | - Ye Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China; Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
3
|
Soh LJ, Lee SY, Roebuck MM, Wong PF. Unravelling the interplay between ER stress, UPR and the cGAS-STING pathway: Implications for osteoarthritis pathogenesis and treatment strategy. Life Sci 2024; 357:123112. [PMID: 39378929 DOI: 10.1016/j.lfs.2024.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Osteoarthritis (OA) is a debilitating chronic degenerative disease affecting the whole joint organ leading to pain and disability. Cellular stress and injuries trigger inflammation and the onset of pathophysiological changes ensue after irreparable damage and inability to resolve inflammation, impeding the completion of the healing process. Extracellular matrix (ECM) degradation leads to dysregulated joint tissue metabolism. The reparative effort induces the proliferation of hypertrophic chondrocytes and matrix protein synthesis. Aberrant protein synthesis leads to endoplasmic reticulum (ER) stress and chondrocyte apoptosis with consequent cartilage matrix loss. These events in a vicious cycle perpetuate inflammation, hindering the restoration of normal tissue homeostasis. Recent evidence suggests that inflammatory responses and chondrocyte apoptosis could be caused by the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling axis in response to DNA damage. It has been reported that there is a crosstalk between ER stress and cGAS-STING signalling in cellular senescence and other diseases. Based on recent evidence, this review discusses the role of ER stress, Unfolded Protein Response (UPR) and cGAS-STING pathway in mediating inflammatory responses in OA.
Collapse
Affiliation(s)
- Li-Jen Soh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siam-Yee Lee
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Margaret M Roebuck
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
4
|
Daly AE, Yeh G, Soltero S, Smale ST. Selective regulation of a defined subset of inflammatory and immunoregulatory genes by an NF-κB p50-IκBζ pathway. Genes Dev 2024; 38:536-553. [PMID: 38918046 PMCID: PMC11293394 DOI: 10.1101/gad.351630.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
The five NF-κB family members and three nuclear IκB proteins play important biological roles, but the mechanisms by which distinct members of these protein families contribute to selective gene transcription remain poorly understood, especially at a genome-wide scale. Using nascent transcript RNA-seq, we observed considerable overlap between p50-dependent and IκBζ-dependent genes in Toll-like receptor 4 (TLR4)-activated macrophages. Key immunoregulatory genes, including Il6, Il1b, Nos2, Lcn2, and Batf, are among the p50-IκBζ-codependent genes. IκBζ-bound genomic sites are occupied at earlier time points by NF-κB dimers. However, p50-IκBζ codependence does not coincide with preferential binding of either p50 or IκBζ, as RelA co-occupies hundreds of genomic sites with the two proteins. A common feature of p50-IκBζ-codependent genes is a nearby p50/RelA/IκBζ-cobound site exhibiting p50-dependent binding of both RelA and IκBζ. This and other results suggest that IκBζ acts in concert with RelA:p50 heterodimers. Notably, p50-IκBζ-codependent genes comprise a high percentage of genes exhibiting the greatest differential expression between TLR4-stimulated and tumor necrosis factor receptor (TNFR)-stimulated macrophages. Thus, our genome-centric analysis reveals a defined p50-IκBζ pathway that selectively activates a set of key immunoregulatory genes and serves as an important contributor to differential TNFR and TLR4 responses.
Collapse
Affiliation(s)
- Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - George Yeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Sofia Soltero
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA;
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
de Sales-Neto JM, Rodrigues-Mascarenhas S. Immunosuppressive effects of the mycotoxin patulin in macrophages. Arch Microbiol 2024; 206:166. [PMID: 38485821 DOI: 10.1007/s00203-024-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil.
| |
Collapse
|
6
|
Murthy MHS, Jasbi P, Lowe W, Kumar L, Olaosebikan M, Roger L, Yang J, Lewinski N, Daniels N, Cowen L, Klein-Seetharaman J. Insulin signaling and pharmacology in humans and in corals. PeerJ 2024; 12:e16804. [PMID: 38313028 PMCID: PMC10838073 DOI: 10.7717/peerj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.
Collapse
Affiliation(s)
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Whitney Lowe
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | - Lokender Kumar
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | | | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- School of Ocean Futures, Arizona State University, Tempe, AZ, United States of America
| | - Jinkyu Yang
- Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, USA
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Noah Daniels
- Department of Computer Science, University of Rhode Island, Kingston, RI, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Judith Klein-Seetharaman
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
7
|
Bornancin F, Dekker C. A phospho-harmonic orchestra plays the NLRP3 score. Front Immunol 2023; 14:1281607. [PMID: 38022631 PMCID: PMC10654991 DOI: 10.3389/fimmu.2023.1281607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
NLRP3 is a prototypical sensor protein connecting cellular stress to pro-inflammatory signaling. A complex array of regulatory steps is required to switch NLRP3 from an inactive state into a primed entity that is poised to assemble an inflammasome. Accumulating evidence suggests that post-translational mechanisms are critical. In particular, phosphorylation/dephosphorylation and ubiquitylation/deubiquitylation reactions have been reported to regulate NLRP3. Taken individually, several post-translational modifications appear to be essential. However, it remains difficult to understand how they may be coordinated, whether there is a unique sequence of regulatory steps accounting for the functional maturation of NLRP3, or whether the sequence is subject to variations depending on cell type, the stimulus, and other parameters such as the cellular context. This review will focus on the regulation of the NLRP3 inflammasome by phosphorylation and dephosphorylation, and on kinases and phosphatases that have been reported to modulate NLRP3 activity. The aim is to try to integrate the current understanding and highlight potential gaps for further studies.
Collapse
Affiliation(s)
| | - Carien Dekker
- Discovery Sciences Department, Novartis Biomedical Research, Basel, Switzerland
| |
Collapse
|
8
|
Varma VP, Bankala R, Kumar A, Gawai S, Faisal SM. Differential modulation of innate immune response by lipopolysaccharide of Leptospira. Open Biol 2023; 13:230101. [PMID: 37935355 PMCID: PMC10645091 DOI: 10.1098/rsob.230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 11/09/2023] Open
Abstract
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira spp. having more than 300 serovars. These serovars can infect a variety of hosts, some being asymptomatic carriers and others showing varied symptoms of mild to severe infection. Since lipopolysaccharide (LPS) is the major antigen which defines serovar specificity, this different course of infection may be attributed to a differential innate response against this antigen. Previous studies have shown that Leptospira LPS is less endotoxic. However, it is unclear whether there is a difference in the ability of LPS isolated from different serovars to modulate the innate response. In this study, we purified LPS from three widely prevalent pathogenic serovars, i.e. Icterohaemorrhagiae strain RGA, Pomona, Hardjo, and from non-pathogenic L. biflexa serovar semeranga strain Potac 1 collectively termed as L-LPS and tested their ability to modulate innate response in macrophages from both resistant (mice) and susceptible (human and bovine) hosts. L-LPS induced differential response being more proinflammatory in mouse and less proinflammatory in human and bovine macrophages but overall less immunostimulatory than E. coli LPS (E-LPS). Irrespective of serovar, this response was TLR2-dependent in humans, whereas TLR4-dependent/CD14-independent in mouse using MyD88 adapter and signalling through P38 and ERK-dependent MAP kinase pathway. L-LPS-activated macrophages were able to phagocytose Leptospira and this effect was significantly higher or more pronounced when the macrophages were stimulated with L-LPS from the corresponding serovar. L-LPS activated both canonical and non-canonical inflammasome, producing IL-1β without inducing pyroptosis. Further, L-LPS induced both TNF-mediated early and NO-mediated late apoptosis. Altogether, these results indicate that L-LPS induces a differential innate response that is quite distinct from that induced by E-LPS and may be attributed to the structural differences and its atypical nature.
Collapse
Affiliation(s)
- Vivek P. Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ramudu Bankala
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India
| | - Ajay Kumar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Shashikant Gawai
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad 500032, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
9
|
Frost LR, Stark R, Anonye BO, MacCreath TO, Ferreira LRP, Unnikrishnan M. Dual RNA-seq identifies genes and pathways modulated during Clostridioides difficile colonization. mSystems 2023; 8:e0055523. [PMID: 37615437 PMCID: PMC10654110 DOI: 10.1128/msystems.00555-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
IMPORTANCE The initial interactions between the colonic epithelium and the bacterium are likely critical in the establishment of Clostridioides difficile infection, one of the major causes of hospital-acquired diarrhea worldwide. Molecular interactions between C. difficile and human gut cells have not been well defined mainly due to the technical challenges of studying cellular host-pathogen interactions with this anaerobe. Here we have examined transcriptional changes occurring in the pathogen and host cells during the initial 24 hours of infection. Our data indicate several changes in metabolic pathways and virulence-associated factors during the initial bacterium-host cell contact and early stages of infection. We describe canonical pathways enriched based on the expression profiles of a dual RNA sequencing in the host and bacterium, and functions of bacterial factors that are modulated during infection. This study thus provides fresh insight into the early C. difficile infection process.
