1
|
Shah AJ, Mohi-Ud-Din R, Sabreen S, Wani TU, Jan R, Javed MN, Mir PA, Mir RH, Masoodi MH. Clinical Biomarkers and Novel Drug Targets to Cut Gordian Knots of Alzheimer's Disease. Curr Mol Pharmacol 2023; 16:254-279. [PMID: 36056834 DOI: 10.2174/1874467215666220903095837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the primary cause of dementia, escalating worldwide, has no proper diagnosis or effective treatment. Neuronal cell death and impairment of cognitive abilities, possibly triggered by several brain mechanisms, are the most significant characteristic of this disorder. METHODS A multitude of pharmacological targets have been identified for potential drug design against AD. Although many advances in treatment strategies have been made to correct various abnormalities, these often exhibit limited clinical significance because this disease aggressively progresses into different regions of the brain, causing severe deterioration. RESULTS These biomarkers can be game-changers for early detection and timely monitoring of such disorders. CONCLUSION This review covers clinically significant biomarkers of AD for precise and early monitoring of risk factors and stages of this disease, the potential site of action and novel targets for drugs, and pharmacological approaches to clinical management.
Collapse
Affiliation(s)
- Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar- 190011, Jammu and Kashmir, India
| | - Saba Sabreen
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Taha Umair Wani
- Department of Pharmaceutical Sciences, Pharmaceutics Lab, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir India
| | - Rafia Jan
- Defence Research and Development Organization (DRDO), Hospital, Khonmoh, Srinagar 190001, Jammu & Kashmir, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, KR Mangalam University, Gurugram, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Mohali, Punjab 140307, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| |
Collapse
|
2
|
Sen S, Hallee L, Lam CK. The Potential of Gamma Secretase as a Therapeutic Target for Cardiac Diseases. J Pers Med 2021; 11:jpm11121294. [PMID: 34945766 PMCID: PMC8703931 DOI: 10.3390/jpm11121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Heart diseases are some of the most common and pressing threats to human health worldwide. The American Heart Association and the National Institute of Health jointly work to annually update data on cardiac diseases. In 2018, 126.9 million Americans were reported as having some form of cardiac disorder, with an estimated direct and indirect total cost of USD 363.4 billion. This necessitates developing therapeutic interventions for heart diseases to improve human life expectancy and economic relief. In this review, we look into gamma-secretase as a potential therapeutic target for cardiac diseases. Gamma-secretase, an aspartyl protease enzyme, is responsible for the cleavage and activation of a number of substrates that are relevant to normal cardiac development and function as found in mutation studies. Some of these substrates are involved in downstream signaling processes and crosstalk with pathways relevant to heart diseases. Most of the substrates and signaling events we explored were found to be potentially beneficial to maintain cardiac function in diseased conditions. This review presents an updated overview of the current knowledge on gamma-secretase processing of cardiac-relevant substrates and seeks to understand if the modulation of gamma-secretase activity would be beneficial to combat cardiac diseases.
Collapse
Affiliation(s)
- Sujoita Sen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Logan Hallee
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Chi Keung Lam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Correspondence: ; Tel.: +1-302-831-3165
| |
Collapse
|
3
|
Peng Z, Luo Y, Xiao ZY. Angiopoietin-1 accelerates Alzheimer's disease via FOXA2/PEN2/APP pathway in APP/PS1 mice. Life Sci 2020; 246:117430. [PMID: 32061671 DOI: 10.1016/j.lfs.2020.117430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 11/17/2022]
Abstract
Angiopoietin-1 (Ang-1), a regulatory angiogenesis protein and it has been found to be involved in the occurrence and progression of Alzheimer's disease. However, it was still to be addressed the distinctly role and the molecular mechanisms of Ang-1 affects Alzheimer's disease. Our data suggest that Ang-1 aggravated the accumulation of Aβ42 and cognitive decline in APP/PS1 mice. The upregulation of APPβ is essential for Aβ42 production in N2a cells overexpressing the mutational human APP gene (N2a/APP695 cells), while downregulation of PEN2 could reduce APP expression. Silencing of FOXA2 lead to inhibition of APP expression, as well as decrease of Aβ42 contents. In conclusion, Ang-1 has an accelerative effect on Alzheimer's disease by increasing the secretion of Aβ42 via FOXA2/PEN2/APP pathway.
Collapse
Affiliation(s)
- Zhe Peng
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yan Luo
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, China.
| | - Zhi-Yong Xiao
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
DiNicolantonio JJ, McCarty M. Autophagy-induced degradation of Notch1, achieved through intermittent fasting, may promote beta cell neogenesis: implications for reversal of type 2 diabetes. Open Heart 2019; 6:e001028. [PMID: 31218007 PMCID: PMC6546199 DOI: 10.1136/openhrt-2019-001028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
|
5
|
Bartolotti N, Lazarov O. CREB signals as PBMC-based biomarkers of cognitive dysfunction: A novel perspective of the brain-immune axis. Brain Behav Immun 2019; 78:9-20. [PMID: 30641141 PMCID: PMC6488430 DOI: 10.1016/j.bbi.2019.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
To date, there is no reliable biomarker for the assessment or determination of cognitive dysfunction in Alzheimer's disease and related dementia. Such a biomarker would not only aid in diagnostics, but could also serve as a measure of therapeutic efficacy. It is widely acknowledged that the hallmarks of Alzheimer's disease, namely, amyloid deposits and neurofibrillary tangles, as well as their precursors and metabolites, are poorly correlated with cognitive function and disease stage and thus have low diagnostic or prognostic value. A lack of biomarkers is one of the major roadblocks in diagnosing the disease and in assessing the efficacy of potential therapies. The phosphorylation of cAMP Response Element Binding protein (pCREB) plays a major role in memory acquisition and consolidation. In the brain, CREB activation by phosphorylation at Ser133 and the recruitment of transcription cofactors such as CREB binding protein (CBP) is a critical step for the formation of memory. This set of processes is a prerequisite for the transcription of genes thought to be important for synaptic plasticity, such as Egr-1. Interestingly, recent work suggests that the expression of pCREB in peripheral blood mononuclear cells (PBMC) positively correlates with pCREB expression in the postmortem brain of Alzheimer's patients, suggesting not only that pCREB expression in PBMC might serve as a biomarker of cognitive dysfunction, but also that the dysfunction of CREB signaling may not be limited to the brain in AD, and that a link may exist between the regulation of CREB in the blood and in the brain. In this review we consider the evidence suggesting a correlation between the level of CREB signals in the brain and blood, the current knowledge about CREB in PBMC and its association with CREB in the brain, and the implications and mechanisms for a neuro-immune cross talk that may underlie this communication. This Review will discuss the possibility that peripheral dysregulation of CREB is an early event in AD pathogenesis, perhaps as a facet of immune system dysfunction, and that this impairment in peripheral CREB signaling modifies CREB signaling in the brain, thus exacerbating cognitive decline in AD. A more thorough understanding of systemic dysregulation of CREB in AD will facilitate the search for a biomarker of cognitive function in AD, and also aid in the understanding of the mechanisms underlying cognitive decline in AD.
