1
|
Bao Y, Liu J, You J, Wu D, Yu Y, Liu C, Wang L, Wang F, Xu L, Wang L, Wang N, Tian X, Wang F, Liang H, Gao Y, Cui X, Ji G, Bai J, Yu J, Meng X, Jin Y, Sun W, Guan XY, Zhang C, Fu S. Met promotes the formation of double minute chromosomes induced by Sei-1 in NIH-3T3 murine fibroblasts. Oncotarget 2018; 7:56664-56675. [PMID: 27494853 PMCID: PMC5302943 DOI: 10.18632/oncotarget.10994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sei-1 is an oncogene capable of inducing double minute chromosomes (DMs) formation. DMs are hallmarks of amplification and contribute to oncogenesis. However, the mechanism of Sei-1 inducing DMs formation remains unelucidated. RESULTS DMs formation significantly increased during serial passage in vivo and gradually decreased following culture in vitro. micro nuclei (MN) was found to be responsible for the reduction. Of the DMs-carrying genes, Met was found to be markedly amplified, overexpressed and highly correlated with DMs formation. Inhibition of Met signaling decreased the number of DMs and reduced the amplification of the DMs-carrying genes. We identified a 3.57Mb DMs representing the majority population, which consists of the 1.21 Mb AMP1 from locus 6qA2 and the 2.36 Mb AMP2 from locus 6qA2-3. MATERIALS AND METHODS We employed NIH-3T3 cell line with Sei-1 overexpression to monitor and characterize DMs in vivo and in vitro. Array comparative genome hybridization (aCGH) and fluorescence in situ hybridization (FISH) were performed to reveal amplification regions and DMs-carrying genes. Metaphase spread was prepared to count the DMs. Western blot and Met inhibition rescue experiments were performed to examine for involvement of altered Met signaling in Sei-1 induced DMs. Genomic walking and PCR were adopted to reveal DMs structure. CONCLUSIONS Met is an important promotor of DMs formation.
Collapse
Affiliation(s)
- Yantao Bao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jia Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jia You
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Di Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Department of Genetics and Eugenics, Maternity and Child Care Center of Qinghuangdao, Qinghuangdao, China
| | - Chang Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Lei Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Genetic Diagnosis Center, First People's Hospital of Yunnan Province, Yunnan, China
| | - Fei Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Lu Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Liqun Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Nan Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xing Tian
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Falin Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Hongbin Liang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yating Gao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiaobo Cui
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Guohua Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jingcui Yu
- Scientific Research Centre, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Medical Genetics, Harbin Medical University, Heilongjiang Higher Education Institutions, Harbin, China
| |
Collapse
|
2
|
MacDonald C, Piper RC. Puromycin- and methotrexate-resistance cassettes and optimized Cre-recombinase expression plasmids for use in yeast. Yeast 2015; 32:423-38. [PMID: 25688547 DOI: 10.1002/yea.3069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/07/2022] Open
Abstract
Here we expand the set of tools for genetically manipulating Saccharomyces cerevisiae. We show that puromycin-resistance can be achieved in yeast through expression of a bacterial puromycin-resistance gene optimized to the yeast codon bias, which in turn serves as an easy-to-use dominant genetic marker suitable for gene disruption. We have constructed a similar DNA cassette expressing yeast codon-optimized mutant human dihydrofolate reductase (DHFR), which confers resistance to methotrexate and can also be used as a dominant selectable marker. Both of these drug-resistant marker cassettes are flanked by loxP sites, allowing for their excision from the genome following expression of Cre-recombinase. Finally, we have created a series of plasmids for low-level constitutive expression of Cre-recombinase in yeast that allows for efficient excision of loxP-flanked markers.
Collapse
Affiliation(s)
- Chris MacDonald
- Department of Molecular Physiology and Biophysics, University of Iowa, IA, USA
| | | |
Collapse
|
3
|
Rees WD, Grant SD, Hay SM, Saqib KM. Threonine synthesis from homoserine as a selectable marker in mammalian cells. Biochem J 1994; 299 ( Pt 3):637-44. [PMID: 8192652 PMCID: PMC1138068 DOI: 10.1042/bj2990637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The plasmid pSVthrBC expresses the Escherichia coli thrB (homoserine kinase) and thrC (threonine synthase) genes in mouse cells and enables them to synthesize threonine from homoserine. After transfection with pSVthrBC and culture in medium containing homoserine, only cells that have incorporated pSVthrBC survive. Homoserine at concentrations greater than 1 mM is toxic to mammalian cells. Mouse cells selected from medium containing 5 mM homoserine had incorporated 20-100 copies of the plasmid per cell and had homoserine kinase activities of 0.001-0.012 nmol/min per mg of protein per copy. Cells selected from medium containing 10 mM homoserine had incorporated one or two copies of the plasmid per cell and had homoserine kinase activities of 0.06-0.39 nmol/min per mg of protein per copy. By using high concentrations of homoserine, it is possible to use pSVthrBC to select and isolate cell lines that have one or two copies of the plasmid incorporated into an active region of chromatin. CHO and HeLa cells have also been successfully transfected with pSVthrBC. COS-7 cells are naturally resistant to homoserine as they are able to metabolize homoserine.