Collapse
Affiliation(s)
- Lucy R. Frost
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Richard Stark
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Blessing O. Anonye
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Thomas O. MacCreath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ludmila R. P. Ferreira
- RNA Systems Biology Laboratory (RSBL), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
10
|
高 家, 丁 彦. [Investigation of the mechanism of action and identification of candidate traditional Chinese medicines for the treatment of ischemic stroke in the Danshen-Jiangxiang pair based on drug-target-disease association network]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:762-769. [PMID: 37666767 PMCID: PMC10477403 DOI: 10.7507/1001-5515.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Indexed: 09/06/2023]
Abstract
The therapeutic efficacy of Danshen and Jiangxiang in the treatment of ischemic stroke (IS) is relatively significant. Studying the mechanism of action of Danshen and Jiangxiang in the treatment of IS can effectively identify candidate traditional Chinese medicines (TCM) with efficacy. However, it is challenging to analyze the effector substances and explain the mechanism of action of Danshen-Jiangxiang from a systematic perspective using traditional pharmacological approaches. In this study, a systematic study was conducted based on the drug-target-symptom-disease association network using complex network theory. On the basis of the association information about Danshen, Jiangxiang and IS, the protein-protein interaction (PPI) network and the "drug pair-pharmacodynamic ingredient-target-IS" network were constructed. The different topological features of the networks were analyzed to identify the core pharmacodynamic ingredients including formononetin in Jiangxiang, cryptotanshinone and tanshinone IIA in Danshen as well as core target proteins such as prostaglandin G/H synthase 2, retinoic acid receptor RXR-alpha, sodium channel protein type 5 subunit alpha, prostaglandin G/H synthase 1 and beta-2 adrenergic receptor. Further, a method for screening IS candidates based on TCM symptoms was proposed to identify key TCM symptoms and syndromes using the "drug pair-TCM symptom-syndrome-IS" network. The results showed that three TCMs, namely Puhuang, Sanleng and Zelan, might be potential therapeutic candidates for IS, which provided a theoretical reference for the development of drugs for the treatment of IS.
Collapse
Affiliation(s)
- 家璇 高
- 江南大学 理学院(江苏无锡,214122)School of Science, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - 彦蕊 丁
- 江南大学 理学院(江苏无锡,214122)School of Science, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
11
|
Ni R, Jiang L, Zhang C, Liu M, Luo Y, Hu Z, Mou X, Zhu Y. Biologic Mechanisms of Macrophage Phenotypes Responding to Infection and the Novel Therapies to Moderate Inflammation. Int J Mol Sci 2023; 24:ijms24098358. [PMID: 37176064 PMCID: PMC10179618 DOI: 10.3390/ijms24098358] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Pro-inflammatory and anti-inflammatory types are the main phenotypes of the macrophage, which are commonly notified as M1 and M2, respectively. The alteration of macrophage phenotypes and the progression of inflammation are intimately associated; both phenotypes usually coexist throughout the whole inflammation stage, involving the transduction of intracellular signals and the secretion of extracellular cytokines. This paper aims to address the interaction of macrophages and surrounding cells and tissues with inflammation-related diseases and clarify the crosstalk of signal pathways relevant to the phenotypic metamorphosis of macrophages. On these bases, some novel therapeutic methods are proposed for regulating inflammation through monitoring the transition of macrophage phenotypes so as to prevent the negative effects of antibiotic drugs utilized in the long term in the clinic. This information will be quite beneficial for the diagnosis and treatment of inflammation-related diseases like pneumonia and other disorders involving macrophages.
Collapse
Affiliation(s)
- Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingjing Jiang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chaohai Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
TPL2 kinase expression is regulated by the p38γ/p38δ-dependent association of aconitase-1 with TPL2 mRNA. Proc Natl Acad Sci U S A 2022; 119:e2204752119. [PMID: 35994673 PMCID: PMC9436348 DOI: 10.1073/pnas.2204752119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p38γ and p38δ (p38γ/p38δ) regulate inflammation, in part by controlling tumor progression locus 2 (TPL2) expression in myeloid cells. Here, we demonstrate that TPL2 protein levels are dramatically reduced in p38γ/p38δ-deficient (p38γ/δ-/-) cells and tissues without affecting TPL2 messenger ribonucleic acid (mRNA) expression. We show that p38γ/p38δ posttranscriptionally regulates the TPL2 amount at two different levels. p38γ/p38δ interacts with the TPL2/A20 Binding Inhibitor of NF-κB2 (ABIN2)/Nuclear Factor κB1p105 (NF-κB1p105) complex, increasing TPL2 protein stability. Additionally, p38γ/p38δ regulates TPL2 mRNA translation by modulating the repressor function of TPL2 3' Untranslated region (UTR) mediated by its association with aconitase-1 (ACO1). ACO1 overexpression in wild-type cells increases the translational repression induced by TPL2 3'UTR and severely decreases TPL2 protein levels. p38δ binds to ACO1, and p38δ expression in p38γ/δ-/- cells fully restores TPL2 protein to wild-type levels by reducing the translational repression of TPL2 mRNA. This study reveals a unique mechanism of posttranscriptional regulation of TPL2 expression, which given its central role in innate immune response, likely has great relevance in physiopathology.
Collapse
|
13
|
Chen Y, Zhang L, Li Z, Wu Z, Lin X, Li N, Shen R, Wei G, Yu N, Gong F, Rui G, Xu R, Ji G. Mogrol Attenuates Osteoclast Formation and Bone Resorption by Inhibiting the TRAF6/MAPK/NF-κB Signaling Pathway In vitro and Protects Against Osteoporosis in Postmenopausal Mice. Front Pharmacol 2022; 13:803880. [PMID: 35496311 PMCID: PMC9038946 DOI: 10.3389/fphar.2022.803880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/08/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoporosis is a serious public health problem that results in fragility fractures, especially in postmenopausal women. Because the current therapeutic strategy for osteoporosis has various side effects, a safer and more effective treatment is worth exploring. It is important to examine natural plant extracts during new drug design due to low toxicity. Mogrol is an aglycon of mogroside, which is the active component of Siraitia grosvenorii (Swingle) and exhibits anti-inflammatory, anticancer and neuroprotective effects. Here, we demonstrated that mogrol dose-dependently inhibited osteoclast formation and function. To confirm the mechanism, RNA sequencing (RNA-seq), real-time PCR (RT–PCR), immunofluorescence and Western blotting were performed. The RNA-seq data revealed that mogrol had an effect on genes involved in osteoclastogenesis. Furthermore, RT–PCR indicated that mogrol suppressed osteoclastogenesis-related gene expression, including CTSK, ACP5, MMP9 and DC-STAMP, in RANKL-induced bone marrow macrophages Western blotting demonstrated that mogrol suppressed osteoclast formation by blocking TNF receptor-associated factor 6 (TRAF6)-dependent activation of the mitogen-activated protein kinase nuclear factor-B (NF-κB) signaling pathway, which decreased two vital downstream transcription factors, the nuclear factor of activated T cells calcineurin-dependent 1 (NFATc1) and c-Fos proteins expression. Furthermore, mogrol dramatically reduced bone mass loss in postmenopausal mice. In conclusion, these data showed that mogrol may be a promising procedure for osteoporosis prevention or therapy.
Collapse
Affiliation(s)
- Yongjie Chen
- Department of Orthopedics Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Linlin Zhang
- Department of Orthopedics Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zongguang Li
- Department of Orthopedics Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zuoxing Wu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China
| | - Xixi Lin
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China
| | - Na Li
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China
| | - Rong Shen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Guojun Wei
- Department of Orthopedics Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Naichun Yu
- Department of Orthopedics Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fengqing Gong
- Department of Orthopedics Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ren Xu
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Guangrong Ji
- Department of Orthopedics Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Göktuna SI. IKBKE-driven TPL2 and MEK1 phosphorylations sustain constitutive ERK1/2 activation in tumor cells. EXCLI JOURNAL 2022; 21:436-453. [PMID: 35391917 PMCID: PMC8983855 DOI: 10.17179/excli2021-4578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
IKBKE have been associated with numerous cancers. As a result, IKBKE have emerged as potential target for cancer therapy. Accumulating evidence support that IKBKE orchestrate tumor cell survival in cancers. Here we evaluated the possible link between IKBKE and ERK phosphorylation. The effects of IKBKE silencing on MAPK activation in tumor vs. normal cells were evaluated via WB and RT-PCR. Ectopically expressed IKBKE, TPL2 or MEK1 constructs were used to examine the possible interactions among them via co-IP. In vitro kinase assays were performed to understand nature of the observed interactions. In tumors, IKBKE regulates MEK/ERK constitutive activations in vitro and in vivo. IKBKE and TPL2 physically interact and this interaction leads to TPL2 phosphorylation. We describe here a novel regulatory link between IKBKE and constitutive ERK1/2 activation in tumor cells. This new circuitry may be relevant for tumor cell survival in various malignancies.
Collapse
Affiliation(s)
- Serkan Ismail Göktuna
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey,National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey,Laboratory of Medical Chemistry, Interdisciplinary Genomics and Genoproteomics Research Center (GIGA), University of Liege, Liege, Belgium,*To whom correspondence should be addressed: Serkan Ismail Göktuna, Department of Molecular Biology and Genetics, Bilkent University, 06800 Bilkent, Ankara, Turkey, E-mail:
| |
Collapse
|
15
|
Blair L, Pattison MJ, Chakravarty P, Papoutsopoulou S, Bakiri L, Wagner EF, Smale S, Ley SC. TPL-2 Inhibits IFN-β Expression via an ERK1/2-TCF-FOS Axis in TLR4-Stimulated Macrophages. THE JOURNAL OF IMMUNOLOGY 2022; 208:941-954. [PMID: 35082159 PMCID: PMC9012084 DOI: 10.4049/jimmunol.2100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022]
Abstract
TPL-2 activation of ERK1/2 regulates gene expression in TLR-stimulated macrophages. TPL-2 regulates transcription via ERK1/2 phosphorylation of ternary complex factors. TPL-2 inhibits Ifnb1 transcription via ternary complex factor–induced Fos mRNA expression.
