1
|
Chen Q, Yu L, Han X. Understanding Protein Adsorption on Carbon Nanotube Inner and Outer Surfaces by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4318-4333. [PMID: 39905788 DOI: 10.1021/acs.langmuir.4c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Biomolecules, such as proteins, can form complexes with carbon nanotubes (CNTs), which have numerous applications in nanobiotechnology. Proteins can be adsorbed onto either the inner walls or outer surfaces of CNTs via van der Waals interactions; however, the differences between these two processes remain poorly understood. In this work, we performed classical all-atom molecular dynamics simulations with explicit solvents to investigate the interaction between a model protein, the Yap65 WW domain, and (22,22) CNTs and larger. The Yap65 WW domain comprises three β-sheet segments and contains three key aromatic residues: TRP17, TYR28, and TRP39. Our findings reveal distinct interaction mechanisms for the inner and outer surfaces of large CNTs. The protein's interaction with the inner surface is governed by the interplay between surface curvature and adsorption orientation. In the confined space of the CNT channel, variations in tube curvature and adsorption orientation give rise to specific binding modes, resulting in varying degrees of protein conformational change. In contrast, on the outer surface of large CNTs, where space is less restricted, the adsorption orientation plays a more dominant role. Specifically, the orientation in which more aromatic residues directly interact with the surface suffer from the greater structural loss, regardless of the tube curvature. Finally, protein-CNT binding free energies were calculated using the Poisson-Boltzmann surface area (MM-PBSA) method and steered molecular dynamics simulations based on Jarzynski equality, demonstrating that protein desorption from CNTs is highly dependent on binding configurations. This study reveals the influence of confined space on protein adsorption and the critical role of CNT curvature in modulating β-sheet stability.
Collapse
Affiliation(s)
- Qu Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Linkai Yu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| | - Xiaoyu Han
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China
| |
Collapse
|
2
|
Pellman J, Goldstein A, Słabicki M. Human E3 ubiquitin ligases: accelerators and brakes for SARS-CoV-2 infection. Biochem Soc Trans 2024; 52:2009-2021. [PMID: 39222407 PMCID: PMC11555711 DOI: 10.1042/bst20230324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
E3 ubiquitin ligases regulate the composition of the proteome. These enzymes mono- or poly-ubiquitinate their substrates, directly altering protein function or targeting proteins for degradation by the proteasome. In this review, we discuss the opposing roles of human E3 ligases as effectors and targets in the evolutionary battle between host and pathogen, specifically in the context of SARS-CoV-2 infection. Through complex effects on transcription, translation, and protein trafficking, human E3 ligases can either attenuate SARS-CoV-2 infection or become vulnerabilities that are exploited by the virus to suppress the host's antiviral defenses. For example, the human E3 ligase RNF185 regulates the stability of SARS-CoV-2 envelope protein through the ubiquitin-proteasome pathway, and depletion of RNF185 significantly increases SARS-CoV-2 viral titer (iScience (2023) 26, 106601). We highlight recent advances that identify functions for numerous human E3 ligases in the SARS-CoV-2 life cycle and we assess their potential as novel antiviral agents.
Collapse
Affiliation(s)
- Jesse Pellman
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Anna Goldstein
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| | - Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, U.S.A
| |
Collapse
|
3
|
Jung O, Baek MJ, Wooldrik C, Johnson KR, Fisher KW, Lou J, Ricks TJ, Wen T, Best MD, Cryns VL, Anderson RA, Choi S. Nuclear phosphoinositide signaling promotes YAP/TAZ-TEAD transcriptional activity in breast cancer. EMBO J 2024; 43:1740-1769. [PMID: 38565949 PMCID: PMC11066040 DOI: 10.1038/s44318-024-00085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.
Collapse
Affiliation(s)
- Oisun Jung
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Min-Jeong Baek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Colin Wooldrik
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keith R Johnson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Oral Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Tanei J Ricks
- Department of Chemistry, University of Memphis, 3744 Walker Avenue, Memphis, TN, 38152, USA
| | - Tianmu Wen
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Vincent L Cryns
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Basu B, Kal S, Karmakar S, Basu M, Ghosh MK. E3 ubiquitin ligases in lung cancer: Emerging insights and therapeutic opportunities. Life Sci 2024; 336:122333. [PMID: 38061537 DOI: 10.1016/j.lfs.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Aim In this review, we have attempted to provide the readers with an updated account of the role of a family of proteins known as E3 ligases in different aspects of lung cancer progression, along with insights into the deregulation of expression of these proteins during lung cancer. A detailed account of the therapeutic strategies involving E3 ligases that have been developed or currently under development has also been provided in this review. MATERIALS AND METHODS: The review article employs extensive literature search, along with differential gene expression analysis of lung cancer associated E3 ligases using the DESeq2 package in R, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/). Protein expression analysis of CPTAC lung cancer samples was carried out using the UALCAN webtool (https://ualcan.path.uab.edu/index.html). Assessment of patient overall survival (OS) in response to high and low expression of selected E3 ligases was performed using the online Kaplan-Meier plotter (https://kmplot.com/analysis/index.php?p=background). KEY FINDINGS: SIGNIFICANCE: The review provides an in-depth understanding of the role of E3 ligases in lung cancer progression and an up-to-date account of the different therapeutic strategies targeting oncogenic E3 ligases for improved lung cancer management.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN -743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
5
|
Behera A, Reddy ABM. WWP1 E3 ligase at the crossroads of health and disease. Cell Death Dis 2023; 14:853. [PMID: 38129384 PMCID: PMC10739765 DOI: 10.1038/s41419-023-06380-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The E3 ubiquitin ligase WWP1 (WW Domain-containing E3 Ubiquitin Protein Ligase 1) is a member of the HECT (Homologous to the E6-associated protein Carboxyl Terminus) E3 ligase family. It is conserved across several species and plays crucial roles in various physiological processes, including development, cell growth and proliferation, apoptosis, and differentiation. It exerts its functions through ubiquitination or protein-protein interaction with PPXY-containing proteins. WWP1 plays a role in several human diseases, including cardiac conditions, neurodevelopmental, age-associated osteogenic disorders, infectious diseases, and cancers. In solid tumors, WWP1 plays a dual role as both an oncogene and a tumor suppressor, whereas in hematological malignancies such as AML, it is identified as a dedicated oncogene. Importantly, WWP1 inhibition using small molecule inhibitors such as Indole-3-Carbinol (I3C) and Bortezomib or siRNAs leads to significant suppression of cancer growth and healing of bone fractures, suggesting that WWP1 might serve as a potential therapeutic target for several diseases. In this review, we discuss the evolutionary perspective, structure, and functions of WWP1 and its multilevel regulation by various regulators. We also examine its emerging roles in cancer progression and its therapeutic potential. Finally, we highlight WWP1's role in normal physiology, contribution to pathological conditions, and therapeutic potential for cancer and other diseases.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
6
|
Zhang M, Zhang Z, Tian X, Zhang E, Wang Y, Tang J, Zhao J. NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Front Pharmacol 2023; 14:1291773. [PMID: 38027016 PMCID: PMC10666796 DOI: 10.3389/fphar.2023.1291773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tumorigenesis and tumor development are closely related to the abnormal regulation of ubiquitination. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin ligase critical to the ubiquitination process, plays key roles in the regulation of cancer stem cells, as well as tumor cell functions, including cell proliferation, apoptosis, cell cycle regulation, migration, invasion, epithelial-mesenchymal transition (EMT), and tumor drug resistance, by controlling subsequent protein degradation through ubiquitination. NEDD4L primarily functions as a tumor suppressor in several tumors but also plays an oncogenic role in certain tumors. In this review, we comprehensively summarize the relevant signaling pathways of NEDD4L in tumors, the regulatory mechanisms of its upstream regulatory molecules and downstream substrates, and the resulting functional alterations. Overall, therapeutic strategies targeting NEDD4L to treat cancer may be feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Wan Mohamad Noor WNI, Nguyen NTH, Cheong TH, Chek MF, Hakoshima T, Inaba T, Hanawa-Suetsugu K, Nishimura T, Suetsugu S. Small GTPase Cdc42, WASP, and scaffold proteins for higher-order assembly of the F-BAR domain protein. SCIENCE ADVANCES 2023; 9:eadf5143. [PMID: 37126564 PMCID: PMC10132759 DOI: 10.1126/sciadv.adf5143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The higher-order assembly of Bin-amphiphysin-Rvs (BAR) domain proteins, including the FCH-BAR (F-BAR) domain proteins, into lattice on the membrane is essential for the formation of subcellular structures. However, the regulation of their ordered assembly has not been elucidated. Here, we show that the higher ordered assembly of growth-arrested specific 7 (GAS7), an F-BAR domain protein, is regulated by the multivalent scaffold proteins of Wiskott-Aldrich syndrome protein (WASP)/neural WASP, that commonly binds to the BAR domain superfamily proteins, together with WISH, Nck, the activated small guanosine triphosphatase Cdc42, and a membrane-anchored phagocytic receptor. The assembly kinetics by fluorescence resonance energy transfer monitoring indicated that the GAS7 assembly on liposomes started within seconds and was further increased by the presence of these proteins. The regulated GAS7 assembly was abolished by Wiskott-Aldrich syndrome mutations both in vitro and in cellular phagocytosis. Therefore, Cdc42 and the scaffold proteins that commonly bind to the BAR domain superfamily proteins promoted GAS7 assembly.
