1
|
Goldstein B, Sheikh-Suliman S, Bakhrat A, Abdu U. The differential roles of rad9 alternatively spliced forms in double- strand DNA break repair during Drosophila meiosis. DNA Repair (Amst) 2025; 149:103833. [PMID: 40250145 DOI: 10.1016/j.dnarep.2025.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025]
Abstract
The 9-1-1 complex, comprising the Rad9, Hus1 and Rad1 proteins, is believed to operate as a component of a DNA damage checkpoint pathway. Our initial analysis of the Drosophila hus1 gene showed that Hus1 plays a dual role in meiosis, regulating both meiotic DNA damage checkpoint and homologous recombination repair. In this study, we further analyzed the meiotic roles of another protein in the complex, Rad9, which has two alternatively spliced forms, Rad9A and Rad9B. Using CRISPR/Cas9, we generated flies mutant for both rad9 isoforms. We found that, similarly to hus1, mutations in rad9 lead to female sterility. Also, double-strand DNA breaks (DSBs) that form during meiosis are not processed efficiently, and the DNA within the oocyte nucleus fails to form its characteristic shape in rad9 mutants. On the other hand, the hus1 mutation completely disrupts checkpoint activation in DSB repair enzyme mutants, whereas the rad9 mutation only partially impairs checkpoint activation in this context. Moreover, spatial rescue experiments revealed that Rad9B is efficient in repairing meiotic DSBs, while Rad9A is not. Furthermore, we found that female fertility in rad9 mutants depends on early efficient meiotic DSB repair but not on karyosome formation. In summary, our results demonstrate a differential role of Rad9 alternatively spliced forms during Drosophila meiosis in oogenesis, and while former studies showed that Hus1 is sufficient for the effective activation of the meiotic recombination checkpoint, our results revealed that this is not true for Rad9.
Collapse
Affiliation(s)
- Bareket Goldstein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Suad Sheikh-Suliman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
2
|
Ren M, Chen X, Dai L, Tu J, Hu H, Sun X, Luo J, Li P, Fu Y, Zhu Y, Sun W, Tang Z, Liu M, Ren X, Lu Q. Knockout of dhx38 Causes Inner Ear Developmental Defects in Zebrafish. Biomedicines 2024; 13:20. [PMID: 39857604 PMCID: PMC11760894 DOI: 10.3390/biomedicines13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Alternative splicing is essential for the physiological and pathological development of the inner ear. Disruptions in this process can result in both syndromic and non-syndromic forms of hearing loss. DHX38, a DEAH box RNA helicase, is integral to pre-mRNA splicing regulation and plays critical roles in development, cell differentiation, and stem cell maintenance. However, its specific role in inner ear development remains undefined. Here, we utilized a dhx38 knockout zebrafish model to monitor the ear morphology and elucidate a crucial role for DHX38 in the development of the zebrafish inner ear. Methods: Bright-field morphological analysis and in situ hybridization were performed to observe ear morphology changes. Immunofluorescence and semi-quantitative RT-PCR were employed to test apoptotic cells and abnormal splicing. Results: The dhx38-/- mutant zebrafish showed significant inner ear impairments, including decrescent otocysts, absent semicircular canal protrusion, and smaller otoliths. These structural abnormalities were accompanied by substantial DNA damage and p53-dependent apoptosis within the inner ear cells. Alternative splicing analysis showed that genes related to DNA damage repair and inner ear morphogenesis are abnormal in dhx38 knockout mutants. In summary, we suggest that dhx38 promotes cell survival during the inner ear development of zebrafish by ensuring the correct splicing of genes related to DNA damage repair.
Collapse
Affiliation(s)
- Mengmeng Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Liyan Dai
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Jiayi Tu
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Xiaohan Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Pei Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Yiyang Fu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Yuejie Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Weiqiang Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (M.R.); (X.C.); (L.D.); (H.H.); (X.S.); (J.L.); (P.L.); (Y.F.); (Y.Z.); (W.S.); (Z.T.); (M.L.)
| |
Collapse
|
3
|
Pradhan S, Bush K, Zhang N, Pandita RK, Tsai CL, Smith C, Pandlebury DF, Gaikwad S, Leonard F, Nie L, Tao A, Russell W, Yuan S, Choudhary S, Ramos KS, Elferink C, Wairkar YP, Tainer JA, Thompson LM, Pandita TK, Sarkar PS. Chromatin remodeler BRG1 recruits huntingtin to repair DNA double-strand breaks in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613927. [PMID: 39345557 PMCID: PMC11429940 DOI: 10.1101/2024.09.19.613927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Persistent DNA double-strand breaks (DSBs) are enigmatically implicated in neurodegenerative diseases including Huntington's disease (HD), the inherited late-onset disorder caused by CAG repeat elongations in Huntingtin (HTT). Here we combine biochemistry, computation and molecular cell biology to unveil a mechanism whereby HTT coordinates a Transcription-Coupled Non-Homologous End-Joining (TC-NHEJ) complex. HTT joins TC-NHEJ proteins PNKP, Ku70/80, and XRCC4 with chromatin remodeler Brahma-related Gene 1 (BRG1) to resolve transcription-associated DSBs in brain. HTT recruitment to DSBs in transcriptionally active gene- rich regions is BRG1-dependent while efficient TC-NHEJ protein recruitment is HTT-dependent. Notably, mHTT compromises TC-NHEJ interactions and repair activity, promoting DSB accumulation in HD tissues. Importantly, HTT or PNKP overexpression restores TC-NHEJ in a Drosophila HD model dramatically improving genome integrity, motor defects, and lifespan. Collective results uncover HTT stimulation of DSB repair by organizing a TC-NHEJ complex that is impaired by mHTT thereby implicating dysregulation of transcription-coupled DSB repair in mHTT pathophysiology. Highlights BRG1 recruits HTT and NHEJ components to transcriptionally active DSBs.HTT joins BRG1 and PNKP to efficiently repair transcription related DSBs in brain.Mutant HTT impairs the functional integrity of TC-NHEJ complex for DSB repair.HTT expression improves DSB repair, genome integrity and phenotypes in HD flies.
Collapse
|
4
|
Chakraborty S, Singh M, Pandita RK, Singh V, Lo CS, Leonard F, Horikoshi N, Moros EG, Guha D, Hunt CR, Chau E, Ahmed KM, Sethi P, Charaka V, Godin B, Makhijani K, Scherthan H, Deck J, Hausmann M, Mushtaq A, Altaf M, Ramos KS, Bhat KM, Taneja N, Das C, Pandita TK. Heat-induced SIRT1-mediated H4K16ac deacetylation impairs resection and SMARCAD1 recruitment to double strand breaks. iScience 2022; 25:104142. [PMID: 35434547 PMCID: PMC9010620 DOI: 10.1016/j.isci.2022.104142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Hyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, Drosophila, and yeast, indicating that this is a highly conserved response. The examination of histone deacetylase recruitment to chromatin after heat-shock identified SIRT1 as the major deacetylase subsequently enriched at gene-rich regions. Heat-induced SIRT1 recruitment was antagonized by chromatin remodeler SMARCAD1 depletion and, like hyperthermia, the depletion of the SMARCAD1 or combination of the two impaired DNA end resection and increased replication stress. Altered repair protein recruitment was associated with heat-shock-induced γ-H2AX chromatin changes and DSB repair processing. These results support a novel mechanism whereby hyperthermia impacts chromatin organization owing to H4K16ac deacetylation, negatively affecting the HR-dependent DSB repair.
Collapse
Affiliation(s)
- Sharmistha Chakraborty
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Mayank Singh
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Raj K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
| | - Vipin Singh
- Biophysics & Structural Genomics Division Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, West Bengal 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Calvin S.C. Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 Rotterdam, CA, the Netherlands
| | - Fransisca Leonard
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
| | - Eduardo G. Moros
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
- Departments of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Deblina Guha
- Biophysics & Structural Genomics Division Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, West Bengal 700064, India
| | - Clayton R. Hunt
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
| | - Eric Chau
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Kazi M. Ahmed
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Prayas Sethi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijaya Charaka
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Biana Godin
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Kalpana Makhijani
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, 80937 Munich, Germany
| | - Jeanette Deck
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Arjamand Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 Rotterdam, CA, the Netherlands
| | - Chandrima Das
- Biophysics & Structural Genomics Division Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, West Bengal 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Tej K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Pereira C, Arroyo-Martinez GA, Guo MZ, Downey MS, Kelly ER, Grive KJ, Mahadevaiah SK, Sims JR, Faca VM, Tsai C, Schiltz CJ, Wit N, Jacobs H, Clark NL, Freire R, Turner J, Lyndaker AM, Brieno-Enriquez MA, Cohen PE, Smolka MB, Weiss RS. Multiple 9-1-1 complexes promote homolog synapsis, DSB repair, and ATR signaling during mammalian meiosis. eLife 2022; 11:68677. [PMID: 35133274 PMCID: PMC8824475 DOI: 10.7554/elife.68677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/15/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage response mechanisms have meiotic roles that ensure successful gamete formation. While completion of meiotic double-strand break (DSB) repair requires the canonical RAD9A-RAD1-HUS1 (9A-1-1) complex, mammalian meiocytes also express RAD9A and HUS1 paralogs, RAD9B and HUS1B, predicted to form alternative 9-1-1 complexes. The RAD1 subunit is shared by all predicted 9-1-1 complexes and localizes to meiotic chromosomes even in the absence of HUS1 and RAD9A. Here, we report that testis-specific disruption of RAD1 in mice resulted in impaired DSB repair, germ cell depletion, and infertility. Unlike Hus1 or Rad9a disruption, Rad1 loss in meiocytes also caused severe defects in homolog synapsis, impaired phosphorylation of ATR targets such as H2AX, CHK1, and HORMAD2, and compromised meiotic sex chromosome inactivation. Together, these results establish critical roles for both canonical and alternative 9-1-1 complexes in meiotic ATR activation and successful prophase I completion.
