1
|
Bayfield MA, Vinayak J, Kerkhofs K, Mansouri-Noori F. La proteins couple use of sequence-specific and non-specific binding modes to engage RNA substrates. RNA Biol 2021; 18:168-177. [PMID: 30777481 PMCID: PMC7928037 DOI: 10.1080/15476286.2019.1582955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022] Open
Abstract
La shuttles between the nucleus and cytoplasm where it binds nascent RNA polymerase III (pol III) transcripts and mRNAs, respectively. La protects the 3' end of pol III transcribed RNA precursors, such as pre-tRNAs, through the use of a well-characterized UUU-3'OH binding mode. La proteins are also RNA chaperones, and La-dependent RNA chaperone activity is hypothesized to promote pre-tRNA maturation and translation at cellular and viral internal ribosome entry sites via binding sites distinct from those used for UUU-3'OH recognition. Since the publication of La-UUU-3'OH co-crystal structures, biochemical and genetic experiments have expanded our understanding of how La proteins use UUU-3'OH-independent binding modes to make sequence-independent contacts that can increase affinity for ligands and promote RNA remodeling. Other recent work has also expanded our understanding of how La binds mRNAs through contacts to the poly(A) tail. In this review, we focus on advances in the study of La protein-RNA complex surfaces beyond the description of the La-UUU-3'OH binding mode. We highlight recent advances in the functions of expected canonical nucleic acid interaction surfaces, a heightened appreciation of disordered C-terminal regions, and the nature of sequence-independent RNA determinants in La-RNA target binding. We further discuss how these RNA binding modes may have relevance to the function of the La-related proteins.
Collapse
Affiliation(s)
- Mark A. Bayfield
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Jyotsna Vinayak
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Kyra Kerkhofs
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Vinayak J, Marrella SA, Hussain RH, Rozenfeld L, Solomon K, Bayfield MA. Human La binds mRNAs through contacts to the poly(A) tail. Nucleic Acids Res 2019; 46:4228-4240. [PMID: 29447394 PMCID: PMC5934636 DOI: 10.1093/nar/gky090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3’OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3’OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.
Collapse
Affiliation(s)
- Jyotsna Vinayak
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Stefano A Marrella
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Rawaa H Hussain
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Leonid Rozenfeld
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Karine Solomon
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Mark A Bayfield
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Vakiloroayaei A, Shah NS, Oeffinger M, Bayfield MA. The RNA chaperone La promotes pre-tRNA maturation via indiscriminate binding of both native and misfolded targets. Nucleic Acids Res 2017; 45:11341-11355. [PMID: 28977649 PMCID: PMC5737608 DOI: 10.1093/nar/gkx764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs have critical roles in biological processes, and RNA chaperones can promote their folding into the native shape required for their function. La proteins are a class of highly abundant RNA chaperones that contact pre-tRNAs and other RNA polymerase III transcripts via their common UUU-3′OH ends, as well as through less specific contacts associated with RNA chaperone activity. However, whether La proteins preferentially bind misfolded pre-tRNAs or instead engage all pre-tRNA substrates irrespective of their folding status is not known. La deletion in yeast is synthetically lethal when combined with the loss of tRNA modifications predicted to contribute to the native pre-tRNA fold, such as the N2, N2-dimethylation of G26 by the methyltransferase Trm1p. In this work, we identify G26 containing pre-tRNAs that misfold in the absence of Trm1p and/or La (Sla1p) in Schizosaccharomyces pombe cells, then test whether La preferentially associates with such tRNAs in vitro and in vivo. Our data suggest that La does not discriminate a native from misfolded RNA target, and highlights the potential challenges faced by RNA chaperones in preferentially binding defective substrates.
Collapse
Affiliation(s)
- Ana Vakiloroayaei
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Neha S Shah
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.,Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Mark A Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
4
|
Mattijssen S, Arimbasseri AG, Iben JR, Gaidamakov S, Lee J, Hafner M, Maraia RJ. LARP4 mRNA codon-tRNA match contributes to LARP4 activity for ribosomal protein mRNA poly(A) tail length protection. eLife 2017; 6:e28889. [PMID: 28895529 PMCID: PMC5626478 DOI: 10.7554/elife.28889] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA function is controlled by the 3' poly(A) tail (PAT) and poly(A)-binding protein (PABP). La-related protein-4 (LARP4) binds poly(A) and PABP. LARP4 mRNA contains a translation-dependent, coding region determinant (CRD) of instability that limits its expression. Although the CRD comprises <10% of LARP4 codons, the mRNA levels vary >20 fold with synonymous CRD substitutions that accommodate tRNA dynamics. Separately, overexpression of the most limiting tRNA increases LARP4 levels and reveals its functional activity, net lengthening of the PATs of heterologous mRNAs with concomitant stabilization, including ribosomal protein (RP) mRNAs. Genetic deletion of cellular LARP4 decreases PAT length and RPmRNA stability. This LARP4 activity requires its PABP-interaction domain and the RNA-binding module which we show is sensitive to poly(A) 3'-termini, consistent with protection from deadenylation. The results indicate that LARP4 is a posttranscriptional regulator of ribosomal protein production in mammalian cells and suggest that this activity can be controlled by tRNA levels.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | | | - James R Iben
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Sergei Gaidamakov
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Joowon Lee
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Markus Hafner
- National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaUnited States
| | - Richard J Maraia
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
- Commissioned CorpsUS Public Health ServiceBethesdaUnited Staes
| |
Collapse
|
5
|
Leung E, Schneider C, Yan F, Mohi-El-Din H, Kudla G, Tuck A, Wlotzka W, Doronina VA, Bartley R, Watkins NJ, Tollervey D, Brown JD. Integrity of SRP RNA is ensured by La and the nuclear RNA quality control machinery. Nucleic Acids Res 2014; 42:10698-710. [PMID: 25159613 PMCID: PMC4176351 DOI: 10.1093/nar/gku761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The RNA component of signal recognition particle (SRP) is transcribed by RNA polymerase III, and most steps in SRP biogenesis occur in the nucleolus. Here, we examine processing and quality control of the yeast SRP RNA (scR1). In common with other pol III transcripts, scR1 terminates in a U-tract, and mature scR1 retains a U4–5 sequence at its 3′ end. In cells lacking the exonuclease Rex1, scR1 terminates in a longer U5–6 tail that presumably represents the primary transcript. The 3′ U-tract of scR1 is protected from aberrant processing by the La homologue, Lhp1 and overexpressed Lhp1 apparently competes with both the RNA surveillance system and SRP assembly factors. Unexpectedly, the TRAMP and exosome nuclear RNA surveillance complexes are also implicated in protecting the 3′ end of scR1, which accumulates in the nucleolus of cells lacking the activities of these complexes. Misassembled scR1 has a primary degradation pathway in which Rrp6 acts early, followed by TRAMP-stimulated exonuclease degradation by the exosome. We conclude that the RNA surveillance machinery has key roles in both SRP biogenesis and quality control of the RNA, potentially facilitating the decision between these alternative fates.