TPL-2 kinase plays an important role in innate immunity, activating ERK1/2 MAPKs in myeloid cells following TLR stimulation. We investigated how TPL-2 controls transcription in TLR4-stimulated mouse macrophages. TPL-2 activation of ERK1/2 regulated expression of genes encoding transcription factors, cytokines, chemokines, and signaling regulators. Bioinformatics analysis of gene clusters most rapidly induced by TPL-2 suggested that their transcription was mediated by the ternary complex factor (TCF) and FOS transcription factor families. Consistently, TPL-2 induced ERK1/2 phosphorylation of the ELK1 TCF and the expression of TCF target genes. Furthermore, transcriptomic analysis of TCF-deficient macrophages demonstrated that TCFs mediate approximately half of the transcriptional output of TPL-2 signaling, partially via induced expression of secondary transcription factors. TPL-2 signaling and TCFs were required for maximal TLR4-induced FOS expression. Comparative analysis of the transcriptome of TLR4-stimulated Fos−/− macrophages indicated that TPL-2 regulated a significant fraction of genes by controlling FOS expression levels. A key function of this ERK1/2-TCF-FOS pathway was to mediate TPL-2 suppression of type I IFN signaling, which is essential for host resistance against intracellular bacterial infection.
Collapse
Affiliation(s)
- Louise Blair
- Immune Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J Pattison
- Immune Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Technology Platform, The Francis Crick Institute, London, United Kingdom
| | | | - Latifa Bakiri
- Laboratory of Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Laboratory of Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Laboratory of Genes and Disease, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Stephen Smale
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA; and
| | - Steven C Ley
- Immune Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom;
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Regulation of TLR4 signaling through the TRAF6/sNASP axis by reversible phosphorylation mediated by CK2 and PP4. Proc Natl Acad Sci U S A 2021; 118:2107044118. [PMID: 34789577 DOI: 10.1073/pnas.2107044118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of invading pathogens by Toll-like receptors (TLRs) activates innate immunity through signaling pathways that involved multiple protein kinases and phosphatases. We previously demonstrated that somatic nuclear autoantigenic sperm protein (sNASP) binds to TNF receptor-associated factor 6 (TRAF6) in the resting state. Upon TLR4 activation, a signaling complex consisting of TRAF6, sNASP, interleukin (IL)-1 receptor-associated kinase 4, and casein kinase 2 (CK2) is formed. CK2 then phosphorylates sNASP to release phospho-sNASP (p-sNASP) from TRAF6, initiating downstream signaling pathways. Here, we showed that protein phosphatase 4 (PP4) is the specific sNASP phosphatase that negatively regulates TLR4-induced TRAF6 activation and its downstream signaling pathway. Mechanistically, PP4 is directly recruited by phosphorylated sNASP to dephosphorylate p-sNASP to terminate TRAF6 activation. Ectopic expression of PP4 specifically inhibited sNASP-dependent proinflammatory cytokine production and downstream signaling following bacterial lipopolysaccharide (LPS) treatment, whereas silencing PP4 had the opposite effect. Primary macrophages and mice infected with recombinant adenovirus carrying a gene encoding PP4 (Ad-PP4) showed significant reduction in IL-6 and TNF-α production. Survival of Ad-PP4-infected mice was markedly increased due to a better ability to clear bacteria in a sepsis model. These results indicate that the serine/threonine phosphatase PP4 functions as a negative regulator of innate immunity by regulating the binding of sNASP to TRAF6.
Collapse
|
17
|
Bansod S, Dodhiawala PB, Lim KH. Oncogenic KRAS-Induced Feedback Inflammatory Signaling in Pancreatic Cancer: An Overview and New Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13215481. [PMID: 34771644 PMCID: PMC8582583 DOI: 10.3390/cancers13215481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains highly refractory to treatment. While the KRAS oncogene is present in almost all PDAC cases and accounts for many of the malignant feats of PDAC, targeting KRAS or its canonical, direct effector cascades remains unsuccessful in patients. The recalcitrant nature of PDAC is also heavily influenced by its highly fibro-inflammatory tumor microenvironment (TME), which comprises an acellular extracellular matrix and various types of non-neoplastic cells including fibroblasts, immune cells, and adipocytes, underscoring the critical need to delineate the bidirectional signaling interplay between PDAC cells and the TME in order to develop novel therapeutic strategies. The impact of tumor-cell KRAS signaling on various cell types in the TME has been well covered by several reviews. In this article, we critically reviewed evidence, including work from our group, on how the feedback inflammatory signals from the TME impact and synergize with oncogenic KRAS signaling in PDAC cells, ultimately augmenting their malignant behavior. We discussed past and ongoing clinical trials that target key inflammatory pathways in PDAC and highlight lessons to be learned from outcomes. Lastly, we provided our perspective on the future of developing therapeutic strategies for PDAC through understanding the breadth and complexity of KRAS and the inflammatory signaling network.
Collapse
Affiliation(s)
- Sapana Bansod
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.B.); (P.B.D.)
| | - Paarth B. Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.B.); (P.B.D.)
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.B.); (P.B.D.)
- Correspondence: ; Tel.: +1-314-362-6157
| |
Collapse
|
18
|
Kron NS, Fieber LA. Aplysia Neurons as a Model of Alzheimer's Disease: Shared Genes and Differential Expression. J Mol Neurosci 2021; 72:287-302. [PMID: 34664226 PMCID: PMC8840921 DOI: 10.1007/s12031-021-01918-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Although Alzheimer’s disease (AD) is the most common form of dementia in the United States, development of therapeutics has proven difficult. Invertebrate alternatives to current mammalian AD models have been successfully employed to study the etiology of the molecular hallmarks of AD. The marine snail Aplysia californica offers a unique and underutilized system in which to study the physiological, behavioral, and molecular impacts of AD. Mapping of the Aplysia proteome to humans and cross-referencing with two databases of genes of interest in AD research identified 898 potential orthologs of interest in Aplysia. Included among these orthologs were alpha, beta and gamma secretases, amyloid-beta, and tau. Comparison of age-associated differential expression in Aplysia sensory neurons with that of late-onset AD in the frontal lobe identified 59 ortholog with concordant differential expression across data sets. The 21 concordantly upregulated genes suggested increased cellular stress and protein dyshomeostasis. The 47 concordantly downregulated genes included important components of diverse neuronal processes, including energy metabolism, mitochondrial homeostasis, synaptic signaling, Ca++ regulation, and cellular cargo transport. Compromised functions in these processes are known hallmarks of both human aging and AD, the ramifications of which are suggested to underpin cognitive declines in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
19
|
Latha K, Jamison KF, Watford WT. Tpl2 Ablation Leads to Hypercytokinemia and Excessive Cellular Infiltration to the Lungs During Late Stages of Influenza Infection. Front Immunol 2021; 12:738490. [PMID: 34691044 PMCID: PMC8529111 DOI: 10.3389/fimmu.2021.738490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Tumor progression locus 2 (Tpl2) is a serine-threonine kinase known to promote inflammation in response to various pathogen-associated molecular patterns (PAMPs), inflammatory cytokines and G-protein-coupled receptors and consequently aids in host resistance to pathogens. We have recently shown that Tpl2-/- mice succumb to infection with a low-pathogenicity strain of influenza (x31, H3N2) by an unknown mechanism. In this study, we sought to characterize the cytokine and immune cell profile of influenza-infected Tpl2-/- mice to gain insight into its host protective effects. Although Tpl2-/- mice display modestly impaired viral control, no virus was observed in the lungs of Tpl2-/- mice on the day of peak morbidity and mortality suggesting that morbidity is not due to virus cytopathic effects but rather to an overactive antiviral immune response. Indeed, increased levels of interferon-β (IFN-β), the IFN-inducible monocyte chemoattractant protein-1 (MCP-1, CCL2), Macrophage inflammatory protein 1 alpha (MIP-1α; CCL3), MIP-1β (CCL4), RANTES (CCL5), IP-10 (CXCL10) and Interferon-γ (IFN-γ) was observed in the lungs of influenza-infected Tpl2-/- mice at 7 days post infection (dpi). Elevated cytokine and chemokines were accompanied by increased infiltration of the lungs with inflammatory monocytes and neutrophils. Additionally, we noted that increased IFN-β correlated with increased CCL2, CXCL1 and nitric oxide synthase (NOS2) expression in the lungs, which has been associated with severe influenza infections. Bone marrow chimeras with Tpl2 ablation localized to radioresistant cells confirmed that Tpl2 functions, at least in part, within radioresistant cells to limit pro-inflammatory response to viral infection. Collectively, this study suggests that Tpl2 tempers inflammation during influenza infection by constraining the production of interferons and chemokines which are known to promote the recruitment of detrimental inflammatory monocytes and neutrophils.
Collapse
Affiliation(s)
- Krishna Latha
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Katelyn F. Jamison
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Maimaris G, Christodoulou A, Santama N, Lederer CW. Regulation of ER Composition and Extent, and Putative Action in Protein Networks by ER/NE Protein TMEM147. Int J Mol Sci 2021; 22:10231. [PMID: 34638576 PMCID: PMC8508377 DOI: 10.3390/ijms221910231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023] Open
Abstract
Nuclear envelope (NE) and endoplasmic reticulum (ER) collaborate to control a multitude of nuclear and cytoplasmic actions. In this context, the transmembrane protein TMEM147 localizes to both NE and ER, and through direct and indirect interactions regulates processes as varied as production and transport of multipass membrane proteins, neuronal signaling, nuclear-shape, lamina and chromatin dynamics and cholesterol synthesis. Aiming to delineate the emerging multifunctionality of TMEM147 more comprehensively, we set as objectives, first, to assess potentially more fundamental effects of TMEM147 on the ER and, second, to identify significantly TMEM147-associated cell-wide protein networks and pathways. Quantifying curved and flat ER markers RTN4 and CLIMP63/CKAP4, respectively, we found that TMEM147 silencing causes area and intensity increases for both RTN4 and CLIMP63, and the ER in general, with a profound shift toward flat areas, concurrent with reduction in DNA condensation. Protein network and pathway analyses based on comprehensive compilation of TMEM147 interactors, targets and co-factors then served to manifest novel and established roles for TMEM147. Thus, algorithmically simplified significant pathways reflect TMEM147 function in ribosome binding, oxidoreductase activity, G protein-coupled receptor activity and transmembrane transport, while analysis of protein factors and networks identifies hub proteins and corresponding pathways as potential targets of TMEM147 action and of future functional studies.
