1
|
Muhammad A, Sarkadi Z, Mazumder A, Ait Saada A, van Emden T, Capella M, Fekete G, Suma Sreechakram VN, Al-Sady B, Lambert SAE, Papp B, Barrales RR, Braun S. A systematic quantitative approach comprehensively defines domain-specific functional pathways linked to Schizosaccharomyces pombe heterochromatin regulation. Nucleic Acids Res 2024; 52:13665-13689. [PMID: 39565189 DOI: 10.1093/nar/gkae1024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024] Open
Abstract
Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres and the silent mating type locus in Schizosaccharomyces pombe. Using quantitative measures, iterative genetic screening and domain-specific heterochromatin reporters, we identified 369 mutants with different degrees of reduced or enhanced silencing. As expected, mutations in the core heterochromatin machinery globally decreased silencing. However, most other mutants exhibited distinct qualitative and quantitative profiles that indicate heterochromatin domain-specific functions, as seen for example for metabolic pathways affecting primarily subtelomere silencing. Moreover, similar phenotypic profiles revealed shared functions for subunits within complexes. We further discovered that the uncharacterized protein Dhm2 plays a crucial role in heterochromatin maintenance, affecting the inheritance of H3K9 methylation and the clonal propagation of the repressed state. Additionally, Dhm2 loss resulted in delayed S-phase progression and replication stress. Collectively, our systematic approach unveiled a landscape of domain-specific heterochromatin regulators controlling distinct states and identified Dhm2 as a previously unknown factor linked to heterochromatin inheritance and replication fidelity.
Collapse
Affiliation(s)
- Abubakar Muhammad
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Zsuzsa Sarkadi
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Budapesti út 9, 6728 Szeged, Hungary
| | - Agnisrota Mazumder
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Anissia Ait Saada
- Institut Curie, Université PSL, Université Paris-Saclay CNRS UMR3348, 91400 Orsay, France
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Matias Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Budapesti út 9, 6728 Szeged, Hungary
| | - Vishnu N Suma Sreechakram
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0552, USA
| | - Sarah A E Lambert
- Institut Curie, Université PSL, Université Paris-Saclay CNRS UMR3348, 91400 Orsay, France
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Budapesti út 9, 6728 Szeged, Hungary
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Muhammad A, Sarkadi Z, van Emden T, Mazumder A, Capella M, Fekete G, Sreechakram VNS, Al-Sady B, Papp B, Barrales RR, Braun S. A systematic quantitative approach comprehensively defines domain-specific functional pathways linked to Schizosaccharomyces pombe heterochromatin regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579970. [PMID: 38405799 PMCID: PMC10888830 DOI: 10.1101/2024.02.13.579970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Heterochromatin plays a critical role in regulating gene expression and maintaining genome integrity. While structural and enzymatic components have been linked to heterochromatin establishment, a comprehensive view of the underlying pathways at diverse heterochromatin domains remains elusive. Here, we developed a systematic approach to identify factors involved in heterochromatin silencing at pericentromeres, subtelomeres, and the silent mating type locus in Schizosaccharomyces pombe. Using quantitative measures, iterative genetic screening, and domain-specific heterochromatin reporters, we identified 369 mutants with different degrees of reduced or enhanced silencing. As expected, mutations in the core heterochromatin machinery globally decreased silencing. However, most other mutants exhibited distinct qualitative and quantitative profiles that indicate domain-specific functions. For example, decreased mating type silencing was linked to mutations in heterochromatin maintenance genes, while compromised subtelomere silencing was associated with metabolic pathways. Furthermore, similar phenotypic profiles revealed shared functions for subunits within complexes. We also discovered that the uncharacterized protein Dhm2 plays a crucial role in maintaining constitutive and facultative heterochromatin, while its absence caused phenotypes akin to DNA replication-deficient mutants. Collectively, our systematic approach unveiled a landscape of domain-specific heterochromatin regulators controlling distinct states and identified Dhm2 as a previously unknown factor linked to heterochromatin inheritance and replication fidelity.
Collapse
Affiliation(s)
- Abubakar Muhammad
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Zsuzsa Sarkadi
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Thomas van Emden
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Agnisrota Mazumder
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Matias Capella
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Present address: Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Vishnu N Suma Sreechakram
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology & Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Ramón Ramos Barrales
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Present address: Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Seville, Spain
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
- BioMedical Center (BMC), Division of Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Nuckolls NL, Nidamangala Srinivasa A, Mok AC, Helston RM, Bravo Núñez MA, Lange JJ, Gallagher TJ, Seidel CW, Zanders SE. S. pombe wtf drivers use dual transcriptional regulation and selective protein exclusion from spores to cause meiotic drive. PLoS Genet 2022; 18:e1009847. [PMID: 36477651 PMCID: PMC9762604 DOI: 10.1371/journal.pgen.1009847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Meiotic drivers bias gametogenesis to ensure their transmission into more than half the offspring of a heterozygote. In Schizosaccharomyces pombe, wtf meiotic drivers destroy the meiotic products (spores) that do not inherit the driver from a heterozygote, thereby reducing fertility. wtf drivers encode both a Wtfpoison protein and a Wtfantidote protein using alternative transcriptional start sites. Here, we analyze how the expression and localization of the Wtf proteins are regulated to achieve drive. We show that transcriptional timing and selective protein exclusion from developing spores ensure that all spores are exposed to Wtf4poison, but only the spores that inherit wtf4 receive a dose of Wtf4antidote sufficient for survival. In addition, we show that the Mei4 transcription factor, a master regulator of meiosis, controls the expression of the wtf4poison transcript. This transcriptional regulation, which includes the use of a critical meiotic transcription factor, likely complicates the universal suppression of wtf genes without concomitantly disrupting spore viability. We propose that these features contribute to the evolutionary success of the wtf drivers.
Collapse
Affiliation(s)
- Nicole L. Nuckolls
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ananya Nidamangala Srinivasa
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Anthony C. Mok
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Missouri—Kansas City, Kansas City, Missouri, United States of America
| | - Rachel M. Helston
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | | | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Todd J. Gallagher
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Chris W. Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
4
|
The transcription factor Atf1 lowers the transition barrier for nucleosome-mediated establishment of heterochromatin. Cell Rep 2022; 39:110828. [PMID: 35584672 DOI: 10.1016/j.celrep.2022.110828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Transcription factors can exert opposite effects depending on the chromosomal context. The fission yeast transcription factor Atf1 both activates numerous genes in response to stresses and mediates heterochromatic gene silencing in the mating-type region. Investigating this context dependency, we report here that the establishment of silent heterochromatin in the mating-type region occurs at a reduced rate in the absence of Atf1 binding. Quantitative modeling accounts for the observed establishment profiles by a combinatorial recruitment of histone-modifying enzymes: locally by Atf1 at two binding sites and over the whole region by dynamically appearing heterochromatic nucleosomes, a source of which is the RNAi-dependent cenH element. In the absence of Atf1 binding, the synergy is lost, resulting in a slow rate of heterochromatin formation. The system shows how DNA-binding proteins can influence local nucleosome states and thereby potentiate long-range positive feedback on histone-modification reactions to enable heterochromatin formation over large regions in a context-dependent manner.
Collapse
|
5
|
Separable roles for RNAi in regulation of transposable elements and viability in the fission yeast Schizosaccharomyces japonicus. PLoS Genet 2022; 18:e1010100. [PMID: 35226668 PMCID: PMC8912903 DOI: 10.1371/journal.pgen.1010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
RNA interference (RNAi) is a conserved mechanism of small RNA-mediated genome regulation commonly involved in suppression of transposable elements (TEs) through both post-transcriptional silencing, and transcriptional repression via heterochromatin assembly. The fission yeast Schizosaccharomyces pombe has been extensively utilised as a model for studying RNAi pathways. However, this species is somewhat atypical in that TEs are not major targets of RNAi, and instead small RNAs correspond primarily to non-coding pericentromeric repeat sequences, reflecting a specialised role for the pathway in promoting heterochromatin assembly in these regions. In contrast, in the related fission yeast Schizosaccharomyces japonicus, sequenced small RNAs correspond primarily to TEs. This suggests there may be fundamental differences in the operation of RNAi pathways in these two related species. To investigate these differences, we probed RNAi function in S. japonicus. Unexpectedly, and in contrast to S. pombe, we found that RNAi is essential in this species. Moreover, viability of RNAi mutants can be rescued by mutations implicated in enhancing RNAi-independent heterochromatin propagation. These rescued strains retain heterochromatic marks on TE sequences, but exhibit derepression of TEs at the post-transcriptional level. Our findings indicate that S. japonicus retains the ancestral role of RNAi in facilitating suppression of TEs via both post-transcriptional silencing and heterochromatin assembly, with specifically the heterochromatin pathway being essential for viability, likely due to a function in genome maintenance. The specialised role of RNAi in heterochromatin assembly in S. pombe appears to be a derived state that emerged after the divergence of S. japonicus. The chromosomes of many species are populated by repetitive transposable elements that are able to “jump” throughout the genome. The consequences of these mobilisations can be catastrophic, resulting in disruption of genes or chromosomal rearrangements, thus organisms usually employ defence mechanisms to keep these elements inactivated. The most widespread of these systems is RNA interference, which utilises small RNA molecules to direct either packaging of transposable element DNA into repressive heterochromatin, or degradation of RNA transcripts. Many fundamental discoveries about RNAi function have been made in the model fission yeast Schizosaccharomyces pombe; however, this species is unusual as it does not generally employ RNAi to control its transposable elements. We found that in a lesser studied relative, Schizosaccharomyces japonicus, small RNAs are required to silence transposable elements, and that this silencing occurs via both formation of heterochromatin and degradation of transcripts. This dual function RNAi pathway targeting transposable elements that appear to cluster at centromeres is very similar to systems seen in complex multicellular organisms, thus our findings reveal S. japonicus to be an exciting emergent model in which to study RNAi and centromere function.