Collapse
Affiliation(s)
- Eileen Leung
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Fu Yan
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hatem Mohi-El-Din
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Grzegorz Kudla
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Alex Tuck
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Wiebke Wlotzka
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Victoria A Doronina
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ralph Bartley
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas J Watkins
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jeremy D Brown
- RNA Biology Group and Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:318-30. [PMID: 23099421 PMCID: PMC3568203 DOI: 10.1016/j.bbagrm.2012.10.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/β respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
7
|
Köhn M, Pazaitis N, Hüttelmaier S. Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules 2013; 3:143-56. [PMID: 24970161 PMCID: PMC4030889 DOI: 10.3390/biom3010143] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/27/2013] [Accepted: 01/31/2013] [Indexed: 11/20/2022] Open
Abstract
Y RNAs constitute a family of highly conserved small noncoding RNAs (in humans: 83-112 nt; Y1, Y3, Y4 and Y5). They are transcribed from individual genes by RNA-polymerase III and fold into conserved stem-loop-structures. Although discovered 30 years ago, insights into the cellular and physiological role of Y RNAs remains incomplete. In this review, we will discuss knowledge on the structural properties, associated proteins and discuss proposed functions of Y RNAs. We suggest Y RNAs to be an integral part of ribonucleoprotein networks within cells and could therefore have substantial influence on many different cellular processes. Putative functions of Y RNAs include small RNA quality control, DNA replication, regulation of the cellular stress response and proliferation. This suggests Y RNAs as essential regulators of cell fate and indicates future avenues of research, which will provide novel insights into the role of small noncoding RNAs in gene expression.
Collapse
Affiliation(s)
- Marcel Köhn
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| | - Nikolaos Pazaitis
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| | - Stefan Hüttelmaier
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| |
Collapse
|
8
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:362-75. [PMID: 21572561 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
9
|
Coexpressed RIG-I agonist enhances humoral immune response to influenza virus DNA vaccine. J Virol 2010; 85:1370-83. [PMID: 21106745 DOI: 10.1128/jvi.01250-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Increasing levels of plasmid vector-mediated activation of innate immune signaling pathways is an approach to improve DNA vaccine-induced adaptive immunity for infectious disease and cancer applications. Retinoic acid-inducible gene I (RIG-I) is a critical cytoplasmic double-stranded RNA (dsRNA) pattern receptor required for innate immune activation in response to viral infection. Activation of RIG-I leads to type I interferon (IFN) and inflammatory cytokine production through interferon promoter stimulator 1 (IPS-1)-mediated activation of interferon regulatory factor 3 (IRF3) and NF-κB signaling. DNA vaccines coexpressing antigen and an expressed RNA (eRNA) RIG-I agonist were made, and the effect of RIG-I activation on antigen-specific immune responses to the encoded antigen was determined. Plasmid vector backbones expressing various RIG-I ligands from RNA polymerase III promoters were screened in a cell culture assay for RIG-I agonist activity, and optimized, potent RIG-I ligands were developed. One of these, eRNA41H, combines (i) eRNA11a, an immunostimulatory dsRNA expressed by convergent transcription, with (ii) adenovirus VA RNAI. eRNA41H was integrated into the backbone of DNA vaccine vectors expressing H5N1 influenza virus hemagglutinin (HA). The resultant eRNA vectors potently induced type 1 IFN production in cell culture through RIG-I activation and combined high-level HA antigen expression with RNA-mediated type I IFN activation in a single plasmid vector. The eRNA vectors induced increased HA-specific serum antibody binding avidity after naked DNA intramuscular prime and boost delivery in mice. This demonstrates that DNA vaccine potency may be augmented by the incorporation of RIG-I-activating immunostimulatory RNA into the vector backbone.
Collapse
|
10
|
Langley AR, Chambers H, Christov CP, Krude T. Ribonucleoprotein particles containing non-coding Y RNAs, Ro60, La and nucleolin are not required for Y RNA function in DNA replication. PLoS One 2010; 5:e13673. [PMID: 21060685 PMCID: PMC2965120 DOI: 10.1371/journal.pone.0013673] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/06/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication. METHODOLOGY/PRINCIPAL FINDINGS We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro. CONCLUSIONS/SIGNIFICANCE We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins.
Collapse
Affiliation(s)
| | - Helen Chambers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | - Torsten Krude
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
12
|
Maraia RJ, Intine RV. Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol Cell Biol 2001; 21:367-79. [PMID: 11134326 PMCID: PMC86573 DOI: 10.1128/mcb.21.2.367-379.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
13
|
Abstract
Picornaviruses are small animal viruses with positive-strand genomic RNA, which is translated using cap-independent internal translation initiation. The key role in this is played by ciselements of the 5"-untranslated region (5"-UTR) and, in particular, by the internal ribosome entry site (IRES). The function of translational ciselements requires both canonical translation initiation factors (eIFs) and additional IRES trans-acting factors (ITAFs). All known ITAFs are cell RNA-binding proteins which play a variety of functions in noninfected cells. Specific features of translational ciselements substantially affect the phenotype and, in particular, tissue tropism and pathogenic properties of picornaviruses. It is clear that, in some cases, the molecular mechanism involved is a change in interactions between viral ciselements and ITAFs. The properties and tissue distribution of ITAFs may determine the biological properties of other viruses that also use the IRES-dependent translation initiation. Since this mechanism is also involved in translation of several cell mRNAs, ITAF may contribute to the regulation of the most important aspects of the living activity in noninfected cells.
Collapse
Affiliation(s)
- V. I. Agol
- Chumakov Institute of Poliomyelitis and Virus Encephalites, Russian Academy of Medical Sciences, and, Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Bai C, Tolias PP. Genetic analysis of a La homolog in Drosophila melanogaster. Nucleic Acids Res 2000; 28:1078-84. [PMID: 10666446 PMCID: PMC102613 DOI: 10.1093/nar/28.5.1078] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/1999] [Revised: 01/11/2000] [Accepted: 01/11/2000] [Indexed: 01/08/2023] Open
Abstract
People afflicted with certain rheumatological auto-immune diseases produce autoantibodies directed against a select group of proteins such as the La auto-antigen. Biochemical studies have revealed La to be a promiscuous RNA-binding protein that appears to play a role in a variety of intracellular activities such as processing and/or transport of RNA polymerase III precursor transcripts and translational regulation from internal ribosome entry sites (IRES). We have previously identified an RNA-binding protein that is a Drosophila melanogaster homolog of La (D-La) and shown that early transcript accumulation throughout the embryo is later refined to be most prevalent in the visceral mesoderm, gut, gonads and salivary glands. Here we report the first in vivo genetic characterization of a La homolog in a multicellular eukaryote. Lethality was observed in homozygous larvae harboring a small chromosomal deletion that removed the D-La gene, which was rescued by an inducible D-La cDNA transgene. This implies that D-La confers essential functions for larval development. In addition, loss of D-La function gives rise to defects in embryonic midgut morphogenesis; one of the midgut defects correlates with loss of Ultrabithorax ( Ubx ) expression along the second midgut constriction. Finally, genetic interactions between chromosomal deficiencies that remove D-La and certain Ubx alleles were demonstrated in adults. Our results support the hypothesis that D-La provides essential functions for proper Drosophila development and imply that the conserved La family of proteins may perform critical developmental functions in higher eukaryotes.
Collapse
Affiliation(s)
- C Bai
- Center for Applied Genomics, Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
15
|
Abstract
Histone mRNA is destabilized at the end of S phase and in cell-free mRNA decay reaction mixtures supplemented with histone proteins, indicating that histones might autoregulate the histone mRNA half-life. Histone mRNA destabilization in vitro requires three components: polysomes, histones, and postpolysomal supernatant (S130). Polysomes are the source of the mRNA and mRNA-degrading enzymes. To investigate the role of the S130 in autoregulation, crude S130 was fractionated by histone-agarose affinity chromatography. Two separate activities affecting the histone mRNA half-life were detected. The histone-agarose-bound fraction contained a histone mRNA destabilizer that was activated by histone proteins; the unbound fraction contained a histone mRNA stabilizer. Further chromatographic fractionation of unbound material revealed only a single protein stabilizer, which was purified to homogeneity, partially sequenced, and found to be La, a well-characterized RNA-binding protein. When purified La was added to reaction mixtures containing polysomes, a histone mRNA decay intermediate was stabilized. This intermediate corresponded to histone mRNA lacking 12 nucleotides from its 3' end and containing an intact coding region. Anti-La antibody blocked the stabilization effect. La had little or no effect on several other cell cycle-regulated mRNAs. We suggest that La prolongs the histone mRNA half-life during S phase and thereby increases histone protein production.