Collapse
Affiliation(s)
- Giannis Maimaris
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Carsten Werner Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
22
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
23
|
Xie X, Zhu L, Jie Z, Li Y, Gu M, Zhou X, Wang H, Chang JH, Ko CJ, Cheng X, Sun SC. TRAF2 regulates T cell immunity by maintaining a Tpl2-ERK survival signaling axis in effector and memory CD8 T cells. Cell Mol Immunol 2021; 18:2262-2274. [PMID: 33203937 PMCID: PMC8429472 DOI: 10.1038/s41423-020-00583-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
Generation and maintenance of antigen-specific effector and memory T cells are central events in immune responses against infections. We show that TNF receptor-associated factor 2 (TRAF2) maintains a survival signaling axis in effector and memory CD8 T cells required for immune responses against infections. This signaling axis involves activation of Tpl2 and its downstream kinase ERK by NF-κB-inducing kinase (NIK) and degradation of the proapoptotic factor Bim. NIK mediates Tpl2 activation by stimulating the phosphorylation and degradation of the Tpl2 inhibitor p105. Interestingly, while NIK is required for Tpl2-ERK signaling under normal conditions, uncontrolled NIK activation due to loss of its negative regulator, TRAF2, causes constitutive degradation of p105 and Tpl2, leading to severe defects in ERK activation and effector/memory CD8 T cell survival. Thus, TRAF2 controls a previously unappreciated signaling axis mediating effector/memory CD8 T cell survival and protective immunity.
Collapse
Affiliation(s)
- Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jae-Hoon Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
24
|
Nanda SK, Prescott AR, Figueras-Vadillo C, Cohen P. IKKβ is required for the formation of the NLRP3 inflammasome. EMBO Rep 2021; 22:e50743. [PMID: 34403206 PMCID: PMC8490994 DOI: 10.15252/embr.202050743] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
The rapid formation and activation of the NLRP3 inflammasome is induced by co‐stimulation with LPS and nigericin. It requires the LPS‐stimulated activation of IKKβ, which exerts its effects independently of de novo gene transcription, protein translation and other protein kinases activated by IKKβ. IKKβ is not required for the nigericin‐induced dispersion of the trans‐Golgi network (TGN), but to bring NLRP3 in proximity with TGN38. The nigericin‐induced dispersion of the Golgi is enhanced by co‐stimulation with LPS, and this enhancement is IKKβ‐dependent. Prolonged stimulation with LPS to increase the expression of NLRP3, followed by stimulation with nigericin, produced larger TGN38‐positive puncta, and the ensuing activation of the NLRP3 inflammasome was also suppressed by IKKβ inhibitors added prior to stimulation with nigericin. IKKβ therefore has a key role in recruiting NLRP3 to the dispersed TGN, leading to the formation and activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Sambit K Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Alan R Prescott
- Dundee Imaging Facility and Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
25
|
Wang Y, Du P, Jiang D. Rigosertib inhibits MEK1-ERK pathway and alleviates lipopolysaccharide-induced sepsis. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:991-999. [PMID: 34061465 PMCID: PMC8342218 DOI: 10.1002/iid3.458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022]
Abstract
Background Here, by using the lipopolysaccharide (LPS)‐induced mice sepsis model, we treated septic wild‐type (WT) mice or MEK1DD mice with rigosertib to evaluate its prospective effects on sepsis. Methods We also generated macrophages derived from bone marrow from WT or MEK1DD mice. These macrophages were pretreated with rigosertib and then induced with LPS or poly I:C. Results Rigosertib suppressed LPS or poly I:C‐induced expression of inflammatory cytokines (tumor necrosis factor‐alpha [TNF‐α] and interleukin‐6 [IL‐6], and IL‐23) in WT bone marrow–derived macrophages while failed to affect the upregulation of TNF‐α and IL‐6 in LPS‐treated bone marrow–derived macrophages from MEK1DD mice. Rigosertib promoted survival rate, ameliorated lung injury, and reduced inflammatory cytokine levels in serum of WT septic mice. Conclusion In contrast, the effects of rigosertib on sepsis were abrogated in septic MEK1DD mice, which had inducible constitutive activation of MEK1 signaling. Rigosertib alleviated LPS‐induced sepsis inhibits MEK1/ERK signaling pathway.
Collapse
Affiliation(s)
- Yin Wang
- Department of Intensive Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Pengfei Du
- Department of Intensive Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Donghui Jiang
- Department of Intensive Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Chang R, Zheng W, Sun Y, Xu T. microRNA-1388-5p inhibits NF-κB signaling pathway in miiuy croaker through targeting IRAK1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104025. [PMID: 33539892 DOI: 10.1016/j.dci.2021.104025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Innate immune response is an important response mechanism for the host to achieve self-protection, and it plays an important role in identifying pathogens and resisting pathogen invasion. Growing evidences have shown that microRNA functions as a crucial regulator involved in the host innate immune response. In this study, the regulations of miR-1388-5p to regulate NF-κB signaling pathways via targeting the IRAK1 gene was studied in miiuy croaker. First, through bioinformatics software prediction, we found that IRAK1 is the direct target of miR-1388-5p, and then the prediction results were verified by using dual-luciferase assays. Next, we found that both miR-1388-5p mimics and pre-miR-1388 plasmids inhibit IRAK1 expression by complementing the seed sequence in the 3'-untranslated region (3'-UTR) of IRAK1. Finally, we observed that miR-1388-5p could negatively regulate NF-κB pathways through targeting IRAK1. These results provide new insights into the function of miR-1388-5p in fish innate immunity, meanwhile enriching miRNA-mediated regulatory networks.
Collapse
Affiliation(s)
- Renjie Chang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
27
|
OVOL2 attenuates the expression of MAP3K8 to suppress epithelial mesenchymal transition in colorectal cancer. Pathol Res Pract 2021; 224:153493. [PMID: 34098198 DOI: 10.1016/j.prp.2021.153493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Inactivation of members of the OVO-like family of C2H2 zinc-finger transcription factor 2 (OVOL2) is increased after colorectal cancer (CRC) metastasis. This study investigated the functional roles and clinical relevance of OVOL2 and its downstream factors in colorectal carcinogenesis. METHODS Transcriptome RNA sequencing (RNA-seq) of HCT116 cells overexpressing OVOL2 and SW480 cells silencing OVOL2 were conducted. We cross-checked the Chromatin Immunoprecipitation sequencing (ChIP-seq, GSM1239518) positive peaks and RNA-seq differential expression genes (DEGs). In vitro functional assays, including wound-healing assay and transwell assay, were performed. The RNA expression (n = 597) and protein expression (n = 93) of OVOL2- mitogen-activated protein kinase kinase kinase 8 (MAP3K8)-C-X-C Motif Chemokine Ligand 16 (CXCL16) were evaluated in human CRC and adjacent normal tissues. CXCL16 levels in cell culture supernatants and serum samples obtained from 29 colon polyps patients and 24 CRC patients were measured using ELISA. RESULTS We found that OVOL2 inhibited the migration and epithelial mesenchymal transition (EMT) of CRC cells by blocking the MAP3K8/AKT/NF-κB signaling pathway, and also decreased levels of CXCL16, a chemokine downstream of the MAP3K8/AKT/NF-κB signaling pathway. Furthermore, patient tumor tissue samples showed a lower level of in situ OVOL2 (P = 0.005) and higher CXCL16 (P = 0.001) levels, compared to adjacent normal tissues. Survival analyses revealed that both OVOL2 (logrank P = 0.063) and CXCL16 (logrank P = 0.048) were associated with overall survival (OS) and were independent prognostic factors for CRC. Additionally, OVOL2 and CXCL16 were found to be prognostically relevant (logrank P = 0.038). CXCL16 may serve as a potential diagnostic biomarker for CRC (P = 0.010). CONCLUSIONS The OVOL2/ MAP3K8/CXCL16 axis is a key player in colonic tumorigenesis and metastasis, and may be a potential diagnostic and prognostic biomarker.
Collapse
|
28
|
Petrova T, Zhang J, Nanda SK, Figueras-Vadillo C, Cohen P. HOIL-1-catalysed ester-linked ubiquitylation restricts IL-18 signaling in cytotoxic T cells but promotes TLR signalling in macrophages. FEBS J 2021; 288:5909-5924. [PMID: 33932090 DOI: 10.1111/febs.15896] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022]
Abstract
The atypical E3 ligase HOIL-1 forms ester bonds between ubiquitin and serine/threonine residues in proteins, but the physiological roles of this unusual modification are unknown. We now report that IL-18 signalling leading to the production of interferon γ (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is enhanced in cytotoxic T cells from knock-in mice expressing the E3 ligase-inactive HOIL-1[C458S] mutant, demonstrating that the formation of HOIL-1-catalysed ester-linked ubiquitin bonds restricts the activation of this pathway. We show that the interaction of IRAK2 with TRAF6 is required for IL-18-stimulated IFN-γ and GM-CSF production, and that the increased production of these cytokines in cytotoxic T cells from HOIL-1[C458S] mice correlates with an increase in both the number and size of the Lys63/Met1-linked hybrid ubiquitin chains attached to IRAK2 in these cells. In contrast, the secretion of IL-12 and IL-6 and the formation of il-12 and il-6 mRNA induced in bone marrow-derived macrophages (BMDMs) by prolonged stimulation with TLR-activating ligands that signal via myddosomes, which also requires the interaction of IRAK2 with TRAF6, were not increased but modestly reduced in HOIL-1[C458S] BMDM. The decreased production of these cytokines correlated with reduced ubiquitylation of IRAK2. Our results establish that changes in HOIL-1-catalysed ester-linked ubiquitylation can promote or reduce cytokine production depending on the ligand, receptor and immune cell and may be explained by differences in the ubiquitylation of IRAK2.