Collapse
|
6
|
Vogan AA, Martinossi-Allibert I, Ament-Velásquez SL, Svedberg J, Johannesson H. The spore killers, fungal meiotic driver elements. Mycologia 2022; 114:1-23. [PMID: 35138994 DOI: 10.1080/00275514.2021.1994815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
During meiosis, both alleles of any given gene should have equal chances of being inherited by the progeny. There are a number of reasons why, however, this is not the case, with one of the most intriguing instances presenting itself as the phenomenon of meiotic drive. Genes that are capable of driving can manipulate the ratio of alleles among viable meiotic products so that they are inherited in more than half of them. In many cases, this effect is achieved by direct antagonistic interactions, where the driving allele inhibits or otherwise eliminates the alternative allele. In ascomycete fungi, meiotic products are packaged directly into ascospores; thus, the effect of meiotic drive has been given the nefarious moniker, "spore killing." In recent years, many of the known spore killers have been elevated from mysterious phenotypes to well-described systems at genetic, genomic, and molecular levels. In this review, we describe the known diversity of spore killers and synthesize the varied pieces of data from each system into broader trends regarding genome architecture, mechanisms of resistance, the role of transposable elements, their effect on population dynamics, speciation and gene flow, and finally how they may be developed as synthetic drivers. We propose that spore killing is common, but that it is under-observed because of a lack of studies on natural populations. We encourage researchers to seek new spore killers to build on the knowledge that these remarkable genetic elements can teach us about meiotic drive, genomic conflict, and evolution more broadly.
Collapse
Affiliation(s)
- Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden.,Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 33077, Bordeaux CEDEX, France
| | - S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Jesper Svedberg
- Department of Biomolecular Engineering, University of California, -Santa Cruz, Santa Cruz, California 95064
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| |
Collapse
|
7
|
Tusso S, Suo F, Liang Y, Du LL, Wolf JBW. Reactivation of transposable elements following hybridization in fission yeast. Genome Res 2021; 32:324-336. [PMID: 34907076 PMCID: PMC8805722 DOI: 10.1101/gr.276056.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
Hybridization is thought to reactivate transposable elements (TEs) that were efficiently suppressed in the genomes of the parental hosts. Here, we provide evidence for this “genomic shock hypothesis” in the fission yeast Schizosaccharomyces pombe. In this species, two divergent lineages (Sp and Sk) have experienced recent, likely human-induced, hybridization. We used long-read sequencing data to assemble genomes of 37 samples derived from 31 S. pombe strains spanning a wide range of ancestral admixture proportions. A comprehensive TE inventory revealed exclusive presence of long terminal repeat (LTR) retrotransposons. Sequence analysis of active full-length elements, as well as solo LTRs, revealed a complex history of homologous recombination. Population genetic analyses of syntenic sequences placed insertion of many solo LTRs before the split of the Sp and Sk lineages. Most full-length elements were inserted more recently, after hybridization. With the exception of a single full-length element with signs of positive selection, both solo LTRs and, in particular, full-length elements carry signatures of purifying selection indicating effective removal by the host. Consistent with reactivation upon hybridization, the number of full-length LTR retrotransposons, varying extensively from zero to 87 among strains, significantly increases with the degree of genomic admixture. This study gives a detailed account of global TE diversity in S. pombe, documents complex recombination histories within TE elements, and provides evidence for the “genomic shock hypothesis.”
Collapse
Affiliation(s)
| | - Fang Suo
- National Institute of Biological Sciences
| | - Yue Liang
- National Institute of Biological Sciences
| | - Li-Lin Du
- National Institute of Biological Sciences
| | | |
Collapse
|
8
|
Onishi R, Yamanaka S, Siomi MC. piRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO Rep 2021; 22:e53062. [PMID: 34347367 PMCID: PMC8490990 DOI: 10.15252/embr.202153062] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The PIWI‐interacting RNA (piRNA) pathway acts as a self‐defense mechanism against transposons to maintain germline genome integrity. Failures in the piRNA pathway cause DNA damage in the germline genome, disturbing inheritance of “correct” genetic information by the next generations and leading to infertility. piRNAs execute transposon repression in two ways: degrading their RNA transcripts and compacting the genomic loci via heterochromatinization. The former event is mechanistically similar to siRNA‐mediated RNA cleavage that occurs in the cytoplasm and has been investigated in many species including nematodes, fruit flies, and mammals. The latter event seems to be mechanistically parallel to siRNA‐centered kinetochore assembly and subsequent chromosome segregation, which has so far been studied particularly in fission yeast. Despite the interspecies conservations, the overall schemes of the nuclear events show clear biodiversity across species. In this review, we summarize the recent progress regarding piRNA‐mediated transcriptional silencing in Drosophila and discuss the biodiversity by comparing it with the equivalent piRNA‐mediated system in mice and the siRNA‐mediated system in fission yeast.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Misova I, Pitelova A, Budis J, Gazdarica J, Sedlackova T, Jordakova A, Benko Z, Smondrkova M, Mayerova N, Pichlerova K, Strieskova L, Prevorovsky M, Gregan J, Cipak L, Szemes T, Polakova SB. Repression of a large number of genes requires interplay between homologous recombination and HIRA. Nucleic Acids Res 2021; 49:1914-1934. [PMID: 33511417 PMCID: PMC7913671 DOI: 10.1093/nar/gkab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.
Collapse
Affiliation(s)
- Ivana Misova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Alexandra Pitelova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Juraj Gazdarica
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Tatiana Sedlackova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Anna Jordakova
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Praha 2, Czechia
| | - Zsigmond Benko
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, H-4010 Debrecen, Hungary
| | - Maria Smondrkova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Nina Mayerova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Karoline Pichlerova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Lucia Strieskova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Martin Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Praha 2, Czechia
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF and Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Silvia Bagelova Polakova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| |
Collapse
|
10
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
11
|
Marayati BF, Tucker JF, De La Cerda DA, Hou TC, Chen R, Sugiyama T, Pease JB, Zhang K. The Catalytic-Dependent and -Independent Roles of Lsd1 and Lsd2 Lysine Demethylases in Heterochromatin Formation in Schizosaccharomyces pombe. Cells 2020; 9:E955. [PMID: 32295063 PMCID: PMC7226997 DOI: 10.3390/cells9040955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
In eukaryotes, heterochromatin plays a critical role in organismal development and cell fate acquisition, through regulating gene expression. The evolutionarily conserved lysine-specific demethylases, Lsd1 and Lsd2, remove mono- and dimethylation on histone H3, serving complex roles in gene expression. In the fission yeast Schizosaccharomyces pombe, null mutations of Lsd1 and Lsd2 result in either severe growth defects or inviability, while catalytic inactivation causes minimal defects, indicating that Lsd1 and Lsd2 have essential functions beyond their known demethylase activity. Here, we show that catalytic mutants of Lsd1 or Lsd2 partially assemble functional heterochromatin at centromeres in RNAi-deficient cells, while the C-terminal truncated alleles of Lsd1 or Lsd2 exacerbate heterochromatin formation at all major heterochromatic regions, suggesting that Lsd1 and Lsd2 repress heterochromatic transcripts through mechanisms both dependent on and independent of their catalytic activities. Lsd1 and Lsd2 are also involved in the establishment and maintenance of heterochromatin. At constitutive heterochromatic regions, Lsd1 and Lsd2 regulate one another and cooperate with other histone modifiers, including the class II HDAC Clr3 and the Sirtuin family protein Sir2 for gene silencing, but not with the class I HDAC Clr6. Our findings explore the roles of lysine-specific demethylases in epigenetic gene silencing at heterochromatic regions.