Collapse
Affiliation(s)
- R S McLaren
- McArdle Laboratory for Cancer Research University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
16
|
Abstract
We have isolated a 50-kDa mosquito protein that binds with high affinity to a riboprobe representing the 3' end of the minus strand of Sindbis virus RNA. The isolated protein has been used to obtain cDNA clones encoding this protein that have been sequenced and used to express the protein in large amounts. Sequence comparisons make clear that this protein is the mosquito homolog of the La autoantigen. The N-terminal half of the protein shares considerable sequence identity with the human La protein, the rat La protein, and the recently identified Drosophila melanogaster homolog. There is one stretch of 100 amino acids in the N-terminal domain in which 48 residues are identical in all four proteins. In contrast, the C-terminal domain of the mosquito protein shares little identity with any of the other three proteins. We have also shown that the mosquito protein, the human protein, and a putative chicken homolog of the La protein cross-react immunologically and, thus, all share antigenic epitopes. The mosquito La protein is primarily nuclear in location, but significant amounts are present in the cytoplasm, as is the case for the La proteins of other species. The equilibrium constant for the binding of the expressed mosquito La protein to the Sindbis virus riboprobe is 15.4 nM, and thus the affinity of binding is high enough to be physiologically relevant. Furthermore, the conservation of this protein in the animal kingdom may be significant, because Sindbis virus utilizes mosquitoes, birds, and mammals as hosts. We propose that the interactions we observe between the La protein and toes, birds, and mammals as hosts. We propose that the interactions we observe between the La protein and a putative promoter in the Sindbis virus genome are significant for Sindbis virus RNA replication.
Collapse
Affiliation(s)
- N Pardigon
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
17
|
Taupin JL, Tian Q, Kedersha N, Robertson M, Anderson P. The RNA-binding protein TIAR is translocated from the nucleus to the cytoplasm during Fas-mediated apoptotic cell death. Proc Natl Acad Sci U S A 1995; 92:1629-33. [PMID: 7533298 PMCID: PMC42573 DOI: 10.1073/pnas.92.5.1629] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have determined the structure, intracellular localization, and tissue distribution of TIAR, a TIA-1-related RNA-binding protein. Two related isoforms of TIAR, migrating at 42 and 50 kDa, are expressed in primate cells. Unlike TIA-1, which is found in the granules of cytotoxic lymphocytes, TIAR is concentrated in the nucleus of hematopoietic and nonhematopoietic cells. Because TIAR can trigger DNA fragmentation in permeabilized thymocytes, it is a candidate effector of apoptotic cell death. Consistent with this possibility, we have found that the expression and intracellular localization of TIAR change dramatically during Fas-mediated apoptosis. TIAR moves from the nucleus to the cytoplasm within 30 min of Fas ligation. Redistribution of TIAR precedes the onset of DNA fragmentation and is not a nonspecific consequence of nuclear disintegration. Cytoplasmic redistribution of TIAR is not observed during cellular activation triggered by mitogens such as concanavalin A or phytohemagglutinin. Our results suggest that cytoplasmic redistribution of TIAR may be a general feature of the apoptotic program.
Collapse
Affiliation(s)
- J L Taupin
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | |
Collapse
|
18
|
Developmental characterization of a Drosophila RNA-binding protein homologous to the human systemic lupus erythematosus-associated La/SS-B autoantigen. Mol Cell Biol 1994. [PMID: 8035794 DOI: 10.1128/mcb.14.8.5123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with humoral autoimmune diseases such as systemic lupus erythematosus and Sjögren's syndrome contain antibodies in their sera directed against certain normal cellular components such as the La/SS-B autoantigen, an RNA-binding protein believed to function as a putative processor of RNA polymerase III precursor transcripts. We have identified cDNA clones from the fruit fly Drosophila melanogaster that encode a protein displaying significant sequence homology with human La/SS-B. The fly protein (which we refer to as D-La) contains a putative ribonucleoprotein 1 (RNP1) and RNP2 RNA-binding domain. D-La also possesses a leucine zipper motif, suggesting that it may interact with itself or other proteins. Using gel retardation analysis, we show that D-La can bind RNA; in addition, we demonstrate the first reported DNA-binding activity associated with a La protein. Northern (RNA) blot analysis revealed a single 1,600-nucleotide transcript expressed throughout embryonic, larval, pupal, and adult development. Surprisingly, whole-mount in situ hybridization experiments revealed that D-La transcripts are not present in all ovarian tissues. In addition, early expression throughout the embryo is followed by a restricted pattern of mesodermal expression that is later confined to the visceral mesoderm, gonads, gut, and salivary glands. These results suggest that D-La may play a more specialized role during fly development as opposed to a rather general role inferred by its homology to La proteins from other organisms.
Collapse
|
19
|
La proteins from Drosophila melanogaster and Saccharomyces cerevisiae: a yeast homolog of the La autoantigen is dispensable for growth. Mol Cell Biol 1994. [PMID: 8035818 DOI: 10.1128/mcb.14.8.5412] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human autoantigen La is a 50-kDa protein which binds to the 3' termini of virtually all nascent polymerase III transcripts. Experiments with mammalian transcription extracts have led to the proposal that the La protein is required for multiple rounds of transcription by RNA polymerase III (E. Gottlieb and J. A. Steitz, EMBO J. 8:851-861, 1989; R. J. Maraia, D. J. Kenan, and J. D. Keene, Mol. Cell. Biol. 14:2147-2158, 1994). Although La protein homologs have been identified in a variety of vertebrate species, the protein has not been identified in invertebrates. In order to begin a genetic analysis of La protein function, we have characterized homologs of the La protein in the fruit fly Drosophila melanogaster and the yeast Saccharomyces cerevisiae. We show that both the Drosophila and yeast La proteins are bound to precursors of polymerase III RNAs in vivo. The Drosophila and yeast proteins resemble the human La protein in their biochemical properties, as both proteins can be partially purified from cells by a procedure previously devised to purify the human protein. Similarly to vertebrate La proteins, the Drosophila and yeast homologs preferentially bind RNAs that terminate with a 3' hydroxyl. Despite the fact that the La protein is conserved between humans and Saccharomyces cerevisiae, yeast cells containing a null allele of the gene encoding the La protein are viable, suggesting that another protein(s) plays a functionally redundant role.
Collapse
|
20
|
Yoo CJ, Wolin SL. La proteins from Drosophila melanogaster and Saccharomyces cerevisiae: a yeast homolog of the La autoantigen is dispensable for growth. Mol Cell Biol 1994; 14:5412-24. [PMID: 8035818 PMCID: PMC359060 DOI: 10.1128/mcb.14.8.5412-5424.1994] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human autoantigen La is a 50-kDa protein which binds to the 3' termini of virtually all nascent polymerase III transcripts. Experiments with mammalian transcription extracts have led to the proposal that the La protein is required for multiple rounds of transcription by RNA polymerase III (E. Gottlieb and J. A. Steitz, EMBO J. 8:851-861, 1989; R. J. Maraia, D. J. Kenan, and J. D. Keene, Mol. Cell. Biol. 14:2147-2158, 1994). Although La protein homologs have been identified in a variety of vertebrate species, the protein has not been identified in invertebrates. In order to begin a genetic analysis of La protein function, we have characterized homologs of the La protein in the fruit fly Drosophila melanogaster and the yeast Saccharomyces cerevisiae. We show that both the Drosophila and yeast La proteins are bound to precursors of polymerase III RNAs in vivo. The Drosophila and yeast proteins resemble the human La protein in their biochemical properties, as both proteins can be partially purified from cells by a procedure previously devised to purify the human protein. Similarly to vertebrate La proteins, the Drosophila and yeast homologs preferentially bind RNAs that terminate with a 3' hydroxyl. Despite the fact that the La protein is conserved between humans and Saccharomyces cerevisiae, yeast cells containing a null allele of the gene encoding the La protein are viable, suggesting that another protein(s) plays a functionally redundant role.