Collapse
Affiliation(s)
- Tsvetana Petrova
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| | - Jiazhen Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| | - Sambit K Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| | - Clara Figueras-Vadillo
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK
| |
Collapse
|
29
|
Wada Y, Suzuki A, Ishiguro H, Murakashi E, Numabe Y. Chronological Gene Expression of Human Gingival Fibroblasts with Low Reactive Level Laser (LLL) Irradiation. J Clin Med 2021; 10:jcm10091952. [PMID: 34062904 PMCID: PMC8125544 DOI: 10.3390/jcm10091952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 01/06/2023] Open
Abstract
Though previously studies have reported that Low reactive Level Laser Therapy (LLLT) promotes wound healing, molecular level evidence was uncleared. The purpose of this study is to examine the temporal molecular processes of human immortalized gingival fibroblasts (HGF) by LLLT by the comprehensive analysis of gene expression. HGF was seeded, cultured for 24 h, and then irradiated with a Nd: YAG laser at 0.5 W for 30 s. After that, gene differential expression analysis and functional analysis were performed with DNA microarray at 1, 3, 6 and 12 h after the irradiation. The number of genes with up- and downregulated differentially expression genes (DEGs) compared to the nonirradiated group was large at 6 and 12 h after the irradiation. From the functional analysis results of DEGs, Biological Process (BP) based Gene Ontology (GO), BP ‘the defense response’ is considered to be an important process with DAVID. Additionally, the results of PPI analysis of DEGs involved in the defense response with STRING, we found that the upregulated DEGs such as CXCL8 and NFKB1, and the downregulated DEGs such as NFKBIA and STAT1 were correlated with multiple genes. We estimate that these genes are key genes on the defense response after LLLT.
Collapse
Affiliation(s)
- Yuki Wada
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan; (Y.W.); (H.I.); (E.M.); (Y.N.)
| | - Asami Suzuki
- Division of General Dentistry, The Nippon Dental University Hospital, 2-3-16 Fujimi, Chiyoda-ku, Tokyo 102-8158, Japan
- Correspondence: ; Tel.: +81-3-3261-5511
| | - Hitomi Ishiguro
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan; (Y.W.); (H.I.); (E.M.); (Y.N.)
- Dental Education Support Center, School of Life Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Etsuko Murakashi
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan; (Y.W.); (H.I.); (E.M.); (Y.N.)
| | - Yukihiro Numabe
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan; (Y.W.); (H.I.); (E.M.); (Y.N.)
- Dental Education Support Center, School of Life Dentistry, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| |
Collapse
|
30
|
Breyer F, Härtlova A, Thurston T, Flynn HR, Chakravarty P, Janzen J, Peltier J, Heunis T, Snijders AP, Trost M, Ley SC. TPL-2 kinase induces phagosome acidification to promote macrophage killing of bacteria. EMBO J 2021; 40:e106188. [PMID: 33881780 PMCID: PMC8126920 DOI: 10.15252/embj.2020106188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/05/2023] Open
Abstract
Tumour progression locus 2 (TPL‐2) kinase mediates Toll‐like receptor (TLR) activation of ERK1/2 and p38α MAP kinases in myeloid cells to modulate expression of key cytokines in innate immunity. This study identified a novel MAP kinase‐independent regulatory function for TPL‐2 in phagosome maturation, an essential process for killing of phagocytosed microbes. TPL‐2 catalytic activity was demonstrated to induce phagosome acidification and proteolysis in primary mouse and human macrophages following uptake of latex beads. Quantitative proteomics revealed that blocking TPL‐2 catalytic activity significantly altered the protein composition of phagosomes, particularly reducing the abundance of V‐ATPase proton pump subunits. Furthermore, TPL‐2 stimulated the phosphorylation of DMXL1, a regulator of V‐ATPases, to induce V‐ATPase assembly and phagosome acidification. Consistent with these results, TPL‐2 catalytic activity was required for phagosome acidification and the efficient killing of Staphylococcus aureus and Citrobacter rodentium following phagocytic uptake by macrophages. TPL‐2 therefore controls innate immune responses of macrophages to bacteria via V‐ATPase induction of phagosome maturation.
Collapse
Affiliation(s)
| | - Anetta Härtlova
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Teresa Thurston
- Department of Infectious Diseases, MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | | | | | | | - Julien Peltier
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Tiaan Heunis
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Steven C Ley
- The Francis Crick Institute, London, UK.,Department of Immunology & Inflammation, Centre for Molecular Immunology & Inflammation, Imperial College London, London, UK
| |
Collapse
|
31
|
Foot-and-Mouth Disease Virus Structural Protein VP1 Destroys the Stability of TPL2 Trimer by Degradation TPL2 to Evade Host Antiviral Immunity. J Virol 2021; 95:JVI.02149-20. [PMID: 33361430 PMCID: PMC8092693 DOI: 10.1128/jvi.02149-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor progression locus 2 (TPL2) is a serine/threonine kinase that belongs to the mitogen-activated protein 3 kinase (MAP3K) family, and it plays an important role in pathogen infection. The trimer complex of TPL2, p105, and ABIN2 is essential for maintenance of TPL2 steady-state levels and host cell response to pathogens. Foot-and-mouth disease virus (FMDV) is a positive-strand RNA virus of the family Picornaviridae that encodes proteins capable of antagonizing host immune responses to achieve infection. The VP1 protein of FMDV is a multifunctional protein that can bind host cells and induce an immune response as well as cell apoptosis. However, the role and mechanisms of TPL2 in FMDV infection remain unknown. Here, we determined that FMDV infection could inhibit TPL2, p105, and ABIN2 at the transcription and protein levels, while VP1 could only inhibit TPL2, p105 and ABIN2 at protein level. TPL2 inhibited the replication of FMDV in vivo and in vitro, the 268 to 283 amino-acid region in the TPL2 kinase domain was essential for interaction with VP1. Moreover, VP1 promoted K48-linked polyubiquitination of TPL2 and degraded TPL2 by the proteasome pathway. However, VP1-induced degradation of p105 and ABIN2 was independent of proteasome, autophagy, lysosome, and caspase-dependent pathways. Further studies showed that VP1 destroyed the stability of the TPL2-p105-ABIN2 complex. Taken together, these results revealed that VP1 antagonized TPL2-meditated antivirus activity by degrading TPL2 and destroying its complex. These findings may contribute to understand FMDV-host interactions and improve development of a novel vaccine to prevent FMDV infection.Importance Virus-host interactions are critical for virus infection. This study was the first to demonstrate the antiviral effect of host TPL2 during FMDV replication by increasing production of interferons and antiviral cytokines. Both FMDV and VP1 protein can reduce host TPL2, ABIN2 and p105 to destroy TPL2-p105-ABIN2 trimer complex. VP1 interacted with TPL2 and degrade TPL2 via proteasome pathway to repress TPL2-mediated antivirus activity. This study provided new insights into FMDV immune evasion mechanisms, elucidating new informations regarding FMDV counteraction of host antivirus activity.
Collapse
|
32
|
Verma H, Nagar S, Vohra S, Pandey S, Lal D, Negi RK, Lal R, Rawat CD. Genome analyses of 174 strains of Mycobacterium tuberculosis provide insight into the evolution of drug resistance and reveal potential drug targets. Microb Genom 2021; 7:mgen000542. [PMID: 33750515 PMCID: PMC8190606 DOI: 10.1099/mgen.0.000542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis is a known human pathogen that causes the airborne infectious disease tuberculosis (TB). Every year TB infects millions of people worldwide. The emergence of multi-drug resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) M. tuberculosis strains against the first- and second-line anti-TB drugs has created an urgent need for the development and implementation of new drug strategies. In this study, the complete genomes of 174 strains of M. tuberculosis are analysed to understand the evolution of molecular drug target (MDT) genes. Phylogenomic placements of M. tuberculosis strains depicted close association and temporal clustering. Selection pressure analysis by deducing the ratio of non-synonymous to synonymous substitution rates (dN/dS) in 51 MDT genes of the 174 M. tuberculosis strains led to categorizing these genes into diversifying (D, dN/dS>0.70), moderately diversifying (MD, dN/dS=0.35-0.70) and stabilized (S, dN/dS<0.35) genes. The genes rpsL, gidB, pncA and ahpC were identified as diversifying, and Rv0488, kasA, ndh, ethR, ethA, embR and ddn were identified as stabilized genes. Furthermore, sequence similarity networks were drawn that supported these divisions. In the multiple sequence alignments of diversifying and stabilized proteins, previously reported resistance mutations were checked to predict sensitive and resistant strains of M. tuberculosis. Finally, to delineate the potential of stabilized or least diversified genes/proteins as anti-TB drug targets, protein-protein interactions of MDT proteins with human proteins were analysed. We predict that kasA (dN/dS=0.29), a stabilized gene that encodes the most host-interacting protein, KasA, should serve as a potential drug target for the treatment of TB.