Collapse
Affiliation(s)
- Bahjat F. Marayati
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - James F. Tucker
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - David A. De La Cerda
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Tien-Chi Hou
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Rong Chen
- Physiology and pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Tomoyasu Sugiyama
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - James B. Pease
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| | - Ke Zhang
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC 27109, USA; (B.F.M.); (J.F.T.); (D.A.D.L.C.); (T.-C.H.); (J.B.P.)
| |
Collapse
|
12
|
The binding of Chp2's chromodomain to methylated H3K9 is essential for Chp2's role in heterochromatin assembly in fission yeast. PLoS One 2018; 13:e0201101. [PMID: 30110338 PMCID: PMC6093649 DOI: 10.1371/journal.pone.0201101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
The binding of heterochromatin protein 1 (HP1) to lysine 9–methylated histone H3 (H3K9me) is an essential step in heterochromatin assembly. Chp2, an HP1-family protein in the fission yeast Schizosaccharomyces pombe, is required for heterochromatic silencing. Chp2 recruits SHREC, a multifunctional protein complex containing the nucleosome remodeler Mit1 and the histone deacetylase Clr3. Although the targeting of SHREC to chromatin is thought to occur via two distinct modules regulated by the SHREC components Chp2 and Clr2, it is not clear how Chp2’s chromatin binding regulates SHREC function. Here, we show that H3K9me binding by Chp2’s chromodomain (CD) is essential for Chp2’s silencing function and for SHREC’s targeting to chromatin. Cells expressing a Chp2 mutant with defective H3K9me binding (Chp2-W199A) have a silencing defect, with a phenotype similar to that of chp2-null cells. Genetic analysis using a synthetic silencing system revealed that a Chp2 mutant and SHREC-component mutants had similar phenotypes, suggesting that Chp2’s function also affects SHREC’s chromatin binding. Size-exclusion chromatography of native protein complexes showed that Chp2-CD’s binding of H3K9me3 ensures Clr3’s chromatin binding, and suggested that SHREC’s chromatin binding is mediated by separable functional modules. Interestingly, we found that the stability of the Chp2 protein depended on the Clr3 protein’s histone deacetylase activity. Our findings demonstrate that Chp2’s H3K9me binding is critical for SHREC function and that the two modules within the SHREC complex are interdependent.
Collapse
|
13
|
A Heterochromatin Domain Forms Gradually at a New Telomere and Is Dynamic at Stable Telomeres. Mol Cell Biol 2018; 38:MCB.00393-17. [PMID: 29784772 PMCID: PMC6048312 DOI: 10.1128/mcb.00393-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 05/09/2018] [Indexed: 02/03/2023] Open
Abstract
Heterochromatin domains play important roles in chromosome biology, organismal development, and aging, including centromere function, mammalian female X chromosome inactivation, and senescence-associated heterochromatin foci. In the fission yeast Schizosaccharomyces pombe and metazoans, heterochromatin contains histone H3 that is dimethylated at lysine 9. Heterochromatin domains play important roles in chromosome biology, organismal development, and aging, including centromere function, mammalian female X chromosome inactivation, and senescence-associated heterochromatin foci. In the fission yeast Schizosaccharomyces pombe and metazoans, heterochromatin contains histone H3 that is dimethylated at lysine 9. While factors required for heterochromatin have been identified, the dynamics of heterochromatin formation are poorly understood. Telomeres convert adjacent chromatin into heterochromatin. To form a new heterochromatic region in S. pombe, an inducible DNA double-strand break (DSB) was engineered next to 48 bp of telomere repeats in euchromatin, which caused formation of a new telomere and the establishment and gradual spreading of a new heterochromatin domain. However, spreading was dynamic even after the telomere had reached its stable length, with reporter genes within the heterochromatin domain showing variegated expression. The system also revealed the presence of repeats located near the boundaries of euchromatin and heterochromatin that are oriented to allow the efficient healing of a euchromatic DSB to cap the chromosome end with a new telomere. Telomere formation in S. pombe therefore reveals novel aspects of heterochromatin dynamics and fail-safe mechanisms to repair subtelomeric breaks, with implications for similar processes in metazoan genomes.
Collapse
|
14
|
Jahn LJ, Mason B, Brøgger P, Toteva T, Nielsen DK, Thon G. Dependency of Heterochromatin Domains on Replication Factors. G3 (BETHESDA, MD.) 2018; 8:477-489. [PMID: 29187422 PMCID: PMC5919735 DOI: 10.1534/g3.117.300341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/20/2017] [Indexed: 01/26/2023]
Abstract
Chromatin structure regulates both genome expression and dynamics in eukaryotes, where large heterochromatic regions are epigenetically silenced through the methylation of histone H3K9, histone deacetylation, and the assembly of repressive complexes. Previous genetic screens with the fission yeast Schizosaccharomyces pombe have led to the identification of key enzymatic activities and structural constituents of heterochromatin. We report here on additional factors discovered by screening a library of deletion mutants for silencing defects at the edge of a heterochromatic domain bound by its natural boundary-the IR-R+ element-or by ectopic boundaries. We found that several components of the DNA replication progression complex (RPC), including Mrc1/Claspin, Mcl1/Ctf4, Swi1/Timeless, Swi3/Tipin, and the FACT subunit Pob3, are essential for robust heterochromatic silencing, as are the ubiquitin ligase components Pof3 and Def1, which have been implicated in the removal of stalled DNA and RNA polymerases from chromatin. Moreover, the search identified the cohesin release factor Wpl1 and the forkhead protein Fkh2, both likely to function through genome organization, the Ssz1 chaperone, the Fkbp39 proline cis-trans isomerase, which acts on histone H3P30 and P38 in Saccharomyces cerevisiae, and the chromatin remodeler Fft3. In addition to their effects in the mating-type region, to varying extents, these factors take part in heterochromatic silencing in pericentromeric regions and telomeres, revealing for many a general effect in heterochromatin. This list of factors provides precious new clues with which to study the spatiotemporal organization and dynamics of heterochromatic regions in connection with DNA replication.
Collapse
Affiliation(s)
| | - Bethany Mason
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Peter Brøgger
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Tea Toteva
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Dennis Kim Nielsen
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Genevieve Thon
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| |
Collapse
|
15
|
Job G, Brugger C, Xu T, Lowe BR, Pfister Y, Qu C, Shanker S, Baños Sanz JI, Partridge JF, Schalch T. SHREC Silences Heterochromatin via Distinct Remodeling and Deacetylation Modules. Mol Cell 2017; 62:207-221. [PMID: 27105116 DOI: 10.1016/j.molcel.2016.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 03/11/2016] [Indexed: 11/18/2022]
Abstract
Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci.
Collapse
Affiliation(s)
- Godwin Job
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Christiane Brugger
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| | - Tao Xu
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brandon R Lowe
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yvan Pfister
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sreenath Shanker
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - José I Baños Sanz
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Thomas Schalch
- Department of Molecular Biology, Science III, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
16
|
Toteva T, Mason B, Kanoh Y, Brøgger P, Green D, Verhein-Hansen J, Masai H, Thon G. Establishment of expression-state boundaries by Rif1 and Taz1 in fission yeast. Proc Natl Acad Sci U S A 2017; 114:1093-1098. [PMID: 28096402 PMCID: PMC5293076 DOI: 10.1073/pnas.1614837114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Shelterin component Rif1 has emerged as a global regulator of the replication-timing program in all eukaryotes examined to date, possibly by modulating the 3D-organization of the genome. In fission yeast a second Shelterin component, Taz1, might share similar functions. Here, we identified unexpected properties for Rif1 and Taz1 by conducting high-throughput genetic screens designed to identify cis- and trans-acting factors capable of creating heterochromatin-euchromatin boundaries in fission yeast. The preponderance of cis-acting elements identified in the screens originated from genomic loci bound by Taz1 and associated with origins of replication whose firing is repressed by Taz1 and Rif1. Boundary formation and gene silencing by these elements required Taz1 and Rif1 and coincided with altered replication timing in the region. Thus, small chromosomal elements sensitive to Taz1 and Rif1 (STAR) could simultaneously regulate gene expression and DNA replication over a large domain, at the edge of which they established a heterochromatin-euchromatin boundary. Taz1, Rif1, and Rif1-associated protein phosphatases Sds21 and Dis2 were each sufficient to establish a boundary when tethered to DNA. Moreover, efficient boundary formation required the amino-terminal domain of the Mcm4 replicative helicase onto which the antagonistic activities of the replication-promoting Dbf4-dependent kinase and Rif1-recruited phosphatases are believed to converge to control replication origin firing. Altogether these observations provide an insight into a coordinated control of DNA replication and organization of the genome into expression domains.