Collapse
Affiliation(s)
- Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Effects and Mechanism of Huannao Yicong Decoction Extract on the Ethology of Transgenic APP/PS1 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9502067. [PMID: 29422937 PMCID: PMC5750494 DOI: 10.1155/2017/9502067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/11/2017] [Indexed: 01/16/2023]
Abstract
To investigate the mechanism of Huannao Yicong Decoction (HYD) extract on improving of learning memory of transgenic amyloid precursor protein (APP)/presenilin 1 (PS1) mice, we randomly divided 60 transgenic APP/PS1 mice of 3 months old into 4 groups: the model group, the Donepezil group, the HYD-L group, and the HYD-H group, with 15 C57BL/6J mice of the same genetic background as the control group. These mice were gavaged for 6 months in a row. The results showed that the latency was significantly shortened and the number of passing through the original platform was increased. HYD extract can increase the amount of neurons and improve the morphological structure of Nissl body obviously. The γ-secretase activity and the expression of phosphorylated APP, Aβ1-40, and Aβ1-42 in hippocampal CA1 were significantly decreased. The expressions of protein and mRNA of PEN-2 and CREB in hippocampal were significantly downregulated. These results demonstrated that HYD extract can improve the memory ability of transgenic APP/PS1 mice, which was related to the protection of neurons and structure of Nissl body, reducing cleavage of APP and production of Aβ and inhibiting the activity of γ-secretase by decreasing CREB activity because of downregulated expression of PEN-2.
Collapse
|
7
|
Huannao Yicong Formula () regulates γ-secretase activity through APH-1 and PEN-2 gene ragulation pathways in hippocampus of APP/PS1 double transgenic mice. Chin J Integr Med 2017; 23:270-278. [PMID: 28120208 DOI: 10.1007/s11655-017-2402-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To observe the effects of Huannao Yicong Formula (, HYF) on learning and memory and it's regulating effect on γ-secretase related anterior pharynx defective 1 (APH-1), presenilin enhancer-2 (PEN-2) signaling pathway, so as to discuss and further clarify the mechanism of HYF on Alzheimer's disease. METHODS Sixty APP/PS1 transgenic mice, randomly allocated into 4 groups, the model group, the donepezil group (0.65 mg/kg), HYF low-dose group (HYF-L, 5.46 g/kg) and HYF high-dose group (HYF-H, 10.92 g/kg), 15 for each group. Another 15 C57BL/6J mice with the same age and same genetic background were allocated into the control group, proper dosage of drugs or distilled water were given by intragastric administration once daily for 12 weeks. After 12 weeks of administration, the learning and memory abilities of mice in each group was evaluated by the morris water maze test, amyloid precursor protein (APP), Aβ1-40 and Aβ1-42 levels in hippocampus were detected by enzyme-linked immunosorbent assay, γ-secretase was detected by dual luciferase assaying, the levels of APH-1a, hypoxia-inducible factor 1α (HIF-1α), cAMP response element-binding protein (CREB) and PEN-2 and their mRNA expression was measured by Western blot and real-time polymerase chain reaction. RESULTS HYF can ameliorate learning and memory deficits in APP/PS1 transgenic mice by decreasing the escape latency, improving the number of platform crossing and swimming speed (P<0.01, P<0.05). HYF can decrease the levels of APP, Aβ1-40, Aβ1-42 and the activity of γ-secretase in hippocampus of Alzheimer's disease model mice. HYF can down-regulate the levels of CREB and PEN-2 and the expression of their mRNA. CONCLUSION HYF can improve the learning and memory ability by inhibiting the activity of γ-secretase through the CREB/PEN-2 signaling pathway, and this may be one of the therapeutic mechanisms of HYF in Alzheimer's disease.
Collapse
|
8
|
Bartolotti N, Bennett DA, Lazarov O. Reduced pCREB in Alzheimer's disease prefrontal cortex is reflected in peripheral blood mononuclear cells. Mol Psychiatry 2016; 21:1158-1166. [PMID: 27480489 PMCID: PMC4995548 DOI: 10.1038/mp.2016.111] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/06/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023]
Abstract
Cyclic-AMP response element-binding protein (CREB) signaling has a critical role in the formation of memories. CREB signaling is dysfunctional in the brains of mouse models of Alzheimer's disease (AD), and evidence suggests that CREB signaling may be disrupted in human AD brains as well. Here, we show that both CREB and its activated form pCREB-Ser(133) (pCREB) are reduced in the prefrontal cortex of AD patients. Similarly, the transcription cofactors CREB-binding protein (CBP) and p300 are reduced in the prefrontal cortex of AD patients, indicating additional dysfunction of CREB signaling in AD. Importantly, we show that pCREB expression is reduced in peripheral blood mononuclear cells (PBMC) of AD subjects. In addition, pCREB levels in PBMC positively correlated with pCREB expression in the postmortem brain of persons with AD. These results suggest that pCREB expression in PBMC may be indicative of its expression in the brain, and thus offers the intriguing possibility of pCREB as a biomarker of cognitive function and disease progression in AD.