Collapse
Affiliation(s)
- Helianthous Verma
- Molecular Biology and Genomics Research Laboratory, Ramjas College, University of Delhi, Delhi 110007, India
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | - Shekhar Nagar
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Shivani Vohra
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Shubhanshu Pandey
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Department of Biotechnology, Jamia Millia Islamia, Okhla, New Delhi 110025, India
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | | | - Rup Lal
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India
| | - Charu Dogra Rawat
- Molecular Biology and Genomics Research Laboratory, Ramjas College, University of Delhi, Delhi 110007, India
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| |
Collapse
|
33
|
Dodhiawala PB, Khurana N, Zhang D, Cheng Y, Li L, Wei Q, Seehra K, Jiang H, Grierson PM, Wang-Gillam A, Lim KH. TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations. J Clin Invest 2021; 130:4771-4790. [PMID: 32573499 DOI: 10.1172/jci137660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB transcription factors, driven by the IRAK/IKK cascade, confer treatment resistance in pancreatic ductal adenocarcinoma (PDAC), a cancer characterized by near-universal KRAS mutation. Through reverse-phase protein array and RNA sequencing we discovered that IRAK4 also contributes substantially to MAPK activation in KRAS-mutant PDAC. IRAK4 ablation completely blocked RAS-induced transformation of human and murine cells. Mechanistically, expression of mutant KRAS stimulated an inflammatory, autocrine IL-1β signaling loop that activated IRAK4 and the MAPK pathway. Downstream of IRAK4, we uncovered TPL2 (also known as MAP3K8 or COT) as the essential kinase that propels both MAPK and NF-κB cascades. Inhibition of TPL2 blocked both MAPK and NF-κB signaling, and suppressed KRAS-mutant cell growth. To counter chemotherapy-induced genotoxic stress, PDAC cells upregulated TLR9, which activated prosurvival IRAK4/TPL2 signaling. Accordingly, a TPL2 inhibitor synergized with chemotherapy to curb PDAC growth in vivo. Finally, from TCGA we characterized 2 MAP3K8 point mutations that hyperactivate MAPK and NF-κB cascades by impeding TPL2 protein degradation. Cancer cell lines naturally harboring these MAP3K8 mutations are strikingly sensitive to TPL2 inhibition, underscoring the need to identify these potentially targetable mutations in patients. Overall, our study establishes TPL2 as a promising therapeutic target in RAS- and MAP3K8-mutant cancers and strongly prompts development of TPL2 inhibitors for preclinical and clinical studies.
Collapse
Affiliation(s)
- Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Namrata Khurana
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yi Cheng
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qing Wei
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kuljeet Seehra
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
34
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
35
|
Her2 promotes early dissemination of breast cancer by suppressing the p38 pathway through Skp2-mediated proteasomal degradation of Tpl2. Oncogene 2020; 39:7034-7050. [PMID: 32989258 PMCID: PMC7680376 DOI: 10.1038/s41388-020-01481-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 01/28/2023]
Abstract
While mechanisms for metastasis were extensively studied in cancer cells from patients with detectable tumors, pathways underlying metastatic dissemination from early lesions before primary tumors appear are poorly understood. Her2 promotes breast cancer early dissemination by suppressing p38, but how Her2 downregulates p38 is unclear. Here, we demonstrate that in early lesion breast cancer models, Her2 inhibits p38 by inducing Skp2 through Akt-mediated phosphorylation, which promotes ubiquitination and proteasomal degradation of Tpl2, a p38 MAP3K. The early disseminating cells are Her2+Skp2highTpl2lowp-p38lowE-cadherinlow in the MMTV-Her2 breast cancer model. In human breast carcinoma, high Skp2 and low Tpl2 expression are associated with the Her2+ status; Tpl2 expression positively correlates with that of activated p38; Skp2 expression negatively correlates with that of Tpl2 and activated p38. Moreover, the Her2-Akt-Skp2-Tpl2-p38 axis plays a key role in the disseminating phenotypes in early lesion breast cancer cells; inhibition of Tpl2 enhances early dissemination in vivo. These findings identify the Her2-Akt-Skp2-Tpl2-p38 cascade as a novel mechanism mediating breast cancer early dissemination and a potential target for novel therapies targeting early metastatic dissemination.
Collapse
|
36
|
Khurana N, Dodhiawala PB, Bulle A, Lim KH. Deciphering the Role of Innate Immune NF-ĸB Pathway in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12092675. [PMID: 32961746 PMCID: PMC7564842 DOI: 10.3390/cancers12092675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chronic inflammation is a major mechanism that underlies the aggressive nature and treatment resistance of pancreatic cancer. In many ways, the molecular mechanisms that drive chronic inflammation in pancreatic cancer are very similar to our body’s normal innate immune response to injury or invading microorganisms. Therefore, during cancer development, pancreatic cancer cells hijack the innate immune pathway to foster a chronically inflamed tumor environment that helps shield them from immune attack and therapeutics. While blocking the innate immune pathway is theoretically reasonable, untoward side effects must also be addressed. In this review, we comprehensively summarize the literature that describe the role of innate immune signaling in pancreatic cancer, emphasizing the specific role of this pathway in different cell types. We review the interaction of the innate immune pathway and cancer-driving signaling in pancreatic cancer and provide an updated overview of novel therapeutic opportunities against this mechanism. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with no effective treatment option. A predominant hallmark of PDAC is the intense fibro-inflammatory stroma which not only physically collapses vasculature but also functionally suppresses anti-tumor immunity. Constitutive and induced activation of the NF-κB transcription factors is a major mechanism that drives inflammation in PDAC. While targeting this pathway is widely supported as a promising therapeutic strategy, clinical success is elusive due to a lack of safe and effective anti-NF-κB pathway therapeutics. Furthermore, the cell type-specific contribution of this pathway, specifically in neoplastic cells, stromal fibroblasts, and immune cells, has not been critically appraised. In this article, we highlighted seminal and recent literature on molecular mechanisms that drive NF-κB activity in each of these major cell types in PDAC, focusing specifically on the innate immune Toll-like/IL-1 receptor pathway. We reviewed recent evidence on the signaling interplay between the NF-κB and oncogenic KRAS signaling pathways in PDAC cells and their collective contribution to cancer inflammation. Lastly, we reviewed clinical trials on agents that target the NF-κB pathway and novel therapeutic strategies that have been proposed in preclinical studies.
Collapse
Affiliation(s)
- Namrata Khurana
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
37
|
Han Y, Hou R, Zhang X, Liu H, Gao Y, Li X, Qi R, Cai R, Qi Y. Amlexanox exerts anti-inflammatory actions by targeting phosphodiesterase 4B in lipopolysaccharide-activated macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118766. [PMID: 32504661 DOI: 10.1016/j.bbamcr.2020.118766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Amlexanox, an anti-inflammatory agent, is widely used for treating aphthous ulcers. Recently, amlexanox has received considerable attention because of its efficacy in mitigating metabolic inflammation via directly suppressing IKKε/TBK1. However, because the knockdown of IKKε/TBK1 has no anti-inflammatory effect on lipopolysaccharide (LPS)-primed RAW264.7 cells, the mechanism of amlexanox against classical inflammation is independent of IKKε/TBK1. In this study, we aim to examine the effects of amlexanox on LPS-treated macrophages and in a mouse model of endotoxemia. We found that amlexanox significantly inhibited the production of pro-inflammatory mediators, both in vitro and in vivo, while increased interleukin-10 level in LPS-activated macrophages. Mechanistically, amlexanox down-regulated nuclear factor κB and extracellular signal-regulated kinase/activator protein-1 signaling by elevating intracellular 3',5'-cyclic adenosine monophosphate (cAMP) level and subsequently activating protein kinase A. Molecular docking along with fluorescence polarization and enzyme inhibition assays revealed that amlexanox bound directly to phosphodiesterase (PDE) 4B to inhibit its activity. The anti-inflammatory effects of amlexanox could be abolished by the application of cAMP antagonist or PDE4B siRNA. In addition to PDE4B, the activities of PDE1C, 3A, and 3B were directly inhibited by amlexanox. Our results provide mechanistic insight into the clinical utility of amlexanox for the treatment of inflammatory disorders and might contribute to extending the clinical indications of amlexanox.
Collapse
Affiliation(s)
- Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
38
|
Guo S, Wu J, Zhou W, Liu X, Zhang J, Jia S, Meng Z, Liu S, Ni M, Liu Y. Investigating the multi-target pharmacological mechanism of danhong injection acting on unstable angina by combined network pharmacology and molecular docking. BMC Complement Med Ther 2020; 20:66. [PMID: 32122353 PMCID: PMC7076845 DOI: 10.1186/s12906-020-2853-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Background Danhong injection (DHI), which is one of the most well-known Traditional Chinese Medicine (TCM) injections, widely used to treat unstable angina (UA). However, its underlying pharmacological mechanisms need to be further clarified. Methods In the present study, network pharmacology was adopted. Firstly, the relative compounds were obtained by a wide-scaled literatures-mining and potential targets of these compounds by target fishing were collected. Then, we built the UA target database by DisGeNET, DigSee, TTD, OMIM. Based on data, protein-protein interaction (PPI) analysis, GO and KEGG pathway enrichment analysis were performed and screen the hub targets by topology. Furthermore, evaluation of the binding potential of key targets and compounds through molecular docking. Results The results showed that 12 ingredients of DHI and 27 putative known therapeutic targets were picked out. By systematic analysis, identified 4 hub targets (TNF, TLR4, NFKB1 and SERPINE1) mainly involved in the complex treating effects associated with coagulation and hemostasis, cell membrane region, platelet alpha granule, NF-kappa B signaling pathway and TNF signaling pathway. Conclusion The results of this study preliminarily explained the potential targets and signaling pathways of DHI in the treatment of UA, which may help to laid a good foundation for experimental research and further clinical application.
