1
|
Kim SH, Jung HJ, Lee IB, Lee NK, Hong SC. Sequence-dependent cost for Z-form shapes the torsion-driven B-Z transition via close interplay of Z-DNA and DNA bubble. Nucleic Acids Res 2021; 49:3651-3660. [PMID: 33744929 PMCID: PMC8053131 DOI: 10.1093/nar/gkab153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Despite recent genome-wide investigations of functional DNA elements, the mechanistic details about their actions remain elusive. One intriguing possibility is that DNA sequences with special patterns play biological roles, adopting non-B-DNA conformations. Here we investigated dynamics of thymine-guanine (TG) repeats, microsatellite sequences and recurrently found in promoters, as well as cytosine–guanine (CG) repeats, best-known Z-DNA forming sequence, in the aspect of Z-DNA formation. We measured the energy barriers of the B–Z transition with those repeats and discovered the sequence-dependent penalty for Z-DNA generates distinctive thermodynamic and kinetic features in the torque-induced transition. Due to the higher torsional stress required for Z-form in TG repeats, a bubble could be induced more easily, suppressing Z-DNA induction, but facilitate the B–Z interconversion kinetically at the transition midpoint. Thus, the Z-form by TG repeats has advantages as a torsion buffer and bubble selector while the Z-form by CG repeats likely behaves as torsion absorber. Our statistical physics model supports quantitatively the populations of Z-DNA and reveals the pivotal roles of bubbles in state dynamics. All taken together, a quantitative picture for the transition was deduced within the close interplay among bubbles, plectonemes and Z-DNA.
Collapse
Affiliation(s)
- Sook Ho Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea.,GRI-TPC International Research Center, Sejong University, Seoul, 05006 Korea
| | - Hae Jun Jung
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea
| | - Nam-Kyung Lee
- Department of Physics and Astronomy, Sejong University, Seoul, 05006 Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea
| |
Collapse
|
2
|
Barsakis K, Babrzadeh F, Chi A, Mallempati K, Pickle W, Mindrinos M, Fernández-Viña MA. Complete nucleotide sequence characterization of DRB5 alleles reveals a homogeneous allele group that is distinct from other DRB genes. Hum Immunol 2019; 80:437-448. [PMID: 30954494 PMCID: PMC6622178 DOI: 10.1016/j.humimm.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 01/28/2023]
Abstract
Next Generation Sequencing allows for testing and typing of entire genes of the HLA region. A better and comprehensive sequence assessment can be achieved by the inclusion of full gene sequences of all the common alleles at a given locus. The common alleles of DRB5 are under-characterized with the full exon-intron sequence of two alleles available. In the present study the DRB5 genes from 18 subjects alleles were cloned and sequenced; haplotype analysis showed that 17 of them had a single copy of DRB5 and one consanguineous subject was homozygous at all HLA loci. Methodological approaches including robust and efficient long-range PCR amplification, molecular cloning, nucleotide sequencing and de novo sequence assembly were combined to characterize DRB5 alleles. DRB5 sequences covering from 5'UTR to the end of intron 5 were obtained for DRB5*01:01, 01:02 and 02:02; partial coverage including a segment spanning exon 2 to exon 6 was obtained for DRB5*01:03, 01:08N and 02:03. Phylogenetic analysis of the generated sequences showed that the DRB5 alleles group together and have distinctive differences with other DRB loci. Novel intron variants of DRB5*01:01:01, 01:02 and 02:02 were identified. The newly characterized DRB5 intron variants of each DRB5 allele were found in subjects harboring distinct associations with alleles of DRB1, B and/or ethnicity. The new information provided by this study provides reference sequences for HLA typing methodologies. Extending sequence coverage may lead to identify the disease susceptibility factors of DRB5 containing haplotypes while the unexpected intron variations may shed light on understanding of the evolution of the DRB region.
Collapse
Affiliation(s)
- Konstantinos Barsakis
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Biology, University of Crete, Heraklion, Crete 71003, Greece
| | - Farbod Babrzadeh
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Anjo Chi
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Kalyan Mallempati
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - William Pickle
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Michael Mindrinos
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | |
Collapse
|
3
|
Xie KT, Wang G, Thompson AC, Wucherpfennig JI, Reimchen TE, MacColl ADC, Schluter D, Bell MA, Vasquez KM, Kingsley DM. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 2019; 363:81-84. [PMID: 30606845 PMCID: PMC6677656 DOI: 10.1126/science.aan1425] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/18/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023]
Abstract
Evolution generates a remarkable breadth of living forms, but many traits evolve repeatedly, by mechanisms that are still poorly understood. A classic example of repeated evolution is the loss of pelvic hindfins in stickleback fish (Gasterosteus aculeatus). Repeated pelvic loss maps to recurrent deletions of a pelvic enhancer of the Pitx1 gene. Here, we identify molecular features contributing to these recurrent deletions. Pitx1 enhancer sequences form alternative DNA structures in vitro and increase double-strand breaks and deletions in vivo. Enhancer mutability depends on DNA replication direction and is caused by TG-dinucleotide repeats. Modeling shows that elevated mutation rates can influence evolution under demographic conditions relevant for sticklebacks and humans. DNA fragility may thus help explain why the same loci are often used repeatedly during parallel adaptive evolution.
Collapse
Affiliation(s)
- Kathleen T Xie
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Abbey C Thompson
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia I Wucherpfennig
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Michael A Bell
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Nikumbh S, Pfeifer N. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization. BMC Bioinformatics 2017; 18:218. [PMID: 28420341 PMCID: PMC5395875 DOI: 10.1186/s12859-017-1624-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background Knowing the three-dimensional (3D) structure of the chromatin is important for obtaining a complete picture of the regulatory landscape. Changes in the 3D structure have been implicated in diseases. While there exist approaches that attempt to predict the long-range chromatin interactions, they focus only on interactions between specific genomic regions — the promoters and enhancers, neglecting other possibilities, for instance, the so-called structural interactions involving intervening chromatin. Results We present a method that can be trained on 5C data using the genetic sequence of the candidate loci to predict potential genome-wide interaction partners of a particular locus of interest. We have built locus-specific support vector machine (SVM)-based predictors using the oligomer distance histograms (ODH) representation. The method shows good performance with a mean test AUC (area under the receiver operating characteristic (ROC) curve) of 0.7 or higher for various regions across cell lines GM12878, K562 and HeLa-S3. In cases where any locus did not have sufficient candidate interaction partners for model training, we employed multitask learning to share knowledge between models of different loci. In this scenario, across the three cell lines, the method attained an average performance increase of 0.09 in the AUC. Performance evaluation of the models trained on 5C data regarding prediction on an independent high-resolution Hi-C dataset (which is a rather hard problem) shows 0.56 AUC, on average. Additionally, we have developed new, intuitive visualization methods that enable interpretation of sequence signals that contributed towards prediction of locus-specific interaction partners. The analysis of these sequence signals suggests a potential general role of short tandem repeat sequences in genome organization. Conclusions We demonstrated how our approach can 1) provide insights into sequence features of locus-specific interaction partners, and 2) also identify their cell-line specificity. That our models deem short tandem repeat sequences as discriminative for prediction of potential interaction partners, suggests that they could play a larger role in genome organization. Thus, our approach can (a) be beneficial to broadly understand, at the sequence-level, chromatin interactions and higher-order structures like (meta-) topologically associating domains (TADs); (b) study regions omitted from existing prediction approaches using various information sources (e.g., epigenetic information); and (c) improve methods that predict the 3D structure of the chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1624-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarvesh Nikumbh
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Building E1.4, Saarbruecken, D-66123, Germany.
| | - Nico Pfeifer
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, Building E1.4, Saarbruecken, D-66123, Germany.,Present address: Department of Computer Science, University of Tübingen, Sand 14, Tübingen, D-72076, Germany
| |
Collapse
|
5
|
Elmeer K, Sarwath H, Malek J, Baum M, Hamwieh A. New microsatellite markers for assessment of genetic diversity in date palm (Phoenix dactylifera L.). 3 Biotech 2011; 1:91-97. [PMID: 22582150 PMCID: PMC3339606 DOI: 10.1007/s13205-011-0010-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 05/11/2011] [Indexed: 11/29/2022] Open
Abstract
New primer pairs of genomic DNA microsatellite markers were tested to assess the genetic diversity of eleven date palm genotypes. The results indicated that out of thirty, only seven primers (23.3%) failed to amplify the expected PCR fragments, while thirteen primers (43.3%) amplified monomorphic banding patterns and the remaining ten primers (33.4%) generated polymorphic banding patterns. A total of 77 alleles have been observed with a mean of 7.7 alleles per locus. The average of gene diversity was 0.80 ranging from 0.6 (in marker DP168) to 0.9 (in two markers DP157 and DP175). These new co-dominant markers will be a starting point for researchers making use of the markers for genetic mapping and diversity analysis of date palm.