Collapse
Affiliation(s)
- Wan Nurul Izzati Wan Mohamad Noor
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Nhung Thi Hong Nguyen
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Theng Ho Cheong
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Min Fey Chek
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Toshio Hakoshima
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Takehiko Inaba
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Tamako Nishimura
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate school of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
8
|
Panagopoulos I, Andersen K, Gorunova L, Hognestad HR, Pedersen TD, Lobmaier I, Micci F, Heim S. Chromosome Translocation t(10;19)(q26;q13) in a CIC-sarcoma. In Vivo 2023; 37:57-69. [PMID: 36593014 PMCID: PMC9843759 DOI: 10.21873/invivo.13054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM CIC-sarcomas are characterized by rearrangements of the capicua transcriptional repressor (CIC) gene on chromosome subband 19q13.2, generating chimeras in which CIC is the 5'-end partner. Most reported CIC-sarcomas have been detected using PCR amplifications together with Sanger sequencing, high throughput sequencing, and fluorescence in situ hybridization (FISH). Only a few CIC-rearranged tumors have been characterized cytogenetically. Here, we describe the cytogenetic and molecular genetic features of a CIC-sarcoma carrying a t(10;19)(q26;q13), a chromosomal rearrangement not previously detected in such neoplasms. MATERIALS AND METHODS A round cell sarcoma removed from the right thigh of a 57-year-old man was investigated by G-banding cytogenetics, FISH, PCR and Sanger sequencing. RESULTS The tumor cells had three cytogenetically related clones with the translocations t(9;18)(q22;q21) and t(10;19)(q26;q13) common to all of them. FISH with a BAC probe containing the CIC gene hybridized to the normal chromosome 19, to der(10)t(10;19), and to der(19)t(10;19). PCR using tumor cDNA as template together with Sanger sequencing detected two CIC::DUX4 fusion transcripts which both had a stop TAG codon immediately after the fusion point. Both transcripts are predicted to encode truncated CIC polypeptides lacking the carboxy terminal part of the native protein. This missing part is crucial for CIC's DNA binding capacity and interaction with other proteins. CONCLUSION In addition to demonstrating that CIC rearrangement in sarcomas can occur via the microscopically visible translocation t(10;19)(q26;q13), the findings in the present case provide evidence that the missing part in CIC-truncated proteins has important functions whose loss may be important in tumorigenesis.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Wenz MT, Bertazzon M, Sticht J, Aleksić S, Gjorgjevikj D, Freund C, Keller BG. Target Recognition in Tandem WW Domains: Complex Structures for Parallel and Antiparallel Ligand Orientation in h-FBP21 Tandem WW. J Chem Inf Model 2022; 62:6586-6601. [PMID: 35347992 DOI: 10.1021/acs.jcim.1c01426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein-protein interactions often rely on specialized recognition domains, such as WW domains, which bind to specific proline-rich sequences. The specificity of these protein-protein interactions can be increased by tandem repeats, i.e., two WW domains connected by a linker. With a flexible linker, the WW domains can move freely with respect to each other. Additionally, the tandem WW domains can bind in two different orientations to their target sequences. This makes the elucidation of complex structures of tandem WW domains extremely challenging. Here, we identify and characterize two complex structures of the tandem WW domain of human formin-binding protein 21 and a peptide sequence from its natural binding partner, the core-splicing protein SmB/B'. The two structures differ in the ligand orientation and, consequently, also in the relative orientation of the two WW domains. We analyze and probe the interactions in the complexes by molecular simulations and NMR experiments. The workflow to identify the complex structures uses molecular simulations, density-based clustering, and peptide docking. It is designed to systematically generate possible complex structures for repeats of recognition domains. These structures will help us to understand the synergistic and multivalency effects that generate the astonishing versatility and specificity of protein-protein interactions.
Collapse
Affiliation(s)
- Marius T Wenz
- Institute for Chemistry and Biochemistry, Molecular Dynamics Group, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Miriam Bertazzon
- Institute for Chemistry and Biochemistry, Protein Biochemistry Group, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Jana Sticht
- Institute for Chemistry and Biochemistry, Protein Biochemistry Group, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany.,Core Facility BioSupraMol, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Stevan Aleksić
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Daniela Gjorgjevikj
- Institute for Chemistry and Biochemistry, Protein Biochemistry Group, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Christian Freund
- Institute for Chemistry and Biochemistry, Protein Biochemistry Group, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Bettina G Keller
- Institute for Chemistry and Biochemistry, Molecular Dynamics Group, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| |
Collapse
|
10
|
Shirasaki T, González-López O, McKnight KL, Xie L, Shiota T, Chen X, Feng H, Lemon SM. Nonlytic Quasi-Enveloped Hepatovirus Release Is Facilitated by pX Protein Interaction with the E3 Ubiquitin Ligase ITCH. J Virol 2022; 96:e0119522. [PMID: 36286484 PMCID: PMC9645215 DOI: 10.1128/jvi.01195-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatoviruses are atypical hepatotropic picornaviruses that are released from infected cells without lysis in small membranous vesicles. These exosome-like, quasi-enveloped virions (eHAV) are infectious and the only form of hepatitis A virus (HAV) found circulating in blood during acute infection. eHAV is released through multivesicular endosomes in a process dependent on endosomal sorting complexes required for transport (ESCRT). Capsid protein interactions with the ESCRT-associated Bro1 domain proteins, ALG-2-interacting protein X (ALIX) and His domain-containing protein tyrosine phosphatase (HD-PTP), which are both recruited to the pX domain of 1D (VP1pX), are critical for this process. Previous proteomics studies suggest pX also binds the HECT domain, NEDD4 family E3 ubiquitin ligase, ITCH. Here, we confirm this interaction and show ITCH binds directly to the carboxy-terminal half of pX from both human and bat hepatoviruses independently of ALIX. A small chemical compound (compound 5) designed to disrupt interactions between WW domains of NEDD4 ligases and substrate molecules blocked ITCH binding to pX and demonstrated substantial antiviral activity against HAV. CRISPR deletion or small interfering RNA (siRNA) knockdown of ITCH expression inhibited the release of a self-assembling nanocage protein fused to pX and also impaired the release of eHAV from infected cells. The release could be rescued by overexpression of wild-type ITCH, but not a catalytically inactive ITCH mutant. Despite this, we found no evidence that ITCH ubiquitylates pX or that eHAV release is strongly dependent upon Lys residues in pX. These data indicate ITCH plays an important role in the ESCRT-dependent release of quasi-enveloped hepatovirus, although the substrate molecule targeted for ubiquitylation remains to be determined. IMPORTANCE Mechanisms underlying the cellular release of quasi-enveloped hepatoviruses are only partially understood, yet play a crucial role in the pathogenesis of this common agent of viral hepatitis. Multiple NEDD4 family E3 ubiquitin ligases, including ITCH, have been reported to promote the budding of conventional enveloped viruses but are not known to function in the release of HAV or other picornaviruses from infected cells. Here, we show that the unique C-terminal pX extension of the VP1 capsid protein of HAV interacts directly with ITCH and that ITCH promotes eHAV release in a manner analogous to its role in budding of some conventional enveloped viruses. The catalytic activity of ITCH is required for efficient eHAV release and may potentially function to ubiquitylate the viral capsid or activate ESCRT components.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin L. McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ling Xie
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tomoyuki Shiota
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
McNeale D, Dashti N, Cheah LC, Sainsbury F. Protein cargo encapsulation by
virus‐like
particles: Strategies and applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1869. [PMID: 36345849 DOI: 10.1002/wnan.1869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Viruses and the recombinant protein cages assembled from their structural proteins, known as virus-like particles (VLPs), have gained wide interest as tools in biotechnology and nanotechnology. Detailed structural information and their amenability to genetic and chemical modification make them attractive systems for further engineering. This review describes the range of non-enveloped viruses that have been co-opted for heterologous protein cargo encapsulation and the strategies that have been developed to drive encapsulation. Spherical capsids of a range of sizes have been used as platforms for protein cargo encapsulation. Various approaches, based on native and non-native interactions between the cargo proteins and inner surface of VLP capsids, have been devised to drive encapsulation. Here, we outline the evolution of these approaches, discussing their benefits and limitations. Like the viruses from which they are derived, VLPs are of interest in both biomedical and materials applications. The encapsulation of protein cargo inside VLPs leads to numerous uses in both fundamental and applied biocatalysis and biomedicine, some of which are discussed herein. The applied science of protein-encapsulating VLPs is emerging as a research field with great potential. Developments in loading control, higher order assembly, and capsid optimization are poised to realize this potential in the near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery Griffith University Nathan Queensland Australia
| | - Noor Dashti
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| | - Li Chen Cheah
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery Griffith University Nathan Queensland Australia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland Australia
| |
Collapse
|
12
|
Wang K, Li B, Ge L, Xie Y. Molecular insight into the systematic affinity and selectivity of partner recognition sites between the WW1 and WW2 domains of human KIBRA neuroprotein. J Mol Graph Model 2022; 116:108258. [PMID: 35810735 DOI: 10.1016/j.jmgm.2022.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
Human KIBRA, a member of the WWC family proteins, is an upstream regulator of the Salvador/Warts/Hippo (SWH) signaling pathway and predominately expressed in nervous system. The protein has two functionally regulatory domains WW1 and WW2 at N-terminal region, which recognize and bind to the PY-motif segments of their partner proteins to serve as a signaling scaffold role in the SWH pathway. The two domains are highly conserved, but their downstream ligands and biological functions may not be fully consistent. In this study, we attempted to systematically profile the PY-motif affinity to and selectivity between KIBRA WW1 and WW2 domains involved in partner recognition sites. Ontology mining was used to enrich the KIBRA-interacting proteins in literature libraries, from which a variety of PY-motif peptide segments were identified, and their binding behavior to each domain was then analyzed by integrating computational modeling and experimental assay. Most PY-motif peptides were found to interact potently with WW1 and WW2, but they generally only exhibit a moderate or modest selectivity between the two domains. Subsequently, several representative peptides were further examined in detail to elucidate the molecular mechanism underlying their affinity and selectivity. It is revealed that the middle motif region of PY-motif peptides is primarily responsible for the affinity and stability of peptide binding, but only contributes marginally to peptide selectivity. Instead, the N-terminal region and, particularly, C-terminal region of PY-motif peptides play a crucial role in the selectivity. Hydrophobic contacts and hydrogen bonds confer stability and specificity to the domain-peptide interaction, respectively.
Collapse
Affiliation(s)
- Kai Wang
- Department of Anesthesiology, Rizhao People's Hospital, Affiliated to Jining Medical University, Rizhao, 276827, China
| | - Baoqiang Li
- Department of Anesthesiology, Rizhao People's Hospital, Affiliated to Jining Medical University, Rizhao, 276827, China
| | - Lei Ge
- Department of Emergency, Rizhao People's Hospital, Affiliated to Jining Medical University, Rizhao, 276827, China
| | - Yi Xie
- Department of Anesthesiology, Zibo Central Hospital, Affiliated to Binzhou Medical University, Zibo, 255020, China.
| |
Collapse
|
13
|
Lee YM, Teoh DEJ, Yeung K, Liou YC. The kingdom of the prolyl-isomerase Pin1: The structural and functional convergence and divergence of Pin1. Front Cell Dev Biol 2022; 10:956071. [PMID: 36111342 PMCID: PMC9468764 DOI: 10.3389/fcell.2022.956071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
More than 20 years since its discovery, our understanding of Pin1 function in various diseases continues to improve. Pin1 plays a crucial role in pathogenesis and has been implicated in metabolic disorders, cardiovascular diseases, inflammatory diseases, viral infection, cancer and neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease. In particular, the role of Pin1 in neurodegenerative diseases and cancer has been extensively studied. Our understanding of Pin1 in cancer also led to the development of cancer therapeutic drugs targeting Pin1, with some currently in clinical trial phases. However, identifying a Pin1-specific drug with good cancer therapeutic effect remains elusive, thus leading to the continued efforts in Pin1 research. The importance of Pin1 is highlighted by the presence of Pin1 orthologs across various species: from vertebrates to invertebrates and Kingdom Animalia to Plantae. Among these Pin1 orthologs, their sequence and structural similarity demonstrate the presence of conservation. Moreover, their similar functionality between species further highlights the conservancy of Pin1. As researchers continue to unlock the mysteries of Pin1 in various diseases, using different Pin1 models might shed light on how to better target Pin1 for disease therapeutics. This review aims to highlight the various Pin1 orthologs in numerous species and their divergent functional roles. We will examine their sequence and structural similarities and discuss their functional similarities and uniqueness to demonstrate the interconnectivity of Pin1 orthologs in multiple diseases.