Collapse
Affiliation(s)
- Tea Toteva
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Bethany Mason
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Yutaka Kanoh
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamkitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Peter Brøgger
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Daniel Green
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Janne Verhein-Hansen
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamkitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Geneviève Thon
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|
17
|
Multiple Transcriptional and Post-transcriptional Pathways Collaborate to Control Sense and Antisense RNAs of Tf2 Retroelements in Fission Yeast. Genetics 2016; 205:621-632. [PMID: 28007890 DOI: 10.1534/genetics.116.193870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
Retrotransposons are mobile genetic elements that colonize eukaryotic genomes by replicating through an RNA intermediate. As retrotransposons can move within the host genome, defense mechanisms have evolved to repress their potential mutagenic activities. In the fission yeast Schizosaccharomyces pombe, the mRNA of Tf2 long terminal repeat retrotransposons is targeted for degradation by the 3'-5' exonucleolytic activity of the exosome-associated protein Rrp6. Here, we show that the nuclear poly(A)-binding protein Pab2 functions with Rrp6 to negatively control Tf2 mRNA accumulation. Furthermore, we found that Pab2/Rrp6-dependent RNA elimination functions redundantly to the transcriptional silencing mediated by the CENP-B homolog, Abp1, in the suppression of antisense Tf2 RNA accumulation. Interestingly, the absence of Pab2 attenuated the derepression of Tf2 transcription and the increased frequency of Tf2 mobilization caused by the deletion of abp1 Our data also reveal that the expression of antisense Tf2 transcripts is developmentally regulated and correlates with decreased levels of Tf2 mRNA. Our findings suggest that transcriptional and post-transcriptional pathways cooperate to control sense and antisense RNAs expressed from Tf2 retroelements.
Collapse
|
18
|
Ard R, Allshire RC. Transcription-coupled changes to chromatin underpin gene silencing by transcriptional interference. Nucleic Acids Res 2016; 44:10619-10630. [PMID: 27613421 PMCID: PMC5159543 DOI: 10.1093/nar/gkw801] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA (lncRNA) transcription into a downstream promoter frequently results in transcriptional interference. However, the mechanism of this repression is not fully understood. We recently showed that drug tolerance in fission yeast Schizosaccharomyces pombe is controlled by lncRNA transcription upstream of the tgp1+ permease gene. Here we demonstrate that transcriptional interference of tgp1+ involves several transcription-coupled chromatin changes mediated by conserved elongation factors Set2, Clr6CII, Spt6 and FACT. These factors are known to travel with RNAPII and establish repressive chromatin in order to limit aberrant transcription initiation from cryptic promoters present in gene bodies. We therefore conclude that conserved RNAPII-associated mechanisms exist to both suppress intragenic cryptic promoters during genic transcription and to repress gene promoters by transcriptional interference. Our analyses also demonstrate that key mechanistic features of transcriptional interference are shared between S. pombe and the highly divergent budding yeast Saccharomyces cerevisiae. Thus, transcriptional interference is an ancient, conserved mechanism for tightly controlling gene expression. Our mechanistic insights allowed us to predict and validate a second example of transcriptional interference involving the S. pombe pho1+ gene. Given that eukaryotic genomes are pervasively transcribed, transcriptional interference likely represents a more general feature of gene regulation than is currently appreciated.
Collapse
Affiliation(s)
- Ryan Ard
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
19
|
The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1314-21. [PMID: 27345571 DOI: 10.1016/j.bbagrm.2016.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/03/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022]
Abstract
It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites.
Collapse
|
20
|
Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization. Genetics 2016; 203:1669-78. [PMID: 27343236 PMCID: PMC4981269 DOI: 10.1534/genetics.116.189118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1+ (histone H3 lysine 4 methyltransferase) or abp1+ (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization.
Collapse
|
21
|
Abshiru N, Rajan RE, Verreault A, Thibault P. Unraveling Site-Specific and Combinatorial Histone Modifications Using High-Resolution Mass Spectrometry in Histone Deacetylase Mutants of Fission Yeast. J Proteome Res 2016; 15:2132-42. [PMID: 27223649 DOI: 10.1021/acs.jproteome.5b01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetylation marks from lysine residues on histone and nonhistone substrates. Their activity is generally associated with essential cellular processes such as transcriptional repression and heterochromatin formation. Interestingly, abnormal activity of HDACs has been reported in various types of cancers, which makes them a promising therapeutic target for cancer treatment. In the current study, we aim to understand the mechanisms underlying the function of HDACs using an in-depth quantitative analysis of changes in histone acetylation levels in Schizosaccharomyces pombe (S. pombe) lacking major HDAC activities. We employed a targeted quantitative mass spectrometry approach to profile changes of acetylation and methylation at multiple lysine residues on the N-terminal tail of histones H3 and H4. Our analyses identified a number of histone acetylation sites that are significantly affected by S. pombe HDAC mutations. We discovered that mutation of the Class I HDAC known as Clr6 causes a major increase in the abundance of triacetylated H4 molecules at K5, K8, and K12. A clr6-1 hypomorphic mutation also increased the abundance of multiple acetyl-lysines in histone H3. In addition, our study uncovered a few crosstalks between histone acetylation and methylation upon deletion of HDACs Hos2 and Clr3. We anticipate that the results from this study will greatly improve our current understanding of the mechanisms involved in HDAC-mediated gene regulation and heterochromatin assembly.
Collapse
Affiliation(s)
- Nebiyu Abshiru
- Department of Chemistry, ‡Institute for Research in Immunology and Cancer (IRIC), §Molecular Biology Programme, and ⊥Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | - Roshan Elizabeth Rajan
- Department of Chemistry, ‡Institute for Research in Immunology and Cancer (IRIC), §Molecular Biology Programme, and ⊥Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | - Alain Verreault
- Department of Chemistry, ‡Institute for Research in Immunology and Cancer (IRIC), §Molecular Biology Programme, and ⊥Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | - Pierre Thibault
- Department of Chemistry, ‡Institute for Research in Immunology and Cancer (IRIC), §Molecular Biology Programme, and ⊥Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
22
|
Peguero-Sanchez E, Pardo-Lopez L, Merino E. IRES-dependent translated genes in fungi: computational prediction, phylogenetic conservation and functional association. BMC Genomics 2015; 16:1059. [PMID: 26666532 PMCID: PMC4678720 DOI: 10.1186/s12864-015-2266-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
Background The initiation of translation via cellular internal ribosome entry sites plays an important role in the stress response and certain physiological conditions in which canonical cap-dependent translation initiation is compromised. Currently, only a limited number of these regulatory elements have been experimentally identified. Notably, cellular internal ribosome entry sites lack conservation of both the primary sequence and mRNA secondary structure, rendering their identification difficult. Despite their biological importance, the currently available computational strategies to predict them have had limited success. We developed a bioinformatic method based on a support vector machine for the prediction of internal ribosome entry sites in fungi using the 5’-UTR sequences of 20 non-redundant fungal organisms. Additionally, we performed a comparative analysis and characterization of the functional relationships among the gene products predicted to be translated by this cap-independent mechanism. Results Using our method, we predicted 6,532 internal ribosome entry sites in 20 non-redundant fungal organisms. Some orthologous groups were enriched with our positive predictions. This is the case of the HSP70 chaperone family, which remarkably has two verified internal ribosome entry sites, one in humans and the other in flies. A second example is the orthologous group of the eIF4G repression protein Sbp1p, which has two homologous genes known to be translated by this cap-independent mechanism, one in mice and the other in yeast. These examples emphasize the wide conservation of these regulatory elements as a result of selective pressure. In addition, we performed a protein-protein interaction network characterization of the gene products of our positive predictions using Saccharomyces cerevisiae as a model, which revealed a highly connected and modular topology, suggesting a functional association. A remarkable example of this functional association is our prediction of internal ribosome entry sites elements in three components of the RNA polymerase II mediator complex. Conclusions We developed a method for the prediction of cellular internal ribosome entry sites that may guide experimental and bioinformatic analyses to increase our understanding of protein translation regulation. Our analysis suggests that fungi show evolutionary conservation and functional association of proteins translated by this cap-independent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esteban Peguero-Sanchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Liliana Pardo-Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|
23
|
Gal C, Murton HE, Subramanian L, Whale AJ, Moore KM, Paszkiewicz K, Codlin S, Bähler J, Creamer KM, Partridge JF, Allshire RC, Kent NA, Whitehall SK. Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation. EMBO Rep 2015; 17:79-93. [PMID: 26582768 PMCID: PMC4718406 DOI: 10.15252/embr.201540476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/26/2015] [Indexed: 12/28/2022] Open
Abstract
Maintenance of the correct level and organisation of nucleosomes is crucial for genome function. Here, we uncover a role for a conserved bromodomain AAA‐ATPase, Abo1, in the maintenance of nucleosome architecture in fission yeast. Cells lacking abo1+ experience both a reduction and mis‐positioning of nucleosomes at transcribed sequences in addition to increased intragenic transcription, phenotypes that are hallmarks of defective chromatin re‐establishment behind RNA polymerase II. Abo1 is recruited to gene sequences and associates with histone H3 and the histone chaperone FACT. Furthermore, the distribution of Abo1 on chromatin is disturbed by impaired FACT function. The role of Abo1 extends to some promoters and also to silent heterochromatin. Abo1 is recruited to pericentromeric heterochromatin independently of the HP1 ortholog, Swi6, where it enforces proper nucleosome occupancy. Consequently, loss of Abo1 alleviates silencing and causes elevated chromosome mis‐segregation. We suggest that Abo1 provides a histone chaperone function that maintains nucleosome architecture genome‐wide.