Collapse
Affiliation(s)
- Khaled Elmeer
- Biotechnology Centre, Ministry of Environment, Doha, Qatar
| | - Hina Sarwath
- Biotechnology Centre, Ministry of Environment, Doha, Qatar
| | - Joel Malek
- Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria
| |
Collapse
|
6
|
Gatto B, Vianini E, Lucatello L, Sissi C, Moltrasio D, Pescador R, Porta R, Palumbo M. Effective DNA inhibitors of cathepsin g by in vitro selection. Int J Mol Sci 2008; 9:1008-1023. [PMID: 19325843 PMCID: PMC2658781 DOI: 10.3390/ijms9061008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/06/2008] [Accepted: 06/10/2008] [Indexed: 11/16/2022] Open
Abstract
Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions.
Collapse
Affiliation(s)
- Barbara Gatto
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
- Author to whom correspondence should be addressed; E-mail:
| | - Elena Vianini
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Lorena Lucatello
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Claudia Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Danilo Moltrasio
- Gentium S.p.A., Piazza XX Settembre 2, 22079 Villa Guardia, Italy
| | - Rodolfo Pescador
- Gentium S.p.A., Piazza XX Settembre 2, 22079 Villa Guardia, Italy
| | - Roberto Porta
- Gentium S.p.A., Piazza XX Settembre 2, 22079 Villa Guardia, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
7
|
Bekaert M, Richard H, Prum B, Rousset JP. Identification of programmed translational -1 frameshifting sites in the genome of Saccharomyces cerevisiae. Genome Res 2006; 15:1411-20. [PMID: 16204194 PMCID: PMC1240084 DOI: 10.1101/gr.4258005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Frameshifting is a recoding event that allows the expression of two polypeptides from the same mRNA molecule. Most recoding events described so far are used by viruses and transposons to express their replicase protein. The very few number of cellular proteins known to be expressed by a -1 ribosomal frameshifting has been identified by chance. The goal of the present work was to set up a systematic strategy, based on complementary bioinformatics, molecular biology, and functional approaches, without a priori knowledge of the mechanism involved. Two independent methods were devised. The first looks for genomic regions in which two ORFs, each carrying a protein pattern, are in a frameshifted arrangement. The second uses Hidden Markov Models and likelihood in a two-step approach. When this strategy was applied to the Saccharomyces cerevisiae genome, 189 candidate regions were found, of which 58 were further functionally investigated. Twenty-eight of them expressed a full-length mRNA covering the two ORFs, and 11 showed a -1 frameshift efficiency varying from 5% to 13% (50-fold higher than background), some of which corresponds to genes with known functions. From other ascomycetes, four frameshifted ORFs are found fully conserved. Strikingly, most of the candidates do not display a classical viral-like frameshift signal and would have escaped a search based on current models of frameshifting. These results strongly suggest that -1 frameshifting might be more widely distributed than previously thought.
Collapse
Affiliation(s)
- Michaël Bekaert
- Institut de Génétique et Microbiologie CNRS UMR 8621, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
8
|
Hite JM, Eckert KA, Cheng KC. Factors affecting fidelity of DNA synthesis during PCR amplification of d(C-A)n.d(G-T)n microsatellite repeats. Nucleic Acids Res 1996; 24:2429-34. [PMID: 8710517 PMCID: PMC145946 DOI: 10.1093/nar/24.12.2429] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The susceptibility of microsatellite DNA sequences to insertions and deletions in vivo makes them useful for genetic mapping and for detecting genomic instability in tumors. An in vitro manifestation of this instability is the production of undesirable frameshift products during amplification of (dC-dA)n x (dG-dT)n microsatellites in the polymerase chain reaction (PCR). These products differ from the primary product by multiples of 2 nucleotides. We have tested the hypothesis that factors known to affect the fidelity of DNA synthesis may affect (dC-dA)n x (dG-dT)n frameshifting during the PCR. Neither modifications of pH, dNTP concentration, and Mg++ concentration using Amplitaq, nor the use of thermophilic DNA polymerases including UITma, Pfu, Vent and Deep Vent significantly decreased the production of frameshift products during amplification. However, 3'-->5' exonuclease activity in thermophilic DNA polymerases inhibited the accumulation of PCR products containing non-templated 3' terminal nucleotides. Most interestingly, extension temperatures of 37 degrees C during amplification using the thermolabile DNA polymerases Sequenase 1.0, Sequenase 2.0, and 3'-->5' exonuclease-deficient Klenow fragment greatly decreased the production of frameshift products. This method can improve the resolution of heterozygous or mutant (dC-dA)n x (dG-dT)n alleles differing in size by one or two repeat units.
Collapse
Affiliation(s)
- J M Hite
- Department of Pathology, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033, USA
| | | | | |
Collapse
|
9
|
Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA. A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 1996; 7:359-62. [PMID: 8661717 DOI: 10.1007/s003359900104] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have identified and characterized a new class of polymorphic markers for the canine genome from a simple tetranucleotide repeat sequence, (GAAA)n. Genetic markers derived from this repeat are highly polymorphic compared with other canine microsatellites, yet are stable enough to be useful for following Mendelian inheritance in multigeneration pedigrees. We show further that (GAAA)n repeats are distributed throughout the canine genome and occur with sufficient frequency to be useful in the development of a framework map of the canine genome.
Collapse
Affiliation(s)
- L V Francisco
- Program in Transplantation Biology, Clinical Research Division, M318, Fred Hutchinson Cancer Research Center, 1124 Columbia Street, Seattle, Washington 98104, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
One hundred and fifty breakpoint sites were recorded during an analysis of aphidicolin-ethanol inducible fragile sites (FS) in 56 blood samples and 13 amniocyte cultures and were classified according to the criteria formulated by the Chromosome Coordinating Meeting. The finding of previously unlisted FS in this sample, the altered expression of FS in conditions not usually associated with chromosomal abnormalities and the apparent lack of tissue specificity indicate the importance of one or more fundamental mechanisms operating to produce the diverse associated clinical phenotypes, with the chromosomal fragility representing an intermediate phenotype. Several lines of evidence converge towards the conclusion that FS are a manifestation of an altered state of genetic activity at areas associated with transcriptional regulation, because of their concordance with CpG islands, nuclease sensitive sites, replication origins, zinc finger protein domains and viral integration sites. An investigation is required whether this phenomenon could contribute both to evolutionary diversity through increased recombination, the formation of unstable repeat sequences and variable methylation, and to the expression of multigene disease processes resulting in the production of variable and complex phenotypes, even within families.
