1
|
Abstract
RAS is frequently mutated in human cancers with nearly 20% of all cancers harboring mutations in one of three RAS isoforms (KRAS, HRAS, or NRAS). Furthermore, RAS proteins are critical oncogenic drivers of tumorigenesis. As such, RAS has been a prime focus for development of targeted cancer therapeutics. Although RAS is viewed by many as undruggable, the recent development of allele-specific covalent inhibitors to KRAS(G12C) has provided significant hope for the eventual pharmacological inhibition of RAS (Ostrem et al., Nature 503(7477):548-551, 2013; Patricelli et al., Cancer Discov 6(3):316-329, 2016; Janes et al., Cell 172(3):578-589.e17, 2018; Canon et al., Nature 575(7781):217-223, 2019; Hallin et al., Cancer Discov 10(1):54-71, 2020). Indeed, these (G12C)-specific inhibitors have elicited promising responses in early phase clinical trials (Canon et al., Nature 575(7781):217-223, 2019; Hallin et al., Cancer Discov 10(1):54-71, 2020). Despite this success in pharmacologically targeting KRAS(G12C), the remaining RAS mutants lack readily tractable chemistries for development of covalent inhibitors. Thus, alternative approaches are needed to develop broadly efficacious RAS inhibitors. We have utilized Monobody (Mb) technology to identify vulnerabilities in RAS that can potentially be exploited for development of novel RAS inhibitors. Here, we describe the methods used to isolate RAS-specific Mbs and to define their inhibitory activity.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
2
|
The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells 2018; 7:cells7020014. [PMID: 29463063 PMCID: PMC5850102 DOI: 10.3390/cells7020014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy.
Collapse
|
3
|
Khazak V, Eyrisch S, Kato J, Tamanoi F, Golemis EA. A two-hybrid approach to identify inhibitors of the RAS-RAF interaction. Enzymes 2013; 33 Pt A:213-48. [PMID: 25033807 DOI: 10.1016/b978-0-12-416749-0.00010-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MCP compounds were developed with the idea to inhibit RAS/RAF interaction. They were identified by carrying out high-throughput screens of chemical compounds for their ability to inhibit RAS/RAF interaction in the yeast two-hybrid assay. A number of compounds including MCP1, MCP53, and MCP110 were identified as active compounds. Their inhibition of the RAS signaling was demonstrated by examining RAF and MEK activities, phosphorylation of ERK as well as characterizing their effects on events downstream of RAF. Direct evidence for the inhibition of RAS/RAF interaction was obtained by carrying out co-IP experiments. MCP compounds inhibit proliferation of a wide range of human cancer cell lines. Combination studies with other drugs showed that MCP compounds synergize with MAPK pathway inhibitors as well as with microtubule-targeting chemotherapeutics. In particular, a strong synergy with paclitaxel was observed. Efficacy to inhibit tumor formation was demonstrated using mouse xenograft models. Combination of MCP110 and paclitaxel was particularly effective in inhibiting tumor growth in a mouse xenograft model of colorectal carcinoma.
Collapse
Affiliation(s)
- Vladimir Khazak
- Program in Biology, Priaxon Inc., Philadelphia, Pennsylvania, USA.
| | | | - Juran Kato
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Erica A Golemis
- Program in Biology, Priaxon Inc., Philadelphia, Pennsylvania, USA; Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Hlavatá L, Nyström T. Ras proteins control mitochondrial biogenesis and function in Saccharomyces cerevisiae. Folia Microbiol (Praha) 2003; 48:725-30. [PMID: 15058183 DOI: 10.1007/bf02931505] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The evolutionarily conserved Ras proteins function as a point of convergence for different signaling pathways in eukaryotes and have been implicated in both aging and cancer development. In Saccharomyces cerevisiae the plasma membrane proteins Ras1 and Ras2 are sensing the nutritional status of the environments, e.g., the abundance and quality of available carbon sources. The cAMP-protein kinase A pathway is the most explored signaling pathway controlled by Ras proteins; it affects a large number of genes, some of which are important to defend the cell against oxidative stress. In addition, recent analysis has shown that the Ras system of yeast is involved in the development of mitochondria and in regulating their activity. As a sensor of environmental status and an effector of mitochondrial activity, Ras serves as a Rosetta stone of cellular energy transduction. This review summarizes the physical and functional involvement of Ras proteins and Ras-dependent signaling pathways in mitochondrial function in S. cerevisiae. Since mitochondria produce harmful reactive oxygen species as an inevitable byproduct and are partly under control of Ras, illuminating these regulatory interactions may improve our understanding of both cancer and aging.