Collapse
Affiliation(s)
| | | | - Matthew Z Guo
- Department of Biomedical Sciences, Cornell University
| | | | - Emma R Kelly
- Division of Mathematics and Natural Sciences, Elmira College
| | | | | | - Jennie R Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University
| | - Vitor M Faca
- Department of Biochemistry and Immunology, FMRP, University of São Paulo
| | - Charlton Tsai
- Department of Biomedical Sciences, Cornell University
| | | | - Niek Wit
- Division of Immunology, The Netherlands Cancer Institute
| | - Heinz Jacobs
- Division of Immunology, The Netherlands Cancer Institute
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna
- Universidad Fernando Pessoa Canarias
| | - James Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute
| | - Amy M Lyndaker
- Division of Mathematics and Natural Sciences, Elmira College
| | - Miguel A Brieno-Enriquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University
| | | |
Collapse
|
6
|
FOXP1 and NDRG1 act differentially as downstream effectors of RAD9-mediated prostate cancer cell functions. Cell Signal 2021; 86:110091. [PMID: 34298089 DOI: 10.1016/j.cellsig.2021.110091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Metastatic progression is the key feature of prostate cancer primarily responsible for mortality caused by this disease. RAD9 is an oncogene for prostate cancer, and the encoded protein enhances metastasis-related phenotypes. RAD9 is a transcription factor with a limited set of regulated target genes, but the complete list of downstream genes critical for prostate carcinogenesis is unknown. We used microarray gene expression profiling and chromatin immunoprecipitation in parallel to identify genes transcriptionally controlled by RAD9 that contribute to this cancer. We found expression of 44 genes altered in human prostate cancer DU145 cells when RAD9 is knocked down by siRNA, and all of them bind RAD9 at their genomic location. FOXP1 and NDRG1 were down regulated when RAD9 expression was reduced, and we evaluated them further. We demonstrate that reduced RAD9, FOXP1 or NDGR1 expression decreases cell proliferation, rapid migration, anchorage-independent growth, anoikis resistance, and aerobic glycolysis. Ectopic expression of FOXP1 or NDRG1 partially restored aerobic glycolysis to prostate cancer cells with reduced RAD9 abundance, but only FOXP1 significantly complemented the other deficiencies. We thus show, for the first time, that RAD9 regulates FOXP1 and NDRG1 expression, and they function differently as downstream effectors for RAD9-mediated prostate cancer cell activities.
Collapse
|
7
|
Hebert KA, Jaramillo S, Yu W, Wang M, Veeramachaneni R, Sandulache VC, Sikora AG, Bonnen MD, Annapragada AV, Corry D, Kheradmand F, Pandita RK, Ludwig MS, Pandita TK, Huang S, Coarfa C, Grimm SL, Perera D, Miles G, Ghebre YT. Esomeprazole enhances the effect of ionizing radiation to improve tumor control. Oncotarget 2021; 12:1339-1353. [PMID: 34262645 PMCID: PMC8274720 DOI: 10.18632/oncotarget.28008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
The resistance of cancer cells to radiation-based treatment is a major clinical challenge confounding standard of care in cancer. This problem is particularly notable in many solid tumors where cancer cells are only partially responsive to radiation therapy. Combination of radiation with radiosensitizers is able to enhance tumor cell killing. However, currently available radiosensitizers are associated with significant normal tissue toxicity. Accordingly, there is an unmet need to develop safer and more effective radiosensitizers to improve tumor control. Here, we evaluated the radiosensitizing effect of the FDA-approved drug esomeprazole in normal and radioresistant human head and neck squamous cell carcinoma (HNSCC) cells in vitro, and in a mouse model of HNSCC. For the in vitro studies, we used cancer cell colony formation (clonogenicity) assay to compare cancer cell growth in the absence or presence of esomeprazole. To determine mechanism(s) of action, we assessed cell proliferation and profiled cell cycle regulatory proteins. In addition, we performed reverse phase protein array (RPPA) study to understand the global effect of esomeprazole on over 200 cancer-related proteins. For the in vivo study, we engrafted HNSCC in a mouse model and compared tumor growth in animals treated with radiation, esomeprazole, and combination of radiation with esomeprazole. We found that esomeprazole inhibits tumor growth and dose-dependently enhances the cell killing effect of ionizing radiation in wildtype and p53-mutant radioresistant cancer cells. Mechanistic studies demonstrate that esomeprazole arrests cancer cells in the G1 phase of the cell cycle through upregulation of p21 protein and inhibition of cyclin-dependent kinases (Cdks) type 1 (Cdk1) and type 2 (Cdk2). In vivo data showed greater tumor control in animals treated with combination of radiation and esomeprazole compared to either treatment alone, and that this was associated with inhibition of cell proliferation in vivo. In addition, combination of esomeprazole with radiation significantly impaired repair following radiation-induced DNA damage. Our studies indicate that esomeprazole sensitizes cancer cells to ionizing radiation, and is associated with upregulation of p21 to arrest cells in the G1 phase of the cell cycle. Our findings have significant therapeutic implications for the repurposing of esomeprazole as a radiosensitizer in HNSCC and other solid tumors.
Collapse
Affiliation(s)
- Kassidy A Hebert
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sergio Jaramillo
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wangjie Yu
- Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Min Wang
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ratna Veeramachaneni
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vlad C Sandulache
- Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mark D Bonnen
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ananth V Annapragada
- E.B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Obstetrics and Gynecology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David Corry
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Raj K Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michelle S Ludwig
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tej K Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shixia Huang
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Cristian Coarfa
- Advanced Technology Cores, Multi-Omics Data Analysis Core, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sandra L Grimm
- Advanced Technology Cores, Multi-Omics Data Analysis Core, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dimuthu Perera
- Advanced Technology Cores, Multi-Omics Data Analysis Core, Baylor College of Medicine, Houston, Texas 77030, USA
| | - George Miles
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yohannes T Ghebre
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Banday S, Pandita RK, Mushtaq A, Bacolla A, Mir US, Singh DK, Jan S, Bhat KP, Hunt CR, Rao G, Charaka VK, Tainer JA, Pandita TK, Altaf M. Autism-Associated Vigilin Depletion Impairs DNA Damage Repair. Mol Cell Biol 2021; 41:e0008221. [PMID: 33941620 PMCID: PMC8224237 DOI: 10.1128/mcb.00082-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.
Collapse
Affiliation(s)
- Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Raj K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | | | - Sadaf Jan
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Krishna P. Bhat
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Ganesh Rao
- Baylor College of Medicine, Houston, Texas, USA
| | | | - John A. Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
9
|
Zhu A, Hopkins KM, Friedman RA, Bernstock JD, Broustas CG, Lieberman HB. DNMT1 and DNMT3B regulate tumorigenicity of human prostate cancer cells by controlling RAD9 expression through targeted methylation. Carcinogenesis 2021; 42:220-231. [PMID: 32780107 PMCID: PMC7905840 DOI: 10.1093/carcin/bgaa088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the second most common type of cancer and the second leading cause of cancer death in American men. RAD9 stabilizes the genome, but prostate cancer cells and tumors often have high quantities of the protein. Reduction of RAD9 level within prostate cancer cells decreases tumorigenicity of nude mouse xenographs and metastasis phenotypes in culture, indicating that RAD9 overproduction is essential for the disease. In prostate cancer DU145 cells, CpG hypermethylation in a transcription suppressor site of RAD9 intron 2 causes high-level gene expression. Herein, we demonstrate that DNA methyltransferases DNMT1 and DNMT3B are highly abundant in prostate cancer cells DU145, CWR22, LNCaP and PC-3; yet, these DNMTs bind primarily to the transcription suppressor in DU145, the only cells where methylation is critical for RAD9 regulation. For DU145 cells, DNMT1 or DNMT3B shRNA reduced RAD9 level and tumorigenicity, and RAD9 ectopic expression restored this latter activity in the DNMT knockdown cells. High levels of RAD9, DNMT1, DNMT3B and RAD9 transcription suppressor hypermethylation were significantly correlated in prostate tumors, and not in normal prostate tissues. Based on these results, we propose a novel model where RAD9 is regulated epigenetically by DNMT1 and DNMT3B, via targeted hypermethylation, and that consequent RAD9 overproduction promotes prostate tumorigenesis.
Collapse
Affiliation(s)
- Aiping Zhu
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kevin M Hopkins
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Joshua D Bernstock
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
10
|
Co-option of the lineage-specific LAVA retrotransposon in the gibbon genome. Proc Natl Acad Sci U S A 2020; 117:19328-19338. [PMID: 32690705 DOI: 10.1073/pnas.2006038117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-Alu LIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.
Collapse
|
11
|
Horikoshi N, Sharma D, Leonard F, Pandita RK, Charaka VK, Hambarde S, Horikoshi NT, Gaur Khaitan P, Chakraborty S, Cote J, Godin B, Hunt CR, Pandita TK. Pre-existing H4K16ac levels in euchromatin drive DNA repair by homologous recombination in S-phase. Commun Biol 2019; 2:253. [PMID: 31286070 PMCID: PMC6611875 DOI: 10.1038/s42003-019-0498-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
The homologous recombination (HR) repair pathway maintains genetic integrity after DNA double-strand break (DSB) damage and is particularly crucial for maintaining fidelity of expressed genes. Histone H4 acetylation on lysine 16 (H4K16ac) is associated with transcription, but how pre-existing H4K16ac directly affects DSB repair is not known. To answer this question, we used CRISPR/Cas9 technology to introduce I-SceI sites, or repair pathway reporter cassettes, at defined locations within gene-rich (high H4K16ac/euchromatin) and gene-poor (low H4K16ac/heterochromatin) regions. The frequency of DSB repair by HR is higher in gene-rich regions. Interestingly, artificially targeting H4K16ac at specific locations using gRNA/dCas9-MOF increases HR frequency in euchromatin. Finally, inhibition/depletion of RNA polymerase II or Cockayne syndrome B protein leads to decreased recruitment of HR factors at DSBs. These results indicate that the pre-existing H4K16ac status at specific locations directly influences the repair of local DNA breaks, favoring HR in part through the transcription machinery.
Collapse
Affiliation(s)
- Nobuo Horikoshi
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
- Present Address: Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Dharmendra Sharma
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Fransisca Leonard
- Department of Nanomedicine, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Raj K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Vijaya K. Charaka
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Shashank Hambarde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Nobuko T. Horikoshi
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Puja Gaur Khaitan
- Department of Surgery, The Houston Methodist Research Institute, Houston, TX 77030 USA
- Present Address: Department of Surgery, Medstar Washington Hospital Center, Washington, DC 20010 USA
| | - Sharmistha Chakraborty
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Jacques Cote
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Quebec City, QC G1V4G2 Canada
| | - Biana Godin
- Department of Nanomedicine, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Clayton R. Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Tej K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030 USA
| |
Collapse
|
12
|
Abe T, Branzei D, Hirota K. DNA Damage Tolerance Mechanisms Revealed from the Analysis of Immunoglobulin V Gene Diversification in Avian DT40 Cells. Genes (Basel) 2018; 9:genes9120614. [PMID: 30544644 PMCID: PMC6316486 DOI: 10.3390/genes9120614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023] Open
Abstract
DNA replication is an essential biochemical reaction in dividing cells that frequently stalls at damaged sites. Homologous/homeologous recombination (HR)-mediated template switch and translesion DNA synthesis (TLS)-mediated bypass processes release arrested DNA replication forks. These mechanisms are pivotal for replication fork maintenance and play critical roles in DNA damage tolerance (DDT) and gap-filling. The avian DT40 B lymphocyte cell line provides an opportunity to examine HR-mediated template switch and TLS triggered by abasic sites by sequencing the constitutively diversifying immunoglobulin light-chain variable gene (IgV). During IgV diversification, activation-induced deaminase (AID) converts dC to dU, which in turn is excised by uracil DNA glycosylase and yields abasic sites within a defined window of around 500 base pairs. These abasic sites can induce gene conversion with a set of homeologous upstream pseudogenes via the HR-mediated template switch, resulting in templated mutagenesis, or can be bypassed directly by TLS, resulting in non-templated somatic hypermutation at dC/dG base pairs. In this review, we discuss recent works unveiling IgV diversification mechanisms in avian DT40 cells, which shed light on DDT mode usage in vertebrate cells and tolerance of abasic sites.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|
13
|
Sierant ML, Davey SK. Identification and characterization of a novel nuclear structure containing members of the homologous recombination and DNA damage response pathways. Cancer Genet 2018; 228-229:98-109. [DOI: 10.1016/j.cancergen.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022]
|
14
|
Rad9a is involved in chromatin decondensation and post-zygotic embryo development in mice. Cell Death Differ 2018; 26:969-980. [PMID: 30154445 DOI: 10.1038/s41418-018-0181-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/01/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Zygotic chromatin undergoes extensive reprogramming immediately after fertilization. It is generally accepted that maternal factors control this process. However, little is known about the underlying mechanisms. Here we report that maternal RAD9A, a key protein in DNA damage response pathway, is involved in post-zygotic embryo development, via a mouse model with conditional depletion of Rad9a alleles in oocytes of primordial follicles. Post-zygotic losses originate from delayed zygotic chromatin decondensation after depletion of maternal RAD9A. Pronucleus formation and DNA replication of most mutant zygotes are therefore deferred, which subsequently trigger the G2/M checkpoint and arrest development of most mutant zygotes. Delayed zygotic chromatin decondensation could also lead to increased reabsorption of post-implantation mutant embryos. In addition, our data indicate that delayed zygotic chromatin decondensation may be attributed to deferred epigenetic modification of histone in paternal chromatin after fertilization, as fertilization and resumption of secondary meiosis in mutant oocytes were both normal. More interestingly, most mutant oocytes could not support development beyond one-cell stage after parthenogenetic activation. Therefore, RAD9A may also play an important role in maternal chromatin reprogramming. In summary, our data reveal an important role of RAD9A in zygotic chromatin reprogramming and female fertility.
