1
|
Milenkovic I, Novoa EM. Ribosomal protein paralogues in ribosome specialization. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230387. [PMID: 40045786 PMCID: PMC11883438 DOI: 10.1098/rstb.2023.0387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 03/09/2025] Open
Abstract
Ribosomes are macromolecular complexes responsible for protein synthesis, comprising ribosomal proteins (RPs) and ribosomal RNA. While most RPs are present as single copies in higher eukaryotes, a handful of them have paralogues that emerged through duplication events. However, it is still unclear why a small subset of RP paralogues were preserved through evolution, and whether they can endow ribosomes with specialized functions. In this review, we focus on RP paralogue pairs present in humans, providing an overview of the most recent findings on RP paralogue functions and their roles in ribosome specialization.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona08003, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona08010, Spain
| |
Collapse
|
2
|
Paralog-Specific Functions of RPL7A and RPL7B Mediated by Ribosomal Protein or snoRNA Dosage in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:591-606. [PMID: 28007835 PMCID: PMC5295604 DOI: 10.1534/g3.116.035931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most ribosomal proteins in Saccharomyces cerevisiae are encoded by two paralogs that additively produce the optimal protein level for cell growth. Nonetheless, deleting one paralog of most ribosomal protein gene pairs results in a variety of phenotypes not observed when the other paralog is deleted. To determine whether paralog-specific phenotypes associated with deleting RPL7A or RPL7B stem from distinct functions or different levels of the encoded isoforms, the coding region and introns of one paralog, including an intron-embedded snoRNA (small nucleolar RNA) gene, were exchanged with that of the other paralog. Among mutants harboring a single native or chimeric RPL7 allele, expression from the RPL7A locus exceeded that from the RPL7B locus, and more Rpl7a was expressed from either locus than Rpl7b. Phenotypic differences in tunicamycin sensitivity, ASH1 mRNA localization, and mobility of the Ty1 retrotransposon were strongly correlated with Rpl7 and ribosome levels, but not with the Rpl7 or snoRNA isoform expressed. Although Ty1 RNA is cotranslationally localized, depletion of Rpl7 minimally affected synthesis of Ty1 Gag protein, but strongly influenced Ty1 RNA localization. Unlike the other processes studied, Ty1 cDNA accumulation was influenced by both the level and isoform of Rpl7 or snoRNA expressed. These cellular processes had different minimal threshold values for Rpl7 and ribosome levels, but all were functional when isoforms of either paralog were expressed from the RPL7A locus or both RPL7 loci. This study illustrates the broad range of phenotypes that can result from depleting ribosomes to different levels.
Collapse
|
3
|
Parenteau J, Lavoie M, Catala M, Malik-Ghulam M, Gagnon J, Abou Elela S. Preservation of Gene Duplication Increases the Regulatory Spectrum of Ribosomal Protein Genes and Enhances Growth under Stress. Cell Rep 2015; 13:2516-2526. [DOI: 10.1016/j.celrep.2015.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/15/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023] Open
|
4
|
Bauer JW, Brandl C, Haubenreisser O, Wimmer B, Weber M, Karl T, Klausegger A, Breitenbach M, Hintner H, von der Haar T, Tuite MF, Breitenbach-Koller L. Specialized yeast ribosomes: a customized tool for selective mRNA translation. PLoS One 2013; 8:e67609. [PMID: 23861776 PMCID: PMC3704640 DOI: 10.1371/journal.pone.0067609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/25/2013] [Indexed: 11/23/2022] Open
Abstract
Evidence is now accumulating that sub-populations of ribosomes - so-called specialized ribosomes - can favour the translation of subsets of mRNAs. Here we use a large collection of diploid yeast strains, each deficient in one or other copy of the set of ribosomal protein (RP) genes, to generate eukaryotic cells carrying distinct populations of altered ‘specialized’ ribosomes. We show by comparative protein synthesis assays that different heterologous mRNA reporters based on luciferase are preferentially translated by distinct populations of specialized ribosomes. These mRNAs include reporters carrying premature termination codons (PTC) thus allowing us to identify specialized ribosomes that alter the efficiency of translation termination leading to enhanced synthesis of the wild-type protein. This finding suggests that these strains can be used to identify novel therapeutic targets in the ribosome. To explore this further we examined the translation of the mRNA encoding the extracellular matrix protein laminin β3 (LAMB3) since a LAMB3-PTC mutant is implicated in the blistering skin disease Epidermolysis bullosa (EB). This screen identified specialized ribosomes with reduced levels of RP L35B as showing enhanced synthesis of full-length LAMB3 in cells expressing the LAMB3-PTC mutant. Importantly, the RP L35B sub-population of specialized ribosomes leave both translation of a reporter luciferase carrying a different PTC and bulk mRNA translation largely unaltered.