Collapse
Affiliation(s)
- C J Yoo
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
21
|
Bai C, Li Z, Tolias PP. Developmental characterization of a Drosophila RNA-binding protein homologous to the human systemic lupus erythematosus-associated La/SS-B autoantigen. Mol Cell Biol 1994; 14:5123-9. [PMID: 8035794 PMCID: PMC359031 DOI: 10.1128/mcb.14.8.5123-5129.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Patients with humoral autoimmune diseases such as systemic lupus erythematosus and Sjögren's syndrome contain antibodies in their sera directed against certain normal cellular components such as the La/SS-B autoantigen, an RNA-binding protein believed to function as a putative processor of RNA polymerase III precursor transcripts. We have identified cDNA clones from the fruit fly Drosophila melanogaster that encode a protein displaying significant sequence homology with human La/SS-B. The fly protein (which we refer to as D-La) contains a putative ribonucleoprotein 1 (RNP1) and RNP2 RNA-binding domain. D-La also possesses a leucine zipper motif, suggesting that it may interact with itself or other proteins. Using gel retardation analysis, we show that D-La can bind RNA; in addition, we demonstrate the first reported DNA-binding activity associated with a La protein. Northern (RNA) blot analysis revealed a single 1,600-nucleotide transcript expressed throughout embryonic, larval, pupal, and adult development. Surprisingly, whole-mount in situ hybridization experiments revealed that D-La transcripts are not present in all ovarian tissues. In addition, early expression throughout the embryo is followed by a restricted pattern of mesodermal expression that is later confined to the visceral mesoderm, gonads, gut, and salivary glands. These results suggest that D-La may play a more specialized role during fly development as opposed to a rather general role inferred by its homology to La proteins from other organisms.
Collapse
Affiliation(s)
- C Bai
- Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
22
|
Xiao Q, Sharp TV, Jeffrey IW, James MC, Pruijn GJ, van Venrooij WJ, Clemens MJ. The La antigen inhibits the activation of the interferon-inducible protein kinase PKR by sequestering and unwinding double-stranded RNA. Nucleic Acids Res 1994; 22:2512-8. [PMID: 7518914 PMCID: PMC308203 DOI: 10.1093/nar/22.13.2512] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells. The spectrum of RNAs that interact with the La antigen includes species which also bind to the interferon-inducible protein kinase PKR. We have investigated whether the La antigen can regulate the activity of PKR and have observed that both the autophosphorylation of the protein kinase that accompanies its activation by dsRNA and the dsRNA-dependent phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF-2 by PKR are inhibited in the presence of recombinant La antigen. This inhibition is partially relieved at higher concentrations of dsRNA. Once activated by dsRNA the protein kinase activity of PKR is insensitive to the La antigen. We have demonstrated by a filter binding assay that La is a dsRNA binding protein. Furthermore, when recombinant La is incubated with a 900 bp synthetic dsRNA or with naturally occurring reovirus dsRNA it converts these substrates to single-stranded forms. We conclude that the La antigen inhibits the dsRNA-dependent activation of PKR by binding and unwinding dsRNA and that it may therefore play a role in the regulation of this protein kinase in interferon-treated or virus-infected cells.
Collapse
Affiliation(s)
- Q Xiao
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Simons FH, Pruijn GJ, van Venrooij WJ. Analysis of the intracellular localization and assembly of Ro ribonucleoprotein particles by microinjection into Xenopus laevis oocytes. J Cell Biol 1994; 125:981-8. [PMID: 8195301 PMCID: PMC2120048 DOI: 10.1083/jcb.125.5.981] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Xenopus laevis oocytes have been used to determine the intracellular localization of components of Ro ribonucleoprotein particles (Ro RNPs) and to study the assembly of these RNA-protein complexes. Microinjection of the protein components of human Ro RNPs, i.e., La, Ro60, and Ro52, in X. laevis oocytes showed that all three proteins are able to enter the nucleus, albeit with different efficiencies. In contrast, the RNA components of human Ro RNPs (the Y RNAs) accumulate in the X. laevis cytoplasm upon injection. Localization studies performed at low temperatures indicated that both nuclear import of Ro RNP proteins and nuclear export of Y RNAs are mediated by active transport mechanisms. Immunoprecipitation experiments using monospecific anti-La and anti-Ro60 antibodies showed that the X. laevis La and Ro60 homologues were cross-reactive with the respective antibodies and that both X. laevis proteins were able to interact with human Y1 RNA. Further analyses indicated that: (a) association of X. laevis La and Ro60 with Y RNAs most likely takes place in the nucleus; (b) once formed, Ro RNPs are rapidly exported out of the nucleus; and (c) the association with La is lost during or shortly after nuclear export.
Collapse
Affiliation(s)
- F H Simons
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
24
|
Assembly of mitochondrial ribonucleoprotein complexes involves specific guide RNA (gRNA)-binding proteins and gRNA domains but does not require preedited mRNA. Mol Cell Biol 1994. [PMID: 8139563 DOI: 10.1128/mcb.14.4.2629] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA editing in kinetoplastids probably employs a macromolecular complex, the editosome, that is likely to include the guide RNAs (gRNAs) which specify the edited sequence. Specific ribonucleoprotein (RNP) complexes which form in vitro with gRNAs (H. U. Göringer, D. J. Koslowsky, T. H. Morales, and K. D. Stuart, Proc. Natl. Acad. Sci. USA, in press) are potential editosomes or their precursors. We find that several factors are important for in vitro formation of these RNP complexes and identify specific gRNA-binding proteins present in the complexes. Preedited mRNA promotes the in vitro formation of the four major gRNA-containing RNP complexes under some conditions but is required for the formation of only a subcomponent of one complex. The 5' gRNA sequence encompassing the RYAYA and anchor regions and the 3' gRNA oligo(U) tail are both important in complex formation, since their deletion results in a dramatic decrease of some complexes and the absence of others. UV cross-linking experiments identify several proteins which are in contact with gRNA and preedited mRNA in mitochondrial extracts. Proteins of 25 and 90 kDa are highly specific for gRNAs, and the 90-kDa protein binds specifically to gRNA oligo(U) tails. The gRNA-binding proteins exhibit a differential distribution between the four in vitro-formed complexes. These experiments reveal several proteins potentially involved in RNA editing and indicate that multiple recognition elements in gRNAs are used for complex formation.