Collapse
Affiliation(s)
- I Simonic
- Department of Human Genetics and Developmental Biology, University of Pretoria, South Africa
| | | |
Collapse
|
11
|
Sun HS, Kirkpatrick BW. Exploiting dinucleotide microsatellites conserved among mammalian species. Mamm Genome 1996; 7:128-32. [PMID: 8835529 DOI: 10.1007/s003359900032] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dinucleotide microsatellites are useful for gene mapping projects. Depending upon definition of conservation, published estimates of dinucleotide microsatellite conservation levels vary dramatically (30% to 100%). This study focused on well-characterized genes that contain microsatellites in the human genome. The objective was to examine the feasibility of developing microsatellite markers within genes on the basis of the assumption of microsatellite conservation across distantly related species. Eight genes (Gamma-actin, carcinoembryonic antigen, apolipoprotein A-II, cardiac beta myosin heavy chain, laminin B2 chain, MHC class I CD8 alpha chain, c-reactive protein, and retinoblastoma susceptibility protein) containing large dinucleotide repeat units (N > or = 15), complete genomic structure information, and homologous gene sequences in a second species were selected. Heterologous primers were designed from conserved exon sequences flanking a microsatellite motif. PCR products from bovine and porcine genomic DNA were tested for the presence of microsatellite sequences by Southern blot hybridization with biotin-labeled (CA)12 oligonucleotides. Fragments containing microsatellites were cloned and sequenced. Homology was verified by sequence comparisons between human and corresponding bovine or porcine fragments. Four of sixteen (25%) cross-amplified PCR products contained dinucleotide repetitive sequences with repeat unit lengths of 5 to 23. Two dinucleotide repetitive sequences showed microsatellite length polymorphism, and an additional sequence displayed single-strand conformational polymorphism. Results from this study suggest that exploitation of conserved microsatellite sequences is a useful approach for developing specific genetic markers for comparative mapping purposes.
Collapse
Affiliation(s)
- H S Sun
- Department of Meat and Animal Science, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
12
|
Shimokawa N, Matsuda Y, Yamaguchi M. Genomic cloning and chromosomal assignment of rat regucalcin gene. Mol Cell Biochem 1995; 151:157-63. [PMID: 8569761 DOI: 10.1007/bf01322338] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene for a Ca(2+)-binding protein regucalcin was cloned from a rat genomic library which was constructed in lambda FIX II by screening with radiolabeled probe (complementary DNA of rat liver regucalcin). Positive clone had 19.9 kb insert of size and contained four exons of the gene coding for a rat regucalcin. These exons included the partial coding sequence (61.2% of open reading frame) and the entire 3'-untranslated region of the gene. The nucleotide sequence of exons completely agreed with that of a rat regucalcin cDNA clone. The sequence analysis of the clone showed that the identifier sequence and two simple repeated sequences exist in the intron of the gene. Moreover, chromosomal location of the rat regucalcin gene was determined by direct R-banding fluorescence in situ hybridization (FISH) method with the 19.9 kb clone containing four exons. The regucalcin gene was localized on rat chromosome Xq11.1-12 proximal end.
Collapse
Affiliation(s)
- N Shimokawa
- Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences, University of Shizuoka, Japan
| | | | | |
Collapse
|
13
|
Kitami Y, Inui H, Uno S, Inagami T. Molecular structure and transcriptional regulation of the gene for the platelet-derived growth factor alpha receptor in cultured vascular smooth muscle cells. J Clin Invest 1995; 96:558-67. [PMID: 7615828 PMCID: PMC185230 DOI: 10.1172/jci118068] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PDGF has been shown to contribute to hypertrophy in vascular smooth muscle cells (VSMC). PDGF-AA differentially promotes protein synthesis in VSMC from spontaneously hypertensive rats (SHR) but not in those from Wistar-Kyoto rats (WKY). This observation has led us to postulate a role for PDGF alpha receptor (PDGFR-alpha) in the hypertensive hypertrophy of blood vessels. Western and Northern blot analyses demonstrated a high and specific expression of the PDGFR-alpha protein and mRNA in SHR cells but not in WKY cells. To clarify the mechanism of the differential expression of the PDGFR-alpha gene, we isolated the promoter region of the gene. Studies on the promoter functions indicated that this promoter is active in SHR cells but not in WKY cells. The regulatory domain responsible for this difference was narrowed to the sequence between -246 and -139, which enhanced the promoter activity of SHR fivefold over the basal activity. DNase I footprinting and gel-shift assay indicated that this sequence specifically interact with nuclear proteins from VSMC through the binding site for CCAAT/enhancer-binding proteins, and members of the C/enhancer-binding protein family play a significant role in the strain-specific transcription of the PDGFR-alpha gene.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Gene Expression Regulation
- Hypertension/genetics
- Molecular Sequence Data
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Promoter Regions, Genetic
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Platelet-Derived Growth Factor/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Y Kitami
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
14
|
Fátyol K, Cserpán I, Praznovszky T, Keresö J, Hadlaczky G. Cloning and molecular characterization of a novel chromosome specific centromere sequence of Chinese hamster. Nucleic Acids Res 1994; 22:3728-36. [PMID: 7937084 PMCID: PMC308354 DOI: 10.1093/nar/22.18.3728] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We isolated and characterized the first chromosome-specific satellite DNA (HC2sat) of Chinese hamster. This novel satellite was localized to the pericentric region of hamster chromosome 2. The 2.8 kb long repeat unit of HC2sat was identified and two such units were sequenced. Extended short range periodicity could not be revealed in repeat units. These elements are amongst the largest satellite repeat units reported from mammals to date. HC2sat is a major constituent of the pericentric region of CHO chromosome 2 representing a 7-14 Mb long DNA segment. Studies of long range organization of HC2sat indicated that the formation of the satellite array might occur in different phases and involved different amplification mechanisms.
Collapse
Affiliation(s)
- K Fátyol
- Institute of Genetics, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
15
|
Wang ZY, Masaharu N, Qiu QQ, Takimoto Y, Deuel TF. An S1 nuclease-sensitive region in the first intron of human platelet-derived growth factor A-chain gene contains a negatively acting cell type-specific regulatory element. Nucleic Acids Res 1994; 22:457-64. [PMID: 8127685 PMCID: PMC523604 DOI: 10.1093/nar/22.3.457] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The platelet-derived growth factor (PDGF) A-chain gene is expressed in a tissue- and developmental stage-specific manner. Here we identify an S1 nuclease sensitive region within the first intron that functions as a negative regulatory element in HeLa but not in human glioblastoma (A172) cells in transient transfection assays. A 147 bp DNA fragment that contains this element functions in a position and orientation independent manner to negatively regulate both the PDGF A-chain promoter and the heterologous herpes simplex virus thymidine kinase (TK) promoter. The cell-type specific effect of this 147 bp DNA fragment is seen when it is located downstream but not upstream of the reporter gene driven by either the PDGF A-chain or TK promoters. The negative regulatory element has been localized to a 24 bp DNA sequence within the S1 sensitive site that retains negative regulatory activity and recognizes a nuclear protein in HeLa but not in A172 cells. Furthermore, the 24 bp element functions as a cell type-specific negative element independent of its position. These results suggest that a functional silencer within the first intron exhibits a non-B-form DNA structure under superhelical stress in vitro and may contribute to the cell type-specific transcriptional regulation of PDGF A-chain gene in vivo.
Collapse
Affiliation(s)
- Z Y Wang
- Department of Medicine, Jewish Hospital of St Louis, MO 63110
| | | | | | | | | |
Collapse
|
16
|
Baron B, Poirier C, Simon-Chazottes D, Barnier C, Guénet JL. A new strategy useful for rapid identification of microsatellites from DNA libraries with large size inserts. Nucleic Acids Res 1992; 20:3665-9. [PMID: 1386425 PMCID: PMC334016 DOI: 10.1093/nar/20.14.3665] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microsatellites are new powerful polymorphic markers used for gene mapping. Their characterization requires that all the sequence surrounding the repeat be known in order to be able to design primers for PCR amplification. However, when using DNA libraries with large cloned inserts, this sequence characterization is not immediately practicable. In this paper, we describe a new strategy, based both on the use of a microsatellite specific probing and on the creation of nested deleted clones with the Exonuclease III, in order to position microsatellites in a range allowing direct sequencing. This method was applied to the screening of a mouse chromosome 19 DNA specific library. In this way, thirteen clones were identified by specific probing and seven were submitted to the nested deletion strategy. Five of them presented microsatellite sequences in specific deleted subclones which were selected and sequenced. Primers were designed for each of them and polymorphism between the genomes of several inbred strain of mouse have been determined. These microsatellites were mapped, three of them to chromosome 19 and two to chromosome 11.