Collapse
Affiliation(s)
- Johann W. Bauer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- Department of Dermatology, General Hospital Salzburg/PMU, Salzburg, Austria
| | - Clemens Brandl
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | | | - Bjoern Wimmer
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Manuela Weber
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Thomas Karl
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Alfred Klausegger
- Department of Dermatology, General Hospital Salzburg/PMU, Salzburg, Austria
| | | | - Helmut Hintner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- Department of Dermatology, General Hospital Salzburg/PMU, Salzburg, Austria
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- * E-mail: (MFT); (LB-K)
| | - Lore Breitenbach-Koller
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
- * E-mail: (MFT); (LB-K)
| |
Collapse
|
5
|
Komili S, Farny NG, Roth FP, Silver PA. Functional specificity among ribosomal proteins regulates gene expression. Cell 2007; 131:557-71. [PMID: 17981122 PMCID: PMC2443060 DOI: 10.1016/j.cell.2007.08.037] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 05/30/2007] [Accepted: 08/17/2007] [Indexed: 11/30/2022]
Abstract
Duplicated genes escape gene loss by conferring a dosage benefit or evolving diverged functions. The yeast Saccharomyces cerevisiae contains many duplicated genes encoding ribosomal proteins. Prior studies have suggested that these duplicated proteins are functionally redundant and affect cellular processes in proportion to their expression. In contrast, through studies of ASH1 mRNA in yeast, we demonstrate paralog-specific requirements for the translation of localized mRNAs. Intriguingly, these paralog-specific effects are limited to a distinct subset of duplicated ribosomal proteins. Moreover, transcriptional and phenotypic profiling of cells lacking specific ribosomal proteins reveals differences between the functional roles of ribosomal protein paralogs that extend beyond effects on mRNA localization. Finally, we show that ribosomal protein paralogs exhibit differential requirements for assembly and localization. Together, our data indicate complex specialization of ribosomal proteins for specific cellular processes and support the existence of a ribosomal code.
Collapse
Affiliation(s)
- Suzanne Komili
- Department of Systems Biology, Harvard Medical School, Boston MA 02119 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02119 USA
| | - Natalie G. Farny
- Department of Systems Biology, Harvard Medical School, Boston MA 02119 USA
| | - Frederick P. Roth
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02119 USA
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston MA 02119 USA
| |
Collapse
|
6
|
Proweller A, Butler JS. Ribosome concentration contributes to discrimination against poly(A)- mRNA during translation initiation in Saccharomyces cerevisiae. J Biol Chem 1997; 272:6004-10. [PMID: 9038222 DOI: 10.1074/jbc.272.9.6004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inactivation of Saccharomyces cerevisiae poly(A) polymerase in a strain bearing the temperature-sensitive lethal pap1-1 mutation results in the synthesis of poly(A)- mRNAs that initiate translation with surprising efficiency. Translation of poly(A)- mRNAs after polyadenylation shut-off might result from an increase in the ratio of ribosomes and associated translation factors to mRNA, caused by the inability of poly(A)- mRNAs to accumulate to normal levels. To test this hypothesis, we used ribosomal subunit protein gene mutations to decrease either 40 or 60 S ribosomal subunit concentrations in strains carrying the pap1-1 mutation. Polyadenylation shut-off in such cells results in a nearly normal ratio of ribosomes to mRNA as revealed by polyribosome sedimentation analysis. Ribonuclease protection and Northern blot analyses showed that a significant percentage of poly(A)-deficient and poly(A)- mRNA associate with smaller polyribosomes compared with cells with normal ribosome levels. Analysis of the ratio of poly(A)-deficient and poly(A)- forms of a specific mRNA showed relatively more poly(A)- mRNA sedimenting with 20-60 S complexes than do poly(A)+ forms, suggesting a block in an early step of the translation initiation of the poly(A)- transcripts. These findings support models featuring the poly(A) tail as an enhancer of translation and suggest that the full effect of a poly(A) tail on the initiation strength of a mRNA may require competition for a limited number of free ribosomes or translation factors.