Collapse
|
25
|
Read LK, Göringer HU, Stuart K. Assembly of mitochondrial ribonucleoprotein complexes involves specific guide RNA (gRNA)-binding proteins and gRNA domains but does not require preedited mRNA. Mol Cell Biol 1994; 14:2629-39. [PMID: 8139563 PMCID: PMC358630 DOI: 10.1128/mcb.14.4.2629-2639.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RNA editing in kinetoplastids probably employs a macromolecular complex, the editosome, that is likely to include the guide RNAs (gRNAs) which specify the edited sequence. Specific ribonucleoprotein (RNP) complexes which form in vitro with gRNAs (H. U. Göringer, D. J. Koslowsky, T. H. Morales, and K. D. Stuart, Proc. Natl. Acad. Sci. USA, in press) are potential editosomes or their precursors. We find that several factors are important for in vitro formation of these RNP complexes and identify specific gRNA-binding proteins present in the complexes. Preedited mRNA promotes the in vitro formation of the four major gRNA-containing RNP complexes under some conditions but is required for the formation of only a subcomponent of one complex. The 5' gRNA sequence encompassing the RYAYA and anchor regions and the 3' gRNA oligo(U) tail are both important in complex formation, since their deletion results in a dramatic decrease of some complexes and the absence of others. UV cross-linking experiments identify several proteins which are in contact with gRNA and preedited mRNA in mitochondrial extracts. Proteins of 25 and 90 kDa are highly specific for gRNAs, and the 90-kDa protein binds specifically to gRNA oligo(U) tails. The gRNA-binding proteins exhibit a differential distribution between the four in vitro-formed complexes. These experiments reveal several proteins potentially involved in RNA editing and indicate that multiple recognition elements in gRNAs are used for complex formation.
Collapse
Affiliation(s)
- L K Read
- Seattle Biomedical Research Institute, Washington 98109-1651
| | | | | |
Collapse
|
26
|
Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol 1994. [PMID: 8114745 DOI: 10.1128/mcb.14.3.2147] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.
Collapse
|
27
|
Maraia RJ, Kenan DJ, Keene JD. Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol 1994; 14:2147-58. [PMID: 8114745 PMCID: PMC358575 DOI: 10.1128/mcb.14.3.2147-2158.1994] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.
Collapse
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | |
Collapse
|
28
|
Pe'ery T, Mellits KH, Mathews MB. Mutational analysis of the central domain of adenovirus virus-associated RNA mandates a revision of the proposed secondary structure. J Virol 1993; 67:3534-43. [PMID: 8098780 PMCID: PMC237700 DOI: 10.1128/jvi.67.6.3534-3543.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Protein synthesis in adenovirus-infected cells is regulated during the late phase of infection. The rate of initiation is maintained by a small viral RNA, virus-associated (VA) RNAI, which prevents the phosphorylation of eukaryotic initiation factor eIF-2 by a double-stranded RNA-activated protein kinase, DAI. On the basis of nuclease sensitivity analysis, a secondary-structure model was proposed for VA RNA. The model predicts a complex stem-loop structure in the central part of the molecule, the central domain, joining two duplexed stems. The central domain is required for the inhibition of DAI activation and participates in the binding of VA RNA to DAI. To assess the significance of the postulated stem-loop structure in the central domain, we generated compensating, deletion, and substitution mutations. A substitution mutation which disrupts the structure in the central domain abolishes VA RNA function in vitro and in vivo. Base-compensating mutations failed to restore the function or structure of the mutant, implying that the stem-loop structure may not exist. To confirm this observation, we tested mutants with alterations in the hypothetical loop and short stem that constitute the main features of the wild-type model structure. The upper part of the hypothetical loop could be deleted without abolishing the ability of the RNA to block DAI activation in vitro, whereas other loop mutations were deleterious for function and caused major rearrangements in the molecule. Base-compensating mutations in the stem did not restore the expected base pairing, even though the mutant RNAs were still functional in vitro. Surprisingly, a mutant with a noncompensating substitution mutation in the stem was more effective than wild-type VA RNAI in DAI inhibition assays but was ineffective in vivo. The structural and functional consequences of these mutations do not support the proposed model structure for the central domain, and we therefore suggest an alternative structure in which tertiary interactions may play a significant role in shaping the specificity of VA RNA function in the infected cell. Discrepancies between the functionality of mutant forms of VA RNA in vivo and in vitro are consistent with the existence of additional roles for VA RNA in the cell.
Collapse
Affiliation(s)
- T Pe'ery
- Cold Spring Harbor Laboratory, New York 11724
| | | | | |
Collapse
|
29
|
3'-end-dependent formation of U6 small nuclear ribonucleoprotein particles in Xenopus laevis oocyte nuclei. Mol Cell Biol 1992. [PMID: 1535684 DOI: 10.1128/mcb.12.7.3032] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and characterized a U6 small nuclear (sn) ribonucleoprotein particle (RNP) present in the nuclei of Xenopus laevis oocytes. The structure of this U6 snRNP was investigated by native gel shift analysis and a combination of RNA-protein UV cross-linking, RNase T1 fingerprinting, and immunoprecipitation assays. These analyses demonstrate that certain forms of U6 snRNA associate with the 50-kDa nuclear antigen La both in vivo and in vitro. The La protein binds the stretch of uridylates at the 3' hydroxyl end of newly synthesized U6 snRNA. La does not bind to mature U6 snRNAs that have 2',3'-cyclic phosphate (greater than p) groups at their 3' ends (E. Lund and J. E. Dahlberg, Science 255:327-330, 1992) or to U6 snRNAs in anti-Sm-precipitable U4/U6 snRNPs. We propose that 3'-end modification, including posttranscriptional UMP addition, modulates the binding of La protein to U6 snRNA which, in turn, may affect the function of this RNA.
Collapse
|
30
|
Terns MP, Lund E, Dahlberg JE. 3'-end-dependent formation of U6 small nuclear ribonucleoprotein particles in Xenopus laevis oocyte nuclei. Mol Cell Biol 1992; 12:3032-40. [PMID: 1535684 PMCID: PMC364517 DOI: 10.1128/mcb.12.7.3032-3040.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have identified and characterized a U6 small nuclear (sn) ribonucleoprotein particle (RNP) present in the nuclei of Xenopus laevis oocytes. The structure of this U6 snRNP was investigated by native gel shift analysis and a combination of RNA-protein UV cross-linking, RNase T1 fingerprinting, and immunoprecipitation assays. These analyses demonstrate that certain forms of U6 snRNA associate with the 50-kDa nuclear antigen La both in vivo and in vitro. The La protein binds the stretch of uridylates at the 3' hydroxyl end of newly synthesized U6 snRNA. La does not bind to mature U6 snRNAs that have 2',3'-cyclic phosphate (greater than p) groups at their 3' ends (E. Lund and J. E. Dahlberg, Science 255:327-330, 1992) or to U6 snRNAs in anti-Sm-precipitable U4/U6 snRNPs. We propose that 3'-end modification, including posttranscriptional UMP addition, modulates the binding of La protein to U6 snRNA which, in turn, may affect the function of this RNA.
Collapse
Affiliation(s)
- M P Terns
- Department of Biomolecular Chemistry, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
31
|
Pruijn GJ, Slobbe RL, van Venrooij WJ. Analysis of protein--RNA interactions within Ro ribonucleoprotein complexes. Nucleic Acids Res 1991; 19:5173-80. [PMID: 1833722 PMCID: PMC328872 DOI: 10.1093/nar/19.19.5173] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The interactions between Ro and La proteins and hY RNAs have been analysed. The binding site for the 60 kDa Ro protein on hY RNAs is shown to be the terminal part of the base paired stem structure, which contains the most highly conserved sequence among hY RNAs. The bulged C-residue within this region plays an important role in the recognition by this protein. The same regions of hY RNAs are essential for the association of the 52 kDa Ro protein with the RNAs, strongly suggesting that the 60 kDa Ro protein is required for the 52 kDa Ro protein to bind, presumably via protein-protein interactions, to Ro RNPs. The binding site for the La protein on hY RNAs is shown to be the oligouridylate stretch near the 3'-end of the RNAs, which is also recognized when additional nucleotides flank this motif at the 3'-side. Additional sequence elements in hY3 and hY5, but not in hY1, are bound by the La protein as well. Deletion mutagenesis showed that the RNP motif, previously identified in many ribonucleoprotein (RNP) proteins and in some cases shown to be almost sufficient for the interaction with RNA, of both the 60 kDa Ro and the La protein are not sufficient for the interaction with hY RNAs. Substantial parts of these proteins flanking the RNP motif are needed as well. It is likely that they stabilize the correct conformation of the RNP motif for RNA binding.