Collapse
Affiliation(s)
- W D Rees
- Rowett Research Institute, Aberdeen, Scotland, U.K
| | | | | | | |
Collapse
|
4
|
Effect of von Willebrand factor coexpression on the synthesis and secretion of factor VIII in Chinese hamster ovary cells. Mol Cell Biol 1989. [PMID: 2498645 DOI: 10.1128/mcb.9.3.1233] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In plasma, antihemophilic factor (factor VIII) exists as a 200-kilodalton heavy-chain polypeptide in a metal ion association with an 80-kilodalton light-chain polypeptide. This complex is bound by hydrophobic and hydrophilic interactions to a large multimeric glycoprotein, von Willebrand factor (vWF). Accumulation of secreted human factor VIII activity expressed in Chinese hamster ovary cells requires the addition of serum in the growth medium, which provides vWF. Here we report that coexpression of vWF with factor VIII in Chinese hamster ovary cells resulted in increased stable accumulation of factor VIII activity in the absence of serum in the growth medium. In the coexpressing cells, the vWF cDNA transcription unit was transcribed to yield mRNA which was efficiently translated. vWF was properly processed and secreted to yield disulfide-bonded high-molecular-weight multimers similar to those observed in vWF secreted from human endothelial cells. Nuclear run-on assays showed that the factor VIII gene was transcribed at a level similar to that of the vWF gene, but the mRNA did not accumulate to high levels in the cytoplasm. In addition, although the translation efficiency of the factor VIII mRNA was similar to that of vWF, the processing and secretion of the factor VIII primary translation product was dramatically reduced compared with vWF. These results demonstrate that in Chinese hamster ovary cells both factor VIII mRNA accumulation and the processing and secretion of the primary factor VIII translation product are inefficient processes.
Collapse
|
5
|
Kaufman RJ, Wasley LC, Davies MV, Wise RJ, Israel DI, Dorner AJ. Effect of von Willebrand factor coexpression on the synthesis and secretion of factor VIII in Chinese hamster ovary cells. Mol Cell Biol 1989; 9:1233-42. [PMID: 2498645 PMCID: PMC362714 DOI: 10.1128/mcb.9.3.1233-1242.1989] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In plasma, antihemophilic factor (factor VIII) exists as a 200-kilodalton heavy-chain polypeptide in a metal ion association with an 80-kilodalton light-chain polypeptide. This complex is bound by hydrophobic and hydrophilic interactions to a large multimeric glycoprotein, von Willebrand factor (vWF). Accumulation of secreted human factor VIII activity expressed in Chinese hamster ovary cells requires the addition of serum in the growth medium, which provides vWF. Here we report that coexpression of vWF with factor VIII in Chinese hamster ovary cells resulted in increased stable accumulation of factor VIII activity in the absence of serum in the growth medium. In the coexpressing cells, the vWF cDNA transcription unit was transcribed to yield mRNA which was efficiently translated. vWF was properly processed and secreted to yield disulfide-bonded high-molecular-weight multimers similar to those observed in vWF secreted from human endothelial cells. Nuclear run-on assays showed that the factor VIII gene was transcribed at a level similar to that of the vWF gene, but the mRNA did not accumulate to high levels in the cytoplasm. In addition, although the translation efficiency of the factor VIII mRNA was similar to that of vWF, the processing and secretion of the factor VIII primary translation product was dramatically reduced compared with vWF. These results demonstrate that in Chinese hamster ovary cells both factor VIII mRNA accumulation and the processing and secretion of the primary factor VIII translation product are inefficient processes.
Collapse
Affiliation(s)
- R J Kaufman
- Genetics Institute, Cambridge, Massachusetts 02140
| | | | | | | | | | | |
Collapse
|