Collapse
Affiliation(s)
- A Proweller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
7
|
Engemann S, Noelle R, Herfurth E, Briesemeister U, Grelle G, Wittmann-Liebold B. Cartography of ribosomal proteins of the 30S subunit from the halophilic Haloarcula marismortui and complete sequence analysis of protein HS26. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:24-31. [PMID: 8529646 DOI: 10.1111/j.1432-1033.1995.024_c.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
By two-dimensional polyacrylamide gel electrophoresis of 30S ribosomal subunit proteins (S proteins) from Haloarcula marismortui we identified 27 distinct spots and analyzed all of them by protein sequence analysis. We demonstrated that protein HmaS2 (HS2) is encoded by the open reading frame orfMSG and has sequence similarities to the S2 ribosomal protein family. The proteins HmaS5 and HmaS14 were identified as spots HS7 and HS21/HS22, respectively. Protein HS4 was characterized by amino-terminal sequence analysis. The spot HS25 was recognized as an individual protein and also characterized by sequence analysis. Furthermore, the complete primary sequence of HS26 is reported, showing similarity only to eukaryotic ribosomal proteins. The sequence data of a further basic protein shows a high degree of similarity to ribosomal protein S12, therefore, it was designated HmaS12. Slightly different results compared to published sequence data were obtained for the protein HS12 and HmaS19. The putative 'ribosomal' protein HSH could not be localized in the two-dimensional pattern of the total 30S ribosomal subunit proteins of H. marismortui. Therefore, it seems to be unlikely that this protein is a real constituent of the H. marismortui ribosome.
Collapse
Affiliation(s)
- S Engemann
- Max-Delbrück-Centrum für Molekulare Medizin, Abteilung Proteinchemie, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Libri D, Stutz F, McCarthy T, Rosbash M. RNA structural patterns and splicing: molecular basis for an RNA-based enhancer. RNA (NEW YORK, N.Y.) 1995; 1:425-436. [PMID: 7493320 PMCID: PMC1482409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Efficient splicing of the 325-nt yeast (Saccharomyces cerevisiae) rp51b intron requires the presence of two short interacting sequences located 200 nt apart. We used the powerful technique of randomization-selection to probe the overall structure of the intron and to investigate its role in pre-mRNA splicing. We identified a number of alternative RNA-RNA interactions in the intron that promote efficient splicing, and we showed that similar base pairings can also improve splicing efficiency in artificially designed introns. Only a very limited amount of structural information is necessary to create or maintain such a mechanism. Our results suggest that the base pairing contributes transiently to the spliceosome assembly process, most likely by complementing interactions between splicing factors. We propose that splicing enhancement by structure represents a general mechanism operating in large yeast introns that evolutionarily preceded the protein-based splicing enhancers of higher eukaryotes.
Collapse
Affiliation(s)
- D Libri
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | | | |
Collapse
|
9
|
Bäuerle A, Mutzel R. Nucleotide sequence of the gene for ribosomal protein S17 from Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:223-6. [PMID: 7841201 DOI: 10.1016/0167-4781(94)00218-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleotide sequence of the gene for the Dictyostelium homologue of eukaryotic ribosomal protein S17 has been assembled from cDNA and genomic DNA clones. The predicted primary structure of the S17 protein displays a similar level of sequence identity with its counterparts from higher eukaryotes (53%) as other Dictyostelium ribosomal proteins. Although Dictyostelium genes usually are organized in a rather simple manner, the rps17 gene harbors two introns. One of them, located immediately 3' from the ATG initiator codon, appears to be ubiquitously conserved in eukaryotic rps17 genes.
Collapse
Affiliation(s)
- A Bäuerle
- Fakultät für Biologie, Universität Konstanz, Germany
| | | |
Collapse
|
10
|
Veldman S, Rao S, Bodley JW. Differential transcription of the two Saccharomyces cerevisiae genes encoding elongation factor 2. Gene 1994; 148:143-7. [PMID: 7926826 DOI: 10.1016/0378-1119(94)90248-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The single polypeptide chain of elongation factor 2 (EF-2) is encoded by two Saccharomyces cerevisiae genes (EFT1 and EFT2) with unique flanking sequences. One gene is necessary and either is sufficient for cell viability. In the present work, we have analyzed the transcription of EFT1 and EFT2. Although both genes harbor multiple transcription start points, EFT1 initiates primarily at residue C at -39 and EFT2 at residue C at -37. Several candidate TATA boxes were identified in each gene. Deletion analysis employing lacZ promoter fusions demonstrated that the promoter for EFT2 is located within a 79-bp region beginning 335 nucleotides (nt) upstream from the start ATG codon. This region contains two overlapping sequences with homology to the consensus binding site for the yeast transcription factor, Rap1p/Grf1p/Tuf. In contrast, the sequences essential for the transcription of EFT1 were localized to the region between the start ATG and the stop codon of the VPS17 gene that terminates 267 nt upstream on the same strand. Analysis of promoter strengths using lacZ fusions indicated that the promoter for EFT2 is approx. 2.5-fold more active than that of EFT1. Analysis of the steady-state levels of mRNAs revealed that EFT2 contributes approx. 70% of the total EF-2 mRNA while the remaining 30% is produced by EFT1. We conclude that the difference in expression of EFT1 and EFT2 is due to the differential transcription of their promoters.