Collapse
Affiliation(s)
- B Baron
- Unité de Génétique des Mammifères, l'Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Cornall RJ, Friedman JM, Todd JA. Mouse microsatellites from a flow-sorted 4:6 Robertsonian chromosome. Mamm Genome 1992; 3:620-4. [PMID: 1450512 DOI: 10.1007/bf00352478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Twenty microsatellites were generated from a previously characterized lambda gt10 library containing C57BL/6J mouse DNA from a flow-sorted 4:6 Robertsonian chromosome. These sequences were analyzed for size variation between different strains of mice with the polymerase chain reaction (PCR) and mapped by use of either strain distribution patterns (SDPs) in recombinant inbred (RI) strains, or intra- and interspecific backcrosses. Eighty-five percent of the sequences showed allelic variations between different inbred strains of mice and the wild mouse, Mus spretus, and 70% were variant between inbred strains. Eight (62%) of the 13 repeats that have been mapped lie on Chromosomes (Chr) 4 and 6. This approach is an effective way of generating informative markers on specific chromosomes.
Collapse
Affiliation(s)
- R J Cornall
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Headington, UK
| | | | | |
Collapse
|
18
|
Abstract
Six genomic clones were characterized containing members of the human V beta 6 subfamily of T cell antigen receptor genes. There were four major findings. (a) New V beta genes were discovered, including V beta 6.10, V beta 13.4, V beta 13.5, and V beta 5.5. (b) Members of the V beta 13, V beta 6, and V beta 5 subfamilies cluster together in the V beta locus and may have evolved through multiple duplication events of an ancestral cassette containing V beta 13-V beta 6-V beta 5 genes. These V beta subfamilies are used by an estimated one-third of T cells in humans and probably represent a highly useful component of the V beta repertoire. (c) The promoters of V beta 13, V beta 6, and V beta 5 genes contain conserved decamer motifs, but discrete differences were observed between promoters of different V beta subfamilies, raising the question of different transcriptional control depending on V beta subfamily usage. (d) The new V beta 6.10 gene is probably a pseudogene, which may have been inactivated due to retrotransposition of Alu elements into its promoter region, a mutation affecting a highly conserved cysteine residue or mutations of the 3' recombinase signal sequence.
Collapse
Affiliation(s)
- Y Li
- Department of Medicine, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
19
|
Dahl HH, Hutchison WM, Guo Z, Forrest SM, Hansen LL. Polymorphisms in the human X-linked pyruvate dehydrogenase E1 alpha gene. Hum Genet 1991; 87:49-53. [PMID: 1674716 DOI: 10.1007/bf01213091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyruvate dehydrogenase E1 alpha deficiency is an X-chromosome-linked disorder, often with fatal consequences. We have searched for genetically useful polymorphisms in or near this gene. No restriction fragment length polymorphisms were detected using a battery of 36 different restriction enzymes and probing with a full-length cDNA fragment, or two single-copy genomic fragments located within intron 8, and 15 kb 3' of the coding region, respectively. The chemical cleavage method was then applied to the detection of base changes in or near the gene. One polymorphism was found in exon 8 of the coding region. However, no base changes were detected in intron 3 or in the part of intron 8 covered by fragment gB2. Three blocks of microsatellite DNA containing variable numbers of CA-repeats were isolated from the 5' end of the gene and characterized. Length polymorphisms in these microsatellite DNAs were analysed using the polymerase chain reaction. Although the three loci are tightly linked, the polymorphisms appear not to be in disequilibrium, making them useful markers in linkage studies of the pyruvate dehydrogenase E1 alpha gene. Of 31 females analysed 12(39%) were heterozygous for at least one length polymorphism of the three (CA)n alleles.
Collapse
Affiliation(s)
- H H Dahl
- Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
20
|
Wilson GL, Fox CH, Fauci AS, Kehrl JH. cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions. J Exp Med 1991; 173:137-46. [PMID: 1985119 PMCID: PMC2118772 DOI: 10.1084/jem.173.1.137] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have cloned a full-length cDNA for the B cell membrane protein CD22, which is referred to as B lymphocyte cell adhesion molecule (BL-CAM). Using subtractive hybridization techniques, several B lymphocyte-specific cDNAs were isolated. Northern blot analysis with one of the clones, clone 66, revealed expression in normal activated B cells and a variety of B cell lines, but not in normal activated T cells, T cell lines, Hela cells, or several tissues, including brain and placenta. One major transcript of approximately 3.3 kb was found in B cells although several smaller transcripts were also present in low amounts (approximately 2.6, 2.3, and 1.6 kb). Sequence analysis of a full-length cDNA clone revealed an open reading frame of 2,541 bases coding for a predicted protein of 847 amino acids with a molecular mass of 95 kD. The BL-CAM cDNA is nearly identical to a recently isolated cDNA clone for CD22, with the exception of an additional 531 bases in the coding region of BL-CAM. BL-CAM has a predicted transmembrane spanning region and a 140-amino acid intracytoplasmic domain. Search of the National Biological Research Foundation protein database revealed that this protein is a member of the immunoglobulin super family and that it had significant homology with three homotypic cell adhesion proteins: carcinoembryonic antigen (29% identity over 460 amino acids), myelin-associated glycoprotein (27% identity over 425 amino acids), and neural cell adhesion molecule (21.5% over 274 amino acids). Northern blot analysis revealed low-level BL-CAM mRNA expression in unactivated tonsillar B cells, which was rapidly increased after B cell activation with Staphylococcus aureus Cowan strain 1 and phorbol myristate acetate, but not by various cytokines, including interleukin 4 (IL-4), IL-6, and gamma interferon. In situ hybridization with an antisense BL-CAM RNA probe revealed expression in B cell-rich areas in tonsil and lymph node, although the most striking hybridization was in the germinal centers. COS cells transfected with a BL-CAM expression vector were immunofluorescently stained positively with two different CD22 antibodies, each of which recognizes a different epitope. Additionally, both normal tonsil B cells and a B cell line were found to adhere to COS transfected with BL-CAM in the sense but not the antisense direction.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G L Wilson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
21
|
Abstract
The complete DNA sequence of the 1.7 kilobase pairs (kbp) 5' of the rat growth hormone gene (rGH) has been determined and analyzed for Z-DNA-forming potential. Regions of alternating purine-pyrimidine (APP) sequences located between -1047 and -986 [(GT)31], between -445 and -433 bp, and between -426 and -403 bp relative to the rGH RNA transcription initiation site were identified and shown to form Z-DNA in negatively supercoiled plasmids by two-dimensional gel electrophoresis. Free-energy calculations indicated that Z-DNA forms most readily in the proximal Z-DNA regions. Diethyl pyrocarbonate footprinting of physiologically supercoiled plasmid DNA confirmed the presence of Z-DNA from -444 to -404 bp spanning the two most proximal APP sequences and a short non-APP sequence in between. DNA sequence analysis also predicted a region of DNA curvature near this proximal Z-DNA region. Formation of Z-DNA in the distal Z-DNA region consisting of a (GT)31 repeat was constrained at physiological plasmid superhelical densities. This may be related to the presence of DNA sequences (-1584 to -1559) 512 bp upstream of (GT)31 that undergo cruciform formation and thereby utilize the available free energy. Removal of 580 bp containing the cruciform region resulted in Z-DNA formation within (GT)31, thus demonstrating that deletion mutations can exert topological changes at a distance within the rGH 5'-flanking region. Methylation of two specific cytosines in the rGH 5'-flanking DNA that have been associated with inhibition of rGH promoter activity had no effect on Z-DNA formation. No evidence for DNA secondary structure formation within the rGH second exon-intron or 3'-flanking region was observed. We conclude that the rGH 5'-flanking region undergoes secondary-structure formation at physiological superhelical densities, thus providing a potential mechanism(s) for modulating rGH activity.