Collapse
Affiliation(s)
- N Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - O Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Bartolotti N, Segura L, Lazarov O. Diminished CRE-Induced Plasticity is Linked to Memory Deficits in Familial Alzheimer's Disease Mice. J Alzheimers Dis 2016; 50:477-489. [PMID: 26682682 PMCID: PMC4927858 DOI: 10.3233/jad-150650] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2015] [Indexed: 11/15/2022]
Abstract
The mechanism underlying impaired learning and memory in Alzheimer's disease is not fully elucidated. The phosphorylation of cyclic-AMP response element binding protein (pCREB) in the hippocampus is thought to be a critical initiating step in the formation of long-term memories. Here, we tested CRE-driven gene expression following learning in mice harboring the familial Alzheimer's disease-linked APPswe/PS1ΔE9 mutations using CRE-β galactosidase reporter. We show that young adult APPswe/PS1ΔE9 mice exhibit impaired recognition memory and reduced levels of pCREB, and its cofactors CREB binding protein (CBP) and p-300 following a learning task, compared to their wild type littermate counterparts. Impairments in learning-induced activation of CREB in these mice are manifested by reduced CRE-driven gene transcription. Importantly, expression of the CRE-driven immediate early gene, Egr-1 (Zif268) is decreased in the CA1 region of the hippocampus. These studies implicate defective CREB-dependent plasticity in the mechanism underlying learning and memory deficits in Alzheimer's disease.
Collapse
Affiliation(s)
- Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Laura Segura
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Involvement of the Notch pathway in terminal astrocytic differentiation: role of PKA. ASN Neuro 2013; 5:e00130. [PMID: 24286475 PMCID: PMC3891361 DOI: 10.1042/an20130023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Notch pathway is a highly conserved signaling system essential for modulating neurogenesis and promoting astrogenesis. Similarly, the cAMP signaling cascade can promote astrocytic commitment in several cell culture models, such as the C6 glioma cell line. These cells have the capacity to differentiate into oligodendrocytes or astrocytes, characteristics that allow their use as a glial progenitor model. In this context, we explore here the plausible involvement of cAMP in Notch-dependent signal transactions. The exposure of C6 cells to a non-hydrolysable cAMP analogue resulted in a sustained augmentation of Notch activity, as detected by nuclear translocation of its intracellular domain portion (NICD) and transcriptional activity. The cAMP effect is mediated through the activation of the γ-secretase complex, responsible for Notch cleavage and is sensitive to inhibitors of the cAMP-dependent protein kinase, PKA. As expected, Notch cleavage and nuclear translocation resulted in the up-regulation of the mRNA levels of one of its target genes, the transcription factor Hair and enhancer of split 5. Moreover, the glutamate uptake activity, as well as the expression of astrocytic markers such as glial fibrillary acidic protein, S100β protein and GLAST was also enhanced in cAMP-exposed cells. Our results clearly suggest that during the process of C6 astrocytic differentiation, cAMP activates the PKA/γ-secretase/NICD/RBPJκ pathway and Notch1 expression, leading to transcriptional activation of the genes responsible for glial progenitor cell fate decision.
Collapse
|
11
|
Didych DA, Shamsutdinov MF, Smirnov NA, Akopov SB, Monastyrskaya GS, Uspenskaya NY, Nikolaev LG, Sverdlov ED. Human PSENEN and U2AF1L4 genes are concertedly regulated by a genuine bidirectional promoter. Gene 2012; 515:34-41. [PMID: 23246698 DOI: 10.1016/j.gene.2012.11.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
Abstract
Head-to-head genes with a short distance between their transcription start sites may constitute up to 10% of all genes in the genomes of various species. It was hypothesized that this intergenic space may represent bidirectional promoters which are able to initiate transcription of both genes, but the true bidirectionality was proved only for a few of them. We present experimental evidence that, according to several criteria, a 269 bp region located between the PSENEN and U2AF1L4 human genes is a genuine bidirectional promoter regulating a concerted divergent transcription of these genes. Concerted transcription of PSENEN and U2AF1L4 can be necessary for regulation of T-cell activity.
Collapse
Affiliation(s)
- D A Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chu J, Praticò D. Involvement of 5-lipoxygenase activating protein in the amyloidotic phenotype of an Alzheimer's disease mouse model. J Neuroinflammation 2012; 9:127. [PMID: 22697885 PMCID: PMC3425138 DOI: 10.1186/1742-2094-9-127] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 5-lipoxygenase enzyme is widely distributed within the central nervous system and its activity is regulated by the presence and availability of another protein, called 5-lipoxygenase activating protein. While previous works have shown that 5-lipoxygenase is involved in the pathogenesis of Alzheimer's disease, no data are available on the role that 5-lipoxygenase activating protein plays in Alzheimer's disease. METHODS In the present paper, we studied the effect of pharmacologic inhibition of 5-lipoxygenase activating protein on the amyloidotic phenotype of Tg2576 mice. RESULTS Amyloid β peptide (Aβ) deposition in the brains of mice receiving MK-591, a selective and specific 5-lipoxygenase activating protein inhibitor, was significantly reduced when compared with controls. This reduction was associated with a similar decrease in brain Aβ peptides levels. MK-591 treatment did not induce any change in the steady-state levels of amyloid-β precursor protein, β-site amyloid precursor protein cleaving enzyme 1 or disintegrin and metalloproteinase domain-containing protein 10. By contrast, it resulted in a significant reduction of the γ-secretase complex, at the protein and message level. Furthermore, in vitro studies confirmed that MK-591 prevents Aβ formation by modulating γ-secretase complex levels without affecting Notch signaling. CONCLUSIONS These data establish a novel functional role for 5-lipoxygenase activating protein in the pathogenesis of Alzheimer's disease-like amyloidosis, and suggest that its pharmacological inhibition could provide a novel therapeutic opportunity for Alzheimer's disease.