Collapse
Affiliation(s)
- Csenge Gal
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Heather E Murton
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Lakxmi Subramanian
- Wellcome Trust Centre for Cell Biology & Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Alex J Whale
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Karen M Moore
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Konrad Paszkiewicz
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Sandra Codlin
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, UK
| | - Jürg Bähler
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, UK
| | - Kevin M Creamer
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology & Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Nicholas A Kent
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Simon K Whitehall
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| |
Collapse
|
24
|
Hoffman CS, Wood V, Fantes PA. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System. Genetics 2015; 201:403-23. [PMID: 26447128 PMCID: PMC4596657 DOI: 10.1534/genetics.115.181503] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe.
Collapse
Affiliation(s)
- Charles S Hoffman
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467
| | - Valerie Wood
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Peter A Fantes
- School of Biological Sciences, College of Science and Engineering, University of Edinburgh EH9 3JR Edinburgh, United Kingdom
| |
Collapse
|
25
|
Gal C, Moore KM, Paszkiewicz K, Kent NA, Whitehall SK. The impact of the HIRA histone chaperone upon global nucleosome architecture. Cell Cycle 2015; 14:123-34. [PMID: 25602522 PMCID: PMC4614360 DOI: 10.4161/15384101.2014.967123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIRA is an evolutionarily conserved histone chaperone that mediates
replication-independent nucleosome assembly and is important for a variety of processes
such as cell cycle progression, development, and senescence. Here we have used a chromatin
sequencing approach to determine the genome-wide contribution of HIRA to nucleosome
organization in Schizosaccharomyces pombe. Cells lacking HIRA experience
a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed
role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we
find that at its target promoters, HIRA commonly maintains the full occupancy of the
−1 nucleosome. HIRA does not affect global chromatin structure at replication
origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of
the genome. Nucleosome organization associated with the heterochromatic
(dg-dh) repeats located at the centromere is perturbed by loss of HIRA
function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR
retrotransposons. Overall, our data indicate that HIRA plays an important role in
maintaining nucleosome architecture at both euchromatic and heterochromatic loci.
Collapse
Affiliation(s)
- Csenge Gal
- a Institute for Cell & Molecular Biosciences ; Newcastle University ; Newcastle upon Tyne , UK
| | | | | | | | | |
Collapse
|
26
|
Suppression of Meiotic Recombination by CENP-B Homologs in Schizosaccharomyces pombe. Genetics 2015; 201:897-904. [PMID: 26354768 DOI: 10.1534/genetics.115.179465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/30/2015] [Indexed: 11/18/2022] Open
Abstract
Meiotic homologous recombination (HR) is not uniform across eukaryotic genomes, creating regions of HR hot- and coldspots. Previous study reveals that the Spo11 homolog Rec12 responsible for initiation of meiotic double-strand breaks in the fission yeast Schizosaccharomyces pombe is not targeted to Tf2 retrotransposons. However, whether Tf2s are HR coldspots is not known. Here, we show that the rates of HR across Tf2s are similar to a genome average but substantially increase in mutants deficient for the CENP-B homologs. Abp1, which is the most prominent of the CENP-B family members and acts as the primary determinant of HR suppression at Tf2s, is required to prevent gene conversion and maintain proper recombination exchange of homologous alleles flanking Tf2s. In addition, Abp1-mediated suppression of HR at Tf2s requires all three of its domains with distinct functions in transcriptional repression and higher-order genome organization. We demonstrate that HR suppression of Tf2s can be robustly maintained despite disruption to chromatin factors essential for transcriptional repression and nuclear organization of Tf2s. Intriguingly, we uncover a surprising cooperation between the histone methyltransferase Set1 responsible for histone H3 lysine 4 methylation and the nonhomologous end joining pathway in ensuring the suppression of HR at Tf2s. Our study identifies a molecular pathway involving functional cooperation between a transcription factor with epigenetic regulators and a DNA repair pathway to regulate meiotic recombination at interspersed repeats.
Collapse
|
27
|
Esnault C, Levin HL. The Long Terminal Repeat Retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MDNA3-0040-2014. [PMID: 26350316 PMCID: PMC6388632 DOI: 10.1128/microbiolspec.mdna3-0040-2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 12/15/2022] Open
Abstract
The long terminal repeat (LTR) retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe are active mobile elements of the Ty3/gypsy family. The mobilization of these retrotransposons depends on particle formation, reverse transcription and integration, processes typical of other LTR retrotransposons. However, Tf1 and Tf2 are distinct from other LTR elements in that they assemble virus-like particles from a single primary translation product, initiate reverse transcription with an unusual self-priming mechanism, and, in the case of Tf1, integrate with a pattern that favors specific promoters of RNA pol II-transcribed genes. To avoid the chromosome instability and genome damage that results from increased copy number, S. pombe applies a variety of defense mechanisms that restrict Tf1 and Tf2 activity. The mRNA of the Tf elements is eliminated by an exosome-based pathway when cells are in favorable conditions whereas nutrient deprivation triggers an RNA interference-dependent pathway that results in the heterochromatization of the elements. Interestingly, Tf1 integrates into the promoters of stress-induced genes and these insertions are capable of increasing the expression of adjacent genes. These properties of Tf1 transposition raise the possibility that Tf1 benefits cells with specific insertions by providing resistance to environmental stress.
Collapse
Affiliation(s)
- Caroline Esnault
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Fang X, Shi Y, Lu X, Chen Z, Qi Y. CMA33/XCT Regulates Small RNA Production through Modulating the Transcription of Dicer-Like Genes in Arabidopsis. MOLECULAR PLANT 2015; 8:1227-36. [PMID: 25770820 DOI: 10.1016/j.molp.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs) play important regulatory roles in various aspects of plant biology. They are processed from double-stranded RNA precursors by Dicer-like (DCL) proteins. There are three major classes of sRNAs in Arabidopsis: DCL1-dependent microRNA (miRNA), DCL3-dependent heterochromatic siRNA (hc-siRNA), and DCL4-dependent trans-acting siRNA (ta-siRNA). We have previously isolated a mutant with compromised miRNA activity, cma33. Here we show that CMA33 encodes a nuclear localized protein, XAP5 CIRCADIAN TIMEKEEPER (XCT). The cma33/xct mutation led to reduced accumulation of not only miRNAs but also hc-siRNAs and ta-siRNAs. Intriguingly, we found that the expression of DCL1, DCL3, and DCL4, but not other genes in the sRNA biogenesis pathways, was decreased in cma33/xct. Consistent with this, the occupancy of Pol II at DCL1, DCL3, and DCL4 genes was reduced upon the loss of CMA33/XCT. Collectively, our data suggest that CMA33/XCT modulates sRNA production through regulating the transcription of DCLs.
Collapse
Affiliation(s)
- Xiaofeng Fang
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yupeng Shi
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiuli Lu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zulong Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yijun Qi
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Allshire RC, Ekwall K. Epigenetic Regulation of Chromatin States in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 2015; 7:a018770. [PMID: 26134317 DOI: 10.1101/cshperspect.a018770] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres.