Collapse
|
22
|
Abstract
The complete DNA sequence of the 1.7 kilobase pairs (kbp) 5' of the rat growth hormone gene (rGH) has been determined and analyzed for Z-DNA-forming potential. Regions of alternating purine-pyrimidine (APP) sequences located between -1047 and -986 [(GT)31], between -445 and -433 bp, and between -426 and -403 bp relative to the rGH RNA transcription initiation site were identified and shown to form Z-DNA in negatively supercoiled plasmids by two-dimensional gel electrophoresis. Free-energy calculations indicated that Z-DNA forms most readily in the proximal Z-DNA regions. Diethyl pyrocarbonate footprinting of physiologically supercoiled plasmid DNA confirmed the presence of Z-DNA from -444 to -404 bp spanning the two most proximal APP sequences and a short non-APP sequence in between. DNA sequence analysis also predicted a region of DNA curvature near this proximal Z-DNA region. Formation of Z-DNA in the distal Z-DNA region consisting of a (GT)31 repeat was constrained at physiological plasmid superhelical densities. This may be related to the presence of DNA sequences (-1584 to -1559) 512 bp upstream of (GT)31 that undergo cruciform formation and thereby utilize the available free energy. Removal of 580 bp containing the cruciform region resulted in Z-DNA formation within (GT)31, thus demonstrating that deletion mutations can exert topological changes at a distance within the rGH 5'-flanking region. Methylation of two specific cytosines in the rGH 5'-flanking DNA that have been associated with inhibition of rGH promoter activity had no effect on Z-DNA formation. No evidence for DNA secondary structure formation within the rGH second exon-intron or 3'-flanking region was observed. We conclude that the rGH 5'-flanking region undergoes secondary-structure formation at physiological superhelical densities, thus providing a potential mechanism(s) for modulating rGH activity.
Collapse
|
23
|
Naylor LH, Clark EM. d(TG)n.d(CA)n sequences upstream of the rat prolactin gene form Z-DNA and inhibit gene transcription. Nucleic Acids Res 1990; 18:1595-601. [PMID: 2158081 PMCID: PMC330531 DOI: 10.1093/nar/18.6.1595] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two alternating purine-pyrimidine sequences of the d(TG)n.d(CA)n-type (170bp and 60 bp in length) lie upstream of the rat prolactin (rPRL) gene. Conformational studies of plasmids containing these sequences indicate that both form left-handed (Z) DNA, with transitions initiating at superhelical densities of -0.041 and -0.044 respectively. These alternating purine-pyrimidine (APP) sequences are hypersensitive to cleavage with S1 nuclease both at the boundaries and within these APP repeats, where there is a loss in APP alternation. We have investigated the function of one of these Z-DNA sequences in the regulation of rPRL transcription, by linking regions of the 5' flanking sequence of the rPRL gene to a reporter gene encoding chloramphenicol acetyltransferase (CAT), and transferring these plasmids into GH3 pituitary tumour cell lines. The major conclusion from these studies is that the 170bp repeat exerts a negative effect on the transcription of the rPRL gene, and also down-regulates the expression of the fusion gene pRSVcat when cloned 50bp upstream of the Rous sarcoma virus promoter. However, despite its proximity to an estrogen response element in prolactin, this sequence does not affect the responsiveness of the rPRL gene to estrogen.
Collapse
Affiliation(s)
- L H Naylor
- MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, UK
| | | |
Collapse
|
24
|
Vogt P. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code". Hum Genet 1990; 84:301-36. [PMID: 2407640 DOI: 10.1007/bf00196228] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review is based on a thorough description of the structure and sequence organization of tandemly organized repetitive DNA sequence families in the human genome; it is aimed at revealing the locus-specific sequence organization of tandemly repetitive sequence structures as a highly conserved DNA sequence code. These repetitive so-called "super-structures" or "higher-order" structures are able to attract specific nuclear proteins. I shall define this code therefore as a "chromatin folding code". Since locus-specific superstructures of tandemly repetitive sequence units are present not only in the chromosome centromere or telomere region but also on the arms of the chromosomes, I assume that their chromatin folding code may contribute to, or even organize, the folding pathway of the chromatin chain in the nucleus. The "chromatin folding code" is based on its specific "chromatin code", which describes the sequence dependence of the helical pathway of the DNA primary sequence (i.e., secondary structure) entrapping the histone octamers in preferential positions. There is no periodicity in the distribution of the nucleosomes along the DNA chain. The folding pathway of the nucleosomal chromatin chain is however still flexible and determined by e.g., the length of the DNA chain between the nucleosomes. The fixation and stabilization of the chromatin chain in the space of the nucleus (i.e., its "functional state") may be mediated by additionally unique DNA protein interactions that are dictated by the "chromatin folding code". The unique DNA-protein interactions around the centromeres of human chromosomes are revealed for example by their "C-banding". I wish to stress that it is not my aim to relate each block of repetitive DNA sequences to a specific "chromatin folding code", but I shall demonstrate that there is an inherent potential for tandem repeated sequence units to develop a locus-specific repetitive higher order structure; this potential may create a specific chromatin folding code whenever a selection force exists at the position of this repetitive DNA structure in the genome.
Collapse
Affiliation(s)
- P Vogt
- Institut für Humangenetik und Anthropologie der Universität, Heidelberg, Federal Republic of Germany
| |
Collapse
|
25
|
Li Y, Szabo P, Robinson MA, Dong B, Posnett DN. Allelic variations in the human T cell receptor V beta 6.7 gene products. J Exp Med 1990; 171:221-30. [PMID: 1967299 PMCID: PMC2187675 DOI: 10.1084/jem.171.1.221] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Polymorphisms of human TCR gene products have been suggested by the description of a mAb, OT145, that identifies a subset of TCRs in some individuals but not in others (6). Here we demonstrate that this mAb detects a TCR allotype of the V beta 6.7 gene. Two allelic products of this V gene differ by two nonconservative amino acid substitutions. The mAb OT145 appears to react with V beta 6.7 a gene products ("+" allele), but not with V beta 6.7b gene products ("-" allele). This represents the first direct demonstration that TCR V gene allotypes exist and provides a possible explanation for immune responses under the control of TCR V genes and for disease associations with TCR V genes.
Collapse
Affiliation(s)
- Y Li
- Department of Medicine, Cornell University Medical College, New York, New York 10021
| | | | | | | | | |
Collapse
|
26
|
Abstract
Dot blot and transblot enzyme-linked immunosorbent assays (e.l.i.s.a.) are described which provide sensitive non-radioactive methods for screening Z-DNA-specific antisera and for detecting Z-DNA in polydeoxyribonucleotides and supercoiled plasmids. In the alkaline phosphatase dot blot e.l.i.s.a., Z-DNA, Br-poly(dG-dC).poly(dG-dC), or B-DNA, poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), Br-poly(dI-dC).poly(dI-dC), or salmon sperm DNA were spotted onto nitrocellulose discs and baked. The e.l.i.s.a. was conducted in 48-well culture dishes at 37 degrees C using a rabbit polyclonal antiserum developed against Br-poly(dG-dC).poly(dG-dC), an alkaline phosphatase-conjugated second antibody, and p-nitrophenol as the substrate. Under conditions where antibody concentrations were not limiting, alkaline phosphatase activity was linear for 2 h. Dot blot e.l.i.s.a. conditions are described which allow quantification of Z-DNA [Br-poly(dG-dC).poly(dG-dC)] within the range 5-250 ng. Dot blot and transblot horseradish peroxidase e.l.i.s.a. are described that detect Z-DNA within supercoiled plasmid DNAs immobilized on diazophenylthioether (DPT) paper. In the transblot e.l.i.s.a., plasmid pUC8 derivatives containing 16, 24, or 32 residues of Z-DNA were electrophoresed in agarose gels and electrophoretically transferred to DPT paper. Z-DNA-antibody complexes were detected by the horseradish peroxidase-catalysed conversion of 4-chloro-1-naphthol to a coloured product that was covalently bound to the DPT paper. Z-DNA antibody reactivity was specific for supercoiled Z-DNA containing plasmids after removal of the antibodies cross-reactive with B-DNA by absorption onto native DNA-cellulose. The transblot e.l.i.s.a. was sensitive enough to detect 16 base pairs of alternating G-C residues in 100 ng of pUC8 DNA.