Collapse
|
14
|
Rai N, Sydykov A, Kojonazarov B, Wilhelm J, Manaud G, Veeroju S, Ruppert C, Perros F, Ghofrani HA, Weissmann N, Seeger W, Schermuly RT, Novoyatleva T. Targeting peptidyl-prolyl isomerase 1 in experimental pulmonary arterial hypertension. Eur Respir J 2022; 60:2101698. [PMID: 35058248 PMCID: PMC9403440 DOI: 10.1183/13993003.01698-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/29/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disease characterised by pro-proliferative and anti-apoptotic phenotype in vascular cells, leading to pulmonary vascular remodelling and right heart failure. Peptidyl-prolyl cis/trans isomerase, NIMA interacting 1 (Pin1), a highly conserved enzyme, which binds to and catalyses the isomerisation of specific phosphorylated Ser/Thr-Pro motifs, acts as a molecular switch in multiple coordinated cellular processes. We hypothesised that Pin1 plays a substantial role in PAH, and its inhibition with a natural organic compound, Juglone, would reverse experimental pulmonary hypertension. RESULTS We demonstrated that the expression of Pin1 was markedly elevated in experimental pulmonary hypertension (i.e. hypoxia-induced mouse and Sugen/hypoxia-induced rat models) and pulmonary arterial smooth muscle cells of patients with clinical PAH. In vitro Pin1 inhibition by either Juglone treatment or short interfering RNA knockdown resulted in an induction of apoptosis and decrease in proliferation of human pulmonary vascular cells. Stimulation with growth factors induced Pin1 expression, while its inhibition reduced the activity of numerous PAH-related transcription factors, such as hypoxia-inducible factor (HIF)-α and signal transducer and activator of transcription (STAT). Juglone administration lowered pulmonary vascular resistance, enhanced right ventribular function, improved pulmonary vascular and cardiac remodelling in the Sugen/hypoxia rat model of PAH and the chronic hypoxia-induced pulmonary hypertension model in mice. CONCLUSION Our study demonstrates that targeting of Pin1 with small molecule inhibitor, Juglone, might be an attractive future therapeutic strategy for PAH and right heart disease secondary to PAH.
Collapse
Affiliation(s)
- Nabham Rai
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Akylbek Sydykov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Grégoire Manaud
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Swathi Veeroju
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Frédéric Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Hossein Ardeschir Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- These co-senior authors contributed equally to this work
| | - Tatyana Novoyatleva
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- These co-senior authors contributed equally to this work
| |
Collapse
|
15
|
Hou C, Li Y, Wang M, Wu H, Li T. Systematic prediction of degrons and E3 ubiquitin ligase binding via deep learning. BMC Biol 2022; 20:162. [PMID: 35836176 PMCID: PMC9281121 DOI: 10.1186/s12915-022-01364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Degrons are short linear motifs, bound by E3 ubiquitin ligase to target protein substrates to be degraded by the ubiquitin-proteasome system. Mutations leading to deregulation of degron functionality disrupt control of protein abundance due to mistargeting of proteins destined for degradation and often result in pathologies. Targeting degrons by small molecules also emerges as an exciting drug design strategy to upregulate the expression of specific proteins. Despite their essential function and disease targetability, reliable identification of degrons remains a conundrum. Here, we developed a deep learning-based model named Degpred that predicts general degrons directly from protein sequences. RESULTS We showed that the BERT-based model performed well in predicting degrons singly from protein sequences. Then, we used the deep learning model Degpred to predict degrons proteome-widely. Degpred successfully captured typical degron-related sequence properties and predicted degrons beyond those from motif-based methods which use a handful of E3 motifs to match possible degrons. Furthermore, we calculated E3 motifs using predicted degrons on the substrates in our collected E3-substrate interaction dataset and constructed a regulatory network of protein degradation by assigning predicted degrons to specific E3s with calculated motifs. Critically, we experimentally verified that a predicted SPOP binding degron on CBX6 prompts CBX6 degradation and mediates the interaction with SPOP. We also showed that the protein degradation regulatory system is important in tumorigenesis by surveying degron-related mutations in TCGA. CONCLUSIONS Degpred provides an efficient tool to proteome-wide prediction of degrons and binding E3s singly from protein sequences. Degpred successfully captures typical degron-related sequence properties and predicts degrons beyond those from previously used motif-based methods, thus greatly expanding the degron landscape, which should advance the understanding of protein degradation, and allow exploration of uncharacterized alterations of proteins in diseases. To make it easier for readers to access collected and predicted datasets, we integrated these data into the website http://degron.phasep.pro/ .
Collapse
Affiliation(s)
- Chao Hou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Yuxuan Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Mengyao Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| |
Collapse
|
16
|
Herlihy AE, Boeing S, Weems JC, Walker J, Dirac-Svejstrup AB, Lehner MH, Conaway RC, Conaway JW, Svejstrup JQ. UBAP2/UBAP2L regulate UV-induced ubiquitylation of RNA polymerase II and are the human orthologues of yeast Def1. DNA Repair (Amst) 2022; 115:103343. [PMID: 35633597 DOI: 10.1016/j.dnarep.2022.103343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022]
Abstract
During transcription, RNA polymerase II (RNAPII) faces numerous obstacles, including DNA damage, which can lead to stalling or arrest. One mechanism to contend with this situation is ubiquitylation and degradation of the largest RNAPII subunit, RPB1 - the 'last resort' pathway. This conserved, multi-step pathway was first identified in yeast, and the functional human orthologues of all but one protein, RNAPII Degradation Factor 1 (Def1), have been discovered. Here we show that following UV-irradiation, human Ubiquitin-associated protein 2 (UBAP2) or its paralogue UBAP2-like (UBAP2L) are involved in the ubiquitylation and degradation of RNAPII through the recruitment of Elongin-Cul5 ubiquitin ligase. Together, our data indicate that UBAP2 and UBAP2L are the human orthologues of yeast Def1, and so identify the key missing proteins in the human last resort pathway.
Collapse
Affiliation(s)
- Anna E Herlihy
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefan Boeing
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Juston C Weems
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac-Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark
| | - Michelle Harreman Lehner
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ronald C Conaway
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Joan W Conaway
- Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark.
| |
Collapse
|
17
|
Research progress of Nedd4L in cardiovascular diseases. Cell Death Dis 2022; 8:206. [PMID: 35429991 PMCID: PMC9013375 DOI: 10.1038/s41420-022-01017-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Post-translational modifications (PTMs) are a covalent processing process of proteins after translation. Proteins are capable of playing their roles only after being modified, so as to maintain the normal physiological function of cells. As a key modification of protein post-translational modification, ubiquitination is an essential element, which forms an enzyme-linked reaction through ubiquitin-activating enzyme, ubiquitin binding enzyme, and ubiquitin ligase, aiming to regulate the expression level and function of cellular proteins. Nedd4 family is the largest group of ubiquitin ligases, including 9 members, such as Nedd4-1, Nedd4L (Nedd4-2), WWP1, WWP2, ITCH, etc. They could bind to substrate proteins through their WW domain and play a dominant role in the ubiquitination process, and then participate in various pathophysiological processes of cardiovascular diseases (such as hypertension, myocardial hypertrophy, heart failure, etc.). At present, the role of Nedd4L in the cardiovascular field is not fully understood. This review aims to summarize the progress and mechanism of Nedd4L in cardiovascular diseases, and provide potential perspective for the clinical treatment or prevention of related cardiovascular diseases by targeting Nedd4L.
Collapse
|
18
|
Vicedomini R, Bouly JP, Laine E, Falciatore A, Carbone A. Multiple profile models extract features from protein sequence data and resolve functional diversity of very different protein families. Mol Biol Evol 2022; 39:6556147. [PMID: 35353898 PMCID: PMC9016551 DOI: 10.1093/molbev/msac070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Functional classification of proteins from sequences alone has become a critical bottleneck in understanding the myriad of protein sequences that accumulate in our databases. The great diversity of homologous sequences hides, in many cases, a variety of functional activities that cannot be anticipated. Their identification appears critical for a fundamental understanding of the evolution of living organisms and for biotechnological applications. ProfileView is a sequence-based computational method, designed to functionally classify sets of homologous sequences. It relies on two main ideas: the use of multiple profile models whose construction explores evolutionary information in available databases, and a novel definition of a representation space in which to analyse sequences with multiple profile models combined together. ProfileView classifies protein families by enriching known functional groups with new sequences and discovering new groups and subgroups. We validate ProfileView on seven classes of widespread proteins involved in the interaction with nucleic acids, amino acids and small molecules, and in a large variety of functions and enzymatic reactions. Profile-View agrees with the large set of functional data collected for these proteins from the literature regarding the organisation into functional subgroups and residues that characterise the functions. In addition, ProfileView resolves undefined functional classifications and extracts the molecular determinants underlying protein functional diversity, showing its potential to select sequences towards accurate experimental design and discovery of novel biological functions. On protein families with complex domain architecture, ProfileView functional classification reconciles domain combinations, unlike phylogenetic reconstruction. ProfileView proves to outperform the functional classification approach PANTHER, the two k-mer based methods CUPP and eCAMI and a neural network approach based on Restricted Boltzmann Machines. It overcomes time complexity limitations of the latter.