Collapse
Affiliation(s)
- Jin Chu
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, 3420 North Broad Street MRB, 706A, Philadelphia, PA 19140, USA
| | | |
Collapse
|
13
|
Andreoli V, Trecroci F, La Russa A, Cittadella R, Liguori M, Spadafora P, Caracciolo M, Di Palma G, Colica C, Gambardella A, Quattrone A. Presenilin enhancer-2 gene: identification of a novel promoter mutation in a patient with early-onset familial Alzheimer's disease. Alzheimers Dement 2012; 7:574-8. [PMID: 22055974 DOI: 10.1016/j.jalz.2011.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 01/28/2011] [Accepted: 02/08/2011] [Indexed: 10/15/2022]
Abstract
UNLABELLED γ-Secretase proteins complex cleaves the amyloid precursor protein (APP) to generate amyloid-β (Aβ) peptides. Considerable evidence suggests that alterations in genes encoding these proteins exert their influence on the pathogenesis of familial Alzheimer's disease (FAD). Presenilin enhancer-2 gene (PEN-2) is a necessary component of the γ-Secretase complex. Recently, it has been shown that PEN-2 mutations could be involved in Alzheimer's disease (AD). We performed a mutational screening of all PEN-2 coding and promoter regions in a FAD cohort derived from Southern Italy. Four hundred and fifty-two subjects (FAD: 97; CONTROLS 355) were recruited for this study. We identified for the first time in a key region necessary for the promoter activity a novel 3 bp deletion in a subject with early-FAD. Our genetic data demonstrate that the mutant allele may influence the transcriptional activity of the PEN-2 gene. Although the effective role of the PEN-2 promoter deletion in AD is not entirely clear, these findings might lead to more studies on its functional and genetic role.
Collapse
Affiliation(s)
- Virginia Andreoli
- Institute of Neurological Sciences, National Research Council, Pianolago di Mangone, Cosenza, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chu J, Giannopoulos PF, Ceballos-Diaz C, Golde TE, Pratico D. Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice. Mol Neurodegener 2012; 7:1. [PMID: 22222029 PMCID: PMC3277480 DOI: 10.1186/1750-1326-7-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/05/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The 5-lipoxygenase (5LO) enzymatic pathway is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer's disease (AD), and that its genetic absence results in a reduction of Amyloid beta (Aβ) levels in the Tg2576 mice.Here by employing an adeno-associated viral (AAV) vector system to over-express 5LO in the same mouse model, we examined its contribution to their cognitive impairments and brain AD-like amyloid pathology. RESULTS Our results showed that compared with controls, 5LO-targeted gene brain over-expression in Tg2576 mice results in significant memory deficits. On the other hand, brain tissues had a significant elevation in the levels of Aβ peptides and deposition, no change in the steady state levels of amyloid-β precursor protein (APP), BACE-1 or ADAM-10, but a significant increase in PS1, nicastrin, and Pen-2, three major components of the γ-secretase complex. Additional data indicate that the transcription factor CREB was elevated and so were the mRNA levels for PS1, nicastrin and Pen-2. CONCLUSIONS These data demonstrate that neuronal 5LO plays a functional role in the pathogenesis of AD-like amyloidotic phenotype by modulating the γ-secretase pathway. They support the hypothesis that this enzyme is a novel therapeutic target for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Jin Chu
- Department of Pharmacology, Temple University, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
15
|
Augustin R, Lichtenthaler SF, Greeff M, Hansen J, Wurst W, Trümbach D. Bioinformatics identification of modules of transcription factor binding sites in Alzheimer's disease-related genes by in silico promoter analysis and microarrays. Int J Alzheimers Dis 2011; 2011:154325. [PMID: 21559189 PMCID: PMC3090009 DOI: 10.4061/2011/154325] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/15/2011] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases.
Collapse
Affiliation(s)
- Regina Augustin
- Institute of Developmental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health (GmbH), Technical University Munich, Ingolstädter Landstraße 1, Munich 85764, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Chu J, Praticò D. Pharmacologic blockade of 5-lipoxygenase improves the amyloidotic phenotype of an Alzheimer's disease transgenic mouse model involvement of γ-secretase. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1762-9. [PMID: 21435457 PMCID: PMC3078454 DOI: 10.1016/j.ajpath.2010.12.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/07/2010] [Accepted: 12/30/2010] [Indexed: 12/11/2022]
Abstract
The 5-lipoxygenase (5-LO) enzyme is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer's disease (AD) and that its genetic absence results in a reduction of amyloid β (Aβ) levels in Tg2576 mice. In the present study, we examined the effect of 5-LO pharmacological inhibition on the amyloidotic phenotype of these mice. Aβ deposition in the brains of mice receiving zileuton, a selective and specific 5-LO inhibitor, was significantly reduced when compared with control Tg2576 mice receiving vehicle. This reduction was associated with a similar decrease in brain Aβ peptides levels. Zileuton treatment did not induce any change in the steady state levels of amyloid-β precursor protein (APP), BACE1 or ADAM10. By contrast, it resulted in a significant reduction of presenilin 1 (PSEN1, alias PS1), nicastrin (NCSTN) , presenilin enhancer 2 homolog (PSNEN, alias, Pen-2), and anterior pharynx defective 1 (APH-1), the four components of the γ-secretase complex-at the protein and message level. Furthermore, in vitro studies confirmed that zileuton prevents Aβ formation by modulating γ-secretase complex levels without affecting Notch signaling. These data establish a functional role for 5-LO in the pathogenesis of AD-like amyloidosis, whereby it modulates the γ-secretase pathway. They suggest that pharmacological inhibition of 5-LO could provide a novel therapeutic opportunity for AD.