Collapse
Affiliation(s)
- Robin C Allshire
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Center for Biosciences, NOVUM, S-141 83, Huddinge, Sweden
| |
Collapse
|
30
|
Lorenz DR, Meyer LF, Grady PJR, Meyer MM, Cam HP. Heterochromatin assembly and transcriptome repression by Set1 in coordination with a class II histone deacetylase. eLife 2014; 3:e04506. [PMID: 25497836 PMCID: PMC4383021 DOI: 10.7554/elife.04506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022] Open
Abstract
Histone modifiers play essential roles in controlling transcription and organizing
eukaryotic genomes into functional domains. Here, we show that Set1, the catalytic
subunit of the highly conserved Set1C/COMPASS complex responsible for histone H3K4
methylation (H3K4me), behaves as a repressor of the transcriptome largely independent
of Set1C and H3K4me in the fission yeast Schizosaccharomyces pombe.
Intriguingly, while Set1 is enriched at highly expressed and repressed loci, Set1
binding levels do not generally correlate with the levels of transcription. We show
that Set1 is recruited by the ATF/CREB homolog Atf1 to heterochromatic loci and
promoters of stress-response genes. Moreover, we demonstrate that Set1 coordinates
with the class II histone deacetylase Clr3 in heterochromatin assembly at prominent
chromosomal landmarks and repression of the transcriptome that includes
Tf2 retrotransposons, noncoding RNAs, and regulators of
development and stress-responses. Our study delineates a molecular framework for
elucidating the functional links between transcriptome control and chromatin
organization. DOI:http://dx.doi.org/10.7554/eLife.04506.001 Genes can be turned on or off at different times in an organism's life. In humans,
yeast and other eukaryotes, this is mainly controlled by the way DNA is packaged with
proteins—known as histones—in a structure called chromatin. Genes that
are switched on, or only temporarily switched off, are associated with areas of the
genome where the chromatin is loosely packed. In contrast, genes that remain switched
off for long periods of time are found in regions—known as
heterochromatin—where the chromatin is tightly packed. There are many enzymes that can modify histones to change the structure of chromatin.
One enzyme—called Set1—adds a methyl tag to chromatin, which is known
to be associated with genes being switched on. However, Lorenz et al. found that Set1
also has other roles in modifying chromatin in the yeast Schizosaccharomyces
pombe. The experiments found that Set1 helps to keep genes switched off and that this role
is largely independent of its ability to add the methyl tag to chromatin. Set1 is
recruited to many sites across the genome by another protein called Atf1, which is
involved in the cell's response to environmental stresses. Lorenz et al. believe that
this helps to put these genes in a ‘poised’ off state so that they are
ready to be switched on rapidly if needed. Set1 also works with another protein that removes acetyl tags—which encourage
chromatin to be less tightly packed—from histones. Together, both proteins
contribute to the assembly of heterochromatin and keep genes involved in development
and stress responses switched off when they are not required. Collectively, these experiments reveal unexpected and important insights into how
Set1—which plays critical roles in many aspects of human health including
aging and cancer—works in cells. DOI:http://dx.doi.org/10.7554/eLife.04506.002
Collapse
Affiliation(s)
- David R Lorenz
- Department of Biology, Boston College, Chestnut Hill, United States
| | - Lauren F Meyer
- Department of Biology, Boston College, Chestnut Hill, United States
| | | | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, United States
| | - Hugh P Cam
- Department of Biology, Boston College, Chestnut Hill, United States
| |
Collapse
|
31
|
Panspecies small-molecule disruptors of heterochromatin-mediated transcriptional gene silencing. Mol Cell Biol 2014; 35:662-74. [PMID: 25487573 PMCID: PMC4301722 DOI: 10.1128/mcb.01102-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterochromatin underpins gene repression, genome integrity, and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing of a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions, and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities and thus represent novel chemical probes for heterochromatin formation and function.
Collapse
|
32
|
Ard R, Tong P, Allshire RC. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast. Nat Commun 2014; 5:5576. [PMID: 25428589 PMCID: PMC4255232 DOI: 10.1038/ncomms6576] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022] Open
Abstract
Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1+). We demonstrate that the act of transcribing nc-tgp1 over the tgp1+ promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1+ without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1+ is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1+ expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1+ even in repressive conditions. Notably, drug sensitivity results directly from tgp1+ expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast. The presence of long non-coding RNAs (lncRNAs) is pervasive across genomes, yet few lncRNAs have clearly established mechanisms of action. Here the authors demonstrate that the fission yeast lncRNA nc-tgp1 regulates expression of the drug tolerance gene tgp1+ via+ transcriptional interference.
Collapse
Affiliation(s)
- Ryan Ard
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Pin Tong
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
33
|
Castel SE, Ren J, Bhattacharjee S, Chang AY, Sánchez M, Valbuena A, Antequera F, Martienssen RA. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 2014; 159:572-83. [PMID: 25417108 DOI: 10.1016/j.cell.2014.09.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/29/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
Abstract
Nuclear RNAi is an important regulator of transcription and epigenetic modification, but the underlying mechanisms remain elusive. Using a genome-wide approach in the fission yeast S. pombe, we have found that Dcr1, but not other components of the canonical RNAi pathway, promotes the release of Pol II from the 3? end of highly transcribed genes, and, surprisingly, from antisense transcription of rRNA and tRNA genes, which are normally transcribed by Pol I and Pol III. These Dcr1-terminated loci correspond to sites of replication stress and DNA damage, likely resulting from transcription-replication collisions. At the rDNA loci, release of Pol II facilitates DNA replication and prevents homologous recombination, which would otherwise lead to loss of rDNA repeats especially during meiosis. Our results reveal a novel role for Dcr1-mediated transcription termination in genome maintenance and may account for widespread regulation of genome stability by nuclear RNAi in higher eukaryotes.
Collapse
Affiliation(s)
- Stephane E Castel
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jie Ren
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - An-Yun Chang
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Alberto Valbuena
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca 37007, Spain
| | - Robert A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
34
|
Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res 2014; 21:587-600. [PMID: 24254230 DOI: 10.1007/s10577-013-9394-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA,
| |
Collapse
|
35
|
A novel histone deacetylase complex in the control of transcription and genome stability. Mol Cell Biol 2014; 34:3500-14. [PMID: 25002536 DOI: 10.1128/mcb.00519-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acetylation state of histones, controlled by histone acetyltransferases (HATs) and deacetylases (HDACs), profoundly affects DNA transcription and repair by modulating chromatin accessibility to the cellular machinery. The Schizosaccharomyces pombe HDAC Clr6 (human HDAC1) binds to different sets of proteins that define functionally distinct complexes: I, I', and II. Here, we determine the composition, architecture, and functions of a new Clr6 HDAC complex, I'', delineated by the novel proteins Nts1, Mug165, and Png3. Deletion of nts1 causes increased sensitivity to genotoxins and deregulated expression of Tf2 elements, long noncoding RNA, and subtelomeric and stress-related genes. Similar, but more pervasive, phenotypes are observed upon Clr6 inactivation, supporting the designation of complex I'' as a mediator of a key subset of Clr6 functions. We also reveal that with the exception of Tf2 elements, the genome-wide loading sites and loci regulated by Clr6 I″ do not correlate. Instead, Nts1 loads at genes that are expressed in midmeiosis, following oxidative stress, or are periodically expressed. Collective data suggest that Clr6 I'' has (i) indirect effects on gene expression, conceivably by mediating higher-order chromatin organization of subtelomeres and Tf2 elements, and (ii) direct effects on the transcription of specific genes in response to certain cellular or environmental stimuli.
Collapse
|
36
|
Anver S, Roguev A, Zofall M, Krogan NJ, Grewal SIS, Harmer SL. Yeast X-chromosome-associated protein 5 (Xap5) functions with H2A.Z to suppress aberrant transcripts. EMBO Rep 2014; 15:894-902. [PMID: 24957674 DOI: 10.15252/embr.201438902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chromatin regulatory proteins affect diverse developmental and environmental response pathways via their influence on nuclear processes such as the regulation of gene expression. Through a genome-wide genetic screen, we implicate a novel protein called X-chromosome-associated protein 5 (Xap5) in chromatin regulation. We show that Xap5 is a chromatin-associated protein acting in a similar manner as the histone variant H2A.Z to suppress expression of antisense and repeat element transcripts throughout the fission yeast genome. Xap5 is highly conserved across eukaryotes, and a plant homolog rescues xap5 mutant yeast. We propose that Xap5 likely functions as a chromatin regulator in diverse organisms.