Collapse
Affiliation(s)
- S Veldman
- Department of Biochemistry, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
11
|
Bermejo B, Remacha M, Ortiz-Reyes B, Santos C, Ballesta J. Effect of acidic ribosomal phosphoprotein mRNA 5'-untranslated region on gene expression and protein accumulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41729-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Liu H, Krizek J, Bretscher A. Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics 1992; 132:665-73. [PMID: 1468625 PMCID: PMC1205205 DOI: 10.1093/genetics/132.3.665] [Citation(s) in RCA: 225] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have constructed a galactose-inducible expression library by cloning yeast cDNAs unidirectionally under control of the GAL1 promoter in a centromeric shuttle vector. Eleven independent libraries were made each with an average size of about 1 x 10(6) clones, about 50 times larger than the reported mRNA population in a yeast cell. From this library, LEU2 and HIS3 cDNAs were recovered at a frequency of about 1 in 10(4) and in 12 out of 13 cases these were expressed in a galactose-dependent manner. Sequence analysis of leu2 and his3 complementing cDNAs indicates that they contain all the coding sequence and much of the 5' untranslated region. To test the utility of the library for the identification of genes whose overexpression confers a specific phenotype, we screened 25,000 yeast transformants for lethality on galactose. Among 15 clones that showed galactose inducible lethality were cDNAs encoding structural proteins, including ACT1 (actin), TUB2 (beta-tubulin) and ABP1 (actin-binding protein 1), and genes in signal transduction pathways, including TPK1 (a cAMP-dependent protein kinase) and GLC7 (type 1 protein phosphatase). cDNAs overexpressing NHPB (nonhistone protein B) and NSR1 (nuclear sequence recognition protein) were also found to be lethal. Among these, ACT1 was isolated four times, and NSR1 three times. The useful features of this library for cDNA cloning in yeast by complementation, and for the identification of genes whose over-expression confers specific phenotypes, are discussed.
Collapse
Affiliation(s)
- H Liu
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
13
|
Elhag G, Bourque D. Nuclear-encoded tobacco chloroplast ribosomal protein L24. Protein identification, sequence analysis of cDNAs encoding its cytoplasmic precursor, and mRNA and genomic DNA analysis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36669-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
De Reuse H, Kolb A, Danchin A. Positive regulation of the expression of the Escherichia coli pts operon. Identification of the regulatory regions. J Mol Biol 1992; 226:623-35. [PMID: 1324322 DOI: 10.1016/0022-2836(92)90620-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pts operon of Escherichia coli is composed of the ptsH, ptsI and crr genes coding for three proteins central to the phosphoenolpyruvate dependent phosphotransferase system (PTS), the HPr, enzyme I and EIIIGlc proteins, respectively. We previously showed that transcription from the promoter region located upstream from the pts operon is regulated by two control circuits, which can occur independently from each other. Transcription of the pts operon is (1) stimulated by the CAP-cAMP complex and (2) enhanced during growth on glucose, a PTS substrate. The DNA regions involved in regulation of the expression of the pts operon have been identified. Two promoters, P0 and P1, separated by 100 bp are located upstream from the pts operon. In these promoter regions, we identified two sequences showing similarity with the consensus of CAP-binding sites, CAPa located near P0 and CAPb located in the -35 region of P1. In vivo experiments showed that binding of CAP-cAMP at the CAPa site stimulates transcription from the P0 promoter. The binding sites of CAP-cAMP and/or RNA-polymerase on a DNA fragment containing both P0 and P1 promoters as well as both CAPa and CAPb sites were examined by the technique of DNase I footprinting. These in vitro experiments suggested that CAP-cAMP binding at the CAPb site might also play a role in regulation of the pts operon expression. In addition, we showed that the DNA region carrying the CAPa site is important for regulation by glucose. We finally propose that the expression of the pts operon is controlled by two alternative positive regulatory mechanisms, which are designed to allow activation of the pts operon under a great variety of growth conditions.