Collapse
Affiliation(s)
- G J Pruijn
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
32
|
Ma J, Chapman GV, Chen SL, Melick G, Penny R, Breit SN. Antibody penetration of viable human cells. I. Increased penetration of human lymphocytes by anti-RNP IgG. Clin Exp Immunol 1991; 84:83-91. [PMID: 1901780 PMCID: PMC1535365 DOI: 10.1111/j.1365-2249.1991.tb08128.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antibody penetration of viable cells and interaction with intracellular antigens may have major consequences for immunopathological processes in connective tissue diseases. We have reported previously that antibody can penetrate viable human lymphocytes. To assess further the role of antinuclear antibodies in this process, peripheral blood lymphocytes (PBMC) were incubated with FITC-conjugated IgG fractions from sera containing anti-RNP (anti-RNP IgG), Ro(SS-A), La(SS-B) and dsDNA antibodies and control sera for 24 h. Using crystal violet to quench cell surface staining, intracellular fluorescence of viable lymphocytes was quantified on the flow cytometer. It was noted that anti-RNP IgG entered 46.4 +/- 7.2% of lymphocytes which was significantly higher than anti-Ro(SS-A) (29.9 +/- 4.1%, P less than 0.05), La(SS-B) (22.0 +/- 7.5%, P less than 0.01) IgG and control IgG (28.8 +/- 2.1%, P less than 0.05) and not statistically different from anti-dsDNA IgG (32.6 +/- 14.3%). Inhibition experiments showed that the increased number of cells penetrated by anti-RNP IgG was a specific process. Time-course studies showed that anti-RNP IgG entry into cells was different from pooled control IgG. With anti-RNP IgG, positive-staining lymphocytes gradually increased in number from 12 to 24 h incubation, whilst with pooled control IgG, the peak was reached within 5 min. Dual staining experiments suggested that whereas both anti-RNP IgG and pooled control IgG entered B and NK cells, anti-RNP IgG also entered T cells. Using IgG F(ab')2 and Fc fragments from either anti-RNP IgG or pooled control IgG to compete with their FITC-conjugated counterparts indicated that the entry of anti-RNP IgG into-viable cells appeared to involve both F(ab')2 and Fc fragments, and pooled control IgG depended exclusively on the Fc portion of IgG. Further investigation by incubating anti-RNP IgG with 35S-methionine-labelled monocyte-depleted PBMC (MD-PBMC) suggested that anti-RNP IgG might react with the corresponding antigens either on the cell surface or within the cytoplasm.
Collapse
Affiliation(s)
- J Ma
- Centre for Immunology, St. Vincent's Hospital, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Clarke PA, Schwemmle M, Schickinger J, Hilse K, Clemens MJ. Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Res 1991; 19:243-8. [PMID: 1673026 PMCID: PMC333586 DOI: 10.1093/nar/19.2.243] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epstein-Barr virus encodes two small RNAs, EBER-1 and -2, that are abundantly expressed in latently infected cells. Recent evidence suggests a role for EBER-1 in regulation of translation since this RNA is able to prevent the inhibition of protein synthesis by double-stranded RNA in rabbit reticulocyte lysates. We show here that EBER-1 that has been synthesized in vitro forms a complex with the dsRNA-activated inhibitor of protein synthesis DAI, a protein kinase that specifically phosphorylates polypeptide chain initiation factor eIF-2. Gel retardation assays and UV crosslinking experiments indicate that complex formation is specific for EBER-1 and requires the presence of some secondary structure in the molecule. RNA competition studies show that EBER-1-DAI complex formation is not inhibited in the presence of other small RNA species, heparin or the synthetic double-stranded RNA, poly(I).poly(C). SDS gel analysis reveals the existence of two forms of the crosslinked complex, of 64-68kDa and 46-53kDa, both of which are recognized by anti-DAI antibodies in immunoprecipitation experiments. These data suggest that EBER-1 regulates protein synthesis through its ability to interact with DAI.
Collapse
Affiliation(s)
- P A Clarke
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| | | | | | | | | |
Collapse
|
34
|
Kramerov DA, Tillib SV, Shumyatsky GP, Georgiev GP. The most abundant nascent poly(A) + RNAs are transcribed by RNA polymerase III in murine tumor cells. Nucleic Acids Res 1990; 18:4499-506. [PMID: 1697065 PMCID: PMC331270 DOI: 10.1093/nar/18.15.4499] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Twelve to twenty percent of newly synthesized poly(A) + RNA is transcribed by RNA polymerase III in Ehrlich ascites carcinoma and P3O1 plasmocytoma mouse tumors. Most of this RNA designated as pol IIIpoly(A) + RNA has a size of 160 to 800 nucleotides with a maximum of distribution of ca. 300 nucleotides. Pol IIIpoly(A) + RNA fraction consists of two major classes of molecules corresponding to previously described B1 RNA and B2 RNA with the ratio of 1:4 to 2:3. All B2 RNAs present in poly(A) + fraction contain a long poly(A) segments at the 3' ends. Thus, RNA polymerase III transcripts can be polyadenylated. Several transcripts that hybridize with B2 probe were also observed in poly(A)- RNA. The major components consist of 180, 160, 120 and 95 nucleotides. The 180-nucleotide B2 RNA seems to be a primary transcript from B2 repeat. We suggest that other B2 RNAs are transcribed from truncated copies of B2 element.
Collapse
Affiliation(s)
- D A Kramerov
- Engelhardt Institute of Molecular Biology, USSR Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- G J Pruijn
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
36
|
Tan EM. Interactions between autoimmunity and molecular and cell biology. Bridges between clinical and basic sciences. J Clin Invest 1989; 84:1-6. [PMID: 2472423 PMCID: PMC303945 DOI: 10.1172/jci114127] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- E M Tan
- W. M. Keck Autoimmune Disease Center, Scripps Clinic and Research Foundation, La Jolla, California 92037
| |
Collapse
|
37
|
Francoeur AM. Analysis of autoantibody specificities in selected systemic lupus erythematosus (SLE) sera. J Clin Immunol 1989; 9:248-55. [PMID: 2504762 DOI: 10.1007/bf00916821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to design effective diagnostics for lupus, the heterogeneity in patient response must be understood. This heterogeneity in the anti-Sm and anti-U1-RNP response was examined via a frequency analysis of autoantibody fine specificities. Thus, 275 sera were studied by immunoprecipitation, immunoblotting, and immunodiffusion, and the frequency of occurrence of different autoantibodies to individual snRNP polypeptides and to other HeLa cell polypeptides was determined. The sera were found to contain autoantibodies reactive with denatured as well as native forms of HeLa-cell polypeptides. The common occurrence of several novel antibody fine specificities was noted, such as anti-p45 (different from anti-La/SS-B), anti-p105, and anti-p115. Another group of autoantibodies that is apparently not disease associated was observed in both lupus and normal sera.