Collapse
Affiliation(s)
- Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China.
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, China
| |
Collapse
|
39
|
Bizzarri M. Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. APPROACHING COMPLEX DISEASES 2020. [PMCID: PMC7164543 DOI: 10.1007/978-3-030-32857-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melatonin, N-acetyl-5-methoxy-tryptamine, was discovered to be a product of serotonin metabolism in the mammalian pineal gland where its synthesis is under control of the light:dark cycle. Besides its regulatory pathway involving ganglion cells in the retina, the neural connections between the eyes and the pineal gland include the master circadian clock, the suprachiasmatic nuclei, and the central and peripheral nervous systems. Since pineal melatonin is released into the blood and into the cerebrospinal fluid, it has access to every cell in an organism and it mediates system-wide effects. Subsequently, melatonin was found in several extrapineal organs and, more recently, perhaps in every cell of every organ. In contrast to the pinealocytes, non-pineal cells do not discharge melatonin into the blood; rather it is used locally in an intracrine, autocrine, or paracrine manner. Melatonin levels in non-pineal cells do not exhibit a circadian rhythm and do not depend on circulating melatonin concentrations although when animals are treated with exogenous melatonin it is taken up by presumably all cells. Mitochondria are the presumed site of melatonin synthesis in all cells; the enzymatic machinery for melatonin synthesis has been identified in mitochondria. The association of melatonin with mitochondria, because of its ability to inhibit oxidative stress, is very fortuitous since these organelles are a major site of damaging reactive oxygen species generation. In this review, some of the actions of non-pineal-derived melatonin are discussed in terms of cellular and subcellular physiology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Fei QL, Zhang XY, Qi RJ, Huang YF, Han YX, Li XM, Cai RL, Gao Y, Qi Y. Canscora lucidissima, a Chinese folk medicine, exerts anti-inflammatory activities by inhibiting the phosphorylation of ERK1/2 in LPS-activated macrophages. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:371. [PMID: 31842849 PMCID: PMC6916437 DOI: 10.1186/s12906-019-2783-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/29/2019] [Indexed: 02/02/2023]
Abstract
Background Canscora lucidissima (Levl. & Vaniot) Hand.-Mazz. (C. lucidissima), mainly distributed in southern China, has been shown to be effective in the treatment of inflammatory diseases. However, the underlying mechanism of its anti-inflammatory effect is not fully understood. Methods In this study, we investigated the anti-inflammatory mechanism of ethanol extract of C. lucidissima (Cl-EE) in lipopolysaccharide (LPS)-induced inflammatory models. ELISA, real-time PCR, Western blot and luciferase reporter assay were used for the experiments in vitro, and ICR mouse endotoxemia model was used for in vivo test. Results Our data showed that Cl-EE reduced the production of NO by down-regulating the mRNA and protein expression of inducible nitric oxide synthase (iNOS) in LPS-activated RAW 264.7 cells. Meanwhile, it potently decreased other proinflammatory mediators, such as TNF-α, IL-6, MCP-1 and IL-1β at the transcriptional and translational levels. Further study indicated that Cl-EE did not affect NF-κB signaling pathway but significantly suppressed the phosphorylation of ERK1/2, rather than JNK or p38. In a LPS-induced endotoxemia mouse model, a single intraperitoneal injection of Cl-EE (75–300 mg/kg) could lower circulatory TNF-α, IL-6 and MCP-1 levels. Conclusions Collectively, our results indicated that Cl-EE suppressed the phosphorylation level of ERK1/2 thus reducing the transcription and translation of inflammatory genes, thereby exerted anti-inflammatory activity. This study reveals the anti-inflammatory mechanism of C. lucidissima and may provide an effective treatment option for a variety of inflammatory diseases.
Collapse
|
41
|
The IκB-protein BCL-3 controls Toll-like receptor-induced MAPK activity by promoting TPL-2 degradation in the nucleus. Proc Natl Acad Sci U S A 2019; 116:25828-25838. [PMID: 31772019 PMCID: PMC6926074 DOI: 10.1073/pnas.1900408116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The NF-ĸB and mitogen-activated protein kinase (MAPK) pathways coordinate the cellular response to most immune stimuli. Toll-like (TLR) and TNF receptor activation of the MAPK pathway requires activation of the TPL-2 kinase. Active TPL-2 is an unstable, short-lived protein, which limits MAPK activity and controls inflammatory responses. Here we report the surprising discovery that active TPL-2 shuttles between the cytoplasm and the nucleus, where it is degraded by the proteasome. BCL-3, a nuclear regulator of NF-ĸB, promotes the nuclear localization and degradation of TPL-2 in order to limit MAPK activity and determines the amount of TLR ligand required to initiate an inflammatory response. Thus, the nucleus is a key site for the integrated regulation of NF-ĸB– and MAPK-driven inflammatory responses. Proinflammatory responses induced by Toll-like receptors (TLRs) are dependent on the activation of the NF-ĸB and mitogen-activated protein kinase (MAPK) pathways, which coordinate the transcription and synthesis of proinflammatory cytokines. We demonstrate that BCL-3, a nuclear IĸB protein that regulates NF-ĸB, also controls TLR-induced MAPK activity by regulating the stability of the TPL-2 kinase. TPL-2 is essential for MAPK activation by TLR ligands, and the rapid proteasomal degradation of active TPL-2 is a critical mechanism limiting TLR-induced MAPK activity. We reveal that TPL-2 is a nucleocytoplasmic shuttling protein and identify the nucleus as the primary site for TPL-2 degradation. BCL-3 interacts with TPL-2 and promotes its degradation by promoting its nuclear localization. As a consequence, Bcl3−/− macrophages have increased TPL-2 stability following TLR stimulation, leading to increased MAPK activity and MAPK-dependent responses. Moreover, BCL-3–mediated regulation of TPL-2 stability sets the MAPK activation threshold and determines the amount of TLR ligand required to initiate the production of inflammatory cytokines. Thus, the nucleus is a key site in the regulation of TLR-induced MAPK activity. BCL-3 links control of the MAPK and NF-ĸB pathways in the nucleus, and BCL-3–mediated TPL-2 regulation impacts on the cellular decision to initiate proinflammatory cytokine production in response to TLR activation.
Collapse
|
42
|
Piersma SJ, Pak-Wittel MA, Lin A, Plougastel-Douglas B, Yokoyama WM. Activation Receptor-Dependent IFN-γ Production by NK Cells Is Controlled by Transcription, Translation, and the Proteasome. THE JOURNAL OF IMMUNOLOGY 2019; 203:1981-1988. [PMID: 31444264 DOI: 10.4049/jimmunol.1900718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
NK cells can recognize target cells such as virus-infected and tumor cells through integration of activation and inhibitory receptors. Recognition by NK cells can lead to direct lysis of the target cell and production of the signature cytokine IFN-γ. However, it is unclear whether stimulation through activation receptors alone is sufficient for IFN-γ production. In this study, we show that NK activation receptor engagement requires additional signals for optimal IFN-γ production, which could be provided by IFN-β or IL-12. Stimulation of murine NK cells with soluble Abs directed against NK1.1, Ly49H, Ly49D, or NKp46 required additional stimulation with cytokines, indicating that a range of activation receptors with distinct adaptor molecules require additional stimulation for IFN-γ production. The requirement for multiple signals extends to stimulation with primary m157-transgenic target cells, which triggers the activation receptor Ly49H, suggesting that NK cells do require multiple signals for IFN-γ production in the context of target cell recognition. Using quantitative PCR and RNA flow cytometry, we found that cytokines, not activating ligands, act on NK cells to express Ifng transcripts. Ly49H engagement is required for IFN-γ translational initiation. Results using inhibitors suggest that the proteasome-ubiquitin-IKK-TPL2-MNK1 axis was required during activation receptor engagement. Thus, this study indicates that activation receptor-dependent IFN-γ production is regulated on the transcriptional and translational levels.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Melissa A Pak-Wittel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrea Lin
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Beatrice Plougastel-Douglas
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
43
|
Tang C, Zhu G. Classic and Novel Signaling Pathways Involved in Cancer: Targeting the NF-κB and Syk Signaling Pathways. Curr Stem Cell Res Ther 2019; 14:219-225. [PMID: 30033874 DOI: 10.2174/1574888x13666180723104340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023]
Abstract
The nuclear factor kappa B (NF-κB) consists of a family of transcription factors involved in the regulation of a wide variety of biological responses. Growing evidence support that NF-κB plays a major role in oncogenesis as well as its well-known function in the regulation of immune responses and inflammation. Therefore, we made a review of the diverse molecular mechanisms by which the NF-κB pathway is constitutively activated in different types of human cancers and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. We also discussed various pharmacological approaches employed to target the deregulated NF-κB signaling pathway and their possible therapeutic potential in cancer therapy. Moreover, Syk (Spleen tyrosine kinase), non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immune-receptors like the B-cell receptor (BCR), which can also activate the inflammasome and NF-κB-mediated transcription of chemokines and cytokines in the presence of pathogens would be discussed as well. The highlight of this review article is to summarize the classic and novel signaling pathways involved in NF-κB and Syk signaling and then raise some possibilities for cancer therapy.