Collapse
Affiliation(s)
- H De Reuse
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
15
|
Yon J, Giallongo A, Fried M. The organization and expression of the Saccharomyces cerevisiae L4 ribosomal protein genes and their identification as the homologues of the mammalian ribosomal protein gene L7a. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:72-80. [PMID: 2046660 DOI: 10.1007/bf00260709] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A cDNA for the mouse ribosomal protein (rp) L7a, formerly called Surf-3, was used as a probe to isolate two homologous genes from Saccharomyces cerevisiae. The two yeast genes (L4-1 and L4-2) were identified as encoding S. cerevisiae L4 by 2D gel analysis of the product of the in vitro translation of hybrid-selected mRNA and additionally by direct amino acid sequencing. The DNA sequences of the two yeast genes were highly homologous (95%) over the 771 bp that encode the 256 amino acids of the coding regions but showed little homology outside the coding region. L4-1 differed from L4-2 by 7 out of the 256 amino acids in the coding region, which is the greatest divergence between the products of any two duplicated yeast ribosomal protein genes so far reported. There is strong homology between the mouse rpL7a/Surf-3 and the yeast L4 genes -57% at the nucleic acid level and also 57% at the amino acid level (though some regions reach as much as 80-90% homology). While most yeast ribosomal protein genes contain an intron in their 5' region both L4-1 and L4-2 are intronless. The mRNAs derived from each yeast gene contained heterogenous 5' and 3' ends but in each case the untranslated leaders were short. The L4-1 mRNA was found to be much more abundant than the L4-2 mRNA as assessed by cDNA and transcription analyses. Yeast cells containing a disruption of the L4-1 gene formed much smaller colonies than either wild-type or disrupted L4-2 strains. Disruption of both L4 genes is a lethal event, probably due to an inability to produce functional ribosomes.
Collapse
Affiliation(s)
- J Yon
- Department of Eukaryotic Gene Organization and Expression, Imperial Cancer Research Fund, London, United Kingdom
| | | | | |
Collapse
|
16
|
Abstract
There has been a long-standing belief that the mechanisms of mammalian and yeast splicing differ fundamentally in their requirement for a pyrimidine-rich motif preceding the 3' splice site. Using an in vivo assay, we have tested the influence of uridine content on competition between alternative 3' splice sites in yeast. We find that a uridine-rich tract preceding a PyAG greatly enhances its ability to compete as a splice acceptor. Moreover, a proximal PyAG is often overlooked if a more distal PyAG occurs in a superior sequence context; this observation cannot be accounted for by simple scanning models. Finally, we show that a distal (greater than 30 nucleotide) 3' splice site that is not preceded by uridines is a poor substrate for the second step of splicing; this argues that recognition of a uridine-rich motif is required for effective identification and utilization of distant splice sites.
Collapse
Affiliation(s)
- B Patterson
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | |
Collapse
|
17
|
Raué HA, Mager WH, Planta RJ. Structural and functional analysis of yeast ribosomal proteins. Methods Enzymol 1991; 194:453-77. [PMID: 2005803 DOI: 10.1016/0076-6879(91)94035-b] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Raué HA, Planta RJ. Ribosome biogenesis in yeast. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 41:89-129. [PMID: 1882079 DOI: 10.1016/s0079-6603(08)60007-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H A Raué
- Biochemisch Laboratorium Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Abstract
It has previously been shown that a mutation of yeast 5' splice junctions at position 5 (GUAUGU) causes aberrant pre-mRNA cleavages near the correct 5' splice site. We show here that the addition of exon mutations to an aberrant cleavage site region transforms it into a functional 5' splice site both in vivo and in vitro. The aberrant mRNAs are translated in vivo. The results suggest that the highly conserved G at the 5' end of introns is necessary for the second step of splicing. Further analyses indicate that the location of the U1 snRNA-pre-mRNA pairing is not affected by the exon mutations and that the precise 5' splice site is selected independent of this pairing.
Collapse
Affiliation(s)
- B Séraphin
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02254
| | | |
Collapse
|
20
|
Use of nuclear DNA restriction fragment length polymorphisms to analyze the diversity of the Aspergillus flavus group: A. flavus, A. parasiticus, and A. nomius. Appl Environ Microbiol 1990; 56:2453-61. [PMID: 1976300 PMCID: PMC184748 DOI: 10.1128/aem.56.8.2453-2461.1990] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recombinant DNA clones carrying high-copy or low-copy sequences from Aspergillus nidulans and Neurospora crassa were used to identify restriction fragment length polymorphisms (RFLPs) diagnostic for members of the A. flavus group: A. flavus, A. parasiticus, and A. nomius. These fungi were resolved into three distinct categories when they were grouped according to RFLP patterns. Subgroups within these categories were also evident. This limited RFLP analysis of nuclear DNA of members of the A. flavus group did not identify any RFLPs that differentiate these isolates on the basis of toxin production, but limited correlation with geographic location was observed.
Collapse
|
21
|
Gatermann KB, Teletski C, Gross T, Käufer NF. A ribosomal protein gene family from Schizosaccharomyces pombe consisting of three active members. Curr Genet 1989; 16:361-7. [PMID: 2611912 DOI: 10.1007/bf00340715] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently, we have reported the isolation and characterization of a ribosomal protein gene from the fission yeast Schizosaccharomyces pombe. This gene was called K37. Here we describe the isolation of two genes which are related to the K37 gene. Sequence analysis of these genes revealed open reading frames encoding proteins which are almost identical to the ribosomal protein K37. Furthermore, all three genes are functional as determined by Northern analysis using transformed and wild type cells. The results indicate that S. pombe contains a ribosomal protein gene family, designated the K-family, consisting of three active members. The promoter regions of the three members are compared and several common motifes are identified which might serve as transcriptional activators in these genes.