Collapse
Affiliation(s)
- Shajahan Anver
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences University of California, Davis, CA, USA
| |
Collapse
|
37
|
Cherry KE, Hearn WE, Seshie OYK, Singleton TL. Identification of Tf1 integration events in S. pombe under nonselective conditions. Gene 2014; 542:221-31. [PMID: 24680781 DOI: 10.1016/j.gene.2014.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 12/01/2022]
Abstract
Integration of retroviral elements into the host genome is a phenomena observed among many classes of retroviruses. Much information concerning the integration of retroviral elements has been documented based on in vitro analysis or expression of selectable markers. To identify possible Tf1 integration events within silent regions of the Schizosaccharomyces pombe genome, we focused on performing an in vivo genome-wide analysis of Tf1 integration events from the nonselective phase of the retrotransposition assay. We analyzed 1000 individual colonies streaked from four independent Tf1 transposed patches under nonselection conditions. Our analysis detected a population of G418(S)/neo(+) Tf1 integration events that would have been overlooked during the selective phase of the assay. Further RNA analysis from the G418(S)/neo(+) clones revealed 50% of clones expressing the neo selectable marker. Our data reveals Tf1's ability to insert within silent regions of S. pombe's genome.
Collapse
Affiliation(s)
- Kristina E Cherry
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| | - Willis E Hearn
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| | - Osborne Y K Seshie
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| | - Teresa L Singleton
- Winston Salem State University, 601 Martin Luther King Jr. Drive, WBA Science Building, Winston-Salem NC, USA.
| |
Collapse
|
38
|
Smialowska A, Djupedal I, Wang J, Kylsten P, Swoboda P, Ekwall K. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe. Biochem Biophys Res Commun 2014; 444:254-9. [PMID: 24462781 DOI: 10.1016/j.bbrc.2014.01.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/15/2014] [Indexed: 11/25/2022]
Abstract
RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.
Collapse
Affiliation(s)
- Agata Smialowska
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83, Sweden; School of Life Sciences, Södertörn Högskola, Huddinge 141-89, Sweden.
| | - Ingela Djupedal
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83, Sweden
| | - Jingwen Wang
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83, Sweden
| | - Per Kylsten
- School of Life Sciences, Södertörn Högskola, Huddinge 141-89, Sweden
| | - Peter Swoboda
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83, Sweden
| | - Karl Ekwall
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83, Sweden; School of Life Sciences, Södertörn Högskola, Huddinge 141-89, Sweden.
| |
Collapse
|
39
|
Influence of long terminal repeat retrotransposons in the genomes of fission yeasts. Biochem Soc Trans 2013; 41:1629-33. [DOI: 10.1042/bst20130207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LTR (long terminal repeat) RTs (retrotransposons) are almost ubiquitous in eukaryotic genomes. Their abundance and selfish properties make them a major influence in the regulation and evolution of their host genome. Recently, several striking properties of the LTR RTs of fission yeast have been uncovered, affecting important cellular processes such as gene regulation, nuclear architecture and genome integrity. The present review summarizes the current information and puts it in the context of the wider search for understanding the influence of transposable elements on the host genome.
Collapse
|
40
|
Goff SA, Zhang Q. Heterosis in elite hybrid rice: speculation on the genetic and biochemical mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:221-7. [PMID: 23587937 DOI: 10.1016/j.pbi.2013.03.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 05/09/2023]
Abstract
Because of the tremendous advances in functional genomics and the current availability of a large number of superior hybrids, rice is an excellent model crop system for heterosis research. Genetic dissection of yield and yield component traits of an elite rice hybrid using an ultra-high density linkage map identified overdominance as the principal genetic basis of heterosis in this hybrid. This is not an expected finding based on the reported effects of single genes. Here we propose a gene expression and protein quality control hypothesis as one possible explanation for the overdominance in hybrids bred for yield. Future studies will be directed toward the identification of the genetic and biochemical mechanisms underlying the biology of hybrid vigor.
Collapse
Affiliation(s)
- Stephen A Goff
- iPlant Collaborative, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
41
|
Thorsen M, Hansen H, Venturi M, Holmberg S, Thon G. Mediator regulates non-coding RNA transcription at fission yeast centromeres. Epigenetics Chromatin 2012; 5:19. [PMID: 23171760 PMCID: PMC3541127 DOI: 10.1186/1756-8935-5-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 11/01/2012] [Indexed: 12/04/2022] Open
Abstract
Background In fission yeast, centromeric heterochromatin is necessary for the fidelity of chromosome segregation. Propagation of heterochromatin in dividing cells requires RNA interference (RNAi) and transcription of centromeric repeats by RNA polymerase II during the S phase of the cell cycle. Results We found that the Med8-Med18-Med20 submodule of the Mediator complex is required for the transcriptional regulation of native centromeric dh and dg repeats and for the silencing of reporter genes inserted in centromeric heterochromatin. Mutations in the Med8-Med18-Med20 submodule did not alter Mediator occupancy at centromeres; however, they led to an increased recruitment of RNA polymerase II to centromeres and reduced levels of centromeric H3K9 methylation accounting for the centromeric desilencing. Further, we observed that Med18 and Med20 were required for efficient processing of dh transcripts into siRNA. Consistent with defects in centromeric heterochromatin, cells lacking Med18 or Med20 displayed elevated rates of mitotic chromosome loss. Conclusions Our data demonstrate a role for the Med8-Med18-Med20 Mediator submodule in the regulation of non-coding RNA transcription at Schizosaccharomyces pombe centromeres. In wild-type cells this submodule limits RNA polymerase II access to the heterochromatic DNA of the centromeres. Additionally, the submodule may act as an assembly platform for the RNAi machinery or regulate the activity of the RNAi pathway. Consequently, Med8-Med18-Med20 is required for silencing of centromeres and proper mitotic chromosome segregation.
Collapse
Affiliation(s)
- Michael Thorsen
- Department of Biology, University of Copenhagen, BioCenter, Ole Maaløes vej 5, 2200, Copenhagen, N, Denmark.
| | | | | | | | | |
Collapse
|
42
|
RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature 2012; 493:557-60. [PMID: 23151475 PMCID: PMC3554839 DOI: 10.1038/nature11716] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/26/2012] [Indexed: 01/02/2023]
Abstract
RNA interference (RNAi) is a conserved mechanism in which small interfering RNAs (siRNAs) guide the degradation of cognate RNAs, but also promote heterochromatin assembly at repetitive DNA elements such as centromeric repeats. However, the full extent of RNAi functions and its endogenous targets have not been explored. Here we show that, in the fission yeast Schizosaccharomyces pombe, RNAi and heterochromatin factors cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembrane proteins, and retrotransposons that are also targeted by the exosome RNA degradation machinery. In the absence of the exosome, transcripts are processed preferentially by the RNAi machinery, revealing siRNA clusters and a corresponding increase in heterochromatin modifications across large domains containing genes and retrotransposons. We show that the generation of siRNAs and heterochromatin assembly by RNAi is triggered by a mechanism involving the canonical poly(A) polymerase Pla1 and an associated RNA surveillance factor Red1, which also activate the exosome. Notably, siRNA production and heterochromatin modifications at these target loci are regulated by environmental growth conditions, and by developmental signals that induce gene expression during sexual differentiation. Our analyses uncover an interaction between RNAi and the exosome that is conserved in Drosophila, and show that differentiation signals modulate RNAi silencing to regulate developmental genes.
Collapse
|
43
|
Takahashi H, Sun X, Hamamoto M, Yashiroda Y, Yoshida M. The SAGA histone acetyltransferase complex regulates leucine uptake through the Agp3 permease in fission yeast. J Biol Chem 2012; 287:38158-67. [PMID: 22992726 DOI: 10.1074/jbc.m112.411165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic responses of unicellular organisms are mostly acute, transient, and cell-autonomous. Regulation of nutrient uptake in yeast is one such rapid response. High quality nitrogen sources such as NH(4)(+) inhibit uptake of poor nitrogen sources, such as amino acids. Both transcriptional and posttranscriptional mechanisms operate in nutrient uptake regulation; however, many components of this system remain uncharacterized in the fission yeast, Schizosaccharomyces pombe. Here, we demonstrate that the Spt-Ada-Gcn acetyltransferase (SAGA) complex modulates leucine uptake. Initially, we noticed that a branched-chain amino acid auxotroph exhibits a peculiar adaptive growth phenotype on solid minimal media containing certain nitrogen sources. In fact, the growth of many auxotrophic strains is inhibited by excess NH(4)Cl, possibly through nitrogen-mediated uptake inhibition of the corresponding nutrients. Surprisingly, DNA microarray analysis revealed that the transcriptional reprogramming during the adaptation of the branched-chain amino acid auxotroph was highly correlated with reprogramming observed in deletions of the SAGA histone acetyltransferase module genes. Deletion of gcn5(+) increased leucine uptake in the prototrophic background and rendered the leucine auxotroph resistant to NH(4)Cl. Deletion of tra1(+) caused the opposite phenotypes. The increase in leucine uptake in the gcn5Δ mutant was dependent on an amino acid permease gene, SPCC965.11c(+). The closest budding yeast homolog of this permease is a relatively nonspecific amino acid permease AGP3, which functions in poor nutrient conditions. Our analysis identified the regulation of nutrient uptake as a physiological function for the SAGA complex, providing a potential link between cellular metabolism and chromatin regulation.