Collapse
Affiliation(s)
- M J Thomas
- Department of Pharmacology and Toxicology, West Virginia University Medical Center, Morgantown 26506
| | | |
Collapse
|
27
|
Bhandari B, Beckwith KD, Miller RE. Cloning, nucleotide sequence, and potential regulatory elements of the glutamine synthetase gene from murine 3T3-L1 adipocytes. Proc Natl Acad Sci U S A 1988; 85:5789-93. [PMID: 2901089 PMCID: PMC281850 DOI: 10.1073/pnas.85.16.5789] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming); EC 6.3.1.2] specific activity, cellular content, mRNA abundance, and gene transcription rate increase by greater than 100-fold during adipocyte differentiation of 3T3-L1 cells. In 3T3-L1 adipocytes dexamethasone increases, whereas insulin as well as N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate decrease, glutamine synthetase gene expression. We analyzed the nucleotide sequence of a 1.9-kilobase Sal I-EcoRI restriction fragment from a 3T3-L1 glutamine synthetase genomic clone. This genomic fragment is composed of 1851 base pairs (bp) and includes the first exon and 1029 bp of the 5' flanking sequence. The 600 bp at the 3' end of the 1.9-kb Sal I-EcoRI restriction fragment constitute an open reading frame. We identified the transcription start site at a location 222 bp upstream of the glutamine synthetase coding sequences. The 5' flanking region of the gene encompasses several potential regulatory elements including TATA and CAAT sequences and a 40-bp poly(dT-dG).poly(dC-dA) putative enhancer element. Potential hormone and fat-specific regulatory elements are also located upstream of the transcription start site; they include glucocorticoid and cAMP response elements and fat-specific elements. These potential regulatory elements could account for the differentiation-associated changes and hormone-mediated changes seen in glutamine synthetase gene transcription and mRNA abundance.
Collapse
Affiliation(s)
- B Bhandari
- Department of Medicine, Cleveland Veterans Administration Medical Center, OH
| | | | | |
Collapse
|
28
|
Vashakidze RP, Chelidze MG, Mamulashvili NA, Kalandarishvili KG, Tsalkalamanidze NV. Nuclear proteins from Drosophila melanogaster embryos which specifically bind to simple homopolymeric sequences poly [(dT-dG).(dC-dA)]. Nucleic Acids Res 1988; 16:4989-94. [PMID: 3133638 PMCID: PMC336711 DOI: 10.1093/nar/16.11.4989] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The binding of nuclear proteins from Drosophila melanogaster embryos to simple homopolymeric DNA sequences was studied. Nuclear proteins were electrophoresed, transferred onto nitrocellulose and incubated with labelled synthetic homopolymers or natural fragment containing simple sequences. Several protein bands were found in the 65-72 KDa region, which specifically bind both poly [(dG-dT).(dA-dC)] and a natural fragment containing 40 bp of this sequence. These proteins do not bind to homopolymers poly [(dA).(dT)] and poly [(dG-dA).(dC-dT)], or other foreign DNAs.
Collapse
Affiliation(s)
- R P Vashakidze
- Institute of Molecular Biology and Biological Physics, Georgian SSR Academy of Sciences, Tbilisi, USSR
| | | | | | | | | |
Collapse
|
29
|
Cis-acting sequences that modulate atrial natriuretic factor gene expression. Proc Natl Acad Sci U S A 1988; 85:4104-8. [PMID: 2967498 PMCID: PMC280371 DOI: 10.1073/pnas.85.11.4104] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nucleotide sequences necessary to direct transcription of the gene encoding atrial natriuretic factor (ANF) in neonatal and fetal hearts have been defined by using expression of the prokaryotic marker gene chloramphenicol acetyltransferase (CAT) as a functional assay. Hybrid ANF-CAT genes were introduced into primary cultured cardiocytes by electroporation. A 3.4-kilobase (kb) fragment containing sequences on the 5' side of the ANF gene promoted significant CAT activity in atrial but not ventricular cardiocytes derived from 1-day-old rats. Deletion analysis of putative regulatory regions demonstrated that 2.4 kb of 5' ANF sequences were sufficient for high-level atrial transcription, whereas hybrid genes containing less than 700 base pairs of ANF sequences promoted less CAT activity. Cardiocytes derived from embryonic ventricles expressed the 3.4-kb ANF-CAT hybrid gene at levels comparable to atrial cells, suggesting that the nucleotide sequences controlling developmental regulation of ANF expression are contained in this 5' region. Nucleotide sequence analysis of this 3.6-kb region identified segments that may contribute to the regulated expression of the ANF gene.
Collapse
|
30
|
Levinson G, Gutman GA. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res 1987; 15:5323-38. [PMID: 3299269 PMCID: PMC305964 DOI: 10.1093/nar/15.13.5323] [Citation(s) in RCA: 254] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Slipped-strand mispairing (SSM) may play an major role in repetitive DNA sequence evolution by generating large numbers of short frameshift mutations within simple tandem repeats. Here we examine the frequency and size spectrum of frameshifts generated within poly-CA/TG sequences inserted into bacteriophage M13 in Escherichia coli hosts. The frequency of detectable frameshifts within a 40 bp tract of poly-CA/TG is greater than one percent and increases more than linearly with length, being lower by a factor of four in a 22 bp target sequence. The frequency increases more than 13-fold in mutL and mutS host cells, suggesting that a high proportion of frameshift events are normally repaired by methyl-directed mismatch repair. Of the 87 sequenced frameshifts in this study, 96% result from deletion or insertion of only or two 2 bp repeat units. The most frequent events are 2 bp deletions, 2 bp insertions, and 4 bp deletions, the relative frequencies of these events being about 18:6:1.
Collapse
|
31
|
Thompson JA, Pande H, Paxton RJ, Shively L, Padma A, Simmer RL, Todd CW, Riggs AD, Shively JE. Molecular cloning of a gene belonging to the carcinoembryonic antigen gene family and discussion of a domain model. Proc Natl Acad Sci U S A 1987; 84:2965-9. [PMID: 3033672 PMCID: PMC304781 DOI: 10.1073/pnas.84.9.2965] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Carcinoembryonic antigen (CEA) is a glycoprotein important as a tumor marker for colonic cancer. Immunological and biochemical studies have shown it to be closely related to a number of other glycoproteins, which together make up a gene family. We have cloned a member of this gene family by using long oligonucleotide probes (42-54 nucleotides) based on our protein sequence data for CEA and NCA (nonspecific cross-reacting antigen) and on human codon usage. The clone obtained (lambda 39.2) hybridizes with six probes and has a 15-kilobase insert. The 5' end of the gene is contained within a 2700-base-pair EcoRI fragment, which hybridizes with five of the six synthetic probes. Sequencing of the 5' end region revealed the location and structure of one exon and two putative intron boundaries. The exon encodes part of the leader sequence and the NH2-terminal 107 amino acids of NCA. Southern blot analysis of human normal and tumor DNA, using as probes two lambda 39.2 fragments that contain coding sequences, suggests the existence of 9-11 genes for the CEA family. One of the restriction fragments described here has been used by Zimmermann et al. [Zimmermann, W., Ortlieb, B., Friedrich, R. & von Kleist, S. (1987) Proc. Natl. Acad. Sci. USA 84, 2960-2964] to isolate partial cDNA clones for CEA. The identity of this clone was verified with our protein sequence data [Paxton, R., Mooser, G., Pande, H., Lee, T.D. & Shively, J.E. (1987) Proc. Natl. Acad. Sci. USA 84, 920-924]. We discuss a domain structure for CEA based on the CEA sequence data and the NCA exon sequence data. It is likely that this gene family evolved from a common ancestor shared with neural cell adhesion molecule and alpha 1 B-glycoprotein and is perhaps a family within the immunoglobulin superfamily.