Collapse
Affiliation(s)
- K B Gatermann
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, PA 19104
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- J L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
23
|
Longtine MS, Wilson NM, Petracek ME, Berman J. A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable from RAP1. Curr Genet 1989; 16:225-39. [PMID: 2697465 DOI: 10.1007/bf00422108] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Telomere Binding Activity (TBA), an abundant protein from Saccharomyces cerevisiae, was identified by its ability to bind to telomeric poly(C1-3A) sequence motifs. The substrate specificity of TBA has been analyzed in order to determine whether the activity binds to a unique structure assumed by the irregularly repeating telomeric sequences or whether the activity recognizes and binds to subset of specific sequences found within the telomere repeat tracts. Deletion analysis and DNase I protection assays demonstrate that TBA binds specifically to two poly-(C1-3A) sequences that differ by one nucleotide. The methylation of four guanine residues, located at identical relative positions within these two binding sequences, interferes with TBA binding to the substrates. A synthetic olignucleotide containing a single TBA binding site can function as a TBA binding substrate. The TBA binding site shares homology with the binding sites reported for the Repressor/Activator Protein 1 (RAP1), Translation Upshift Factor (TUF) and General Regulatory Factor (GRFI) transcription factors, and TBA binds directly to RAP1/TUF/GRFI substrate sequences. Yeast TBA preparations and the RAP1 gene product expressed in E. coli cells are both similarly sensitive to in vitro protease digestion. Affinity-purified TBA extracts include a protein indistinguishable from RAP1 in binding specificity, size, and antigenicity. The binding affinity of TBA for the two telomeric poly(C1-3A) binding sites is higher than its affinity for any of the other binding substrates used for its identification. In extracts of yeast spheroplasts prepared by incubation of yeast cells with Zymolyase, an altered, proteolyzed form, of TBA (TBA-S) is present. TBA-S has a faster mobility in gel retardation assays and SDS-PAGE gels, yet it retains the DNA binding properties of standard TBA preparations: it binds to RAP1/TUF/GRFI substrates with the same relative binding affinity and protects poly(C1-3A) tracts from DNase I digestion with a "footprint" identical to that of standard TBA preparations.
Collapse
Affiliation(s)
- M S Longtine
- Department of Plant Biology, University of Minnesota, St. Paul 55108
| | | | | | | |
Collapse
|
24
|
Maki C, Rhoads DD, Stewart MJ, Van Slyke B, Roufa DJ. The Drosophila melanogaster RPS17 gene encoding ribosomal protein S17. Gene X 1989; 79:289-98. [PMID: 2507396 DOI: 10.1016/0378-1119(89)90211-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A human ribosomal protein S17 cDNA [Chen et al., Proc. Natl. Acad. Sci. USA 83 (1986) 6907-6911] was used as heterologous probe to isolate S17 clones from Drosophila genomic and cDNA recombinant libraries. Five S17 genomic clones were recognized; all contained overlapping regions of a single chromosomal site. Subsequently the Drosophila RPS17 gene was mapped by in situ hybridization to chromosome 3L, band 67B1-5. The locus spans approximately 1000 bp of DNA and includes four exons. It is preceded by conventional CAAT and TATA RNA polymerase II promoter motifs. The 131 amino acid protein encoded within Drosophila RPS17 is similar to ribosomal proteins from several other eukaryotes. Comparison of eukaryotic S17 proteins' primary structures as well as the number and location of their genes' intervening sequences suggest that S17 is a relatively recent addition to the ribosomal protein family, probably post-dating divergence of eukaryotes and prokaryotes.