Collapse
Affiliation(s)
- Hidekazu Takahashi
- Chemical Genetics Laboratory/Chemical Genomics Research Group, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
44
|
CENP-B cooperates with Set1 in bidirectional transcriptional silencing and genome organization of retrotransposons. Mol Cell Biol 2012; 32:4215-25. [PMID: 22907751 DOI: 10.1128/mcb.00395-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of transposable elements (TEs) is critical to the integrity of the host genome. The fission yeast Schizosaccharomyces pombe homologs of mammalian CENP-B perform a host genome surveillance role by controlling Tf2 long terminal repeat (LTR) retrotransposons. However, the mechanisms by which CENP-Bs effect their functions are ill defined. Here, we show that the multifaceted roles of Abp1, the prominent member of fission yeast CENP-Bs, are mediated in part via recognition of a 10-bp AT-rich motif present in most LTRs and require the DNA-binding, transposase, and dimerization domains of Abp1 to maintain transcriptional repression and genome organization. Expression profiling analyses indicated that Abp1 recruits class I/II histone deacetylases (HDACs) to repress Tf2 retrotransposons and genes activated in response to stresses. We demonstrate that class I/II HDACs and sirtuins mediate the clustering of dispersed Tf2 retrotransposons into Tf bodies. Intriguingly, we uncovered an unexpected cooperation between Abp1 and the histone H3K4 methyltransferase Set1 in regulating sense and antisense transcriptional silencing of Tf2 retrotransposons and Tf body integrity. Moreover, Set1-mediated regulation of Tf2 expression and nuclear organization appears to be largely independent of H3K4 methylation. Our study illuminates a molecular pathway involving a transposase-containing transcription factor that cooperates with chromatin modifiers to regulate TE activities.
Collapse
|
45
|
Holm LR, Thon G. New romance between RNA degradation pathways: Mmi1 and RNAi meet on heterochromatic islands. EMBO J 2012; 31:2242-3. [PMID: 22549465 DOI: 10.1038/emboj.2012.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
46
|
Lavoie M, Ge D, Abou Elela S. Regulation of conditional gene expression by coupled transcription repression and RNA degradation. Nucleic Acids Res 2011; 40:871-83. [PMID: 21933814 PMCID: PMC3258148 DOI: 10.1093/nar/gkr759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gene expression is determined by a combination of transcriptional and post-transcriptional regulatory events that were thought to occur independently. This report demonstrates that the genes associated with the Snf3p–Rgt2p glucose-sensing pathway are regulated by interconnected transcription repression and RNA degradation. Deletion of the dsRNA-specific ribonuclease III Rnt1p increased the expression of Snf3p–Rgt2p-associated transcription factors in vivo and the recombinant enzyme degraded their messenger RNA in vitro. Surprisingly, Rnt1ps effect on gene expression in vivo was both RNA and promoter dependent, thus linking RNA degradation to transcription. Strikingly, deletion of RNT1-induced promoter-specific transcription of the glucose sensing genes even in the absence of RNA cleavage signals. Together, the results presented here support a model in which co-transcriptional RNA degradation increases the efficiency of gene repression, thereby allowing an effective cellular response to the continuous changes in nutrient concentrations.
Collapse
Affiliation(s)
- Mathieu Lavoie
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | |
Collapse
|
47
|
Bleykasten-Grosshans C, Neuvéglise C. Transposable elements in yeasts. C R Biol 2011; 334:679-86. [PMID: 21819950 DOI: 10.1016/j.crvi.2011.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/31/2011] [Indexed: 11/19/2022]
Abstract
With the development of new sequencing technologies in the past decade, yeast genomes have been extensively sequenced and their structures investigated. Transposable elements (TEs) are ubiquitous in eukaryotes and constitute a limited part of yeast genomes. However, due to their ability to move in genomes and generate dispersed repeated sequences, they contribute to modeling yeast genomes and thereby induce plasticity. This review assesses the TE contents of yeast genomes investigated so far. Their diversity and abundance at the inter- and intraspecific levels are presented, and their effects on gene expression and genome stability is considered. Recent results concerning TE-host interactions are also analyzed.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS UMR 7156, Laboratoire Génétique Moléculaire Génomique Microbiologie, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg cedex, France.
| | | |
Collapse
|
48
|
Zhang X, Rossi JJ. Phylogenetic comparison of small RNA-triggered transcriptional gene silencing. J Biol Chem 2011; 286:29443-8. [PMID: 21730056 DOI: 10.1074/jbc.r111.276378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The discovery of RNA interference has revealed complex roles for small RNAs in regulating gene expression and cellular physiology. Small RNAs have been demonstrated to be involved in post-transcriptional suppression of translation, targeted degradation of messenger RNAs, and transcriptional suppression via epigenetic modifications of histones and DNA. In fission yeast, RNAi mediates suppression of centromeric transcripts, whereas in plants, transcriptional gene silencing appears to be primarily an antiviral mechanism. In mammals, the well annotated functional role of RNAi is primarily post-transcriptional, but there is increasing evidence that this mechanism can also work to suppress or modulate gene transcription, although it is not clear what primary function this serves. We overview, compare, and contrast the transcriptional silencing pathways in yeast, plants, and mammals in this article. This minireview is intended to provide the reader with a framework of how the RNAi machinery appears to be universally involved in various aspects of transcriptional regulation with discussions of similarities and differences in the components and mechanisms of achieving transcriptional silencing.
Collapse
Affiliation(s)
- Xizhe Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope and the Irell & Manella Graduate School of Biological Sciences, Duarte, California 91010, USA
| | | |
Collapse
|
49
|
Reddy BD, Wang Y, Niu L, Higuchi EC, Marguerat SB, Bähler J, Smith GR, Jia S. Elimination of a specific histone H3K14 acetyltransferase complex bypasses the RNAi pathway to regulate pericentric heterochromatin functions. Genes Dev 2011; 25:214-9. [PMID: 21289066 DOI: 10.1101/gad.1993611] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Schizosaccharomyces pombe, the RNAi pathway is required for the formation of pericentric heterochromatin, proper chromosome segregation, and repression of pericentric meiotic recombination. Here we demonstrate that, when the activity of the histone H3 Lys 14 (H3K14) acetyltransferase Mst2 is eliminated, the RNAi machinery is no longer required for pericentric heterochromatin functions. We further reveal that reducing RNA polymerase II recruitment to pericentric regions is essential for maintaining heterochromatin in the absence of RNAi.
Collapse
Affiliation(s)
- Bharat D Reddy
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yamane K, Mizuguchi T, Cui B, Zofall M, Noma KI, Grewal SIS. Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci. Mol Cell 2011; 41:56-66. [PMID: 21211723 PMCID: PMC3035992 DOI: 10.1016/j.molcel.2010.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 12/21/2022]
Abstract
Heterochromatin impacts various nuclear processes by providing a recruiting platform for diverse chromosomal proteins. In fission yeast, HP1 proteins Chp2 and Swi6, which bind to methylated histone H3 lysine 9, associate with SHREC (Snf2/HDAC repressor complex) and Clr6 histone deacetylases (HDACs) involved in heterochromatic silencing. However, heterochromatic silencing machinery is not fully defined. We describe a histone chaperone complex containing Asf1 and HIRA that spreads across silenced domains via its association with Swi6 to enforce transcriptional silencing. Asf1 functions in concert with a Clr6 HDAC complex to silence heterochromatic repeats, and it suppresses antisense transcription by promoting histone deacetylation. Furthermore, we demonstrate that Asf1 and SHREC facilitate nucleosome occupancy at heterochromatic regions but TFIIIC transcription factor binding sites within boundary elements are refractory to these factors. These analyses uncover a role for Asf1 in global histone deacetylation and suggest that HP1-associated histone chaperone promotes nucleosome occupancy to assemble repressive heterochromatin.
Collapse
Affiliation(s)
- Kenichi Yamane
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Bowen Cui
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Ken-ichi Noma
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| | - Shiv I. S. Grewal
- Laboratory of Biochemistry and Molecular Biology National Cancer Institute Bethesda, Maryland 20892
| |
Collapse
|