Collapse
Affiliation(s)
- A M Francoeur
- Department of Biology, San Diego State University, California 92182
| |
Collapse
|
38
|
Chan EK, Sullivan KF, Tan EM. Ribonucleoprotein SS-B/La belongs to a protein family with consensus sequences for RNA-binding. Nucleic Acids Res 1989; 17:2233-44. [PMID: 2468131 PMCID: PMC317593 DOI: 10.1093/nar/17.6.2233] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autoantibodies from systemic rheumatic disorders have become useful reagents in molecular biology. SS-B/La, a major target of autoantibodies in lupus and Sjogren's syndrome, has been identified as a 46 kDa protein component of a ribonucleoprotein (RNP) particle implicated in the maturation of RNA polymerase III transcripts. This report describes the complete sequences of human and bovine SS-B/La and the identification of RNA-binding protein consensus sequences RNP1 and RNP2 in the N-terminal region previously shown to be complexed with RNA in UV-crosslinking experiments. Segments of about 95 residues from the RNA-binding domain of SS-B/La and from 29 RNA-binding domains of several other proteins are analysed with respect to the frequency of amino acids and their hydrophobicity at each position. The data suggest that SS-B/La belongs to a large family of RNA-binding proteins which includes heterogeneous nuclear RNPs, nucleolin, mRNA polyadenylate binding protein, and small nuclear RNPs.
Collapse
Affiliation(s)
- E K Chan
- Department of Molecular and Experimental Medicine, Scripps Clinic and Research Foundation, La Jolla, CA 92037
| | | | | |
Collapse
|
39
|
Gottlieb E, Steitz JA. Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J 1989; 8:851-61. [PMID: 2470590 PMCID: PMC400884 DOI: 10.1002/j.1460-2075.1989.tb03446.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have tested the hypothesis that the mammalian La protein, which appears to be required for accurate and efficient RNA polymerase III transcription, is a transcription termination factor. Our data suggest that 3' foreshortened transcripts generated in La's absence are components of a novel transcription intermediate containing a paused polymerase. These transcripts are produced by fractionated transcription complexes, are synthesized with kinetics different from full-length transcripts, and are chasable to completion from the stalled transcription complexes. Together, these findings argue that termination by RNA polymerase III requires auxilliary factor(s) and implicate La as such a factor. Since La appears to facilitate transcript completion and release and also binds the resulting RNA product, it may be a regulator of RNA polymerase III transcription.
Collapse
Affiliation(s)
- E Gottlieb
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
40
|
Pathway of B1-Alu expression in microinjected oocytes: Xenopus laevis proteins associated with nuclear precursor and processed cytoplasmic RNAs. Mol Cell Biol 1988. [PMID: 2460743 DOI: 10.1128/mcb.8.10.4433] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously characterized B1-Alu gene expression by microinjected Xenopus laevis oocytes. The transcription, endonucleolytic processing and its kinetics, nuclear transport kinetics, and subsequent cellular compartmentalization have been described previously (Adeniyi-Jones and Zasloff, Nature 317:81-84, 1985). Briefly, a B1-Alu gene is transcribed by RNA polymerase III to a 210-nucleotide (210nt) primary transcript which is processed to yield 135nt and 75nt RNAs. After processing, the 135nt RNA enters the cytoplasmic compartment, where it remains stable, while the 75nt RNA is degraded. In this report we characterize this pathway further and show that the RNAs involved are complexed with specific X. laevis proteins. The primary transcript was associated with an X. laevis protein of 63 kilodaltons (p63) as well as La, a protein known to be associated with RNA polymerase III transcripts. After processing, the cytoplasmic 135nt RNA remained associated only with the X. laevis p63 in the form of a small ribonucleoprotein. Human autoimmune antibodies were purified by affinity chromatography to X. laevis p63 and used to immunoprecipitate human ribonucleoprotein containing a 63-kilodalton polypeptide and small RNAs. These data suggest that Alu-analogous ribonucleoproteins and their metabolic pathways are conserved across species and provide insight as to their possible functions.
Collapse
|
41
|
Maraia R, Zasloff M, Plotz P, Adeniyi-Jones S. Pathway of B1-Alu expression in microinjected oocytes: Xenopus laevis proteins associated with nuclear precursor and processed cytoplasmic RNAs. Mol Cell Biol 1988; 8:4433-40. [PMID: 2460743 PMCID: PMC365517 DOI: 10.1128/mcb.8.10.4433-4440.1988] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have previously characterized B1-Alu gene expression by microinjected Xenopus laevis oocytes. The transcription, endonucleolytic processing and its kinetics, nuclear transport kinetics, and subsequent cellular compartmentalization have been described previously (Adeniyi-Jones and Zasloff, Nature 317:81-84, 1985). Briefly, a B1-Alu gene is transcribed by RNA polymerase III to a 210-nucleotide (210nt) primary transcript which is processed to yield 135nt and 75nt RNAs. After processing, the 135nt RNA enters the cytoplasmic compartment, where it remains stable, while the 75nt RNA is degraded. In this report we characterize this pathway further and show that the RNAs involved are complexed with specific X. laevis proteins. The primary transcript was associated with an X. laevis protein of 63 kilodaltons (p63) as well as La, a protein known to be associated with RNA polymerase III transcripts. After processing, the cytoplasmic 135nt RNA remained associated only with the X. laevis p63 in the form of a small ribonucleoprotein. Human autoimmune antibodies were purified by affinity chromatography to X. laevis p63 and used to immunoprecipitate human ribonucleoprotein containing a 63-kilodalton polypeptide and small RNAs. These data suggest that Alu-analogous ribonucleoproteins and their metabolic pathways are conserved across species and provide insight as to their possible functions.
Collapse
Affiliation(s)
- R Maraia
- Human Genetics Branch, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
42
|
Glickman JN, Howe JG, Steitz JA. Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. J Virol 1988; 62:902-11. [PMID: 2828685 PMCID: PMC253649 DOI: 10.1128/jvi.62.3.902-911.1988] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ribonucleoprotein (RNP) particles containing the Epstein-Barr virus-associated small RNAs EBER1 and EBER2 were analyzed to determine their RNA secondary structures and sites of RNA-protein interaction. The secondary structures were probed with nucleases and by chemical modification with single-strand-specific reagents, and the sites of modification or cleavage were mapped by primer extension. These data were used to develop secondary structures for the two RNAs, and likely sites of close RNA-protein contact were identified by comparing modification patterns for naked RNA and RNA in RNP particles. In addition, sites of interaction between each Epstein-Barr virus-encoded RNA (EBER) and the La antigen were identified by analyzing RNA fragments resistant to digestion by RNase A or T1 after immunoprecipitation by an anti-La serum sample from a lupus patient. Our results confirm earlier findings that the La protein binds to the 3' terminus of each molecule. Possible functions for the EBER RNPs are discussed.