Collapse
|
15
|
Ohashi E, Tsurimoto T. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:135-162. [PMID: 29357057 DOI: 10.1007/978-981-10-6955-0_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.
Collapse
Affiliation(s)
- Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
16
|
Lieberman HB, Rai AJ, Friedman RA, Hopkins KM, Broustas CG. Prostate cancer: unmet clinical needs and RAD9 as a candidate biomarker for patient management. Transl Cancer Res 2018; 7:S651-S661. [PMID: 30079300 PMCID: PMC6071673 DOI: 10.21037/tcr.2018.01.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a complex disease, with multiple subtypes and clinical presentations. Much progress has been made in recent years to understand the underlying genetic basis that drives prostate cancer. Such mechanistic information is useful for development of novel therapeutic targets, to identify biomarkers for early detection or to distinguish between aggressive and indolent disease, and to predict treatment outcome. Multiple tests have become available in recent years to address these clinical needs for prostate cancer. We describe several of these assays, summarizing test details, performance characteristics, and acknowledging their limitations. There is a pressing unmet need for novel biomarkers that can demonstrate improvement in these areas. We introduce one such candidate biomarker, RAD9, describe its functions in the DNA damage response, and detail why it can potentially fill this void. RAD9 has multiple roles in prostate carcinogenesis, making it potentially useful as a clinical tool for men with prostate cancer. RAD9 was originally identified as a radioresistance gene, and subsequent investigations revealed several key functions in the response of cells to DNA damage, including involvement in cell cycle checkpoint control, at least five DNA repair pathways, and apoptosis. Further studies indicated aberrant overexpression in approximately 45% of prostate tumors, with a strong correlation between RAD9 abundance and cancer stage. A causal relationship between RAD9 and prostate cancer was first demonstrated using a mouse model, where tumorigenicity of human prostate cancer cells after subcutaneous injection into nude mice was diminished when RNA interference was used to reduce the normally high levels of the protein. In addition to activity needed for the initial development of tumors, cell culture studies indicated roles for RAD9 in promoting prostate cancer progression by controlling cell migration and invasion through regulation of ITGB1 protein levels, and anoikis resistance by modulating AKT activation. Furthermore, RAD9 enhances the resistance of human prostate cancer cells to radiation in part by regulating ITGB1 protein abundance. RAD9 binds androgen receptor and inhibits androgen-induced androgen receptor's activity as a transcription factor. Moreover, RAD9 also acts as a gene-specific transcription factor, through binding p53 consensus sequences at target gene promoters, and this likely contributes to its oncogenic activity. Given these diverse and extensive activities, RAD9 plays important roles in the initiation and progression of prostate cancer and can potentially serve as a valuable biomarker useful in the management of patients with this disease.
Collapse
Affiliation(s)
- Howard B. Lieberman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alex J. Rai
- Department of Pathology and Cell Biology and Special Chemistry Laboratories, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Kevin M. Hopkins
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
17
|
Qin Q, Nan X, Miller T, Fisher R, Teh B, Pandita S, Farach AM, Pingali SR, Pandita RK, Butler EB, Pandita TK, Iyer SP. Complete Local and Abscopal Responses from a Combination of Radiation and Nivolumab in Refractory Hodgkin's Lymphoma. Radiat Res 2018; 190:322-329. [PMID: 29949442 DOI: 10.1667/rr15048.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Until recently, patients with relapsed Hodgkin's lymphoma after brentuximab vedotin (Bv) treatments had poor treatment outcomes. Checkpoint inhibitors such as nivolumab and pembrolizumab that bind to and inhibit programmed cell death protein-1 (PD-1), have demonstrated an overall response rate of 70% in Hodgkin's lymphoma patients; however, complete response is still low at 20% with median progression-free survival of 14 months. There are ongoing clinical studies to seek out synergistic combinations, with the goal of improving the complete response rates for the cure of Hodgkin's lymphoma. Although radiotherapy has a limited survival benefit in such refractory patients, several preclinical models and anecdotal clinical evidence have suggested that combining local tumor irradiation with checkpoint inhibitors can produce systemic regression of distant tumors, an abscopal effect. Most of these reported studies on the response with local conformal radiotherapy and checkpoint inhibitors in combination with the anti-cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) antibody-ipilimumab are in melanoma. Here we report in our case series that the checkpoint inhibitors that block CTLA4 and B7-homolog 1 (B7-H1) or PD-1 in preclinical radiotherapy models have shown an increased the rate of tumor regression. Our case series demonstrates that combining local irradiation with anti-PD-1 checkpoint blockade treatment is feasible and synergistic in refractory Hodgkin's lymphoma. Correlative studies also suggest that the expression of programmed death-ligand 1 (PD-L1), DNA damage response and mutational tumor burden can be used as potential biomarkers for treatment response.
Collapse
Affiliation(s)
- Qian Qin
- Department of a Internal Medicine, Houston Methodist Research Institute, Houston, Texas 77030
| | - Xinyu Nan
- Department of a Internal Medicine, Houston Methodist Research Institute, Houston, Texas 77030
| | - Tara Miller
- b Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030
| | - Ronald Fisher
- c Department of Radiology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Bin Teh
- d Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Shruti Pandita
- f Department of Medical Oncology, University of Toledo Medical Center, Toledo, Ohio, 43614
| | - Andrew M Farach
- d Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Sai Ravi Pingali
- Department of a Internal Medicine, Houston Methodist Research Institute, Houston, Texas 77030.,f Department of Medical Oncology, University of Toledo Medical Center, Toledo, Ohio, 43614
| | - Raj K Pandita
- d Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - E Brian Butler
- d Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Tej K Pandita
- d Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030
| | - Swaminathan P Iyer
- Department of a Internal Medicine, Houston Methodist Research Institute, Houston, Texas 77030.,e Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030.,g University of Texas MD Anderson Cancer Center, Department of Lymphoma/Myeloma, Houston, Texas 77030
| |
Collapse
|
18
|
Wang H, Peng B, Pandita RK, Engler DA, Matsunami RK, Xu X, Hegde PM, Butler BE, Pandita TK, Mitra S, Xu B, Hegde ML. Aurora kinase B dependent phosphorylation of 53BP1 is required for resolving merotelic kinetochore-microtubule attachment errors during mitosis. Oncotarget 2018; 8:48671-48687. [PMID: 28415769 PMCID: PMC5564716 DOI: 10.18632/oncotarget.16225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 01/11/2023] Open
Abstract
Defects in resolving kinetochore-microtubule attachment mistakes during mitosis is linked to chromosome instability associated with carcinogenesis as well as resistance to cancer therapy. Here we report for the first time that tumor suppressor p53-binding protein 1 (53BP1) is phosphorylated at serine 1342 (S1342) by Aurora kinase B both in vitro and in human cells, which is required for optimal recruitment of 53BP1 at kinetochores. Furthermore, 53BP1 staining normally localized on the outer kinetochore, extended to the whole kinetochore when it is merotelically-attached, in concert with mitotic centromere-associated kinesin. Kinetochore-binding of pS1342-53BP1 is essential for efficient resolving of merotelic attachment, a spontaneous kinetochore-microtubule connection error that usually causes aneuploidy. Consistently, loss of 53BP1 results in significant increase in lagging chromosome events, micronuclei formation and aneuploidy, due to the unresolved merotely in both cancer and primary cells, which is prevented by ectopic wild type 53BP1 but not by the nonphophorylable S1342A mutant. We thus document a novel DNA damage-independent function of 53BP1 in maintaining faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Houston Methodist Neurological Institute, Houston, TX, USA
| | - Bin Peng
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Raj K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - David A Engler
- Proteomics Programmatic Core Laboratory, Houston Methodist Research Institute, Houston, TX, USA
| | - Risë K Matsunami
- Proteomics Programmatic Core Laboratory, Houston Methodist Research Institute, Houston, TX, USA
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Brian E Butler
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Weill Medical College of Cornell University, New York, NY, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Weill Medical College of Cornell University, New York, NY, USA
| | - Bo Xu
- Department of Oncology, Southern Research Institute, Birmingham, AL, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Houston Methodist Neurological Institute, Houston, TX, USA.,Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
19
|
β1-Integrin Impacts Rad51 Stability and DNA Double-Strand Break Repair by Homologous Recombination. Mol Cell Biol 2018; 38:MCB.00672-17. [PMID: 29463647 DOI: 10.1128/mcb.00672-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanisms underlying resistance to radiotherapy in breast cancer cells remain elusive. Previously, we reported that elevated β1-integrin is associated with enhanced breast cancer cell survival postirradiation, but how β1-integrin conferred radioresistance was unclear. Ionizing radiation (IR) induced cell killing correlates with the efficiency of DNA double-strand break (DSB) repair, and we found that nonmalignant breast epithelial (S1) cells with low β1-integrin expression have a higher frequency of S-phase-specific IR-induced chromosomal aberrations than the derivative malignant breast (T4-2) cells with high β1-integrin expression. In addition, there was an increased frequency of IR-induced homologous recombination (HR) repairosome focus formation in T4-2 cells compared with that of S1 cells. Cellular levels of Rad51 in T4-2 cells, a critical factor in HR-mediated DSB repair, were significantly higher. Blocking or depleting β1-integrin activity in T4-2 cells reduced Rad51 levels, while ectopic expression of β1-integrin in S1 cells correspondingly increased Rad51 levels, suggesting that Rad51 is regulated by β1-integrin. The low level of Rad51 protein in S1 cells was found to be due to rapid degradation by the ubiquitin proteasome pathway (UPP). Furthermore, the E3 ubiquitin ligase RING1 was highly upregulated in S1 cells compared to T4-2 cells. Ectopic β1-integrin expression in S1 cells reduced RING1 levels and increased Rad51 accumulation. In contrast, β1-integrin depletion in T4-2 cells significantly increased RING1 protein levels and potentiated Rad51 ubiquitination. These data suggest for the first time that elevated levels of the extracellular matrix receptor β1-integrin can increase tumor cell radioresistance by decreasing Rad51 degradation through a RING1-mediated proteasomal pathway.