Collapse
Affiliation(s)
- Cong Tang
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guodong Zhu
- Department of Urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
44
|
Webb LV, Ventura S, Ley SC. ABIN-2, of the TPL-2 Signaling Complex, Modulates Mammalian Inflammation. Trends Immunol 2019; 40:799-808. [PMID: 31401161 DOI: 10.1016/j.it.2019.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022]
Abstract
Mammalian TPL-2 kinase (MAP3K8) mediates Toll-like receptor activation of ERK1/2 and p38α MAP kinases and is critical for regulating immune responses to pathogens. TPL-2 also has an important adaptor function, maintaining stability of associated ABIN-2 ubiquitin-binding protein. Consequently, phenotypes detected in Map3k8-/- mice can be caused by lack of TPL-2, ABIN-2, or both proteins. Recent studies show that increased inflammation of Map3k8-/- mice in allergic airway inflammation and colitis results from reduced ABIN-2 signaling, rather than blocked TPL-2 signaling. However, Map3k8-/- mice have been employed extensively to evaluate the potential of TPL-2 as an anti-inflammatory drug target. We posit that Map3k8D270A/D270A mice, expressing catalytically inactive TPL-2 and physiologic ABIN-2, should be used to evaluate the potential effects of TPL-2 inhibitors in disease.
Collapse
|
45
|
Advancement in TPL2-regulated innate immune response. Immunobiology 2019; 224:383-387. [PMID: 30853309 DOI: 10.1016/j.imbio.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 11/21/2022]
Abstract
Tumor progression locus 2 (TPL2) is a serine/threonine kinase that belongs to the MAP3K family. The activated TPL2 regulates the innate immune-relevant signaling pathways, such as ERK, JNK, and NF-κB, and the differentiation of immune cells, for example, CD4+ T and NK cells. Therefore, TPL2 plays a critical role in regulating the innate immune response. The present review summarizes the recent advancements in the TPL2-regulated innate immune response.
Collapse
|
46
|
Andrikopoulos P, Kieswich J, Pacheco S, Nadarajah L, Harwood SM, O'Riordan CE, Thiemermann C, Yaqoob MM. The MEK Inhibitor Trametinib Ameliorates Kidney Fibrosis by Suppressing ERK1/2 and mTORC1 Signaling. J Am Soc Nephrol 2018; 30:33-49. [PMID: 30530834 DOI: 10.1681/asn.2018020209] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During kidney fibrosis, a hallmark and promoter of CKD (regardless of the underlying renal disorder leading to CKD), the extracellular-regulated kinase 1/2 (ERK1/2) pathway, is activated and has been implicated in the detrimental differentiation and expansion of kidney fibroblasts. An ERK1/2 pathway inhibitor, trametinib, is currently used in the treatment of melanoma, but its efficacy in the setting of CKD and renal fibrosis has not been explored. METHODS We investigated whether trametinib has antifibrotic effects in two mouse models of renal fibrosis-mice subjected to unilateral ureteral obstruction (UUO) or fed an adenine-rich diet-as well as in cultured primary human fibroblasts. We also used immunoblot analysis, immunohistochemical staining, and other tools to study underlying molecular mechanisms for antifibrotic effects. RESULTS Trametinib significantly attenuated collagen deposition and myofibroblast differentiation and expansion in UUO and adenine-fed mice. We also discovered that in injured kidneys, inhibition of the ERK1/2 pathway by trametinib ameliorated mammalian target of rapamycin complex 1 (mTORC1) activation, another key profibrotic signaling pathway. Trametinib also inhibited the ERK1/2 pathway in cultured primary human renal fibroblasts stimulated by application of TGF-β1, the major profibrotic cytokine, thereby suppressing downstream mTORC1 pathway activation. Additionally, trametinib reduced the expression of myofibroblast marker α-smooth muscle actin and the proliferation of renal fibroblasts, corroborating our in vivo data. Crucially, trametinib also significantly ameliorated renal fibrosis progression when administered to animals subsequent to myofibroblast activation. CONCLUSIONS Further study of trametinib as a potential candidate for the treatment of chronic renal fibrotic diseases of diverse etiologies is warranted.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and .,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julius Kieswich
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sabrina Pacheco
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luxme Nadarajah
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Steven Michael Harwood
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Caroline E O'Riordan
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christoph Thiemermann
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Muhammad M Yaqoob
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
47
|
Concetti J, Wilson CL. NFKB1 and Cancer: Friend or Foe? Cells 2018; 7:cells7090133. [PMID: 30205516 PMCID: PMC6162711 DOI: 10.3390/cells7090133] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022] Open
Abstract
Current evidence strongly suggests that aberrant activation of the NF-κB signalling pathway is associated with carcinogenesis. A number of key cellular processes are governed by the effectors of this pathway, including immune responses and apoptosis, both crucial in the development of cancer. Therefore, it is not surprising that dysregulated and chronic NF-κB signalling can have a profound impact on cellular homeostasis. Here we discuss NFKB1 (p105/p50), one of the five subunits of NF-κB, widely implicated in carcinogenesis, in some cases driving cancer progression and in others acting as a tumour-suppressor. The complexity of the role of this subunit lies in the multiple dimeric combination possibilities as well as the different interacting co-factors, which dictate whether gene transcription is activated or repressed, in a cell and organ-specific manner. This review highlights the multiple roles of NFKB1 in the development and progression of different cancers, and the considerations to make when attempting to manipulate NF-κB as a potential cancer therapy.
Collapse
Affiliation(s)
- Julia Concetti
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK.
| | - Caroline L Wilson
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK.
| |
Collapse
|
48
|
Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol 2018; 123:1-12. [PMID: 30153439 DOI: 10.1016/j.yjmcc.2018.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/24/2022]
Abstract
The IκB kinase (IKK) complex plays a well-documented role in cancer and immune system. This function has been widely attributed to its role as the master regulator of the NF-κB family. Particularly, IKKɑ, a member of IKK complex, is reported to have various regulating effects in inflammatory and malignant diseases. However, its role as well as its mechanism of function in macrophages following myocardial ischemia and reperfusion (I/R) injury remains unexplored. In vivo, sham or I/R operations were performed on macrophage-specific IKKɑ knockout (mIKKɑ-/-) mice and their IKKɑflox/flox littermates. We ligated the left anterior descending (LAD) coronary artery of I/R groups simulating ischemia for 30 min, followed by a reperfusion period of 3 days and 7 days, respectively. The hearts of mIKKɑ-/- mice exhibited significantly increased inflammation and macrophage aggregation as compared to their IKKɑflox/flox littermates. Moreover, in the mIKKɑ-/- group subjected to I/R macrophages had a tendency to polarize to M1 phenotype. In vitro, we stimulated RAW264.7 cells with Lipopolysaccharides (LPS) after infection by the lentivirus, either knocking-down or overexpressing IKKɑ. We discovered that a deficiency of IKKɑ in RAW264.7 caused increased expression of pro-inflammatory markers compared to normal RAW264.7 after LPS stimulation. Inversely, pro-inflammatory factors were inhibited with IKKɑ overexpression. Mechanistically, IKKɑ directly combined with RelB to regulate macrophage polarization. Furthermore, IKKɑ regulated MEK1/2-ERK1/2 and downstream p65 signaling cascades after LPS stimulation. Overall, our data reveals that IKKɑ is a novel mediator protecting against the development of myocardial I/R injury via negative regulation of macrophage polarization to M1 phenotype. Thus, IKKɑ may serve as a valuable therapeutic target for the treatment of myocardial I/R injury.
Collapse
|
49
|
Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Front Immunol 2018; 9:1849. [PMID: 30140268 PMCID: PMC6094638 DOI: 10.3389/fimmu.2018.01849] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jian-Hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
50
|
Iosef C, Liu M, Ying L, Rao SP, Concepcion KR, Chan WK, Oman A, Alvira CM. Distinct roles for IκB kinases alpha and beta in regulating pulmonary endothelial angiogenic function during late lung development. J Cell Mol Med 2018; 22:4410-4422. [PMID: 29993183 PMCID: PMC6111877 DOI: 10.1111/jcmm.13741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/13/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary angiogenesis is essential for alveolarization, the final stage of lung development that markedly increases gas exchange surface area. We recently demonstrated that activation of the nuclear factor kappa-B (NFκB) pathway promotes pulmonary angiogenesis during alveolarization. However, the mechanisms activating NFκB in the pulmonary endothelium, and its downstream targets are not known. In this study, we sought to delineate the specific roles for the NFκB activating kinases, IKKα and IKKβ, in promoting developmental pulmonary angiogenesis. Microarray analysis of primary pulmonary endothelial cells (PECs) after silencing IKKα or IKKβ demonstrated that the 2 kinases regulate unique panels of genes, with few shared targets. Although silencing IKKα induced mild impairments in angiogenic function, silencing IKKβ induced more severe angiogenic defects and decreased vascular cell adhesion molecule expression, an IKKβ regulated target essential for both PEC adhesion and migration. Taken together, these data show that IKKα and IKKβ regulate unique genes in PEC, resulting in differential effects on angiogenesis upon inhibition, and identify IKKβ as the predominant regulator of pulmonary angiogenesis during alveolarization. These data suggest that therapeutic strategies to specifically enhance IKKβ activity in the pulmonary endothelium may hold promise to enhance lung growth in diseases marked by altered alveolarization.
Collapse
Affiliation(s)
- Cristiana Iosef
- Department of Pharmacology, Faculty of Medicine, University of Nevada Reno, Reno, NV, USA.,Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Min Liu
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lihua Ying
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shailaja P Rao
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine R Concepcion
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Westin K Chan
- Department of Pharmacology, Faculty of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Andrew Oman
- Department of Pharmacology, Faculty of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Cristina M Alvira
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|