Collapse
|
32
|
Viegas-Pequignot E, Malfoy B, Sabatier L, Dutrillaux B. Different reactivity of Z-DNA antibodies with human chromosomes modified by actinomycin D and 5-bromodeoxyuridine. Hum Genet 1987; 75:114-9. [PMID: 3817806 DOI: 10.1007/bf00591070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Antibodies against Z-DNA react with fixed metaphase chromosomes of man and other mammals. Indirect immunofluorescence staining shows that chromosomal segments corresponding to R- and T-bands preferentially fix Z-DNA antibodies. In this work Z-DNA antibodies were used as a probe for DNA conformation in euchromatin of fixed human chromosomes whose condensation or staining were modified by actinomycin D (AMD) and by 5-bromodeoxyuridine (BrdU). Treatments with AMD and BrdU were performed to induce a G-banding by modification of chromosomal segments corresponding to R- and T-bands. Long BrdU treatments were used to induce asymmetrical and partially undercondensed chromosomes by substitution of thymidine in one or both DNA strand. Our results show a clear difference of Z-DNA antibodies reactivity after AMD or BrdU treatment. The G-banding obtained after AMD treatment is not reversed by Z-DNA antibodies staining since these antibodies bind very weakly to the undercondensed R-bands. On the other hand, the G-banding obtained by BrdU is completely reversed giving typical R-banding, as on untreated chromosomes. For asymmetrical chromosomes an R-, T-banding pattern is always observed but there is a decrease of the fluorescence intensity proportional to the degree of BrdU incorporation. We conclude that AMD treatment greatly disturbs Z-DNA antibodies binding suggesting a change in DNA conformation, whereas BrdU treatments do not suppress but only weaken the specific binding of Z-DNA antibodies on R- and T-bands. The direct involvement of thymidine substitution in DNA sequences recognized by Z-DNA antibodies is discussed.
Collapse
|
33
|
Tissue-specific expression of the mouse dioxin-inducible P(1)450 and P(3)450 genes: differential transcriptional activation and mRNA stability in liver and extrahepatic tissues. Mol Cell Biol 1987. [PMID: 3785172 DOI: 10.1128/mcb.6.5.1471] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the P(1)450 and P(3)450 genes was examined in liver and five extrahepatic tissues of mice after they were treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3-methylcholanthrene. All six tissues were shown to have increased P(1)450 and P(3)450 mRNA concentrations after treatment with these inducers. P(3)450 mRNA induction was more sensitive than P(1)450 mRNA induction to small doses of TCDD in liver, kidney, and lung. When transcription run-on assays were compared with mRNA prevalence, control P(3)450 mRNA in liver, kidney, and lung was shown to be 20 to 30 times more stable than control P(1)450 mRNA. After TCDD treatment the increases in mRNA concentrations did not necessarily parallel the increases in transcriptional rate. Thus, the inducer appeared to enhance mRNA stability in some instances. This was evident for liver P(1)450 mRNA, in which an 8-fold rise in transcription was associated with a 27-fold increase in mRNA content, and for kidney P(3)450 mRNA, in which a 2-fold rise in transcription was accompanied by a 12-fold increase in mRNA content. In the kidney and lung of control and TCDD-treated mice, transcriptional rates of the P(3)450 gene were at least 10-fold less than those of the P(1)450 gene. These data indicate that even though both genes are controlled by the same receptor, striking tissue-specific differences in transcription and mRNA stabilization affect the final mRNA concentrations.
Collapse
|
34
|
The ubiquitous potential Z-forming sequence of eucaryotes, (dT-dG)n . (dC-dA)n, is not detectable in the genomes of eubacteria, archaebacteria, or mitochondria. Mol Cell Biol 1987. [PMID: 3097515 DOI: 10.1128/mcb.6.8.3010] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential Z-forming sequence (dT-dG)n . (dC-dA)n is an abundant, interspersed repeat element that is ubiquitous in eucaryotic nuclear genomes. We report that in contrast to eucaryotic nuclear DNA, the genomes of eubacteria, archaebacteria, and mitochondria lack this sequence, since even a single tract of greater than or equal to 14 base pairs in length is not detectable through either hybridization or sequence analysis. Interestingly, the phylogenetic distribution of the (dT-dG)n . (dC-dA)n repeat exhibits a striking parallel to that of (dT-dC)n . (dG-dA)n, but not to other homocopolymeric sequences such as (dC-dG)n . (dC-dG)n or (dT-dA)n . (dT-dA)n.
Collapse
|
35
|
Gross DS, Garrard WT. The ubiquitous potential Z-forming sequence of eucaryotes, (dT-dG)n . (dC-dA)n, is not detectable in the genomes of eubacteria, archaebacteria, or mitochondria. Mol Cell Biol 1986; 6:3010-3. [PMID: 3097515 PMCID: PMC367874 DOI: 10.1128/mcb.6.8.3010-3013.1986] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The potential Z-forming sequence (dT-dG)n . (dC-dA)n is an abundant, interspersed repeat element that is ubiquitous in eucaryotic nuclear genomes. We report that in contrast to eucaryotic nuclear DNA, the genomes of eubacteria, archaebacteria, and mitochondria lack this sequence, since even a single tract of greater than or equal to 14 base pairs in length is not detectable through either hybridization or sequence analysis. Interestingly, the phylogenetic distribution of the (dT-dG)n . (dC-dA)n repeat exhibits a striking parallel to that of (dT-dC)n . (dG-dA)n, but not to other homocopolymeric sequences such as (dC-dG)n . (dC-dG)n or (dT-dA)n . (dT-dA)n.
Collapse
|
36
|
Kimura S, Gonzalez FJ, Nebert DW. Tissue-specific expression of the mouse dioxin-inducible P(1)450 and P(3)450 genes: differential transcriptional activation and mRNA stability in liver and extrahepatic tissues. Mol Cell Biol 1986; 6:1471-7. [PMID: 3785172 PMCID: PMC367672 DOI: 10.1128/mcb.6.5.1471-1477.1986] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Expression of the P(1)450 and P(3)450 genes was examined in liver and five extrahepatic tissues of mice after they were treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3-methylcholanthrene. All six tissues were shown to have increased P(1)450 and P(3)450 mRNA concentrations after treatment with these inducers. P(3)450 mRNA induction was more sensitive than P(1)450 mRNA induction to small doses of TCDD in liver, kidney, and lung. When transcription run-on assays were compared with mRNA prevalence, control P(3)450 mRNA in liver, kidney, and lung was shown to be 20 to 30 times more stable than control P(1)450 mRNA. After TCDD treatment the increases in mRNA concentrations did not necessarily parallel the increases in transcriptional rate. Thus, the inducer appeared to enhance mRNA stability in some instances. This was evident for liver P(1)450 mRNA, in which an 8-fold rise in transcription was associated with a 27-fold increase in mRNA content, and for kidney P(3)450 mRNA, in which a 2-fold rise in transcription was accompanied by a 12-fold increase in mRNA content. In the kidney and lung of control and TCDD-treated mice, transcriptional rates of the P(3)450 gene were at least 10-fold less than those of the P(1)450 gene. These data indicate that even though both genes are controlled by the same receptor, striking tissue-specific differences in transcription and mRNA stabilization affect the final mRNA concentrations.
Collapse
|
37
|
Rao CD, Igarashi H, Chiu IM, Robbins KC, Aaronson SA. Structure and sequence of the human c-sis/platelet-derived growth factor 2 (SIS/PDGF2) transcriptional unit. Proc Natl Acad Sci U S A 1986; 83:2392-6. [PMID: 3517869 PMCID: PMC323303 DOI: 10.1073/pnas.83.8.2392] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The structure of the normal human c-sis/platelet-derived growth factor 2 (SIS/PDGF2) transcript was determined by a combination of cDNA cloning, nuclease S1 mapping, and primer extension. Nucleotide sequence analysis revealed that the 3373-nucleotide SIS/PDGF2 mRNA contained only a 723-base-pair (bp) coding sequence for the PDGF2 precursor polypeptide. The coding sequence was flanked by long 5' (1022 bp) and 3' (1625 bp) untranslated regions. The 5' noncoding region, as well as upstream flanking genomic sequences, contained clusters of specific short repeat sequences. A consensus transcriptional promoter sequence, TATAAA, was identified 24 bp upstream of the mRNA start site and an enhancer-like "TG element" was detected about 180 bp downstream from the site of polyadenylylation. These findings identify putative regulatory elements of the SIS/PDGF2 gene.