Collapse
|
20
|
MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks. Mol Cell Biol 2018; 38:MCB.00484-17. [PMID: 29298824 DOI: 10.1128/mcb.00484-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/05/2017] [Indexed: 01/13/2023] Open
Abstract
The human MOF (hMOF) protein belongs to the MYST family of histone acetyltransferases and plays a critical role in transcription and the DNA damage response. MOF is essential for cell proliferation; however, its role during replication and replicative stress is unknown. Here we demonstrate that cells depleted of MOF and under replicative stress induced by cisplatin, hydroxyurea, or camptothecin have reduced survival, a higher frequency of S-phase-specific chromosome damage, and increased R-loop formation. MOF depletion decreased replication fork speed and, when combined with replicative stress, also increased stalled replication forks as well as new origin firing. MOF interacted with PCNA, a key coordinator of replication and repair machinery at replication forks, and affected its ubiquitination and recruitment to the DNA damage site. Depletion of MOF, therefore, compromised the DNA damage repair response as evidenced by decreased Mre11, RPA70, Rad51, and PCNA focus formation, reduced DNA end resection, and decreased CHK1 phosphorylation in cells after exposure to hydroxyurea or cisplatin. These results support the argument that MOF plays an important role in suppressing replication stress induced by genotoxic agents at several stages during the DNA damage response.
Collapse
|
21
|
Horikoshi N, Pandita RK, Mujoo K, Hambarde S, Sharma D, Mattoo AR, Chakraborty S, Charaka V, Hunt CR, Pandita TK. β2-spectrin depletion impairs DNA damage repair. Oncotarget 2018; 7:33557-70. [PMID: 27248179 PMCID: PMC5085102 DOI: 10.18632/oncotarget.9677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
β2-Spectrin (β2SP/SPTBN1, gene SPTBN1) is a key TGF-β/SMAD3/4 adaptor and transcriptional cofactor that regulates TGF-β signaling and can contribute to liver cancer development. Here we report that cells deficient in β2-Spectrin (β2SP) are moderately sensitive to ionizing radiation (IR) and extremely sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with IR or ICL agents (formaldehyde, cisplatin, camptothecin, mitomycin), β2SP deficient cells displayed a higher frequency of cells with delayed γ-H2AX removal and a higher frequency of residual chromosome aberrations. Following hydroxyurea (HU)-induced replication stress, β2SP-deficient cells displayed delayed disappearance of γ-H2AX foci along with defective repair factor recruitment (MRE11, CtIP, RAD51, RPA, and FANCD2) as well as defective restart of stalled replication forks. Repair factor recruitment is a prerequisite for initiation of DNA damage repair by the homologous recombination (HR) pathway, which was also defective in β2SP deficient cells. We propose that β2SP is required for maintaining genomic stability following replication fork stalling, whether induced by either ICL damage or replicative stress, by facilitating fork regression as well as DNA damage repair by homologous recombination.
Collapse
Affiliation(s)
- Nobuo Horikoshi
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Raj K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Kalpana Mujoo
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Shashank Hambarde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dharmendra Sharma
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Abid R Mattoo
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Sharmistha Chakraborty
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Vijaya Charaka
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| |
Collapse
|
22
|
Mujoo K, Pandita RK, Tiwari A, Charaka V, Chakraborty S, Singh DK, Hambarde S, Hittelman WN, Horikoshi N, Hunt CR, Khanna KK, Kots AY, Butler EB, Murad F, Pandita TK. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination. Stem Cell Reports 2017; 9:1660-1674. [PMID: 29103969 PMCID: PMC5831054 DOI: 10.1016/j.stemcr.2017.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
The nitric oxide (NO)-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR) to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR) repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1). Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18), which causes stem cell differentiation has no effect on double-strand break (DSB) repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells. Spontaneous and S-phase-specific chromosome aberrations in differentiated cells Higher frequency of residual γ-H2AX foci after exposure to DNA-damaging agents Higher frequency of cells with 53BP1 and RIF1 co-localization in differentiated cells Higher frequency of cells with a reduced number of RAD51 or BRCA1 foci
Collapse
Affiliation(s)
- Kalpana Mujoo
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA; Institute of Molecular Medicine, University of Texas Health at Houston, Houston, TX 77030, USA.
| | - Raj K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Anjana Tiwari
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Vijay Charaka
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Sharmistha Chakraborty
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Dharmendra Kumar Singh
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Shashank Hambarde
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Walter N Hittelman
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | | | - E Brian Butler
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Ferid Murad
- The George Washington University, Washington, DC 20037, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Alghamian Y, Abou Alchamat G, Murad H, Madania A. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line. Adv Med Sci 2017; 62:330-337. [PMID: 28511071 DOI: 10.1016/j.advms.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. METHODS 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. RESULTS Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). TREATMENT with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. CONCLUSIONS 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest.
Collapse
|
24
|
Patel N, Garikapati KR, Pandita RK, Singh DK, Pandita TK, Bhadra U, Bhadra MP. miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep 2017; 7:4263. [PMID: 28655885 PMCID: PMC5487337 DOI: 10.1038/s41598-017-02800-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
The B-lymphoma Moloney murine leukemia virus insertion region-1 protein (BMI1) acts as an oncogene in various cancers, including breast cancer. Recent evidence suggests that BMI1 is rapidly recruited to sites of DNA double strand breaks where it facilitates histone H2A ubiquitination and DNA double strand break repair by homologous recombination. Here we show that miR-15a and miR-16 expressionis decreased during the initial period after DNA damage where it would otherwise down-regulate BMI1, impairing DNA repair. Elevated miR-15a and miR-16 levels down-regulated BMI1 and other polycomb group proteins like RING1A, RING1B, EZH2 and also altered the expression of proteins associated with the BMI1 dependent ubiquitination pathway. Antagonizing the expression of miR-15a and miR-16, enhanced BMI1 protein levels and increased DNA repair. Further, overexpression of miR-15a and miR-16 sensitized breast cancer cells to DNA damage induced by the chemotherapeutic drug doxorubicin. Our results suggest that miR-15a and miR-16 mediate the down-regulation of BMI1, which impedes DNA repair while elevated levels can sensitize breast cancer cells to doxorubicin leading to apoptotic cell death. This data identifies a new target for manipulating DNA damage response that could impact the development of improved therapeutics for breast cancer.
Collapse
Affiliation(s)
- Nibedita Patel
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, 500007, India
| | - Koteswara Rao Garikapati
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600 113, India
| | - Raj K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Methodist Hospital Research Institute, Houston, TX, 77030, USA
| | - Dharmendra Kumar Singh
- Department of Radiation Oncology, Weill Cornell Medical College, The Methodist Hospital Research Institute, Houston, TX, 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Methodist Hospital Research Institute, Houston, TX, 77030, USA
| | - Utpal Bhadra
- Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad, Telangana State, 500007, India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, 500007, India.
| |
Collapse
|
25
|
Tong HL, Jiang RY, Zhang WW, Yan YQ. MiR-2425-5p targets RAD9A and MYOG to regulate the proliferation and differentiation of bovine skeletal muscle-derived satellite cells. Sci Rep 2017; 7:418. [PMID: 28341832 PMCID: PMC5428422 DOI: 10.1038/s41598-017-00470-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Our group previously identified miR-2425-5p, a unique bovine miRNA; however, its biological function and regulation in muscle-derived satellite cells (MDSCs) remain unclear. Herein, stem-loop RT-PCR results showed that miR-2425-5p increased during MDSCs proliferation, but decreased during differentiation. Cell proliferation was examined using EdU assays, cyclin B1 (CCNB1) and proliferating cell nuclear antigen (PCNA) western blot (WB) and flow cytometry analysis. These results showed that miR-2425-5p mimics (miR-2425-M) enhanced MDSCs proliferation, whereas, miR-2425-5p inhibitor (miR-2425-I) had opposite effect. Conversely, cell differentiation studies by desmin (DES) immunofluorescence, myotubes formation, and myosin heavy chain 3 (MYH3) WB analyses revealed that miR-2425-M and miR-2425-I blocked and promoted MDSCs differentiation, respectively. Moreover, luciferase reporter, RT-PCR, and WB assays showed that miR-2425-5p directly targeted the 3′-UTR of RAD9 homolog A (RAD9A) and myogenin (MYOG) to regulate their expression. Rescue experiment showed RAD9A inhibited the proliferation of MDSCs through miR-2425-5p. In addition, we found that miR-2425-5p expression was regulated by its host gene NCK associated protein 5-like (NCKAP5L) rather than being transcribed independently as a separate small RNA. Collectively, these data indicate that miR-2425-5p is a novel regulator of bovine MDSCs proliferation and differentiation and provides further insight into the biological functions of miRNA in this species.
Collapse
Affiliation(s)
- Hui Li Tong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Run Ying Jiang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Wei Wei Zhang
- College of Life Sciences and Agriculture & Forestry, Qiqihar University, Qiqihar, Heilongjiang, 161006, China
| | - Yun Qin Yan
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
26
|
Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress. Blood 2017; 129:2479-2492. [PMID: 28270450 DOI: 10.1182/blood-2016-06-725093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/26/2017] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability.