Collapse
Affiliation(s)
- J N Glickman
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510-8024
| | | | | |
Collapse
|
43
|
Chan EK, Tan EM. Human autoantibody-reactive epitopes of SS-B/La are highly conserved in comparison with epitopes recognized by murine monoclonal antibodies. J Exp Med 1987; 166:1627-40. [PMID: 2445893 PMCID: PMC2188788 DOI: 10.1084/jem.166.6.1627] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SS-B/La, an ubiquitous nuclear protein of 46-48 kD, is a target antigen of autoantibodies in SLE and Sjogren's syndrome and is involved in the maturation of RNA polymerase III transcripts such as 5S RNA and tRNAs. We have previously shown (14, 15) that SS-B consists of two protease-resistant domains of 23 and 28 kD, with the latter containing the RNA binding site. The epitopes of SS-B/La reactive with human autoantibodies are conserved among several mammalian species examined. BALB/c mice immunized with affinity-purified calf thymus SS-B produce IgG anti-SS-B/La antibodies, which reacted with bovine, human, and rabbit SS-B but not with mouse SS-B/La. The spleen of a mouse with the highest antibody titer was selected for fusion with P3 myeloma. Five IgG1k mAbs (A1-5) were selected by ELISA and immunoblotting. All except A3 reacted with the 28-kD domain. A1, A2, and A3 were capable of immuno-precipitating the 48-kD SS-B protein and its associated RNAs. A1, A2, and A3 also gave fine nuclear speckled staining on human, monkey, bovine, and rabbit cells that was similar in appearance to that with human autoantibodies, but in contrast to staining with human autoantibodies, they did not stain cells from rat, mouse, or rat kangaroo. It appears that human autoantibodies target highly conserved epitopes that can be distinguished from epitopes recognized by immunization-induced murine mAbs. Taken together with other data, it appears that human autoantibodies may be recognizing epitopes that are active or catalytic sites of molecules subserving important cellular functions.
Collapse
Affiliation(s)
- E K Chan
- W.M. Keck Autoimmune Disease Center, Scripps Clinic and Research Foundation, La Jolla, California 92037
| | | |
Collapse
|
44
|
The small nuclear ribonucleoprotein SS-B/La binds RNA with a conserved protease-resistant domain of 28 kilodaltons. Mol Cell Biol 1987. [PMID: 2441242 DOI: 10.1128/mcb.7.7.2588] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SS-B/La is a nuclear protein of 48 kilodaltons with two structural domains of Mr 28,000 and Mr 23,000 generated by proteolytic cleavage. UV irradiation was used to cross-link preexisting intracellular La-RNA complexes. Subsequent protease digestion and diagonal gel electrophoresis showed that the RNA-binding site resided in the nonphosphorylated, methionine-rich 28-kilodalton domain.
Collapse
|
45
|
Chan EK, Tan EM. The small nuclear ribonucleoprotein SS-B/La binds RNA with a conserved protease-resistant domain of 28 kilodaltons. Mol Cell Biol 1987; 7:2588-91. [PMID: 2441242 PMCID: PMC365394 DOI: 10.1128/mcb.7.7.2588-2591.1987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SS-B/La is a nuclear protein of 48 kilodaltons with two structural domains of Mr 28,000 and Mr 23,000 generated by proteolytic cleavage. UV irradiation was used to cross-link preexisting intracellular La-RNA complexes. Subsequent protease digestion and diagonal gel electrophoresis showed that the RNA-binding site resided in the nonphosphorylated, methionine-rich 28-kilodalton domain.
Collapse
|
46
|
Katze MG, DeCorato D, Safer B, Galabru J, Hovanessian AG. Adenovirus VAI RNA complexes with the 68 000 Mr protein kinase to regulate its autophosphorylation and activity. EMBO J 1987; 6:689-97. [PMID: 3582371 PMCID: PMC553452 DOI: 10.1002/j.1460-2075.1987.tb04809.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have investigated the interaction of VAI RNA with the interferon-induced, double-stranded (ds) RNA-activated protein kinase, P68, both of which regulate protein synthesis in adenovirus-infected cells. Previous work has shown that during infection by the VAI RNA-negative mutant, dl331, both viral and cellular protein synthesis are inhibited due to phosphorylation of the alpha-subunit of the eukaryotic initiation factor, eIF-2, by the P68 protein kinase. Utilizing monoclonal antibodies specific for P68, we demonstrated that the physical levels of P68 in dl331-infected, wild-type Ad2-infected and uninfected cells were all comparable suggesting that the elevated kinase activity detected during mutant infection was not due to increased P68 synthesis. To examine the basis of the increased activity of P68, the protein kinase was purified from infected-cell extracts using the monoclonal antibody. We found that P68 was heavily autophosphorylated during dl331 infection but not during wild-type or mock infection. The extent of autophosphorylation correlated with elevated P68 activity and the loss of the dsRNA requirements to phosphorylate the exogenous substrates, eIF-1 alpha and histones. We also analyzed VAI RNA function in vitro and present evidence that purified VAI RNA can block the autophosphorylation of P68 in the ribosomal salt wash fraction of interferon-treated cells. Finally we suggest VAI RNA functions through a direct interaction with the P68 protein kinase, since we demonstrated that VAI RNA forms a complex with P68 both in vitro and in vivo.
Collapse
|
47
|
Abstract
HeLa cell La antigen, an RNA-binding protein, was characterized by using two-dimensional gel electrophoresis. Eight isoelectric forms (pI 6 to 7) were observed, many containing phosphate. An in vitro translation product similar in size and antigenicity was identified. The HeLa cell protein purified by using an assay based on ribonucleoprotein reconstitution with adenovirus VA RNAI also comprised several isoelectric forms.
Collapse
|
48
|
Francoeur AM, Gritzmacher CA, Peebles CL, Reese RT, Tan EM. Synthesis of small nuclear ribonucleoprotein particles by the malarial parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 1985; 82:3635-9. [PMID: 2582421 PMCID: PMC397840 DOI: 10.1073/pnas.82.11.3635] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sera from patients with autoimmune diseases have been used to identify small nuclear ribonucleoprotein particles (snRNPs) present in higher eukaryotic cells and also in dinoflagellates. Previously these sera have not detected crossreactive snRNP protein antigens of other lower eukaryotes such as yeast, Tetrahymena, or Dictyostelium. We report that anti-Sm, anti-U1-RNP, and anti-La/SS-B human antisera react with specific snRNP protein antigens synthesized by the protozoan Plasmodium falciparum, the human malarial parasite. These results suggest that the structure and antigenicity (and thus probably the function) of snRNPs have been widely conserved in eukaryote evolution.
Collapse
|
49
|
Rinke J, Steitz JA. Association of the lupus antigen La with a subset of U6 snRNA molecules. Nucleic Acids Res 1985; 13:2617-29. [PMID: 2582364 PMCID: PMC341179 DOI: 10.1093/nar/13.7.2617] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
U6 snRNA is a component of the major class of small RNA-protein complexes, the Sm snRNPs, present in mammalian cell nuclei. Here we report that a substantial fraction (about 10%) of U6 RNA from human and mouse cells is associated with another lupus antigen, the 50 kd La protein. The La-bound U6 subpopulation is characterized by 3' end heterogeneity and partial undermethylation. These U6 molecules have U-rich 3' termini that could be responsible for their selective association with the La protein. The question of whether they are precursors to the major U6 RNAs found in Sm snRNPs is discussed.
Collapse
|
50
|
Chambers JC, Keene JD. Isolation and analysis of cDNA clones expressing human lupus La antigen. Proc Natl Acad Sci U S A 1985; 82:2115-9. [PMID: 3856888 PMCID: PMC397503 DOI: 10.1073/pnas.82.7.2115] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Several cDNA clones of the La antigen recognized by certain lupus autoantibodies were isolated from lambda gt11 expression libraries made from human liver. Recombinant clones were used to hybrid-select HeLa cell mRNA that was subsequently translated in vitro into a single protein species that comigrated with HeLa cell La protein. The in vitro translated protein was reactive with anti-La patient sera and was identical to the authentic La protein by peptide mapping. By analyzing overlapping cDNA clones, we mapped an antigenic site of La protein at the terminal 12% of the carboxyl end of the molecule. Within this region we identified a unique decapeptide of high hydrophilicity that may constitute a La antigenic determinant. We further demonstrated that the La antigen expressed from the recombinant clones can be used in a definitive enzyme-linked assay (ELISA) for the classification of sera from patients with systemic lupus erythematosus.
Collapse
|