Collapse
|
38
|
Yu-Lee LY, Richter-Mann L, Couch CH, Stewart AF, Mackinlay AG, Rosen JM. Evolution of the casein multigene family: conserved sequences in the 5' flanking and exon regions. Nucleic Acids Res 1986; 14:1883-902. [PMID: 3952000 PMCID: PMC339580 DOI: 10.1093/nar/14.4.1883] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The rat alpha- and bovine alpha s1-casein genes have been isolated and their 5' sequences determined. The rat alpha-, beta-, gamma- and bovine alpha s1-casein genes contain similar 5' exon arrangements in which the 5' noncoding, signal peptide and casein kinase phosphorylation sequences are each encoded by separate exons. These findings support the hypothesis that during evolution, the family of casein genes arose by a process involving exon recruitment followed by intragenic and intergenic duplication of a primordial gene. Several highly conserved regions in the first 200 base pairs of the 5' flanking DNA have been identified. Additional sequence homology extending up to 550 base pairs upstream of the CAP site has been found between the rat alpha- and bovine alpha s1-casein sequences. Unexpectedly, the 5' flanking promoter regions are conserved to a greater extent than both the entire mature coding and intron regions of these genes. These conserved 5' flanking sequences may contain potential cis regulatory elements which are responsible for the coordinate expression of the functionally-related casein genes during mammary gland development.
Collapse
|
39
|
Rando RF, Groff DE, Chirikjian JG, Lancaster WD. Isolation and characterization of a novel human papillomavirus type 6 DNA from an invasive vulvar carcinoma. J Virol 1986; 57:353-6. [PMID: 3001357 PMCID: PMC252735 DOI: 10.1128/jvi.57.1.353-356.1986] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human papillomavirus type 6 (HPV-6) DNA was detected in a rapidly growing vulvar verrucous carcinoma and two recurrent tumor samples. The viral DNA (HPV-6vc) was molecularly cloned and found to have a high degree of DNA sequence homology to HPV-6b DNA. Comparison of restriction endonuclease cleavage patterns between HPV-6b and HPV-6vc genomes and DNA sequencing analysis demonstrated an additional 106 bases in the HPV-6vc genome. These additional nucleotides were located in the noncoding region of the viral genome which contains the putative viral DNA replication and early gene transcriptional control elements. Seventy-four of the additional 106 nucleotides were found as one insert in the purine-thymidine-rich region 3' to the end of the L1 open reading frame. This 74-base-pair addition had homology with viral sequences immediately upstream to it and to poly(dG-dT) sequences found in the human genome including the conserved repeated sequences in human DNA (EC1) and in the human cardiac muscle actin gene. Two smaller inserts, 19 and 15 nucleotides, were found upstream from the transcriptional control elements and demonstrate homology with regions of human alpha and gamma interferon genes.
Collapse
|
40
|
Miyatake S, Otsuka T, Yokota T, Lee F, Arai K. Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. EMBO J 1985; 4:2561-8. [PMID: 3876930 PMCID: PMC554544 DOI: 10.1002/j.1460-2075.1985.tb03971.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A cDNA clone that expresses granulocyte-macrophage colony stimulating factor (GM-CSF) activity in COS-7 cells has been isolated from a pcD library prepared from mRNA derived from concanavalin A-activated mouse helper T cell clones. Based on homology with the mouse GM-CSF cDNA sequence, the mouse GM-CSF gene was isolated. The human GM-CSF gene was also isolated based on homology with the human GM-CSF cDNA sequence. The nucleotide sequences determined for the genes and their flanking regions revealed that both the mouse and human GM-CSF genes are composed of three introns and four exons. The organization of the mouse and human GM-CSF genes are highly homologous and strong sequence homology between the two genes is found both in the coding and non-coding regions. A 'TATA'-like sequence was found 20-25 bp upstream from the transcription initiation site. In the 5'-flanking region, there is a highly homologous region extending 330 bp upstream of the putative TATA box. This sequence may play a role in regulation of expression of the GM-CSF gene. These structures are compared with those of different lymphokine genes and their regulatory regions.
Collapse
|
41
|
Recombination between poly[d(GT).d(CA)] sequences in simian virus 40-infected cultured cells. Mol Cell Biol 1985. [PMID: 2993859 DOI: 10.1128/mcb.5.6.1247] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CVI cells were transfected with oversized simian virus 40 (SV40) genomes that could be reduced to packageable size by alternative homologous recombination pathways involving either two polydeoxyguanylic-thymidylic acid X polydeoxycytidylic-adenylic acid (poly[d(GT).d(CA)]; abbreviated hereafter as poly(GT)] tracts or two tracts of homologous SV40 sequence. Plaque-forming viruses rescued by this procedure were found to contain genomes formed by homologous and nonhomologous recombination events. Half of the viable viral DNA molecules recovered were the result of recombination between two tracts of poly(GT). Approximately 20% of the rescued viral genomes were produced by homologous recombination between tracts of SV40 DNA. Nonhomologous recombination involving SV40 sequences was also a major pathway of deletion, producing ca. 30% of the viral plaques. Tracts of poly(GT) generated by recombination were variable in length, suggesting that recombination between poly(GT) tracts was usually unequal. On a per-nucleotide basis, poly(GT) recombination occurred eight times more frequently than did recombination between homologous SV40 DNA. This eightfold difference is the maximum recombinatory enhancement attributable to poly(GT) sequences. Although DNA sequence analysis showed that tracts of poly(GT) generated by recombination retained the alternating G-T repeat motif throughout their length, the contribution of the nonhomologous pathway to poly(GT) recombination cannot be ruled out, and the relative proclivity of a given length of d(GT).d(CA) sequence to undergo homologous recombination is probably less than eight times greater than that of an SV40 sequence of the same length.
Collapse
|
42
|
Jaiswal AK, Gonzalez FJ, Nebert DW. Human P1-450 gene sequence and correlation of mRNA with genetic differences in benzo[a]pyrene metabolism. Nucleic Acids Res 1985; 13:4503-20. [PMID: 2989797 PMCID: PMC321802 DOI: 10.1093/nar/13.12.4503] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The human P1-450 gene (6,311 base pairs), as well as the 5' (1,604 bases) and 3' (113 bases) flanking regions, have been completely sequenced. Four highly homologous boxes (61, 82, 56 and 97 base pairs) between the human and mouse P1-450 genes are found in the "TATA" box promoter region, -226, -338, and -450 upstream from the cap site, respectively. Nine genomic-DNA samples were digested with each of 23 restriction endonucleases and probed with human P1-450 cDNA fragments; restriction fragment length polymorphisms are detected, although it remains to be seen whether such a recombinant DNA test will be useful in determining individuals at increased risk for cigarette smoking-induced cancer and toxicity. We show in this report, however, that human inducible P1-450 mRNA concentrations are very highly correlated (r = 0.98; N = 6) with genetic differences in benzo[a]pyrene metabolism in mitogen-activated lymphocyte cultures.
Collapse
|
43
|
Recombination between poly[d(GT).d(CA)] sequences in simian virus 40-infected cultured cells. Mol Cell Biol 1985; 5:1247-59. [PMID: 2993859 PMCID: PMC366852 DOI: 10.1128/mcb.5.6.1247-1259.1985] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CVI cells were transfected with oversized simian virus 40 (SV40) genomes that could be reduced to packageable size by alternative homologous recombination pathways involving either two polydeoxyguanylic-thymidylic acid X polydeoxycytidylic-adenylic acid (poly[d(GT).d(CA)]; abbreviated hereafter as poly(GT)] tracts or two tracts of homologous SV40 sequence. Plaque-forming viruses rescued by this procedure were found to contain genomes formed by homologous and nonhomologous recombination events. Half of the viable viral DNA molecules recovered were the result of recombination between two tracts of poly(GT). Approximately 20% of the rescued viral genomes were produced by homologous recombination between tracts of SV40 DNA. Nonhomologous recombination involving SV40 sequences was also a major pathway of deletion, producing ca. 30% of the viral plaques. Tracts of poly(GT) generated by recombination were variable in length, suggesting that recombination between poly(GT) tracts was usually unequal. On a per-nucleotide basis, poly(GT) recombination occurred eight times more frequently than did recombination between homologous SV40 DNA. This eightfold difference is the maximum recombinatory enhancement attributable to poly(GT) sequences. Although DNA sequence analysis showed that tracts of poly(GT) generated by recombination retained the alternating G-T repeat motif throughout their length, the contribution of the nonhomologous pathway to poly(GT) recombination cannot be ruled out, and the relative proclivity of a given length of d(GT).d(CA) sequence to undergo homologous recombination is probably less than eight times greater than that of an SV40 sequence of the same length.
Collapse
|