Collapse
Affiliation(s)
| | - Domenico Praticò
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Saura CA, Valero J. The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 2011; 22:153-69. [DOI: 10.1515/rns.2011.018] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Chu J, Praticò D. 5-lipoxygenase as an endogenous modulator of amyloid β formation in vivo. Ann Neurol 2010; 69:34-46. [PMID: 21280074 DOI: 10.1002/ana.22234] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/04/2010] [Accepted: 08/20/2010] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The 5-lipoxygenase (5-LO) enzymatic pathway is widely distributed within the central nervous system, and is upregulated in Alzheimer's disease. However, the mechanism whereby it may influence the disease pathogenesis remains elusive. METHODS We evaluated the molecular mechanism by which 5-LO regulates amyloid β (Aβ) formation in vitro and in vivo by pharmacological and genetic approaches. RESULTS Here we show that 5-LO regulates the formation of Aβ by activating the cAMP-response element binding protein (CREB), which in turn increases transcription of the γ-secretase complex. Preventing CREB activation by pharmacologic inhibition or dominant negative mutants blocks the 5-LO-dependent elevation of Aβ formation and the increase of γ-secretase mRNA and protein levels. Moreover, 5-LO targeted gene disruption or its in vivo selective pharmacological inhibition results in a significant reduction of Aβ, CREB and γ-secretase levels. INTERPRETATION These data establish a novel functional role for 5-LO in regulating endogenous formation of Aβ levels in the central nervous system. Thus, 5-LO pharmacological inhibition may be beneficial in the treatment and prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Jin Chu
- Department of Pharmacology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
19
|
Dunys J, Sevalle J, Giaime E, Pardossi-Piquard R, Vitek MP, Renbaum P, Levy-Lahad E, Zhang YW, Xu H, Checler F, da Costa CA. p53-dependent control of transactivation of the Pen2 promoter by presenilins. J Cell Sci 2010; 122:4003-8. [PMID: 19889971 DOI: 10.1242/jcs.051169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The senile plaques found in the brains of patients with Alzheimer's disease are mainly due to the accumulation of amyloid beta-peptides (A beta) that are liberated by gamma-secretase, a high molecular weight complex including presenilins, PEN-2, APH-1 and nicastrin. The depletion of each of these proteins disrupts the complex assembly into a functional protease. Here, we describe another level of regulation of this multimeric protease. The depletion of both presenilins drastically reduces Pen2 mRNA levels and its promoter transactivation. Furthermore, overexpression of presenilin-1 lowers Pen2 promoter transactivation, a phenotype abolished by a double mutation known to prevent presenilin-dependent gamma-secretase activity. PEN-2 expression is decreased by depletion of beta-amyloid precursor protein (APP) and increased by the APP intracellular domain (AICD). We show that AICD and APP complement for Pen2 mRNA levels in APP/APLP1-2 knockout fibroblasts. Interestingly, overexpression of presenilin-2 greatly increases Pen2 promoter transactivation. The opposite effect triggered by both presenilins was reminiscent of our previous study, which showed that these two proteins elicit antagonistic effects on p53. Therefore, we examined the contribution of p53 on Pen2 transcription. Pen2 promoter transactivation, and Pen2 mRNA and protein levels were drastically reduced in p53(-/-) fibroblasts. Furthermore, PEN-2 expression could be rescued by p53 complementation in p53- and APP-deficient cells. Interestingly, PEN-2 expression was also reduced in p53-deficient mouse brain. Overall, our study describes a p53-dependent regulation of PEN-2 expression by other members of the gamma-secretase complex, namely presenilins.
Collapse
Affiliation(s)
- Julie Dunys
- Institut de Pharmacologie Moléculaire et Cellulaire of Centre National de la Recherche Scientifique and Institut de NeuroMédecine Moléculaire, Equipe labellisée Fondation pour la Recherche Médicale, Valbonne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang S, Jia J. Promoter polymorphisms which modulate BACE1 expression are associated with sporadic Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:159-66. [PMID: 19441127 DOI: 10.1002/ajmg.b.30968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Beta-site APP-cleaving enzyme 1 (BACE1) gene has been suggested as a candidate gene for Alzheimer's disease (AD). However, little is known regarding the effects of polymorphisms in regulatory sequences of BACE1 on AD susceptibility. To evaluate the relationship between polymorphisms in the BACE1 promoter and sporadic AD (SAD) genetically and functionally, we performed a case-control study (429 cases and 346 controls of Han Chinese descent) and functional characterization of the polymorphisms in vitro using luciferase assay and electrophoretic mobility shift assay (EMSA). Two polymorphisms (-918G/A, rs4938369; -2014T/C, rs3017608) were identified in the BACE1 promoter. The results showed that the -918G/A polymorphism was associated with SAD and the -918GG carriers had a 1.67-fold higher risk for SAD than the carriers with -918AA and GA genotypes (OR = 1.667, 95% CI = 1.087-2.556, P = 0.019). The haplotype -918G/-2014T may be a possible risk factor for SAD (P = 0.016). Luciferase reporter assays showed the -918G allele and its resultant haplotype -918G/-2014T induced an increase of transcriptional activity. A more marked increase in -918G/-2014T transcriptional activity was seen when under hypoxia treatment. EMSA indicated that the -918G allele bound nuclear factors more strongly than -918A allele did. Our findings suggest that the BACE1 promoter polymorphisms which regulate BACE1 expression may contribute to SAD susceptibility. Further independent studies are required to verify our findings.