Collapse
Affiliation(s)
- R Vicedomini
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 4 place Jussieu, 75005 Paris, France.,Sorbonne Université, Institut des Sciences du Calcul et des Données
| | - J P Bouly
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 4 place Jussieu, 75005 Paris, France.,CNRS, Sorbonne Université Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae - UMR7141, Paris, France
| | - E Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 4 place Jussieu, 75005 Paris, France
| | - A Falciatore
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 4 place Jussieu, 75005 Paris, France.,CNRS, Sorbonne Université Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae - UMR7141, Paris, France
| | - A Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 4 place Jussieu, 75005 Paris, France.,Institut Universitaire de France, Paris 75005, France
| |
Collapse
|
19
|
WWP1 upregulation predicts poor prognosis and promotes tumor progression by regulating ubiquitination of NDFIP1 in intrahepatic cholangiocarcinoma. Cell Death Dis 2022; 8:107. [PMID: 35264565 PMCID: PMC8906119 DOI: 10.1038/s41420-022-00882-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
WW domain-containing E3 ubiquitin protein ligase1 (WWP1) is reported to be upregulated in many types of human cancers; however, its expression and function in intrahepatic cholangiocarcinoma (ICC) remain unknown. Here, in this study we investigated the expression pattern, clinical prognosis, tumor biological functions, and molecular mechanisms of WWP1 in ICC. The expression of WWP1 in patient tissues was detected by western blotting, immunohistochemistry (IHC), and immunofluorescence. CCK-8, colony formation, EdU, transwell, and xenograft models were used to explore the role of WWP1 in the proliferation and metastasis of ICC. Co-immunoprecipitation, mass spectrometry, chromatin immunoprecipitation, and immunofluorescence were performed to detect the potential mechanisms. Our study revealed that WWP1 was highly expressed in ICC, and high levels of WWP1 were associated with poor prognosis. Functionally, WWP1 overexpression enhanced the proliferation and metastasis of ICC cells and vice versa. Mechanistically, MYC could be enriched in the promoter region of WWP1 to facilitate its expression. Then, WWP1 targets Nedd4 family interacting protein1 (NDFIP1) and reduces NDFIP1 protein levels via ubiquitination. Downregulation of NDFIP1 in ICC cells rescued the effects of silenced WWP1 expression. WWP1 expression was also negatively correlated with the protein level of NDFIP1 in patient tissues. In conclusion, WWP1 upregulated by MYC promotes the progression of ICC via ubiquitination of NDFIP1, which reveals that WWP1 might be a potential therapeutic target for ICC.
Collapse
|
20
|
The NEDD4 ubiquitin E3 ligase: a snapshot view of its functional activity and regulation. Biochem Soc Trans 2022; 50:473-485. [PMID: 35129615 DOI: 10.1042/bst20210731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Due to its fundamental role in all eukaryotic cells, a deeper understanding of the molecular mechanisms underlying ubiquitination is of central importance. Being responsible for chain specificity and substrate recognition, E3 ligases are the selective elements of the ubiquitination process. In this review, we discuss different cellular pathways regulated by one of the first identified E3 ligase, NEDD4, focusing on its pathophysiological role, its known targets and modulators. In addition, we highlight small molecule inhibitors that act on NEDD4 and discuss new strategies to effectively target this E3 enzyme.
Collapse
|
21
|
E3 Ubiquitin Ligase Regulators of Notch Receptor Endocytosis: From Flies to Humans. Biomolecules 2022; 12:biom12020224. [PMID: 35204725 PMCID: PMC8961608 DOI: 10.3390/biom12020224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Notch is a developmental receptor, conserved in the evolution of the metazoa, which regulates cell fate proliferation and survival in numerous developmental contexts, and also regulates tissue renewal and repair in adult organisms. Notch is activated by proteolytic removal of its extracellular domain and the subsequent release of its intracellular domain, which then acts in the nucleus as part of a transcription factor complex. Numerous regulatory mechanisms exist to tune the amplitude, duration and spatial patterning of this core signalling mechanism. In Drosophila, Deltex (Dx) and Suppressor of dx (Su(dx)) are E3 ubiquitin ligases which interact with the Notch intracellular domain to regulate its endocytic trafficking, with impacts on both ligand-dependent and ligand-independent signal activation. Homologues of Dx and Su(dx) have been shown to also interact with one or more of the four mammalian Notch proteins and other target substrates. Studies have shown similarities, specialisations and diversifications of the roles of these Notch regulators. This review collates together current research on vertebrate Dx and Su(dx)-related proteins, provides an overview of their various roles, and discusses their contributions to cell fate regulation and disease.
Collapse
|
22
|
Yazhini A, Srinivasan N, Sandhya S. Sequence Divergence and Functional Specializations of the Ancient Spliceosomal SF3b: Implications in Flexibility and Adaptations of the Multi-Protein Complex. Front Genet 2022; 12:747344. [PMID: 35082828 PMCID: PMC8785561 DOI: 10.3389/fgene.2021.747344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Multi-protein assemblies are complex molecular systems that perform highly sophisticated biochemical functions in an orchestrated manner. They are subject to changes that are governed by the evolution of individual components. We performed a comparative analysis of the ancient and functionally conserved spliceosomal SF3b complex, to recognize molecular signatures that contribute to sequence divergence and functional specializations. For this, we recognized homologous sequences of individual SF3b proteins distributed across 10 supergroups of eukaryotes and identified all seven protein components of the complex in 578 eukaryotic species. Using sequence and structural analysis, we establish that proteins occurring on the surface of the SF3b complex harbor more sequence variation than the proteins that lie in the core. Further, we show through protein interface conservation patterns that the extent of conservation varies considerably between interacting partners. When we analyze phylogenetic distributions of individual components of the complex, we find that protein partners that are known to form independent subcomplexes are observed to share similar profiles, reaffirming the link between differential conservation of interface regions and their inter-dependence. When we extend our analysis to individual protein components of the complex, we find taxa-specific variability in molecular signatures of the proteins. These trends are discussed in the context of proline-rich motifs of SF3b4, functional and drug binding sites of SF3b1. Further, we report key protein-protein interactions between SF3b1 and SF3b6 whose presence is observed to be lineage-specific across eukaryotes. Together, our studies show the association of protein location within the complex and subcomplex formation patterns with the sequence conservation of SF3b proteins. In addition, our study underscores evolutionarily flexible elements that appear to confer adaptive features in individual components of the multi-protein SF3b complexes and may contribute to its functional adaptability.
Collapse
Affiliation(s)
- Arangasamy Yazhini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru, India
| |
Collapse
|
23
|
How CEP164 ciliopathy mutations impair ciliogenesis. Structure 2022; 30:4-5. [PMID: 34995479 DOI: 10.1016/j.str.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CEP164 recruits TTBK2 to the distal end of centrioles to allow primary cilium formation. In this issue of Structure, Rosa e Silva et al. (2022) present co-crystallized structures that show the molecular basis of this recruitment and define how ciliopathy mutations in CEP164 disrupt the CEP164-TTBK2 complex.
Collapse
|
24
|
Bamberger C, Pankow S, Yates JR. SMG1 and CDK12 Link ΔNp63α Phosphorylation to RNA Surveillance in Keratinocytes. J Proteome Res 2021; 20:5347-5358. [PMID: 34761935 PMCID: PMC10653645 DOI: 10.1021/acs.jproteome.1c00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor suppressor p53-like protein p63 is required for self-renewal of epidermal tissues. Loss of p63 or exposure to ultraviolet (UV) irradiation triggers terminal differentiation in keratinocytes. However, it remains unclear how p63 diverts epidermal cells from proliferation to terminal differentiation, thereby contributing to successful tissue self-renewal. Here, we used bottom-up proteomics to identify the proteome at the chromatin in normal human epidermal keratinocytes following UV irradiation and p63 depletion. We found that loss of p63 increased DNA damage and that UV irradiation recruited the cyclin-dependent kinase CDK12 and the serine/threonine protein kinase SMG1 to chromatin only in the presence of p63. A post-translational modification analysis of ΔNp63α with mass spectrometry revealed that phosphorylation of T357/S358 and S368 was dependent on SMG1, whereas CDK12 increased the phosphorylation of ΔNp63α at S66/S68 and S301. Indirect phosphorylation of ΔNp63α in the presence of SMG1 enabled ΔNp63α to bind to the tumor suppressor p53-specific DNA recognition sequence, whereas CDK12 rendered ΔNp63α less responsive to UV irradiation and was not required for specific DNA binding. CDK12 and SMG1 are known to regulate the transcription and splicing of RNAs and the decay of nonsense RNAs, respectively, and a subset of p63-specific protein-protein interactions at the chromatin also linked p63 to RNA transcription and decay. We observed that in the absence of p63, UV irradiation resulted in more ORF1p. ORF1p is the first protein product of the intronless non-LTR retrotransposon LINE-1, indicating a derailed surveillance of RNA processing and/or translation. Our results suggest that p63 phosphorylation and transcriptional activation might correspond to altered RNA processing and/or translation to protect proliferating keratinocytes from increased genotoxic stress.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Sandra Pankow
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - John R. Yates
- Department for Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
25
|
Sari-Ak D, Torres-Gomez A, Yazicioglu YF, Christofides A, Patsoukis N, Lafuente EM, Boussiotis VA. Structural, biochemical, and functional properties of the Rap1-Interacting Adaptor Molecule (RIAM). Biomed J 2021; 45:289-298. [PMID: 34601137 PMCID: PMC9250098 DOI: 10.1016/j.bj.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Leukocytes, the leading players of immune system, are involved in innate and adaptive immune responses. Leukocyte adhesion to endothelial cells during transmigration or to antigen presenting cells during T cell activation, requires integrin activation through a process termed inside-out integrin signaling. In hematopoietic cells, Rap1 and its downstream effector RIAM (Rap1-interacting adaptor molecule) form a cornerstone for inside-out integrin activation. The Rap1/RIAM pathway is involved in signal integration for activation, actin remodeling and cytoskeletal reorganization in T cells, as well as in myeloid cell differentiation and function. RIAM is instrumental for phagocytosis, a process requiring particle recognition, cytoskeletal remodeling and membrane protrusion for engulfment and digestion. In the present review, we discuss the structural and molecular properties of RIAM and the recent discoveries regarding the functional role of the Rap1/RIAM module in hematopoietic cells.
Collapse
Affiliation(s)
- Duygu Sari-Ak
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Alvaro Torres-Gomez
- School of Medicine, Unit of Immunology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Yavuz-Furkan Yazicioglu
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Anthos Christofides
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Esther M Lafuente
- School of Medicine, Unit of Immunology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215.
| |
Collapse
|
26
|
Abstract
Cancer is an unpleasant, painful disease. It is one of the most devastating diseases worldwide diminishing many lives. Many genetic and epigenetic changes occur before cancer develops. Mutation in SETD2 gene is one such example. RNA splicing, DNA damage repair, DNA methylation and histone methylation are some of the biological processes mediated by SETD2. SETD2 (histone H3 lysine 36 methyltransferase) is a frequently mutated gene in different types of cancer. Loss of SETD2 is associated with worse prognosis and aggressive phenotypes. Histone modification is one of the epigenetic regulation having a significant effect on gene regulation. N6-methyladenosine (m6A) mRNA modification is a well-known posttranscriptional modification playing a pivotal role in many normal and pathological processes affecting RNA metabolism. SETD2 catalyses H3K36 trimethylation and in turn H3K36me3 guides the deposition of m6A on nascent RNA transcripts. Finally, this review summarizes the deep understanding of the role of SETD2 in RNA methylation/modification and how SETD2 mutation contributes to tumour development.