Collapse
|
27
|
Lieberman HB, Panigrahi SK, Hopkins KM, Wang L, Broustas CG. p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks. Radiat Res 2017; 187:424-432. [PMID: 28140789 DOI: 10.1667/rr003cc.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The way cells respond to DNA damage is important since inefficient repair or misrepair of lesions can have deleterious consequences, including mutation, genomic instability, neurodegenerative disorders, premature aging, cancer or death. Whether damage occurs spontaneously as a byproduct of normal metabolic processes, or after exposure to exogenous agents, cells muster a coordinated, complex DNA damage response (DDR) to mitigate potential harmful effects. A variety of activities are involved to promote cell survival, and include DNA repair, DNA damage tolerance, as well as transient cell cycle arrest to provide time for repair before entry into critical cell cycle phases, an event that could be lethal if traversal occurs while damage is present. When such damage is prolonged or not repairable, senescence, apoptosis or autophagy is induced. One major level of DDR regulation occurs via the orchestrated transcriptional control of select sets of genes encoding proteins that mediate the response. p53 is a transcription factor that transactivates specific DDR downstream genes through binding DNA consensus sequences usually in or near target gene promoter regions. The profile of p53-regulated genes activated at any given time varies, and is dependent upon type of DNA damage or stress experienced, exact composition of the consensus DNA binding sequence, presence of other DNA binding proteins, as well as cell context. RAD9 is another protein critical for the response of cells to DNA damage, and can also selectively regulate gene transcription. The limited studies addressing the role of RAD9 in transcription regulation indicate that the protein transactivates at least one of its target genes, p21/waf1/cip1, by binding to DNA sequences demonstrated to be a p53 response element. NEIL1 is also regulated by RAD9 through a similar DNA sequence, though not yet directly verified as a bonafide p53 response element. These findings suggest a novel pathway whereby p53 and RAD9 control the DDR through a shared mechanism involving an overlapping network of downstream target genes. Details and unresolved questions about how these proteins coordinate or compete to execute the DDR through transcriptional reprogramming, as well as biological implications, are discussed.
Collapse
Affiliation(s)
- Howard B Lieberman
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and.,b Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Sunil K Panigrahi
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| | - Kevin M Hopkins
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| | - Li Wang
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| | - Constantinos G Broustas
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| |
Collapse
|
28
|
MCL-1 Depletion Impairs DNA Double-Strand Break Repair and Reinitiation of Stalled DNA Replication Forks. Mol Cell Biol 2017; 37:MCB.00535-16. [PMID: 27821478 DOI: 10.1128/mcb.00535-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Myeloid cell leukemia 1 (MCL-1) is a prosurvival BCL-2 protein family member highly expressed in hematopoietic stem cells (HSCs) and regulated by growth factor signals that manifest antiapoptotic activity. Here we report that depletion of MCL-1 but not its isoform MCL-1S increases genomic instability and cell sensitivity to ionizing radiation (IR)-induced death. MCL-1 association with genomic DNA increased postirradiation, and the protein colocalized with 53BP1 foci. Postirradiation, MCL-1-depleted cells exhibited decreased γ-H2AX foci, decreased phosphorylation of ATR, and higher levels of residual 53BP1 and RIF1 foci, suggesting that DNA double-strand break (DSB) repair by homologous recombination (HR) was compromised. Consistent with this model, MCL-1-depleted cells had a reduced frequency of IR-induced BRCA1, RPA, and Rad51 focus formation, decreased DNA end resection, and decreased HR repair in the DR-GFP DSB repair model. Similarly, after HU induction of stalled replication forks in MCL-1-depleted cells, there was a decreased ability to subsequently restart DNA synthesis, which is normally dependent upon HR-mediated resolution of collapsed forks. Therefore, the present data support a model whereby MCL-1 depletion increases 53BP1 and RIF1 colocalization at DSBs, which inhibits BRCA1 recruitment, and sensitizes cells to DSBs from IR or stalled replication forks that require HR for repair.
Collapse
|
29
|
Huang L, Wang ZB, Qi ST, Ma XS, Liang QX, Lei G, Meng TG, Liang LF, Xian YX, Hou Y, Sun XF, Zhao Y, Wang WH, Sun QY. Rad9a is required for spermatogonia differentiation in mice. Oncotarget 2016; 7:86350-86358. [PMID: 27861152 PMCID: PMC5349919 DOI: 10.18632/oncotarget.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis in testes requires precise spermatogonia differentiation. Spermatocytes lacking the Rad9a gene are arrested in pachytene prophase, implying a possible role for RAD9A in spermatogonia differentiation. However, numerous RAD9A-positive pachytene spermatocytes are still observed in mouse testes following Rad9a excision using the Stra8-Cre system, and it is unclear whether Rad9a deletion in spermatogonia interrupts differentiation. Here, we generated a mouse model in which Rad9a was specifically deleted in spermatogonial stem cells (SSCs) using Cre recombinase expression driven by the germ cell-specific Vasa promoter. Adult Rad9a-null male mice were infertile as a result of completely blocked spermatogonia differentiation. No early spermatocytes were detected in mutant testicular cords of 9-day-old mice. Mutant spermatogonia were prone to apoptosis, although proliferation rates were unaffected. Rad9a deletion also resulted in malformation of seminiferous tubules, in which cells assembled irregularly into clusters, and malformation led to testicular cord disruption. Our findings suggest that Rad9a is indispensable for spermatogonia differentiation and testicular development in mice.
Collapse
Affiliation(s)
- Lin Huang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shu-Tao Qi
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiu-Xia Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Guo Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Feng Liang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Ye-Xin Xian
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Fang Sun
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Hua Wang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China.,Houston Fertility Institute/Houston Fertility Laboratory, Houston, Texas, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Damasceno JD, Obonaga R, Santos EV, Scott A, McCulloch R, Tosi LRO. Functional compartmentalization of Rad9 and Hus1 reveals diverse assembly of the 9-1-1 complex components during the DNA damage response in Leishmania. Mol Microbiol 2016; 101:1054-68. [PMID: 27301589 PMCID: PMC5453112 DOI: 10.1111/mmi.13441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/17/2016] [Accepted: 06/11/2016] [Indexed: 01/22/2023]
Abstract
The Rad9‐Rad1‐Hus1 (9‐1‐1) complex is a key component in the coordination of DNA damage sensing, cell cycle progression and DNA repair pathways in eukaryotic cells. This PCNA‐related trimer is loaded onto RPA‐coated single stranded DNA and interacts with ATR kinase to mediate effective checkpoint signaling to halt the cell cycle and to promote DNA repair. Beyond these core activities, mounting evidence suggests that a broader range of functions can be provided by 9‐1‐1 structural diversification. The protozoan parasite Leishmania is an early‐branching eukaryote with a remarkably plastic genome, which hints at peculiar genome maintenance mechanisms. Here, we investigated the existence of homologs of the 9‐1‐1 complex subunits in L. major and found that LmRad9 and LmRad1 associate with chromatin in response to replication stress and form a complex in vivo with LmHus1. Similar to LmHus1, LmRad9 participates in telomere homeostasis and in the response to both replication stress and double strand breaks. However, LmRad9 and LmHus1‐deficient cells present markedly opposite phenotypes, which suggest their functional compartmentalization. We show that some of the cellular pool of LmRad9 forms an alternative complex and that some of LmHus1 exists as a monomer. We propose that the diverse assembly of the Leishmania 9‐1‐1 subunits mediates functional compartmentalization, which has a direct impact on the response to genotoxic stress.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Ricardo Obonaga
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Elaine V Santos
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alan Scott
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow; 120 University Place, Glasgow, G128TA, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow; 120 University Place, Glasgow, G128TA, UK
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
31
|
Sadik H, Korangath P, Nguyen NK, Gyorffy B, Kumar R, Hedayati M, Teo WW, Park S, Panday H, Munoz TG, Menyhart O, Shah N, Pandita RK, Chang JC, DeWeese T, Chang HY, Pandita TK, Sukumar S. HOXC10 Expression Supports the Development of Chemotherapy Resistance by Fine Tuning DNA Repair in Breast Cancer Cells. Cancer Res 2016; 76:4443-56. [PMID: 27302171 DOI: 10.1158/0008-5472.can-16-0774] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/25/2016] [Indexed: 11/16/2022]
Abstract
Development of drug resistance is a major factor limiting the continued success of cancer chemotherapy. To overcome drug resistance, understanding the underlying mechanism(s) is essential. We found that HOXC10 is overexpressed in primary carcinomas of the breast, and even more significantly in distant metastasis arising after failed chemotherapy. High HOXC10 expression correlates with shorter recurrence-free and overall survival in patients with estrogen receptor-negative breast cancer undergoing chemotherapy. We found that HOXC10 promotes survival in cells treated with doxorubicin, paclitaxel, or carboplatin by suppressing apoptosis and upregulating NF-κB Overexpressed HOXC10 increases S-phase-specific DNA damage repair by homologous recombination (HR) and checkpoint recovery in cells at three important phases. For double-strand break repair, HOXC10 recruits HR proteins at sites of DNA damage. It enhances resection and lastly, it resolves stalled replication forks, leading to initiation of DNA replication following DNA damage. We show that HOXC10 facilitates, but is not directly involved in DNA damage repair mediated by HR. HOXC10 achieves integration of these functions by binding to, and activating cyclin-dependent kinase, CDK7, which regulates transcription by phosphorylating the carboxy-terminal domain of RNA polymerase II. Consistent with these findings, inhibitors of CDK7 reverse HOXC10-mediated drug resistance in cultured cells. Blocking HOXC10 function, therefore, presents a promising new strategy to overcome chemotherapy resistance in breast cancer. Cancer Res; 76(15); 4443-56. ©2016 AACR.
Collapse
Affiliation(s)
- Helen Sadik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Preethi Korangath
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nguyen K Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balazs Gyorffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary. 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Rakesh Kumar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mohammad Hedayati
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wei Wen Teo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sunju Park
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hardik Panday
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Teresa Gonzalez Munoz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Otilia Menyhart
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary. 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nilay Shah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raj K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas
| | - Jenny C Chang
- Methodist Cancer Center, The Houston Methodist Research Institute, Houston, Texas
| | - Theodore DeWeese
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Howard Y Chang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas.
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
32
|
Udayakumar D, Pandita RK, Horikoshi N, Liu Y, Liu Q, Wong KK, Hunt CR, Gray NS, Minna JD, Pandita TK, Westover KD. Torin2 Suppresses Ionizing Radiation-Induced DNA Damage Repair. Radiat Res 2016; 185:527-38. [PMID: 27135971 DOI: 10.1667/rr14373.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several classes of inhibitors of the mammalian target of rapamycin (mTOR) have been developed based on its central role in sensing growth factor and nutrient levels to regulate cellular metabolism. However, its ATP-binding site closely resembles other phosphatidylinositol 3-kinase-related kinase (PIKK) family members, resulting in reactivity with these targets that may also be therapeutically useful. The ATP-competitive mTOR inhibitor, Torin2, shows biochemical activity against the DNA repair-associated proteins ATM, ATR and DNA-PK, which raises the possibility that Torin2 and related compounds might radiosensitize cancerous tumors. In this study Torin2 was also found to enhance ionizing radiation-induced cell killing in conditions where ATM was dispensable, confirming the requirement for multiple PIKK targets. Moreover, Torin2 did not influence the initial appearance of γ-H2AX foci after irradiation but significantly delayed the disappearance of radiation-induced γ-H2AX foci, indicating a DNA repair defect. Torin2 increased the number of radiation-induced S-phase specific chromosome aberrations and reduced the frequency of radiation-induced CtIP and Rad51 foci formation, suggesting that Torin2 works by blocking homologous recombination (HR)-mediated DNA repair resulting in an S-phase specific DNA repair defect. Accordingly, Torin2 reduced HR-mediated repair of I-Sce1-induced DNA damage and contributed to replication fork stalling. We conclude that radiosensitization of tumor cells by Torin2 is associated with disrupting ATR- and ATM-dependent DNA damage responses. Our findings support the concept of developing combination cancer therapies that incorporate ionizing radiation therapy and Torin2 or compounds with similar properties.