Collapse
Affiliation(s)
- Shan Wang
- Department of Neurology, Xuan Wu Hospital of the Capital Medical University, Beijing, China
| | | |
Collapse
|
21
|
|
22
|
Lee SM, Jeong YH, Kim HM, Park HY, Yoon D, Kim DH, Saeki S, Moon SJ, Kang MJ. Presenilin enhancer-2 (PSENEN), a component of the gamma-secretase complex, is involved in adipocyte differentiation. Domest Anim Endocrinol 2009; 37:170-80. [PMID: 19592191 DOI: 10.1016/j.domaniend.2009.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 05/20/2009] [Accepted: 05/23/2009] [Indexed: 11/16/2022]
Abstract
This study was conducted to identify genes expressed during adipocyte differentiation of bovine intramuscular fibroblast-like cells using differential display reverse-transcriptase polymerase chain reaction. The presenilin enhancer-2 (PSENEN) gene was found to be down-regulated during adipocyte differentiation of bovine intramuscular fibroblast-like cells. The ectopic expression of bovine PSENEN in 3T3-L1 reduced adipogenesis and the inhibition of endogenous PSENEN by siRNA induced adipogenesis on d 4 of adipocyte differentiation of 3T3-L1 cells. Interestingly, the expression of gamma-secretase complex gene-related Notch signaling was decreased at d 2 and d 4 during adipocyte differentiation. In addition, expression of the Notch-signaling genes (Notch-1, Hes-1, Pref-1, adipsin) was regulated during adipocyte differentiation by regulation of PSENEN expression. These results suggest that PSENEN plays an important role in adipocyte differentiation and that Notch signaling is involved in adipogenesis.
Collapse
Affiliation(s)
- S M Lee
- Department of Animal Science, College of Agriculture and Life Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Marks N, Berg MJ. BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis. Neurochem Res 2009; 35:181-210. [PMID: 19760173 DOI: 10.1007/s11064-009-0054-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Secretases are named for enzymes processing amyloid precursor protein (APP), a prototypic type-1 membrane protein. This led directly to discovery of novel Aspartyl proteases (beta-secretases or BACE), a tetramer complex gamma-secretase (gamma-SC) containing presenilins, nicastrin, aph-1 and pen-2, and a new role for metalloprotease(s) of the ADAM family as a alpha-secretases. Recent advances in defining pathways that mediate endosomal-lysosomal-autophagic-exosomal trafficking now provide targets for new drugs to attenuate abnormal production of fibril forming products characteristic of AD. A key to success includes not only characterization of relevant secretases but mechanisms for sorting and transport of key metabolites to abnormal vesicles or sites for assembly of fibrils. New developments we highlight include an important role for an 'early recycling endosome' coated in retromer complex containing lipoprotein receptor LRP-II (SorLA) for switching APP to a non-amyloidogenic pathway for alpha-secretases processing, or to shuttle APP to a 'late endosome compartment' to form Abeta or AICD. LRP11 (SorLA) is of particular importance since it decreases in sporadic AD whose etiology otherwise is unknown.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
24
|
Transcriptional regulation of the murine Presenilin-2 gene reveals similarities and differences to its human orthologue. Gene 2009; 446:81-9. [PMID: 19573580 DOI: 10.1016/j.gene.2009.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 01/29/2023]
Abstract
Inherited Presenilin-2 mutations cause familial Alzheimer's disease, and its regulation may play a role in sporadic cases. The human Presenilin-2 (PSEN2) regulatory region includes two separate promoters modulated by Egr-1, a transcription factor involved in learning and memory. To enable in-vivo analysis of Presenilin-2 regulation, we characterized the murine Presenilin-2 (Psen2) promoter. We identified novel Psen2 Transcription start sites (TSSs) 10 kb upstream of previously reported sites, along with two new alternatively transcribed exons (1A, and 1BC) in the 5' untranslated region. Transcripts initiating in Exon 1A are ubiquitous, whereas exon 1BC-initiated transcripts are non-neuronal. Only the sequence surrounding exon 1A, which includes homologous sequences to the human PSEN2 promoter, harbored significant promoter activity. Sequences upstream of exon 1A and a downstream enhancer were specifically important in neuronal cells, but similar to the human promoter, the murine promoter was characteristic of a housekeeping gene, and its activity depended on Sp1 binding. Egr-1 did not bind the murine promoter. Egr-1 over-expression and down-regulation, as well as in-vivo examination of Egr-1 and Psen2 expression during fear conditioning in mice, showed that Egr-1 does not regulate the murine Psen2 promoter. Differential Psen2 regulation in human and mouse has implications for Alzheimer disease mouse models.
Collapse
|
25
|
Abstract
Alzheimer's disease (AD) is a progressive chronic disorder that leads to cognitive decline. Several studies have associated up-regulation of some of the chemokines and/or their receptors with altered APP processing leading to increased production of beta-amyloid protein (Abeta) and AD pathological changes. However, there is no direct evidence to date to determine whether the altered processing of APP results in up-regulation of these receptors or whether the up-regulation of the chemokine receptors causes modulated processing of APP. In the current study, we demonstrate that treatment of the chemokine receptor CXCR2 with agonists leads to enhancement of Abeta production and treatment with antagonists or immunodepletion of CXCR2's endogenous agonists leads to Abeta inhibition. Further, we found that the inhibitory effect of the antagonist of CXCR2 on Abeta40 and Abeta42 is mediated via gamma-secretase, specifically through reduction in expression of presenilin (PS), one of the gamma-secretase components. Also, in vivo chronic treatment with a CXCR2 antagonist blocked Abeta40 and Abeta42 production. Using small interfering RNAs for CXCR2, we further showed that knockdown of CXCR2 in vitro accumulates gamma-secretase substrates C99 and C83 with reduced production of both Abeta40 and Abeta42. Taken together, these findings strongly suggest for the first time that up-regulation of the CXCR2 receptor can be the driving force in increased production of Abeta. Our findings unravel new mechanisms involving the CXCR2 receptor in the pathogenesis of AD and pose it as a potential target for developing novel therapeutics for intervention in this disease. Also, we propose here a new chemical series of interest that can serve as a prototype for drug development.