Collapse
|
27
|
Wilson DW. Motor Skills: Recruitment of Kinesins, Myosins and Dynein during Assembly and Egress of Alphaherpesviruses. Viruses 2021; 13:v13081622. [PMID: 34452486 PMCID: PMC8402756 DOI: 10.3390/v13081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The alphaherpesviruses are pathogens of the mammalian nervous system. Initial infection is commonly at mucosal epithelia, followed by spread to, and establishment of latency in, the peripheral nervous system. During productive infection, viral gene expression, replication of the dsDNA genome, capsid assembly and genome packaging take place in the infected cell nucleus, after which mature nucleocapsids emerge into the cytoplasm. Capsids must then travel to their site of envelopment at cytoplasmic organelles, and enveloped virions need to reach the cell surface for release and spread. Transport at each of these steps requires movement of alphaherpesvirus particles through a crowded and viscous cytoplasm, and for distances ranging from several microns in epithelial cells, to millimeters or even meters during egress from neurons. To solve this challenging problem alphaherpesviruses, and their assembly intermediates, exploit microtubule- and actin-dependent cellular motors. This review focuses upon the mechanisms used by alphaherpesviruses to recruit kinesin, myosin and dynein motors during assembly and egress.
Collapse
Affiliation(s)
- Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; ; Tel.: +1-718-430-2305
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
28
|
Cleavage and Polyadenylation Specificity Factor 6 Is Required for Efficient HIV-1 Latency Reversal. mBio 2021; 12:e0109821. [PMID: 34154414 PMCID: PMC8262898 DOI: 10.1128/mbio.01098-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 latent reservoir is the major barrier to an HIV cure. Due to low levels or lack of transcriptional activity, HIV-1 latent proviruses in vivo are not easily detectable and cannot be targeted by either natural immune mechanisms or molecular therapies based on protein expression. To target the latent reservoir, further understanding of HIV-1 proviral transcription is required. In this study, we demonstrate a novel role for cleavage and polyadenylation specificity factor 6 (CPSF6) in HIV-1 transcription. We show that knockout of CPSF6 hinders reactivation of latent HIV-1 proviruses by PMA in primary CD4+ cells. CPSF6 knockout reduced HIV-1 transcription, concomitant with a drastic reduction in the phosphorylation levels of Pol II and CDK9. Knockout of CPSF6 led to abnormal stabilization of protein phosphatase 2A (PP2A) subunit A, which then acted to dephosphorylate CDK9, downmodulating CDK9's ability to phosphorylate the Pol II carboxy-terminal domain. In agreement with this mechanism, incubation with the PP2A inhibitor, LB100, restored HIV-1 transcription in the CPSF6 knockout cells. Destabilization of PP2A subunit A occurs in the ubiquitin proteasome pathway, wherein CPSF6 acts as a substrate adaptor for the ITCH ubiquitin ligase. Our observations reveal a novel role of CPSF6 in HIV-1 transcription, which appears to be independent of its known roles in cleavage and polyadenylation and the targeting of preintegration complexes to the chromatin for viral DNA integration. IMPORTANCE CPSF6 is a cellular factor that regulates cleavage and polyadenylation of mRNAs and participates in HIV-1 infection by facilitating targeting of preintegration complexes to the chromatin. Our observations reveal a second role of CPSF6 in the HIV-1 life cycle that involves regulation of viral transcription through controlling the stability of protein phosphatase 2A, which in turn regulates the phosphorylation/dephosphorylation status of critical residues in CDK9 and Pol II.
Collapse
|
29
|
The Role of HECT-Type E3 Ligase in the Development of Cardiac Disease. Int J Mol Sci 2021; 22:ijms22116065. [PMID: 34199773 PMCID: PMC8199989 DOI: 10.3390/ijms22116065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in medicine, cardiac disease remains an increasing health problem associated with a high mortality rate. Maladaptive cardiac remodeling, such as cardiac hypertrophy and fibrosis, is a risk factor for heart failure; therefore, it is critical to identify new therapeutic targets. Failing heart is reported to be associated with hyper-ubiquitylation and impairment of the ubiquitin–proteasome system, indicating an importance of ubiquitylation in the development of cardiac disease. Ubiquitylation is a post-translational modification that plays a pivotal role in protein function and degradation. In 1995, homologous to E6AP C-terminus (HECT) type E3 ligases were discovered. E3 ligases are key enzymes in ubiquitylation and are classified into three families: really interesting new genes (RING), HECT, and RING-between-RINGs (RBRs). Moreover, 28 HECT-type E3 ligases have been identified in human beings. It is well conserved in evolution and is characterized by the direct attachment of ubiquitin to substrates. HECT-type E3 ligase is reported to be involved in a wide range of human diseases and health. The role of HECT-type E3 ligases in the development of cardiac diseases has been uncovered in the last decade. There are only a few review articles summarizing recent advancements regarding HECT-type E3 ligase in the field of cardiac disease. This study focused on cardiac remodeling and described the role of HECT-type E3 ligases in the development of cardiac disease. Moreover, this study revealed that the current knowledge could be exploited for the development of new clinical therapies.
Collapse
|
30
|
Abou Zeinab R, Wu HH, Abuetabh Y, Leng S, Sergi C, Eisenstat DD, Leng RP. Pirh2, an E3 ligase, regulates the AIP4-p73 regulatory pathway by modulating AIP4 expression and ubiquitination. Carcinogenesis 2021; 42:650-662. [PMID: 33569599 PMCID: PMC8086772 DOI: 10.1093/carcin/bgab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Pirh2 is an E3 ligase belonging to the RING-H2 family and shown to bind, ubiquitinate and downregulate p73 tumor suppressor function without altering p73 protein levels. AIP4, an E3 ligase belonging to the HECT domain family, has been reported to be a negative regulatory protein that promotes p73 ubiquitination and degradation. Herein, we found that Pirh2 is a key regulator of AIP4 that inhibits p73 function. Pirh2 physically interacts with AIP4 and significantly downregulates AIP4 expression. This downregulation is shown to involve the ubiquitination of AIP4 by Pirh2. Importantly, we demonstrated that the ectopic expression of Pirh2 inhibits the AIP4-p73 negative regulatory pathway, which was restored when depleting endogenous Pirh2 utilizing Pirh2-siRNAs. We further observed that Pirh2 decreases AIP4-mediated p73 ubiquitination. At the translational level and specifically regarding p73 cell cycle arrest function, Pirh2 still ensures the arrest of p73-mediated G1 despite AIP4 expression. Our study reveals a novel link between two E3 ligases previously thought to be unrelated in regulating the same effector substrate, p73. These findings open a gateway to explain how E3 ligases differentiate between regulating multiple substrates that may belong to the same family of proteins, as it is the case for the p53 and p73 proteins.
Collapse
Affiliation(s)
- Rami Abou Zeinab
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, Alberta, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Roger P Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Novelli G, Liu J, Biancolella M, Alonzi T, Novelli A, Patten JJ, Cocciadiferro D, Agolini E, Colona VL, Rizzacasa B, Giannini R, Bigio B, Goletti D, Capobianchi MR, Grelli S, Mann J, McKee TD, Cheng K, Amanat F, Krammer F, Guarracino A, Pepe G, Tomino C, Tandjaoui-Lambiotte Y, Uzunhan Y, Tubiana S, Ghosn J, Notarangelo LD, Su HC, Abel L, Cobat A, Elhanan G, Grzymski JJ, Latini A, Sidhu SS, Jain S, Davey RA, Casanova JL, Wei W, Pandolfi PP. Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death Dis 2021; 12:310. [PMID: 33762578 PMCID: PMC7987752 DOI: 10.1038/s41419-021-03513-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy.
- IRCCS Neuromed, Pozzilli, (IS), Italy.
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Tonino Alonzi
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, 00149, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - J J Patten
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Dario Cocciadiferro
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Barbara Rizzacasa
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Rosalinda Giannini
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, 00149, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani - IRCCS, 00149, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, Tor Vergata University of Rome, 00133, Rome, Italy
| | | | | | - Ke Cheng
- HistoWiz Inc, Brooklyn, NY, 11226, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn school of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn school of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Gerardo Pepe
- Department of Biology, Tor Vergata University, 00133, Rome, Italy
| | - Carlo Tomino
- San Raffaele University of Rome, 00166, Rome, Italy
| | - Yacine Tandjaoui-Lambiotte
- Intensive Care Unit, Avicenne Hospital, APHP, Bobigny, France
- INSERM U1272 Hypoxia & Lung, Bobigny, France
| | - Yurdagul Uzunhan
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Hôpital Avicenne, APHP, Bobigny; INSERM UMR1272, Université Paris 13, Bobigny, France
| | - Sarah Tubiana
- Hôpital Bichat Claude Bernard, APHP, Paris, France
- Centre d'investigation Clinique, Inserm CIC, 1425, Paris, France
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMRS1137, University of Paris, Paris, France
- AP-HP, Bichat Claude Bernard Hospital, Infectious and Tropical Disease Department, Paris, France
| | | | - Helen C Su
- Laboratory of Clinical Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Gai Elhanan
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, 89502, USA
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA
| | - Joseph J Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, 89502, USA
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA
| | - Andrea Latini
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada, M5S 3E1 416-946-0863
| | | | - Robert A Davey
- Department of Microbiology Boston University, National Emerging Infectious Diseases Laboratories, Boston, MA, 02118, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Pier Paolo Pandolfi
- Department of Pathology, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, 89502, USA.
- MBC, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, TO, 10126, Italy.
| |
Collapse
|
32
|
Bacon K, Blain A, Bowen J, Burroughs M, McArthur N, Menegatti S, Rao BM. Quantitative Yeast-Yeast Two Hybrid for the Discovery and Binding Affinity Estimation of Protein-Protein Interactions. ACS Synth Biol 2021; 10:505-514. [PMID: 33587591 DOI: 10.1021/acssynbio.0c00472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantifying the binding affinity of protein-protein interactions is important for elucidating connections within biochemical signaling pathways, as well as characterization of binding proteins isolated from combinatorial libraries. We describe a quantitative yeast-yeast two-hybrid (qYY2H) system that not only enables the discovery of specific protein-protein interactions but also efficient, quantitative estimation of their binding affinities (KD). In qYY2H, the bait and prey proteins are expressed as yeast cell surface fusions using yeast surface display. We developed a semiempirical framework for estimating the KD of monovalent bait-prey interactions, using measurements of bait-prey yeast-yeast binding, which is mediated by multivalent interactions between yeast-displayed bait and prey. Using qYY2H, we identified interaction partners of SMAD3 and the tandem WW domains of YAP from a cDNA library and characterized their binding affinities. Finally, we showed that qYY2H could also quantitatively evaluate binding interactions mediated by post-translational modifications on the bait protein.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
33
|
Ali M, Simonetti L, Ivarsson Y. Screening Intrinsically Disordered Regions for Short Linear Binding Motifs. Methods Mol Biol 2021; 2141:529-552. [PMID: 32696376 DOI: 10.1007/978-1-0716-0524-0_27] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intrinsically disordered regions of the proteome are enriched in short linear motifs (SLiMs) that serve as binding sites for peptide binding proteins. These interactions are often of low-to-mid micromolar affinities and are challenging to screen for experimentally. However, a range of dedicated methods have been developed recently, which open for screening of SLiM-based interactions on large scale. A variant of phage display, termed proteomic peptide phage display (ProP-PD), has proven particularly useful for the purpose. Here, we describe a complete high-throughput ProP-PD protocol for screening intrinsically disordered regions for SLiMs. The protocol requires some basic bioinformatics skills for the design of the library and for data analysis but can be performed in a standard biochemistry lab. The protocol starts from the construction of a library, followed by the high-throughput expression and purification of bait proteins, the phage selection, and the analysis of the binding-enriched phage pools using next-generation sequencing. As the protocol generates rather large data sets, we also emphasize the importance of data management and storage.