Collapse
Affiliation(s)
- Durga Udayakumar
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | - Raj K Pandita
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | - Nobuo Horikoshi
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | - Yan Liu
- d Center for Thoracic Oncology, Dana Farber Cancer Institute and
| | - Qingsong Liu
- e Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kwok-Kin Wong
- d Center for Thoracic Oncology, Dana Farber Cancer Institute and
| | - Clayton R Hunt
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | - Nathanael S Gray
- e Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - John D Minna
- b Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Tej K Pandita
- a Department of Radiation Oncology and.,c Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas 77030; and
| | | |
Collapse
|
33
|
Timiri Shanmugam PS, Nair RP, De Benedetti A, Caldito G, Abreo F, Sunavala-Dossabhoy G. Tousled kinase activator, gallic acid, promotes homologous recombinational repair and suppresses radiation cytotoxicity in salivary gland cells. Free Radic Biol Med 2016; 93:217-26. [PMID: 26855419 PMCID: PMC5257199 DOI: 10.1016/j.freeradbiomed.2015.12.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/18/2015] [Accepted: 12/24/2015] [Indexed: 01/19/2023]
Abstract
Accidental or medical radiation exposure of the salivary glands can gravely impact oral health. Previous studies have shown the importance of Tousled-like kinase 1 (TLK1) and its alternate start variant TLK1B in cell survival against genotoxic stresses. Through a high-throughput library screening of natural compounds, the phenolic phytochemical, gallic acid (GA), was identified as a modulator of TLK1/1B. This small molecule possesses anti-oxidant and free radical scavenging properties, but in this study, we report that in vitro it promotes survival of human salivary acinar cells, NS-SV-AC, through repair of ionizing radiation damage. Irradiated cells treated with GA show improved clonogenic survival compared to untreated controls. And, analyses of DNA repair kinetics by alkaline single-cell gel electrophoresis and γ-H2AX foci immunofluorescence indicate rapid resolution of DNA breaks in drug-treated cells. Study of DR-GFP transgene repair indicates GA facilitates homologous recombinational repair to establish a functional GFP gene. In contrast, inactivation of TLK1 or its shRNA knockdown suppressed resolution of radiation-induced DNA tails in NS-SV-AC, and homology directed repair in DR-GFP cells. Consistent with our results in culture, animals treated with GA after exposure to fractionated radiation showed better preservation of salivary function compared to saline-treated animals. Our results suggest that GA-mediated transient modulation of TLK1 activity promotes DNA repair and suppresses radiation cytoxicity in salivary gland cells.
Collapse
Affiliation(s)
- Prakash Srinivasan Timiri Shanmugam
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Renjith Parameshwaran Nair
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Gloria Caldito
- Department of Computational Biology and Bioinformatics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Fleurette Abreo
- Department of Pathology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
34
|
Awate S, De Benedetti A. TLK1B mediated phosphorylation of Rad9 regulates its nuclear/cytoplasmic localization and cell cycle checkpoint. BMC Mol Biol 2016; 17:3. [PMID: 26860083 PMCID: PMC4746922 DOI: 10.1186/s12867-016-0056-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/26/2016] [Indexed: 01/09/2023] Open
Abstract
Background The Tousled like kinase 1B (TLK1B) is critical for DNA repair and survival of cells. Upon DNA damage, Chk1 phosphorylates TLK1B at S457 leading to its transient inhibition. Once TLK1B regains its kinase activity it phosphorylates Rad9 at S328. In this work we investigated the significance of this mechanism by overexpressing mutant TLK1B in which the inhibitory phosphorylation site was eliminated. Results and discussion These cells expressing TLK1B resistant to DNA damage showed constitutive phosphorylation of Rad9 S328 that occurred even in the presence of hydroxyurea (HU), and this resulted in a delayed checkpoint recovery. One possible explanation was that premature phosphorylation of Rad9 caused its dissociation from 9-1-1 at stalled replication forks, resulting in their collapse and prolonged activation of the S-phase checkpoint. We found that phosphorylation of Rad9 at S328 results in its dissociation from chromatin and redistribution to the cytoplasm. This results in double stranded breaks formation with concomitant activation of ATM and phosphorylation of H2AX. Furthermore, a Rad9 (S328D) phosphomimic mutant was exclusively localized to the cytoplasm and not the chromatin. Another Rad9 phosphomimic mutant (T355D), which is also a site phosphorylated by TLK1, localized normally. In cells expressing the mutant TLK1B treated with HU, Rad9 association with Hus1 and WRN was greatly reduced, suggesting again that its phosphorylation causes its premature release from stalled forks. Conclusions We propose that normally, the inactivation of TLK1B following replication arrest and genotoxic stress functions to allow the retention of 9-1-1 at the sites of damage or stalled forks. Following reactivation of TLK1B, whose synthesis is concomitantly induced by genotoxins, Rad9 is hyperphosphorylated at S328, resulting in its dissociation and inactivation of the checkpoint that occurs once repair is complete. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0056-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanket Awate
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
35
|
Abstract
Loss of function or mutation of the ataxia-telangiectasia mutated gene product (ATM) results in inherited genetic disorders characterized by neurodegeneration, immunodeficiency, and cancer. Ataxia-telangiectasia mutated (ATM) gene product belongs to the PI3K-like protein kinase (PIKKs) family and is functionally implicated in mitogenic signal transduction, chromosome condensation, meiotic recombination, cell-cycle control, and telomere maintenance. The ATM protein kinase is primarily activated in response to DNA double strand breaks (DSBs), the most deleterious form of DNA damage produced by ionizing radiation (IR) or radiomimetic drugs. It is detected at DNA damage sites, where ATM autophosphorylation causes dissociation of the inactive homodimeric form to the activated monomeric form. Interestingly, heat shock can activate ATM independent of the presence of DNA strand breaks. ATM is an integral part of the sensory machinery that detects DSBs during meiosis, mitosis, or DNA breaks mediated by free radicals. These DNA lesions can trigger higher order chromatin reorganization fuelled by posttranslational modifications of histones and histone binding proteins. Our group, and others, have shown that ATM activation is tightly regulated by chromatin modifications. This review summarizes the multiple approaches used to discern the role of ATM and other associated proteins in chromatin modification in response to DNA damage.
Collapse
|
36
|
Chakraborty A, Wakamiya M, Venkova-Canova T, Pandita RK, Aguilera-Aguirre L, Sarker AH, Singh DK, Hosoki K, Wood TG, Sharma G, Cardenas V, Sarkar PS, Sur S, Pandita TK, Boldogh I, Hazra TK. Neil2-null Mice Accumulate Oxidized DNA Bases in the Transcriptionally Active Sequences of the Genome and Are Susceptible to Innate Inflammation. J Biol Chem 2015; 290:24636-48. [PMID: 26245904 PMCID: PMC4598976 DOI: 10.1074/jbc.m115.658146] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2's role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans.
Collapse
Affiliation(s)
- Anirban Chakraborty
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | - Maki Wakamiya
- Departments of Neurology and Neuroscience and Cell Biology, Transgenic Mouse Core Facility, University of Texas Medical Branch, Galveston, Texas 77555
| | | | - Raj K Pandita
- the Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, and
| | | | - Altaf H Sarker
- the Department of Cancer and DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Dharmendra Kumar Singh
- the Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, and
| | - Koa Hosoki
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | | | - Gulshan Sharma
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | - Victor Cardenas
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | | | - Sanjiv Sur
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine
| | - Tej K Pandita
- the Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, and
| | | | - Tapas K Hazra
- From the Department of Internal Medicine, Sealy Center for Molecular Medicine,
| |
Collapse
|
37
|
Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, Pandita RK, Charaka VK, Pandita TK, Kastan MB, Walker CL. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 2015; 17:1259-1269. [PMID: 26344566 PMCID: PMC4589490 DOI: 10.1038/ncb3230] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Peroxisomes are highly metabolic, autonomously replicating organelles that generate ROS as a by product of fatty acid β-oxidation. Consequently, cells must maintain peroxisome homeostasis, or risk pathologies associated with too few peroxisomes, such as peroxisome biogenesis disorders, or too many peroxisomes, inducing oxidative damage and promoting diseases such as cancer. We report that the PEX5 peroxisome import receptor binds ataxia-telangiectasia mutated (ATM) and localizes this kinase to the peroxisome. In response to reactive oxygen species (ROS), ATM signaling activates ULK1 and inhibits mTORC1 to induce autophagy. Specificity for autophagy of peroxisomes (pexophagy) is provided by ATM phosphorylation of PEX5 at Ser141, which promotes PEX5 mono-ubiquitination at K209, and recognition of ubiquitinated PEX5 by the autophagy adapter protein p62, directing the autophagosome to peroxisomes to induce pexophagy. These data reveal an important new role for ATM in metabolism as a sensor of ROS that regulates pexophagy.
Collapse
Affiliation(s)
- Jiangwei Zhang
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Durga Nand Tripathi
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Angela Alexander
- Department of Experimental Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinhee Kim
- Korea Institute of Oriental Medicine, Dajeon, 305-811, South Korea
| | - Reid T Powell
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Ruhee Dere
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | | | - Ji-Hoon Lee
- The Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712
| | - Tanya T Paull
- The Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712
| | - Raj K Pandita
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Vijaya K Charaka
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Michael B Kastan
- Departments of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105.,Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Cheryl Lyn Walker
- Center for Translational Cancer Research, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Takeishi Y, Iwaya-Omi R, Ohashi E, Tsurimoto T. Intramolecular Binding of the Rad9 C Terminus in the Checkpoint Clamp Rad9-Hus1-Rad1 Is Closely Linked with Its DNA Binding. J Biol Chem 2015; 290:19923-32. [PMID: 26088138 DOI: 10.1074/jbc.m115.669002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 12/20/2022] Open
Abstract
The human checkpoint clamp Rad9-Hus1-Rad1 (9-1-1) is loaded onto chromatin by its loader complex, Rad17-RFC, following DNA damage. The 120-amino acid (aa) stretch of the Rad9 C terminus (C-tail) is unstructured and projects from the core ring structure (CRS). Recent studies showed that 9-1-1 and CRS bind DNA independently of Rad17-RFC. The DNA-binding affinity of mutant 9(ΔC)-1-1, which lacked the Rad9 C-tail, was much higher than that of wild-type 9-1-1, suggesting that 9-1-1 has intrinsic DNA binding activity that manifests in the absence of the C-tail. C-tail added in trans interacted with CRS and prevented it from binding to DNA. We narrowed down the amino acid sequence in the C-tail necessary for CRS binding to a 15-aa stretch harboring two conserved consecutive phenylalanine residues. We prepared 9-1-1 mutants containing the variant C-tail deficient for CRS binding, and we demonstrated that the mutant form restored DNA binding as efficiently as 9(ΔC)-1-1. Furthermore, we mapped the sequence necessary for TopBP1 binding within the same 15-aa stretch, demonstrating that TopBP1 and CRS share the same binding region in the C-tail. Indeed, we observed their competitive binding to the C-tail with purified proteins. The importance of interaction between 9-1-1 and TopBP1 for DNA damage signaling suggests that the competitive interactions of TopBP1 and CRS with the C-tail will be crucial for the activation mechanism.