Collapse
|
26
|
Tanis KQ, Duman RS, Newton SS. CREB binding and activity in brain: regional specificity and induction by electroconvulsive seizure. Biol Psychiatry 2008; 63:710-20. [PMID: 17936724 PMCID: PMC3691692 DOI: 10.1016/j.biopsych.2007.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/28/2007] [Accepted: 08/01/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND The transcription factor cyclic adenosine monophosphate response element binding protein (CREB) orchestrates diverse neurobiological processes including cell differentiation, survival, and plasticity. Alterations in CREB-mediated transcription have been implicated in numerous central nervous system (CNS) disorders including depression, anxiety, addiction, and cognitive decline. However, it remains unclear how CREB contributes to normal and aberrant CNS function, as the identity of CREB-regulated genes in brain and the regional and temporal dynamics of CREB function remain largely undetermined. METHODS We combined microarray and chromatin immunoprecipitation technology to analyze CREB-DNA interactions in brain. We compared the occupancy and activity of CREB at gene promoters in rat frontal cortex, hippocampus, and striatum before and after a rodent model of electroconvulsive therapy. RESULTS Our analysis identified >860 CREB binding sites in rat brain. We identified multiple genomic loci enriched with CREB binding sites and find that CREB-occupied transcripts interact extensively to promote cell proliferation, plasticity, and resiliency. We discovered regional differences in CREB occupancy and activity that explain, in part, the diverse biological and behavioral outputs of CREB activity in frontal cortex, hippocampus, and striatum. Electroconvulsive seizure rapidly increased CREB occupancy and/or phosphorylation at select promoters, demonstrating that both events contribute to the temporal regulation of the CREB transcriptome. CONCLUSIONS Our data provide a mechanistic basis for CREB's ability to integrate regional and temporal cues to orchestrate state-specific patterns of transcription in the brain, indicate that CREB is an important mediator of the biological responses to electroconvulsive seizure, and provide global mechanistic insights into CREB's role in psychiatric and cognitive function.
Collapse
Affiliation(s)
- Keith Quincy Tanis
- Division of Molecular Psychiatry, Abraham Ribibcoff Research Facilities, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
27
|
Abstract
Physiological angiogenesis is essential for development, homeostasis and tissue repair but pathological neovascularization is a major feature of tumours, rheumatoid arthritis and ocular complications. Studies over the last decade have identified γ-secretase, a presenilin-dependent protease, as a key regulator of angiogenesis through: (i) regulated intramembrane proteolysis and transmembrane cleavage of receptors (e.g. VEGFR-1, Notch, ErbB-4, IGFI-R) followed by translocation of the intracellular domain to the nucleus, (ii) translocation of full length membrane-bound receptors to the nucleus (VEGFR-1), (iii) phosphorylation of membrane bound proteins (VEGFR-1 and ErbB-4), (iv) modulation of adherens junctions (cadherin) and regulation of permeability and (v) cleavage of amyloid precursor protein to amyloid-β which is able to regulate the angiogenic process. The γ-secretase-induced translocation of receptors to the nucleus provides an alternative intracellular signalling pathway, which acts as a potent regulator of transcription. γ-secretase is a complex composed of four different integral proteins (presenilin, nicastrin, Aph-1 and Pen-2), which determine the stability, substrate binding, substrate specificity and proteolytic activity of γ-secretase. This seeming complexity allows numerous possibilities for the development of targeted γ-secretase agonists/antagonists, which can specifically regulate the angiogenic process. This review will consider the structure and function of γ-secretase, the growing evidence for its role in angiogenesis and the substrates involved, γ-secretase as a therapeutic target and future challenges in this area.
Collapse
Affiliation(s)
- Michael E Boulton
- Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
28
|
The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:215-26. [DOI: 10.1016/j.cbpb.2007.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/17/2007] [Accepted: 10/17/2007] [Indexed: 01/27/2023]
|
29
|
Marks N, Berg MJ. Neurosecretases provide strategies to treat sporadic and familial Alzheimer disorders. Neurochem Int 2008; 52:184-215. [PMID: 17719698 DOI: 10.1016/j.neuint.2007.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 06/05/2007] [Indexed: 12/30/2022]
Abstract
Recent discoveries on neurosecretases and their trafficking to release fibril-forming neuropeptides or other products, are of interest to pathology, cell signaling and drug discovery. Nomenclature arose from the use of amyloid precursor protein (APP) as a prototypic type-1 substrate leading to the isolation of beta-secretase (BACE), multimeric complexes (gamma-secretase, gamma-SC) for intramembranal cleavage, and attributing a new function to well-characterized metalloproteases of the ADAM family (alpha-secretase) for normal APP turnover. While purified alpha/beta-secretases facilitate drug discovery, gamma-SC presents greater challenges for characterization and mechanisms of catalysis. The review comments on links between mutation or polymorphisms in relation to enzyme mechanisms and disease. The association between lipoprotein receptor LRP11 variants and sporadic Alzheimer's disease (SAD) offers scope to integrate components of pre- and post-Golgi membranes, or brain clathrin-coated vesicles within pathways for trafficking as targets for intervention. The presence of APP and metabolites in brain clathrin-coated vesicles as significant cargo with lipoproteins and adaptors focuses attention as targets for therapeutic intervention. This overview emphasizes the importance to develop new therapies targeting neurosecretases to treat a major neurological disorder that has vast economic and social implications.