Collapse
|
34
|
Diverse Populations of Extracellular Vesicles with Opposite Functions during Herpes Simplex Virus 1 Infection. J Virol 2021; 95:JVI.02357-20. [PMID: 33361424 DOI: 10.1128/jvi.02357-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are released by all types of cells as a means of intercellular communication. Their significance lies in the fact that they can alter recipient cell functions, despite their limited capacity for cargo. We have previously demonstrated that herpes simplex virus 1 (HSV-1) infection influences the cargo and functions of EVs released by infected cells and that these EVs negatively impact a subsequent HSV-1 infection. In the present study, we have implemented cutting-edge technologies to further characterize EVs released during HSV-1 infection. We identified distinct EV populations that were separable through a gradient approach. One population was positive for the tetraspanin CD63 and was distinct from EVs carrying components of the endosomal sorting complexes required for transport (ESCRT). Nanoparticle tracking analysis (NTA) combined with protein analysis indicated that the production of CD63+ EVs was selectively induced upon HSV-1 infection. The ExoView platform supported these data and suggested that the amount of CD63 per vesicle is larger upon infection. This platform also identified EV populations positive for other tetraspanins, including CD81 and CD9, whose abundance decreased upon HSV-1 infection. The stimulator of interferon genes (STING) was found in CD63+ EVs released during HSV-1 infection, while viral components were found in ESCRT+ EVs. Functional characterization of these EVs demonstrated that they have opposite effects on the infection, but the dominant effect was negative. Overall, we have identified the dominant population of EVs, and other EV populations produced during HSV-1 infection, and we have provided information about potential roles.IMPORTANCE Extracellular vesicles mediate cell-to-cell communication and convey messages important for cell homeostasis. Pathways of EV biogenesis are often hijacked by pathogens to facilitate their dissemination and to establish a favorable microenvironment for the infection. We have previously shown that HSV-1 infection alters the cargo and functions of the released EVs, which negatively impact the infection. We have built upon our previous findings by developing procedures to separate EV populations from HSV-1-infected cells. We identified the major population of EVs released during infection, which carries the DNA sensor STING and has an antiviral effect. We also identified an EV population that carries selected viral proteins and has a proviral role. This is the first study to characterize EV populations during infection. These data indicate that the complex interactions between the virus and the host are extended to the extracellular environment and could impact HSV-1 dissemination and persistence in the host.
Collapse
|
35
|
The tumor suppressor role of salvador family WW domain-containing protein 1 (SAV1): one of the key pieces of the tumor puzzle. J Cancer Res Clin Oncol 2021; 147:1287-1297. [PMID: 33580421 DOI: 10.1007/s00432-021-03552-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE In the complex tumor scenario, understanding the function of proteins with protumor or antitumor roles is essential to support advances in the cancer clinical area. Among them, the salvador family WW domain-containing protein 1 (SAV1) is highlighted. This protein plays a fundamental role in the tumor suppressor face of the Hippo pathway, which are responsible for controlling cell proliferation, organ size, development and tissue homeostasis. However, the functional dysregulation of this pathway may contribute to tumorigenesis and tumor progression. As SAV1 is a tumor suppressor scaffold protein, we explored the functions performed by SAV1 with its partners, the regulation of its expression, and its antitumor role in various types of cancer. METHODS We selected and analyzed 80 original articles and reviews from Pubmed that focuses on the study of SAV1 in cancer. RESULTS SAV1 interacts with several proteins, has different functions and acts as tumor suppressor by other mechanisms besides Hippo pathway. SAV1 expression regulation seems to occur by microRNAs and rarely by mutation or promoter methylation. It is downregulated in different types of cancer, which leads to cancer promotion and progression and is associated with poor prognosis. In vivo models have shown that the loss of SAV1 contributes to tumorigenesis. CONCLUSION SAV1 plays a relevant role as tumor suppressor in several types of cancer, highlighting SAV1 and the Hippo pathway's importance to cancer. Thus, encouraging further studies to include the SAV1 as a molecular key piece in cancer biology and in clinical approaches to cancer.
Collapse
|
36
|
Current understanding of CREPT and p15RS, carboxy-terminal domain (CTD)-interacting proteins, in human cancers. Oncogene 2020; 40:705-716. [PMID: 33239754 DOI: 10.1038/s41388-020-01544-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
CREPT and p15RS, also named RPRD1B and RPRD1A, are RPRD (regulation of nuclear pre-mRNA-domain-containing) proteins containing C-terminal domain (CTD)-interacting domain (CID), which mediates the binding to the CTD of Rpb1, the largest subunit of RNA polymerase II (RNAPII). CREPT and p15RS are highly conserved, with a common yeast orthologue Rtt103. Intriguingly, human CREPT and p15RS possess opposite functions in the regulation of cell proliferation and tumorigenesis. While p15RS inhibits cell proliferation, CREPT promotes cell cycle and tumor growth. Aberrant expression of both CREPT and p15RS was found in numerous types of cancers. At the molecular level, both CREPT and p15RS were reported to regulate gene transcription by interacting with RNAPII. However, CREPT also exerts a key function in the processes linked to DNA damage repairs. In this review, we summarized the recent studies regarding the biological roles of CREPT and p15RS, as well as the molecular mechanisms underlying their activities. Fully revealing the mechanisms of CREPT and p15RS functions will not only provide new insights into understanding gene transcription and maintenance of DNA stability in tumors, but also promote new approach development for tumor diagnosis and therapy.
Collapse
|
37
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
38
|
Abe RJ, Savage H, Imanishi M, Banerjee P, Kotla S, Paez-Mayorga J, Taunton J, Fujiwara K, Won JH, Yusuf SW, Palaskas NL, Banchs J, Lin SH, Schadler KL, Abe JI, Le NT. p90RSK-MAGI1 Module Controls Endothelial Permeability by Post-translational Modifications of MAGI1 and Hippo Pathway. Front Cardiovasc Med 2020; 7:542485. [PMID: 33304925 PMCID: PMC7693647 DOI: 10.3389/fcvm.2020.542485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/15/2020] [Indexed: 01/05/2023] Open
Abstract
Previously, we reported that post-translational modifications (PTMs) of MAGI1, including S741 phosphorylation and K931 de-SUMOylation, both of which are regulated by p90RSK activation, lead to endothelial cell (EC) activation. However, roles for p90RSK and MAGI1-PTMs in regulating EC permeability remain unclear despite MAGI1 being a junctional molecule. Here, we show that thrombin (Thb)-induced EC permeability, detected by the electric cell-substrate impedance sensing (ECIS) based system, was decreased by overexpression of dominant negative p90RSK or a MAGI1-S741A phosphorylation mutant, but was accelerated by overexpression of p90RSK, siRNA-mediated knockdown of magi1, or the MAGI1-K931R SUMOylation mutant. MAGI1 depletion also increased the mRNA and protein expression of the large tumor suppressor kinases 1 and 2 (LATS1/2), which inhibited YAP/TAZ activity and increased EC permeability. Because the endothelial barrier is a critical mediator of tumor hypoxia, we also evaluated the role of p90RSK activation in tumor vessel leakiness by using a relatively low dose of the p90RSK specific inhibitor, FMK-MEA. FMK-MEA significantly inhibited tumor vessel leakiness at a dose that does not affect morphology and growth of tumor vessels in vivo. These results provide novel insights into crucial roles for p90RSK-mediated MAGI1 PTMs and the Hippo pathway in EC permeability, as well as p90RSK activation in tumor vessel leakiness.