Collapse
Affiliation(s)
- Yukimasa Takeishi
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Rie Iwaya-Omi
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Eiji Ohashi
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshiki Tsurimoto
- From the Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
39
|
Song L, Ma L, Cong F, Shen X, Jing P, Ying X, Zhou H, Jiang J, Fu Y, Yan H. Radioprotective effects of genistein on HL-7702 cells via the inhibition of apoptosis and DNA damage. Cancer Lett 2015; 366:100-11. [PMID: 26095601 DOI: 10.1016/j.canlet.2015.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/06/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023]
Abstract
Radiation induced normal tissue damage is the most important limitation for the delivery of a high potentially curative radiation dose. Genistein (GEN), one of the main soy isoflavone components, has drawn wide attention for its bioactivity in alleviating radiation damage. However, the effects and molecular mechanisms underlying the radioprotective effects of GEN remain unclear. In the present study, we showed that low concentration of GEN (1.5 µM) protected L-02 cells against radiation damage via inhibition of apoptosis, alleviation of DNA damage and chromosome aberration, down-regulation of GRP78 and up-regulation of HERP, HUS1 and hHR23A. In contrast, high concentration of GEN (20 µM) demonstrated radiosensitizing characteristics through the promotion of apoptosis and chromosome aberration, impairment of DNA repair, up-regulation of GRP78, and down-regulation of HUS1, SIRT1, RAD17, RAD51 and RNF8. These findings shed light on using low, but not high-concentration GEN, as a potential candidate for adjuvant therapy to alleviate radiation-induced injuries to human recipients of ionizing radiation.
Collapse
Affiliation(s)
- Lihua Song
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Ma
- Department of Oncology, Shanghai Tongren Hospital, Shanghai Jiaotong University, Shanghai 200336, China
| | - Fengsong Cong
- School of Life Science and Technology, Shanghai Jiao Tong University, Shanghai 200020, China
| | - Xiuhua Shen
- Nutrition Department, School of Medicine, Shanghai Jiao Tong University, Shanghai 200020, China
| | - Pu Jing
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiong Ying
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyue Zhou
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Jiang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Research Center for Food Safety and Nutrition, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongye Fu
- Department of Laboratory Medicine, Changhai Hosipital, Second Military Medical University, Shanghai 200433, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hosipital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
40
|
Ngo GHP, Lydall D. The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Res 2015; 43:5017-32. [PMID: 25925573 PMCID: PMC4446447 DOI: 10.1093/nar/gkv409] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/16/2015] [Indexed: 11/13/2022] Open
Abstract
DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad9(53BP1) near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad9(53BP1). Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad9(53BP1) is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.
Collapse
Affiliation(s)
- Greg H P Ngo
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
41
|
Li N, An L, Hang H. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions. PLoS One 2015; 10:e0125236. [PMID: 25915950 PMCID: PMC4411073 DOI: 10.1371/journal.pone.0125236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/22/2015] [Indexed: 12/02/2022] Open
Abstract
Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (HYH); (LLA)
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (HYH); (LLA)
| |
Collapse
|
42
|
Panigrahi SK, Hopkins KM, Lieberman HB. Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair. Nucleic Acids Res 2015; 43:4531-46. [PMID: 25873625 PMCID: PMC4482081 DOI: 10.1093/nar/gkv327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2015] [Indexed: 11/21/2022] Open
Abstract
RAD9 participates in DNA damage-induced cell cycle checkpoints and DNA repair. As a member of the RAD9-HUS1-RAD1 (9-1-1) complex, it can sense DNA damage and recruit ATR to damage sites. RAD9 binding can enhance activities of members of different DNA repair pathways, including NEIL1 DNA glycosylase, which initiates base excision repair (BER) by removing damaged DNA bases. Moreover, RAD9 can act independently of 9-1-1 as a gene-specific transcription factor. Herein, we show that mouse Rad9−/− relative to Rad9+/+ embryonic stem (ES) cells have reduced levels of Neil1 protein. Also, human prostate cancer cells, DU145 and PC-3, knocked down for RAD9 demonstrate reduced NEIL1 abundance relative to controls. We found that Rad9 is required for Neil1 protein stability in mouse ES cells, whereas it regulates NEIL1 transcription in the human cells. RAD9 depletion enhances sensitivity to UV, gamma rays and menadione, but ectopic expression of RAD9 or NEIL1 restores resistance. Glycosylase/apurinic lyase activity was reduced in Rad9−/− mouse ES and RAD9 knocked-down human prostate cancer whole cell extracts, relative to controls. Neil1 or Rad9 addition restored this incision activity. Thus, we demonstrate that RAD9 regulates BER by controlling NEIL1 protein levels, albeit by different mechanisms in human prostate cancer versus mouse ES cells.
Collapse
Affiliation(s)
- Sunil K Panigrahi
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Howard B Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
43
|
Chun SG, Park H, Pandita RK, Horikoshi N, Pandita TK, Schwartz DL, Yordy JS. Targeted inhibition of histone deacetylases and hedgehog signaling suppress tumor growth and homologous recombination in aerodigestive cancers. Am J Cancer Res 2015; 5:1337-1352. [PMID: 26101701 PMCID: PMC4473314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023] Open
Abstract
Standard combined modality therapies for aerodigestive tract malignancies have suboptimal outcomes, and targeting cancer-specific molecular pathways in combination with radiation could improve the therapeutic ratio. Dysregulation of epigenetic modulators such as histone deacetylases (HDACs), and developmental morphogens such as the hedgehog (HH) pathway have been implicated in aerodigestive tumor progression and metastasis. We hypothesized that simultaneous targeting of HDACs and the HH-pathway mediator Smoothened (Smo) represents an opportunity to overcome therapeutic resistance in these cancers. We evaluated the effects of the HDAC inhibitor SAHA and Smo inhibitor GDC-0449 with radiation in multiple aerodigestive cancer cell lines. Isobologram analyses showed that SAHA and GDC-0449 synergistically suppressed cancer cell proliferation in vitro. SAHA and GDC-0449 cooperatively enhanced G0/G1 cell cycle arrest which was associated with up-regulation of p21(waf). GDC-0449 prevented SAHA-induced up-regulation of Gli-1 and Gli-2. Both Smo and Ptc-1 expression was cooperatively suppressed by SAHA and GDC-0449. The combination of SAHA and GDC-0449 induced radiation sensitization with 2 Gy as determined by colony formation assays and cytogenetic analyses, which correlated with higher residual γ-H2AX and 53BP1 foci. In mouse tumor xenografts of the SqCC/Y1 cell line, SAHA and GDC-0449 delayed tumor growth longer and prolonged survival more than either agent alone. In summary, we have identified synergistic effect of HDAC and HH signaling for radiosensitization to improve therapeutic outcomes for aerodigestive malignancies.
Collapse
Affiliation(s)
- Stephen G Chun
- Division of Molecular Radiation Biology, Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas at Southwestern Medical CenterDallas, TX, USA
| | - Hyunsil Park
- Division of Molecular Radiation Biology, Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas at Southwestern Medical CenterDallas, TX, USA
| | - Raj K Pandita
- Department of Radiation Oncology, Cancer Research Program, The Houston Methodist Research InstituteHouston, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Cancer Research Program, The Houston Methodist Research InstituteHouston, TX, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Cancer Research Program, The Houston Methodist Research InstituteHouston, TX, USA
| | - David L Schwartz
- Division of Molecular Radiation Biology, Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas at Southwestern Medical CenterDallas, TX, USA
| | - John S Yordy
- Division of Molecular Radiation Biology, Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas at Southwestern Medical CenterDallas, TX, USA
- Anchorage and Valley Radiation Therapy CenterAnchorage, AK, USA
| |
Collapse
|
44
|
Pandita RK, Chow TT, Udayakumar D, Bain AL, Cubeddu L, Hunt CR, Shi W, Horikoshi N, Zhao Y, Wright WE, Khanna KK, Shay JW, Pandita TK. Single-strand DNA-binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs. Cancer Res 2015; 75:858-69. [PMID: 25589350 DOI: 10.1158/0008-5472.can-14-2289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proliferating mammalian stem and cancer cells express telomerase [telomerase reverse transcriptase (TERT)] in an effort to extend chromosomal G-overhangs and maintain telomere ends. Telomerase-expressing cells also have higher levels of the single-stranded DNA-binding protein SSB1, which has a critical role in DNA double-strand break (DSB) repair. Here, we report that SSB1 binds specifically to G-strand telomeric DNA in vitro and associates with telomeres in vivo. SSB1 interacts with the TERT catalytic subunit and regulates its interaction with telomeres. Deletion of SSB1 reduces TERT interaction with telomeres and leads to G-overhang loss. Although SSB1 is recruited to DSB sites, we found no corresponding change in TERT levels at these sites, implying that SSB1-TERT interaction relies upon a specific chromatin structure or context. Our findings offer an explanation for how telomerase is recruited to telomeres to facilitate G-strand DNA extension, a critical step in maintaining telomere ends and cell viability in all cancer cells. Cancer Res; 75(5); 858-69. ©2015 AACR.