Collapse
Affiliation(s)
- C Maki
- Center for Basic Cancer Research, Division of Biology, Kansas State University, Manhattan 66506
| | | | | | | | | |
Collapse
|
25
|
Manseau LJ, Ganetzky B, Craig EA. Molecular and genetic characterization of the Drosophila melanogaster 87E actin gene region. Genetics 1988; 119:407-20. [PMID: 2840338 PMCID: PMC1203423 DOI: 10.1093/genetics/119.2.407] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A combined molecular and genetic analysis of the 87E actin gene (Act87E) in Drosophila melanogaster was undertaken. A clone of Act87E was isolated and characterized. The Act87E transcription unit is 1.57 kb and includes a 556-base intervening sequence in the 5' leader of the gene. The protein-coding region is contiguous and encodes a protein that is greater than 93% identical to the other Drosophila actins. By in situ hybridization with a series of deficiencies that break in 87E, Act87E was localized to a region encompassing one to three faint, polytene chromosome bands. The region between the deficiency endpoints that flank the actin gene was isolated and measures approximately 24-30 kb. The closest proximal deficiency endpoint lies 8-10 kb 5' to the actin gene; the closest distal deficiency endpoint lies 16-20 kb 3' to the actin gene. A single, recessive lethal complementation group lies between the deficiency endpoints that flank the actin gene. An EMS mutagenesis screen produced four additional members of this recessive lethal complementation group. Molecular analysis of the members of this complementation group indicated that two of the newly induced mutations have deletions of approximately 1 kb in a transcribed region 4-5 kb 3' (distal) to the actin gene. This result suggests that the recessive lethal complementation group represents a gene separate from and distal to the actin gene. The mutagenesis screen failed to identify additional recessive lethal complementation groups in the actin gene-containing region. The implications of the failure to identify recessive lethal mutations in the actin gene are discussed in reference to studies of other conserved multigene families and other muscle protein mutations.
Collapse
Affiliation(s)
- L J Manseau
- Department of Genetics, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
26
|
Wormington WM. Expression of ribosomal protein genes during Xenopus development. DEVELOPMENTAL BIOLOGY (NEW YORK, N.Y. : 1985) 1988; 5:227-40. [PMID: 3077976 DOI: 10.1007/978-1-4615-6817-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Xenopus ribosomal protein genes provide an excellent system to elucidate the complex regulation encompassing 60 functionally related proteins present in equimolar amounts in ribosomal subunits. Oogenesis and embryogenesis provide unique opportunities to investigate ribosome biosynthesis in situations wherein gene activation of individual components is uncoupled from assembly of the ribosomal subunits. This chapter has focused on the basic parameters that control ribosomal protein gene expression during development. Translational control is clearly a major level for coordinating the regulation of these genes during development, as is posttranslational stability of the ribosomal proteins and RNA splicing of the L1 gene. In addition to these levels of control under active investigation, a number of intriguing problems remain to be addressed in any detail. For example, the mechanisms that balance ribosomal protein production with subunit assembly in oocytes remain to be determined. Resolution of these events must also define the processes by which ribosomal proteins, upon synthesis in the cytoplasm, are first translocated to the nucleus and subsequently to the nucleolus for subunit assembly. Functional approaches in which these genes are assayed for accurate developmental control in microinjected oocytes and fertilized eggs will undoubtedly provide information on the synthesis of this eukaryotic organelle and the signals responsible for altering these processes at different developmental stages.
Collapse
Affiliation(s)
- W M Wormington
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254
| |
Collapse
|
27
|
|
28
|
The primary structure of rat ribosomal protein S12. The relationship of rat S12 to other ribosomal proteins and a correlation of the amino acid sequences of rat and yeast ribosomal proteins. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47944-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Papciak SM, Pearson NJ. Genetic mapping of two pairs of linked ribosomal protein genes in Saccharomyces cerevisiae. Curr Genet 1987; 11:445-50. [PMID: 3329973 DOI: 10.1007/bf00384605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have used the 2 mu mapping method described by Falco and Botstein (1983) and tetrad analysis to map four ribosomal protein genes (two linked pairs) in S. cerevisiae. One pair (rp28-rp55 copy 1) is on chromosome XV, 14 cM proximal to ARG8. The other pair (rp55-rp28 copy 2) is 19 cM from the centromere on the left arm of chromosome XIV. To map copy 1 we used the E. coli beta-galactosidase gene rather than a yeast gene to mark the ribosomal protein chromosomal locus. This provided a more sensitive color screening assay for chromosome loss in the 2 mu method. It also removed the restriction that the mapping tester strains must be mutant for the plasmid marker.
Collapse
Affiliation(s)
- S M Papciak
- Department of Biological Sciences, University of Maryland Baltimore County, Catonsville 21228
| | | |
Collapse
|
30
|
|
31
|
Fouser LA, Friesen JD. Mutations in a yeast intron demonstrate the importance of specific conserved nucleotides for the two stages of nuclear mRNA splicing. Cell 1986; 45:81-93. [PMID: 3513966 DOI: 10.1016/0092-8674(86)90540-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mutations were introduced at all positions of the internal conserved sequence (ICS) and at three positions in the 5' junction sequence of a Saccharomyces cerevisiae actin intron contained within an actin-thymidine kinase fusion gene. Stage I of splicing is reduced by changes at all these positions. C or A replacement at the fifth nucleotide of the 5' sequence reduces the fidelity of RNA cleavage at the 5' exon-intron junction and results in an accumulation of aberrant lariat intermediate. Stage II of splicing is affected by changes in the first and second residues of the 5' sequence and in the penultimate position of the ICS. An A to G transition at the branch point of the ICS causes a major accumulation of lariat intermediate.