Collapse
Affiliation(s)
- Rei J Abe
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Hannah Savage
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Masaki Imanishi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyanka Banerjee
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jesus Paez-Mayorga
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
| | - Keigi Fujiwara
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jong Hak Won
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jose Banchs
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keri L Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
39
|
Zhang KL, Feng Z, Yang JF, Yang F, Yuan T, Zhang D, Hao GF, Fang YM, Zhang J, Wu C, Chen MX, Zhu FY. Systematic characterization of the branch point binding protein, splicing factor 1, gene family in plant development and stress responses. BMC PLANT BIOLOGY 2020; 20:379. [PMID: 32811430 PMCID: PMC7433366 DOI: 10.1186/s12870-020-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Among eukaryotic organisms, alternative splicing is an important process that can generate multiple transcripts from one same precursor messenger RNA, which greatly increase transcriptome and proteome diversity. This process is carried out by a super-protein complex defined as the spliceosome. Specifically, splicing factor 1/branchpoint binding protein (SF1/BBP) is a single protein that can bind to the intronic branchpoint sequence (BPS), connecting the 5' and 3' splice site binding complexes during early spliceosome assembly. The molecular function of this protein has been extensively investigated in yeast, metazoa and mammals. However, its counterpart in plants has been seldomly reported. RESULTS To this end, we conducted a systematic characterization of the SF1 gene family across plant lineages. In this work, a total of 92 sequences from 59 plant species were identified. Phylogenetic relationships of these sequences were constructed, and subsequent bioinformatic analysis suggested that this family likely originated from an ancient gene transposition duplication event. Most plant species were shown to maintain a single copy of this gene. Furthermore, an additional RNA binding motif (RRM) existed in most members of this gene family in comparison to their animal and yeast counterparts, indicating that their potential role was preserved in the plant lineage. CONCLUSION Our analysis presents general features of the gene and protein structure of this splicing factor family and will provide fundamental information for further functional studies in plants.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Zhen Feng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Feng Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tian Yuan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Di Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| | - Mo-Xian Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 PR China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037 Jiangsu Province China
| |
Collapse
|
40
|
Rouaud F, Tessaro F, Aimaretti L, Scapozza L, Citi S. Cooperative binding of the tandem WW domains of PLEKHA7 to PDZD11 promotes conformation-dependent interaction with tetraspanin 33. J Biol Chem 2020; 295:9299-9312. [PMID: 32371390 PMCID: PMC7363125 DOI: 10.1074/jbc.ra120.012987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/30/2020] [Indexed: 01/11/2023] Open
Abstract
Pleckstrin homology domain–containing A7 (PLEKHA7) is a cytoplasmic protein at adherens junctions that has been implicated in hypertension, glaucoma, and responses to Staphylococcus aureus α-toxin. Complex formation between PLEKHA7, PDZ domain–containing 11 (PDZD11), tetraspanin 33, and the α-toxin receptor ADAM metallopeptidase domain 10 (ADAM10) promotes junctional clustering of ADAM10 and α-toxin–mediated pore formation. However, how the N-terminal region of PDZD11 interacts with the N-terminal tandem WW domains of PLEKHA7 and how this interaction promotes tetraspanin 33 binding to the WW1 domain is unclear. Here, we used site-directed mutagenesis, glutathione S-transferase pulldown experiments, immunofluorescence, molecular modeling, and docking experiments to characterize the mechanisms driving these interactions. We found that Asp-30 of WW1 and His-75 of WW2 interact through a hydrogen bond and, together with Thr-35 of WW1, form a binding pocket that accommodates a polyproline stretch within the N-terminal PDZD11 region. By strengthening the interactions of the ternary complex, the WW2 domain stabilized the WW1 domain and cooperatively promoted the interaction with PDZD11. Modeling results indicated that, in turn, PDZD11 binding induces a conformational rearrangement, which strengthens the ternary complex, and contributes to enlarging a “hydrophobic hot spot” region on the WW1 domain. The last two lipophilic residues of tetraspanin 33, Trp-283 and Tyr-282, were required for its interaction with PLEKHA7. Docking of the tetraspanin 33 C terminus revealed that it fits into the hydrophobic hot spot region of the accessible surface of WW1. We conclude that communication between the two tandem WW domains of PLEKHA7 and the PLEKHA7–PDZD11 interaction modulate the ligand-binding properties of PLEKHA7.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland.,The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Francesca Tessaro
- The Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Laura Aimaretti
- The Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- The Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland .,The Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
41
|
Qiu R, Zhang J, Xiang X. The splicing-factor Prp40 affects dynein-dynactin function in Aspergillus nidulans. Mol Biol Cell 2020; 31:1289-1301. [PMID: 32267207 PMCID: PMC7353152 DOI: 10.1091/mbc.e20-03-0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The multi-component cytoplasmic dynein transports cellular cargoes with the help of another multi-component complex dynactin, but we do not know enough about factors that may affect the assembly and functions of these proteins. From a genetic screen for mutations affecting early-endosome distribution in Aspergillus nidulans, we identified the prp40AL438* mutation in Prp40A, a homologue of Prp40, an essential RNA-splicing factor in the budding yeast. Prp40A is not essential for splicing, although it associates with the nuclear splicing machinery. The prp40AL438* mutant is much healthier than the ∆prp40A mutant, but both mutants exhibit similar defects in dynein-mediated early-endosome transport and nuclear distribution. In the prp40AL438* mutant, the frequency but not the speed of dynein-mediated early-endosome transport is decreased, which correlates with a decrease in the microtubule plus-end accumulations of dynein and dynactin. Within the dynactin complex, the actin-related protein Arp1 forms a mini-filament. In a pull-down assay, the amount of Arp1 pulled down with its pointed-end protein Arp11 is lowered in the prp40AL438* mutant. In addition, we found from published interactome data that a mammalian Prp40 homologue PRPF40A interacts with Arp1. Thus, Prp40 homologues may regulate the assembly or function of dynein–dynactin and their mechanisms deserve to be further studied.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
42
|
Gao XM, Zhang DD, Hou CC, Du C, Luo SY, Zhu JQ. Developmental and mRNA transcript relative abundance pattern of vitellogenin receptors, LR8-/Lrp13, during ovarian development in the large yellow croaker (Larimichthys crocea). Anim Reprod Sci 2020; 213:106271. [DOI: 10.1016/j.anireprosci.2019.106271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
|
43
|
Ziegler CM, Dang L, Eisenhauer P, Kelly JA, King BR, Klaus JP, Manuelyan I, Mattice EB, Shirley DJ, Weir ME, Bruce EA, Ballif BA, Botten J. NEDD4 family ubiquitin ligases associate with LCMV Z's PPXY domain and are required for virus budding, but not via direct ubiquitination of Z. PLoS Pathog 2019; 15:e1008100. [PMID: 31710650 PMCID: PMC6874086 DOI: 10.1371/journal.ppat.1008100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/21/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Viral late domains are used by many viruses to recruit the cellular endosomal sorting complex required for transport (ESCRT) to mediate membrane scission during viral budding. Unlike the P(S/T)AP and YPX(1–3)L late domains, which interact directly with the ESCRT proteins Tsg101 and ALIX, the molecular linkage connecting the PPXY late domain to ESCRT proteins is unclear. The mammarenavirus lymphocytic choriomeningitis virus (LCMV) matrix protein, Z, contains only one late domain, PPXY. We previously found that this domain in LCMV Z, as well as the ESCRT pathway, are required for the release of defective interfering (DI) particles but not infectious virus. To better understand the molecular mechanism of ESCRT recruitment by the PPXY late domain, affinity purification-mass spectrometry was used to identify host proteins that interact with the Z proteins of the Old World mammarenaviruses LCMV and Lassa virus. Several Nedd4 family E3 ubiquitin ligases interact with these matrix proteins and in the case of LCMV Z, the interaction was PPXY-dependent. We demonstrated that these ligases directly ubiquitinate LCMV Z and mapped the specific lysine residues modified. A recombinant LCMV containing a Z that cannot be ubiquitinated maintained its ability to produce both infectious virus and DI particles, suggesting that direct ubiquitination of LCMV Z alone is insufficient for recruiting ESCRT proteins to mediate virus release. However, Nedd4 ligases appear to be important for DI particle release suggesting that ubiquitination of targets other than the Z protein itself is required for efficient viral ESCRT recruitment. Enveloped viruses derive their lipid bilayer from either the cellular plasma membrane or an intracellular organelle during the process of viral budding in which a virus particle is formed at a membrane. Many enveloped viruses recruit the cellular endosomal sorting complex required for transport (ESCRT) in order to efficiently cut the membrane that connects a newly budded, but not released, virus particle from its parent membrane. Late domains, which are short protein motifs found in numerous enveloped viruses, specifically recruit ESCRT for this process. Two types of late domains accomplish this by binding directly to ESCRT proteins. A third late domain, PPXY, recruits ESCRT proteins through an unknown, indirect linkage. In this study, we sought to identify proteins that may bridge the PPXY late domain and ESCRT proteins. We found that Nedd4 family ubiquitin ligases interact with the PPXY domain in the mammarenavirus Z protein resulting in ubiquitination of Z at two lysine residues. However, Z ubiquitination was largely dispensable for the virus. Conversely, Nedd4 ubiquitin ligases were critical during infection suggesting that the most important contribution made to virus release by Nedd4 ligases is not direct ubiquitination of the viral matrix protein, but possibly the ubiquitination of cellular proteins or other viral proteins.
Collapse
Affiliation(s)
- Christopher M. Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Loan Dang
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Philip Eisenhauer
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Jamie A. Kelly
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Benjamin R. King
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Joseph P. Klaus
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Inessa Manuelyan
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - Ethan B. Mattice
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - David J. Shirley
- Ixis LLC, Data Science Division, Burlington, Vermont, United States of America
| | - Marion E. Weir
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Emily A. Bruce
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Bryan A. Ballif
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Jason Botten
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
44
|
Culka M, Rulíšek L. Factors Stabilizing β-Sheets in Protein Structures from a Quantum-Chemical Perspective. J Phys Chem B 2019; 123:6453-6461. [PMID: 31287693 DOI: 10.1021/acs.jpcb.9b04866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein folds are determined by the interplay between various (de)stabilizing forces, which can be broadly divided into a local strain of the protein chain and intramolecular interactions. In contrast to the α-helix, the β-sheet secondary protein structure is significantly stabilized by long-range interactions between the individual β-strands. It has been observed that quite diverse amino acid sequences can form a very similar small β-sheet fold, such as in the three-β-strand WW domain. Employing "calibrated" quantum-chemical methods, we show herein on two sequentially diverse examples of the WW domain that the internal strain energy is higher in the β-strands and lower in the loops, while the interaction energy has an opposite trend. Low strain energy computed for peptide sequences in the loop 1 correlates with its postulated early formation in the folding process. The relatively high strain energy within the β-strands (up to 8 kcal mol-1 per amino acid residue) is compensated by even higher intramolecular interaction energy (up to 15 kcal mol-1 per residue). It is shown in a quantitative way that the most conserved residues across the structural family of WW domains have the highest contributions to the intramolecular interaction energy. On the other hand, the residues in the regions with the lowest strain are not conserved. We conclude that the internal interaction energy is the physical quantity tuned by evolution to define the β-sheet protein fold.
Collapse
Affiliation(s)
- Martin Culka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 2 , 166 10 Praha 6 , Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 2 , 166 10 Praha 6 , Czech Republic
| |
Collapse
|
45
|
Jia X, Zhai T, Wang B, Zhang J, Zhang F. The MAGI2 gene polymorphism rs2160322 is associated with Graves' disease but not with Hashimoto's thyroiditis. J Endocrinol Invest 2019; 42:843-850. [PMID: 30535759 DOI: 10.1007/s40618-018-0990-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Autoimmune thyroid diseases (AITDs) are chronic organ-specific autoimmune disorders, predominantly including Graves' disease (GD), and Hashimoto's thyroiditis (HT). This study aimed to investigate whether single-nucleotide polymorphisms (SNPs) in MAGI2 and MAGI3 gene contributed to the etiology of AITDs. METHODS We conducted a case-control study including 1001 patients with AITDs (625 GD, 376 HT) and 846 healthy controls. Subgroup analyses in GD and HT were also performed. RESULTS The genotypes of rs2160322 in MAGI2 showed a borderline association with AITDs (P = 0.048), and they had a strong correlation with GD (P = 0.012). The frequency of the minor allele G of rs2160322 was significantly higher in the GD patients than in the controls (P = 0.027; OR 1.91; 95% CI 1.020-1.391), especially for GD females (P = 0.008; OR 1.304; 95% CI 1.072-1.587), and those who had positive family history (P = 0.011; OR 1.412; 95% CI 1.083-1.843). For genetic model analysis, the recessive model and homozygous model of rs2160322 showed significant associations with AITDs (P = 0.009; P = 0.019) and GD (P = 0.004; P = 0.005). Nevertheless, our study could not identify any relationship between these SNPs and HT. Due to the low mutation rate of rs1343126 in MAGI3, we were unable to obtain a credible conclusion on its association with AITDs. CONCLUSIONS Our study identified that MAGI2 rs2160322 was strongly associated with GD susceptibility. The potential dysfunction of tight junction proteins and aberrant epithelial barrier caused by abnormal MAGI2 expression may be a novel mechanism of GD.