Collapse
Affiliation(s)
- Neville Marks
- Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
30
|
Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, Xu H, Zhang YW. Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem 2007; 282:10873-80. [PMID: 17303576 DOI: 10.1074/jbc.m608856200] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The incidence of Alzheimer disease (AD) and vascular dementia is greatly increased following cerebral ischemia and stroke in which hypoxic conditions occur in affected brain areas. beta-Amyloid peptide (Abeta), which is derived from the beta-amyloid precursor protein (APP) by sequential proteolytic cleavages from beta-secretase (BACE1) and presenilin-1 (PS1)/gamma-secretase, is widely believed to trigger a cascade of pathological events culminating in AD and vascular dementia. However, a direct molecular link between hypoxic insults and APP processing has yet to be established. Here, we demonstrate that acute hypoxia increases the expression and the enzymatic activity of BACE1 by up-regulating the level of BACE1 mRNA, resulting in increases in the APP C-terminal fragment-beta (betaCTF) and Abeta. Hypoxia has no effect on the level of PS1, APP, and tumor necrosis factor-alpha-converting enzyme (TACE, an enzyme known to cleave APP at the alpha-secretase cleavage site). Sequence analysis, mutagenesis, and gel shift studies revealed binding of HIF-1 to the BACE1 promoter. Overexpression of HIF-1alpha increases BACE1 mRNA and protein level, whereas down-regulation of HIF-1alpha reduced the level of BACE1. Hypoxic treatment fails to further potentiate the stimulatory effect of HIF-1alpha overexpression on BACE1 expression, suggesting that hypoxic induction of BACE1 expression is primarily mediated by HIF-1alpha. Finally, we observed significant reduction in BACE1 protein levels in the hippocampus and the cortex of HIF-1alpha conditional knock-out mice. Our results demonstrate an important role for hypoxia/HIF-1alpha in modulating the amyloidogenic processing of APP and provide a molecular mechanism for increased incidence of AD following cerebral ischemic and stroke injuries.
Collapse
Affiliation(s)
- Xian Zhang
- Institute for Biomedical Research and School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang H, Liu R, Wang R, Hong S, Xu H, Zhang YW. Presenilins regulate the cellular level of the tumor suppressor PTEN. Neurobiol Aging 2007; 29:653-60. [PMID: 17222949 PMCID: PMC4405252 DOI: 10.1016/j.neurobiolaging.2006.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 11/17/2006] [Accepted: 11/28/2006] [Indexed: 01/01/2023]
Abstract
Alzheimer's Disease (AD) is characterized by amyloid plaques consisting of beta-amyloid (Abeta) peptides and neurofibrillary tangles consisting of hyperphosphorylated tau protein. Abeta is proteolytically derived from its precursor protein through cleavages by beta-secretase and gamma-secretase complex comprising presenilins (PS, PS1/PS2), nicastrin, APH-1 and PEN-2. PS1 is also known to activate the PI3K/Akt cell survival pathway in a gamma-secretase-independent manner. The tumor suppressor PTEN, which antagonizes the PI3K/Akt pathway, has increasingly been recognized to play a key role in neural functions and its level found reduced in AD brains. Here, we demonstrate that the protein level of PTEN is dramatically reduced in cultured cells and embryonic tissues deficient in PS, and in the cortical neurons of PS1/PS2 conditional double knockout mice. Restoration of PS in PS-deficient cells reverses the reduction of PTEN. Regulation of PTEN by PS is independent of the PS/gamma-secretase activity since impaired gamma-secretase by the gamma-secretase inhibitor treatment or due to nicastrin deficiency has little effect on the protein level of PTEN. Our data suggest an important role for PS in signaling pathways involving PI3K/Akt and PTEN that are crucial for physiological functions and the pathogenesis of multiple diseases.
Collapse
Affiliation(s)
- Han Zhang
- Institute for Biomedical Research and School of Life Sciences, Xiamen University, Xiamen, China
| | - Runzhong Liu
- Institute for Biomedical Research and School of Life Sciences, Xiamen University, Xiamen, China
| | - Ruishan Wang
- Institute for Biomedical Research and School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuigen Hong
- Institute for Biomedical Research and School of Life Sciences, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Institute for Biomedical Research and School of Life Sciences, Xiamen University, Xiamen, China
- Burnham Institute for Medical Research, La Jolla, CA 92037, USA
- Corresponding authors: Tel: 592-2188568; fax: 592-2188528; E-mail address: , (Y-w. Zhang) or (H. Xu)
| | - Yun-wu Zhang
- Institute for Biomedical Research and School of Life Sciences, Xiamen University, Xiamen, China
- Burnham Institute for Medical Research, La Jolla, CA 92037, USA
- Corresponding authors: Tel: 592-2188568; fax: 592-2188528; E-mail address: , (Y-w. Zhang) or (H. Xu)
| |
Collapse
|
32
|
Wang R, Zhang YW, Zhang X, Liu R, Zhang X, Hong S, Xia K, Xia J, Zhang Z, Xu H. Transcriptional regulation of APH-1A and increased gamma-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J 2006; 20:1275-7. [PMID: 16645044 DOI: 10.1096/fj.06-5839fje] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The proteolytic cleavage of Alzheimer beta-amyloid precursor protein (APP) and signaling receptor Notch is mediated by the PS/gamma-secretase complex, which consists of presenilins, nicastrin, APH-1, and PEN-2. Although the four components are known to coordinately regulate each other at the protein level, information regarding their transcription regulation is scarce. Here we characterized the 5'-flanking region of the human APH-1A gene and identified a 271-bp fragment containing the transcription initiation site for the promoter activity. Sequence analysis, mutagenesis, and gel shift studies revealed a binding of AP4 and HIF-1 to the promoter, which affects the promoter activity. Activation of HIF-1 by short-term NiCl2 treatments (a condition of chemical hypoxia) dramatically increased APH-1A mRNA and protein expression, accompanied by increased secretion of Abeta and decreased APP CTFs formation, indicative of an increase in gamma-secretase activity. NiCl2 treatments had little effect on APP and the other three components of the gamma-secretase complex. The cellular concentration of Notch intracellular domain (NICD) was also increased by the hypoxic treatment. Our results demonstrate that APH-1A expression and the gamma-secretase mediated Abeta and Notch NICD generation are regulated by HIF-1, and the specific control of APH-1A expression may imply physiological functions uniquely assigned to APH-1A.
Collapse
Affiliation(s)
- Ruishan Wang
- Laboratory of Molecular and Cellular Neuroscience, School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|