Collapse
|
32
|
|
33
|
Abstract
Five recombinant plasmids which encode ribosomal proteins (r-proteins) from Dictyostelium discoideum have been isolated. Poly(A) + RNA was size-fractionated by preparative agarose gel electrophoresis and a fraction encoding proteins of less than 35 kDa was used to construct a cDNA library in the plasmid vector pBR322. Individual clones from the library were screened by hybrid-selected translation and those encoding r-proteins were identified by co-migration of the translation products in two-dimensional gel electrophoresis with marker proteins purified from Dictyostelium ribosomes. Initial characterization using the five cDNA plasmids indicates that these r-proteins are encoded by single copy genes and that they are not tightly clustered in the genome.
Collapse
|
34
|
|
35
|
Kongsuwan K, Yu Q, Vincent A, Frisardi MC, Rosbash M, Lengyel JA, Merriam J. A Drosophila Minute gene encodes a ribosomal protein. Nature 1985; 317:555-8. [PMID: 4047173 DOI: 10.1038/317555a0] [Citation(s) in RCA: 162] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Minute genes have long constituted a special problem in Drosophila genetics. For at least 50-60 different genes scattered throughout the genome, dominant mutations and/or deficiencies have been recognized which result in a common phenotype consisting of short thin bristles, slow development, reduced viability, rough eyes, small body size and etched tergites. Schultz proposed that the Minute loci encode similar but separate functions involved in growth and division common to all cells. Atwood and Ritossa suggested that Minute loci encode components of the protein synthetic machinery, specifically the transfer RNA genes; this now seems unlikely on grounds of both mapping and mutability studies. More recently, we and others suggested that the Minute loci are ribosomal protein genes. We report here that transformation with a cloned 3.3-kilobase (kb) region containing the gene encoding the large subunit ribosomal protein 49 (rp49) suppresses the dominant phenotypes of Minute (3)99D, a previously undescribed Minute associated with a chromosomal deficiency of the 99D interval. This activity is specific to the 99D Minute as it does not suppress other Minute loci elsewhere in the genome. This result provides direct evidence that the Minute locus at the 99D interval encodes the ribosomal protein 49.
Collapse
|
36
|
Abstract
A simple kinetic model for mRNA splicing predicts the way in which in vivo steady state precursor RNA levels (P) and messenger RNA levels (M) vary as a function of the rate constant of the splicing reaction (ksp). The model points to M/P as the best measure of ksp. The analysis of a set of intron mutations in a yeast gene supports the general features of the model and shows that the splicing efficiency of transcripts containing the wild-type intron is well in excess of what is necessary to generate normal mRNA levels. The data also suggest that regions of the intron, in addition to the well-conserved consensus sequences, contribute to efficient splicing.
Collapse
|
37
|
Nakanishi O, Oyanagi M, Kuwano Y, Tanaka T, Nakayama T, Mitsui H, Nabeshima Y, Ogata K. Molecular cloning and nucleotide sequences of cDNAs specific for rat liver ribosomal proteins S17 and L30. Gene 1985; 35:289-96. [PMID: 3840111 DOI: 10.1016/0378-1119(85)90007-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
cDNA clones coding for rat liver ribosomal proteins S17 and L30 have been isolated by positive hybridization-translation assay from a cDNA library prepared from 8-9S poly(A)+RNA from free polysomes of regenerating rat liver. The cDNA clone specific for S17 protein (pRS17-2) has a 466-bp insert with the poly(A) tail. The complete amino acid (aa) sequence of S17 protein was deduced from the nucleotide sequence of the cDNA. S17 protein consists of 134 aa residues with an Mr of 15 377. The N-terminal aa sequence of S17 protein determined by automatic Edman degradation is consistent with the sequence data. The aa sequence of S17 shows strong homology (76.9%) to that of yeast ribosomal protein 51 [Teem and Rosbash, Proc. Natl. Acad. Sci. USA 80 (1983) 4403-4407] in the two-thirds N-terminal region. The cDNA clone specific for L30 protein (pRL30) has a 394-bp insert. The aa sequence of L30 protein was deduced from the nucleotide sequence of the cDNA. The protein consists of 114 aa residues with an Mr of 12 652. When compared with the N-terminal aa sequence of rat liver L30 protein [Wool, Annu. Rev. Biochem. 48 (1979) 719-754], pRL30 was found not to contain the initiation codon and 5'-noncoding region. The cDNA showed twelve silent changes in the coding region, one point mutation and one base deletion in the 3'-noncoding region, compared with mouse genomic DNA for L30 protein [Wiedemann and Perry, Mol. Cell Biol. 4 (1984) 2518-2528].
Collapse
|