Collapse
Affiliation(s)
- Raj K Pandita
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas
| | - Tracy T Chow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Durga Udayakumar
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Liza Cubeddu
- School of Science and Health, University of Western Sydney, Sydney, Australia
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wei Shi
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Nobuo Horikoshi
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yong Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas. Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas. Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
45
|
Zhang Z, Cai Z, Li K, Fang Y, An L, Hu Z, Wang S, Hang H. The Effect of Ionizing Radiation on mRNA Levels of the DNA Damage Response Genes Rad9, Rad1 and Hus1 in Various Mouse Tissues. Radiat Res 2015; 183:94-104. [DOI: 10.1667/rr13781.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zhenya Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050011 China
| | - Zeyuan Cai
- Center for Peptide and Protein Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaiming Li
- Department of General Surgery, the Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050011 China
| | - Yu Fang
- Center for Peptide and Protein Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili An
- Center for Peptide and Protein Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhishang Hu
- Center for Peptide and Protein Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haiying Hang
- Center for Peptide and Protein Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
46
|
Agustina L, Hahm SH, Han SH, Tran AHV, Chung JH, Park JH, Park JW, Han YS. Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation. BMC Mol Biol 2014; 15:17. [PMID: 25127721 PMCID: PMC4151078 DOI: 10.1186/1471-2199-15-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/04/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Human MutY glycosylase homolog (hMYH), a component of the base excision repair pathway, is responsible for the generation of apurinic/apyrimidinic sites. Rad9-Rad1-Hus1 (9-1-1) is a heterotrimeric protein complex that plays a role in cell cycle checkpoint control and DNA repair. In humans, hMYH and 9-1-1 interact through Hus1 and to a lesser degree with Rad1 in the presence of DNA damage. In Saccharomyces pombe, each component of the 9-1-1 complex interacts directly with SpMYH. The glycosylase activity of hMYH is stimulated by Hus1 and the 9-1-1 complex and enhanced by DNA damage treatment. Cells respond to different stress conditions in different manners. Therefore, we investigated whether Rad9 interacted with hMYH under different stresses. Here, we identified and visualized the interaction between hRad9 and hMYH and investigated the functional consequences of this interaction. RESULTS Co-IP and BiFC indicates that hMYH interacts with hRad9. As shown by GST-pull down assay, this interaction is direct. Furthermore, BiFC with deletion mutants of hMYH showed that hRad9 interacts with N-terminal region of hMYH. The interaction was enhanced by hydroxyurea (HU) treatment. mRNA and protein levels of hMYH and hRad9 were increased following HU treatment. A marked increase in p-Chk1 (S345) and p-Cdk2 (T14, Y15) was observed. But this phosphorylation decreased in siMYH- or siRad9-transfected cells, and more pronounced decrease observed in co-transfected cells. CONCLUSIONS Our data reveal that hRad9 interacts directly with N-terminal region of hMYH. This interaction is enhanced by HU treatment. Knockdown of one or both protein result in decreasing Chk1 and Cdk2 phosphorylation. Since both protein functions in the early detection of DNA damage, we suggest that this interaction occurs early in DNA damage pathway.
Collapse
Affiliation(s)
- Lia Agustina
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Soo-Hyun Hahm
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do 463-836, Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Jin Woo Park
- BioActs, DKC Corporation, 693-2 Gojan-dong, Namdong-gu, Incheon 405-820, Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
47
|
Ngo GHP, Balakrishnan L, Dubarry M, Campbell JL, Lydall D. The 9-1-1 checkpoint clamp stimulates DNA resection by Dna2-Sgs1 and Exo1. Nucleic Acids Res 2014; 42:10516-28. [PMID: 25122752 PMCID: PMC4176354 DOI: 10.1093/nar/gku746] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) at DNA ends is an important regulator of the DNA damage response. Resection, the generation of ssDNA, affects DNA damage checkpoint activation, DNA repair pathway choice, ssDNA-associated mutation and replication fork stability. In eukaryotes, extensive DNA resection requires the nuclease Exo1 and nuclease/helicase pair: Dna2 and Sgs1BLM. How Exo1 and Dna2-Sgs1BLM coordinate during resection remains poorly understood. The DNA damage checkpoint clamp (the 9-1-1 complex) has been reported to play an important role in stimulating resection but the exact mechanism remains unclear. Here we show that the human 9-1-1 complex enhances the cleavage of DNA by both DNA2 and EXO1 in vitro, showing that the resection-stimulatory role of the 9-1-1 complex is direct. We also show that in Saccharomyces cerevisiae, the 9-1-1 complex promotes both Dna2-Sgs1 and Exo1-dependent resection in response to uncapped telomeres. Our results suggest that the 9-1-1 complex facilitates resection by recruiting both Dna2-Sgs1 and Exo1 to sites of resection. This activity of the 9-1-1 complex in supporting resection is strongly inhibited by the checkpoint adaptor Rad953BP1. Our results provide important mechanistic insights into how DNA resection is regulated by checkpoint proteins and have implications for genome stability in eukaryotes.
Collapse
Affiliation(s)
- Greg H P Ngo
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Marion Dubarry
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Judith L Campbell
- Divisions of Biology and Chemistry, Caltech, Braun Laboratories, Pasadena, CA 91125, USA
| | - David Lydall
- Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
48
|
Gupta A, Hunt CR, Hegde ML, Chakraborty S, Chakraborty S, Udayakumar D, Horikoshi N, Singh M, Ramnarain DB, Hittelman WN, Namjoshi S, Asaithamby A, Hazra TK, Ludwig T, Pandita RK, Tyler JK, Pandita TK. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. Cell Rep 2014; 8:177-89. [PMID: 24953651 PMCID: PMC4300955 DOI: 10.1016/j.celrep.2014.05.044] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/24/2014] [Accepted: 05/21/2014] [Indexed: 01/09/2023] Open
Abstract
Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells. Expression of MOF-T392A also blocks the reduction in DSB-associated 53BP1 seen in wild-type S/G2 phase cells, resulting in enhanced 53BP1 and reduced BRCA1 association. Decreased BRCA1 levels at DSB sites correlates with defective repairosome formation, reduced HR repair, and decreased cell survival following irradiation. These data support a model whereby ATM-mediated MOF-T392 phosphorylation modulates 53BP1 function to facilitate the subsequent recruitment of HR repair proteins, uncovering a regulatory role for MOF in DSB repair pathway choice during S/G2 phase.
Collapse
Affiliation(s)
- Arun Gupta
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Clayton R Hunt
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Sharmistha Chakraborty
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sharmistha Chakraborty
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Durga Udayakumar
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Nobuo Horikoshi
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mayank Singh
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepti B Ramnarain
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Walter N Hittelman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarita Namjoshi
- Department of Biochemistry, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aroumougame Asaithamby
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tapas K Hazra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas Ludwig
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Raj K Pandita
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jessica K Tyler
- Department of Biochemistry, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tej K Pandita
- Deparment of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Shanmugam I, Abbas M, Ayoub F, Mirabal S, Bsaili M, Caulder EK, Weinstock DM, Tomkinson AE, Hromas R, Shaheen M. Ubiquitin-specific peptidase 20 regulates Rad17 stability, checkpoint kinase 1 phosphorylation and DNA repair by homologous recombination. J Biol Chem 2014; 289:22739-22748. [PMID: 24923443 DOI: 10.1074/jbc.m114.550459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rad17 is a subunit of the Rad9-Hus1-Rad1 clamp loader complex, which is required for Chk1 activation after DNA damage. Rad17 has been shown to be regulated by the ubiquitin-proteasome system. We have identified a deubiquitylase, USP20 that is required for Rad17 protein stability in the steady-state and post DNA damage. We demonstrate that USP20 and Rad17 interact, and that this interaction is enhanced by UV exposure. We show that USP20 regulation of Rad17 is at the protein level in a proteasome-dependent manner. USP20 depletion results in poor activation of Chk1 protein by phosphorylation, consistent with Rad17 role in ATR-mediated phosphorylation of Chk1. Similar to other DNA repair proteins, USP20 is phosphorylated post DNA damage, and its depletion sensitizes cancer cells to damaging agents that form blocks ahead of the replication forks. Similar to Chk1 and Rad17, which enhance recombinational repair of collapsed replication forks, we demonstrate that USP20 depletion impairs DNA double strand break repair by homologous recombination. Together, our data establish a new function of USP20 in genome maintenance and DNA repair.
Collapse
Affiliation(s)
- Ilanchezhian Shanmugam
- Division of Hematology-Oncology, Dept of Internal Medicine, and the Cancer Center, University Of New Mexico, Albuquerque, New Mexico 87131
| | - Mohammad Abbas
- Division of Hematology-Oncology, Dept of Internal Medicine, and the Cancer Center, University Of New Mexico, Albuquerque, New Mexico 87131
| | - Farhan Ayoub
- Division of Hematology-Oncology, Dept of Internal Medicine, and the Cancer Center, University Of New Mexico, Albuquerque, New Mexico 87131
| | - Susan Mirabal
- Division of Hematology-Oncology, Dept of Internal Medicine, and the Cancer Center, University Of New Mexico, Albuquerque, New Mexico 87131
| | - Manal Bsaili
- Division of Hematology-Oncology, Dept of Internal Medicine, and the Cancer Center, University Of New Mexico, Albuquerque, New Mexico 87131
| | - Erin K Caulder
- Division of Hematology-Oncology, Dept of Internal Medicine, and the Cancer Center, University Of New Mexico, Albuquerque, New Mexico 87131
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215
| | - Alan E Tomkinson
- Division of Hematology-Oncology, Dept of Internal Medicine, and the Cancer Center, University Of New Mexico, Albuquerque, New Mexico 87131
| | - Robert Hromas
- Department of Medicine, University of Florida, Gainesville, Florida 32610, and
| | - Monte Shaheen
- Division of Hematology-Oncology, Dept of Internal Medicine, and the Cancer Center, University Of New Mexico, Albuquerque, New Mexico 87131,.
| |
Collapse
|
50
|
Tsang E, Miyabe I, Iraqui I, Zheng J, Lambert SAE, Carr AM. The extent of error-prone replication restart by homologous recombination is controlled by Exo1 and checkpoint proteins. J Cell Sci 2014; 127:2983-94. [PMID: 24806966 PMCID: PMC4075360 DOI: 10.1242/jcs.152678] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic instability, a hallmark of cancer, can occur when the replication machinery encounters a barrier. The intra-S-phase checkpoint maintains stalled replication forks in a replication-competent configuration by phosphorylating replisome components and DNA repair proteins to prevent forks from catastrophically collapsing. Here, we report a novel function of the core Schizosaccharomyces pombe checkpoint sensor kinase, Rad3 (an ATR orthologue), that is independent of Chk1 and Cds1 (a CHK2 orthologue); Rad3ATR regulates the association of recombination factors with collapsed forks, thus limiting their genetic instability. We further reveal antagonistic roles for Rad3ATR and the 9-1-1 clamp – Rad3ATR restrains MRN- and Exo1-dependent resection, whereas the 9-1-1 complex promotes Exo1 activity. Interestingly, the MRN complex, but not its nuclease activity, promotes resection and the subsequent association of recombination factors at collapsed forks. The biological significance of this regulation is revealed by the observation that Rad3ATR prevents Exo1-dependent genome instability upstream of a collapsed fork without affecting the efficiency of recombination-mediated replication restart. We propose that the interplay between Rad3ATR and the 9-1-1 clamp functions to fine-tune the balance between the need for the recovery of replication through recombination and the risk of increased genome instability.
Collapse
Affiliation(s)
- Ellen Tsang
- Genome Damage and Stability Centre, University of Sussex, Brighton, Sussex BN1 9RQ, UK
| | - Izumi Miyabe
- Genome Damage and Stability Centre, University of Sussex, Brighton, Sussex BN1 9RQ, UK
| | - Ismail Iraqui
- Institut Curie-Centre National de la Recherche Scientifique, UMR3348, Réponse Cellulaire aux Perturbations de la Réplication, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Jiping Zheng
- Department of Biotechnology, College of Agriculture, No.58 Renmin Avenue, Haikou, Hainan Province 570228, P.R. China
| | - Sarah A E Lambert
- Institut Curie-Centre National de la Recherche Scientifique, UMR3348, Réponse Cellulaire aux Perturbations de la Réplication, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton, Sussex BN1 9RQ, UK
| |
Collapse
|