Collapse
Affiliation(s)
- X Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - T Zhai
- Department of Endocrinology and Metabolism, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - B Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - J Zhang
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| | - F Zhang
- Department of Emergency, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
46
|
Khanal P, Yeung B, Zhao Y, Yang X. Identification of Prolyl isomerase Pin1 as a novel positive regulator of YAP/TAZ in breast cancer cells. Sci Rep 2019; 9:6394. [PMID: 31015482 PMCID: PMC6478839 DOI: 10.1038/s41598-019-42767-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
The Hippo signalling pathway plays very important roles in tumorigenesis, metastasis, organ size control, and drug resistance. Although, it has been shown that the two major components of Hippo pathway, YAP and TAZ, play very crucial role in tumorigenesis and drug resistance, the exact molecular mechanisms are still unknown. Recently, we have shown that the prolyl isomerase Pin1 regulates the activity of Hippo pathway through interaction with Hippo component LATS kinase. Thus we asked if Pin1 is also able to interact with other Hippo pathway components. Therefore, in order to investigate whether Pin1 can interacts with other components of the Hippo pathway, we performed GST-pull down and co-immunoprecipitation (Co-IP) assays and have identified two Hippo components YAP and TAZ oncoproteins as novel binding partner of Pin1. We found that Pin1 interacts with YAP/TAZ in a phosphorylation-independent manner and WW domain of Pin1 is necessary for this interaction. Moreover, by using real time qRT-PCR, Cycloheximide chase, luciferase reporter, cell viability and soft agar assays, we have shown that Pin1 increases the tumorigenic and drug-resistant activity of YAP/TAZ through stabilization of YAP/TAZ at protein levels. Together, we have identified Pin1 as a novel positive regulator of YAP/TAZ in tumorigenesis and drug resistance of breast cancer cells. These findings will provide a significant contribution for targeting the Pin1-YAP/TAZ signaling for the successful treatment of tumorigenesis and drug resistance of breast and other cancers in the future.
Collapse
Affiliation(s)
- Prem Khanal
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Benjamin Yeung
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Yulei Zhao
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada.
| |
Collapse
|
47
|
MERTK mediated novel site Akt phosphorylation alleviates SAV1 suppression. Nat Commun 2019; 10:1515. [PMID: 30944303 PMCID: PMC6447540 DOI: 10.1038/s41467-019-09233-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Akt plays indispensable roles in cell proliferation, survival and metabolism. Mechanisms underlying posttranslational modification-mediated Akt activation have been extensively studied yet the Akt interactome is less understood. Here, we report that SAV1, a Hippo signaling component, inhibits Akt, a function independent of its role in Hippo signaling. Binding to a proline-tyrosine motif in the Akt-PH domain, SAV1 suppresses Akt activation by blocking Akt’s movement to plasma membrane. We further identify cancer-associated SAV1 mutations with impaired ability to bind Akt, leading to Akt hyperactivation. We also determine that MERTK phosphorylates Akt1-Y26, releasing SAV1 binding and allowing Akt responsiveness to canonical PI-3K pathway activation. This work provides a mechanism underlying MERTK-mediated Akt activation and survival signaling in kidney cancer. Akt activation drives oncogenesis and therapeutic resistance; this mechanism of Akt regulation by MERTK/SAV1 provides yet another complexity in an extensively studied pathway, and may yield prognostic information and therapeutic targets. Hyperactivation of Akt promotes tumorigenesis. Here, the authors show that SAV1, a member of Hippo signalling, interacts with Akt to suppress Akt activity and MERTK-mediated Akt phosphorylation relieves this suppression to facilitate Akt oncogenic activity in clear cell renal carcinomas.
Collapse
|
48
|
Pryce KD, Powell R, Agwa D, Evely KM, Sheehan GD, Nip A, Tomasello DL, Gururaj S, Bhattacharjee A. Magi-1 scaffolds Na V1.8 and Slack K Na channels in dorsal root ganglion neurons regulating excitability and pain. FASEB J 2019; 33:7315-7330. [PMID: 30860870 DOI: 10.1096/fj.201802454rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Voltage-dependent sodium (NaV) 1.8 channels regulate action potential generation in nociceptive neurons, identifying them as putative analgesic targets. Here, we show that NaV1.8 channel plasma membrane localization, retention, and stability occur through a direct interaction with the postsynaptic density-95/discs large/zonula occludens-1-and WW domain-containing scaffold protein called membrane-associated guanylate kinase with inverted orientation (Magi)-1. The neurophysiological roles of Magi-1 are largely unknown, but we found that dorsal root ganglion (DRG)-specific knockdown of Magi-1 attenuated thermal nociception and acute inflammatory pain and produced deficits in NaV1.8 protein expression. A competing cell-penetrating peptide mimetic derived from the NaV1.8 WW binding motif decreased sodium currents, reduced NaV1.8 protein expression, and produced hypoexcitability. Remarkably, a phosphorylated variant of the very same peptide caused an opposing increase in NaV1.8 surface expression and repetitive firing. Likewise, in vivo, the peptides produced diverging effects on nocifensive behavior. Additionally, we found that Magi-1 bound to sequence like a calcium-activated potassium channel sodium-activated (Slack) potassium channels, demonstrating macrocomplexing with NaV1.8 channels. Taken together, these findings emphasize Magi-1 as an essential scaffold for ion transport in DRG neurons and a central player in pain.-Pryce, K. D., Powell, R., Agwa, D., Evely, K. M., Sheehan, G. D., Nip, A., Tomasello, D. L., Gururaj, S., Bhattacharjee, A. Magi-1 scaffolds NaV1.8 and Slack KNa channels in dorsal root ganglion neurons regulating excitability and pain.
Collapse
Affiliation(s)
- Kerri D Pryce
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Rasheen Powell
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Dalia Agwa
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Katherine M Evely
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Garrett D Sheehan
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Allan Nip
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Danielle L Tomasello
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Sushmitha Gururaj
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| | - Arin Bhattacharjee
- Department of Pharmacology and Toxicology, University at Buffalo-The State University of New York, Buffalo, New York, USA
| |
Collapse
|
49
|
Hussain T, Lee J, Abba MC, Chen J, Aldaz CM. Delineating WWOX Protein Interactome by Tandem Affinity Purification-Mass Spectrometry: Identification of Top Interactors and Key Metabolic Pathways Involved. Front Oncol 2018; 8:591. [PMID: 30619736 PMCID: PMC6300487 DOI: 10.3389/fonc.2018.00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
It has become clear from multiple studies that WWOX (WW domain-containing oxidoreductase) operates as a "non-classical" tumor suppressor of significant relevance in cancer progression. Additionally, WWOX has been recognized for its role in a much wider array of human pathologies including metabolic conditions and central nervous system related syndromes. A myriad of putative functional roles has been attributed to WWOX mostly through the identification of various binding proteins. However, the reality is that much remains to be learned on the key relevant functions of WWOX in the normal cell. Here we employed a Tandem Affinity Purification-Mass Spectrometry (TAP-MS) approach in order to better define direct WWOX protein interactors and by extension interaction with multiprotein complexes under physiological conditions on a proteomic scale. This work led to the identification of both well-known, but more importantly novel high confidence WWOX interactors, suggesting the involvement of WWOX in specific biological and molecular processes while delineating a comprehensive portrait of WWOX protein interactome. Of particular relevance is WWOX interaction with key proteins from the endoplasmic reticulum (ER), Golgi, late endosomes, protein transport, and lysosomes networks such as SEC23IP, SCAMP3, and VOPP1. These binding partners harbor specific PPXY motifs which directly interact with the amino-terminal WW1 domain of WWOX. Pathway analysis of WWOX interactors identified a significant enrichment of metabolic pathways associated with proteins, carbohydrates, and lipids breakdown. Thus, suggesting that WWOX likely plays relevant roles in glycolysis, fatty acid degradation and other pathways that converge primarily in Acetyl-CoA generation, a fundamental molecule not only as the entry point to the tricarboxylic acid (TCA) cycle for energy production, but also as the key building block for de novo synthesis of lipids and amino acids. Our results provide a significant lead on subsets of protein partners and enzymatic complexes with which full-length WWOX protein interacts with in order to carry out its metabolic and other biological functions while also becoming a valuable resource for further mechanistic studies.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata, Argentina
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
50
|
Calil IP, Quadros IPS, Araújo TC, Duarte CEM, Gouveia-Mageste BC, Silva JCF, Brustolini OJB, Teixeira RM, Oliveira CN, Milagres RWMM, Martins GS, Chory J, Reis PAB, Machado JPB, Fontes EPB. A WW Domain-Containing Protein Forms Immune Nuclear Bodies against Begomoviruses. MOLECULAR PLANT 2018; 11:1449-1465. [PMID: 30296599 DOI: 10.1016/j.molp.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 05/23/2023]
Abstract
The bipartite begomoviruses (Geminiviridae family), which are DNA viruses that replicate in the nucleus of infected cells, encode the nuclear shuttle protein (NSP) to facilitate the translocation of viral DNA from the nucleus to the cytoplasm via nuclear pores. This intracellular trafficking of NSP-DNA complexes is accessorized by the NSP-interacting guanosine triphosphatase (NIG) at the cytosolic side. Here, we report the nuclear redistribution of NIG by AtWWP1, a WW domain-containing protein that forms immune nuclear bodies (NBs) against begomoviruses. We demonstrated that AtWWP1 relocates NIG from the cytoplasm to the nucleus where it is confined to AtWWP1-NBs, suggesting that the NIG-AtWWP1 interaction may interfere with the NIG pro-viral function associated with its cytosolic localization. Consistent with this assumption, loss of AtWWP1 function cuased plants more susceptible to begomovirus infection, whereas overexpression of AtWWP1 enhanced plant resistance to begomovirus. Furthermore, we found that a mutant version of AtWWP1 defective for NB formation was no longer capable of interacting with and relocating NIG to the nucleus and lost its immune function against begomovirus. The antiviral function of AtWWP1-NBs, however, could be antagonized by viral infection that induced either the disruption or a decrease in the number of AtWWP1-NBs. Collectively, these results led us to propose that AtWWP1 organizes nuclear structures into nuclear foci, which provide intrinsic immunity against begomovirus infection.
Collapse
Affiliation(s)
- Iara P Calil
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Iana P S Quadros
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Thais C Araújo
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Christiane E M Duarte
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Bianca C Gouveia-Mageste
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - José Cleydson F Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Otávio J B Brustolini
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Ruan M Teixeira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Cauê N Oliveira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Rafael W M M Milagres
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Gilberto S Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; Departament of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - Pedro A B Reis
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Joao Paulo B Machado
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; Agronomy Institute, Universidade Federal de Viçosa, Campus Florestal, Florestal, Minas Gerais 35690-000, Brazil.
| | - Elizabeth P B Fontes
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil.
| |
Collapse
|