Collapse
Affiliation(s)
- L Hlavatá
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | |
Collapse
|
5
|
Jeong MJ, Yoo J, Lee SS, Lee KI, Cho A, Kwon BM, Moon MJ, Park YM, Han MY. Increased GTP-binding to dynamin II does not stimulate receptor-mediated endocytosis. Biochem Biophys Res Commun 2001; 283:136-42. [PMID: 11322780 DOI: 10.1006/bbrc.2001.4681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regarding the molecular mechanism of dynamin in receptor-mediated endocytosis, GTPase activity of dynamin has been thought to have a critical role in endocytic vesicle internalization. However, a recent report suggested that GTP-binding to dynamin itself activates the dynamin to recruit molecular machinery necessary for endocytosis. In this study, to investigate the role of GTP binding to dynamin II, we generated two mutant dynamin II constructs: G38V and K44E. G38V, its GTP binding site might be mainly occupied by GTP caused by reduced GTPase activity, and K44E mutant, its GTP binding site might be vacant, caused by its decreased affinity for GTP and GDP. From the analysis of the ratio of GTP vs GDP bound to dynamin, we confirmed these properties. To test the effect of these mutant dynamins on endocytosis, we performed flow cytometry and confocal immunofluorescence analysis and found that these two mutants have inhibitory effect on transferrin-induced endocytosis. Whereas fluorescent transferrin was completely internalized in wild-type (WT) dynamin II expressing cells, no intracellular accumulation of fluorescent transferrin was found in the cells overexpressing K44E and G38V mutant. Interestingly, the amount of GTP bound to K44E was increased when endocytosis was induced than that bound to WT. The present results suggested that the GTPase activity of dynamin II is required for formation of endocytic vesicle and GTP-binding to dynamin II per se is not sufficient for stimulating endocytosis.
Collapse
Affiliation(s)
- M J Jeong
- Cell Biology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Taejon, Yusung, 305-600, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Teunissen AW, Steensma HY. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 1995; 11:1001-13. [PMID: 7502576 DOI: 10.1002/yea.320111102] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The quality of brewing strains is, in large part, determined by their flocculation properties. By classical genetics, several dominant, semidominant and recessive flocculation genes have been recognized. Recent results of experiments to localize the flocculation genes FLO5 and FLO8, combined with the in silicio analysis of the available sequence data of the yeast genome, have revealed that the flocculation genes belong to a family which comprises at least four genes and three pseudogenes. All members of this gene family are located near the end of chromosomes, just like the SUC, MEL and MAL genes, which are also important for good quality baking or brewing strains. Transcription of the flocculation genes is repressed by several regulatory genes. In addition, a number of genes have been found which cause cell aggregation upon disruption or overexpression in an as yet unknown manner. In total, 33 genes have been reported that are involved in flocculation or cell aggregation.
Collapse
Affiliation(s)
- A W Teunissen
- Institute for Molecular Plant Sciences, Leiden University, The Netherlands
| | | |
Collapse
|
7
|
Affiliation(s)
- A J Self
- MRC Laboratory for Molecular Cell Biology, University College London, United Kingdom
| | | |
Collapse
|
8
|
Stratford M. Genetic aspects of yeast flocculation: in particular, the role of FLO genes in the flocculation of Saccharomyces cerevisiae. Colloids Surf B Biointerfaces 1994. [DOI: 10.1016/0927-7765(94)80029-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Liu ZR, Sanford JC. Investigation of the mechanism underlying the inhibitory effect of heterologous ras genes in plant cells. PLANT MOLECULAR BIOLOGY 1993; 22:751-65. [PMID: 8358027 DOI: 10.1007/bf00027362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ras genes from yeast and mammalian cells were fused to plant expression promoters, and introduced into plant cells via Agrobacterium, to study their effect on cell growth and development. All introduced ras genes had a strong inhibitory effect on callus and shoot regeneration from plant tissues. This is consistent with earlier findings that heterologous ras genes were highly lethal to protoplasts following direct DNA uptake. These effects could not be reversed by increasing exogenous or endogenous cytokinin levels. These effects were also independent of the v-Ha-ras mutations in functionally important regions of Ras proteins such as effector-binding and membrane-binding sites. Similarly, co-transformation with the genes encoding the Ras-negative regulators, GTPase-activating protein and neurofibromin did not affect the ras inhibitory effect, indicating that the mechanism of ras inhibition of plant cells is not related to normal ras cellular functions. This conclusion was supported by further studies in which ras gene expression was modified using various promoters and antisense constructs. The introduced ras sequences remained fully inhibitory regardless of which promoters (inducible or tissue-specific) or which orientations (sense or antisense) were tested. This strongly suggests that the ras DNA sequence itself, rather than the Ras protein or ras mRNA, is directly involved in the inhibitory effect. The mechanism underlying this novel phenomenon remains unknown. Introduced ras genes may inhibit plant cell growth by inducing co-suppression of unknown endogenous ras or ras-related genes, thereby leading to the arrest of cell growth.
Collapse
Affiliation(s)
- Z R Liu
- Department of Horticultural Sciences, Cornell University, Geneva, NY 14456
| | | |
Collapse
|
10
|
|
11
|
Kramer RA, Tomchak L, Ruben SM, Rosen CA. Expression of the HTLV-I tax transactivator in yeast: correlation between phenotypic alterations and tax function in higher eukaryotes. AIDS Res Hum Retroviruses 1990; 6:1305-9. [PMID: 2078411 DOI: 10.1089/aid.1990.6.1305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcriptional activator protein (Tax) from human T-cell leukemia virus type 1 was expressed in yeast using several different promoters in several strains: In all instances, expression of Tax resulted in very strong aggregation of the yeast cells. This phenotype appears to be identical by all criteria tested to the flocculation phenotype of the dominant mutation flo 1. Of most significance, mutations in Tax that affect transactivation of the IL-2R alpha regulatory sequences, but retain their ability to activate the viral long terminal repeat also fail to yield the aggregation phenotype. Based on these findings, expression of Tax in yeast may prove to be a simple primordial system for examining the regulatory mechanisms and cellular functions involved in regulation of gene expression.
Collapse
Affiliation(s)
- R A Kramer
- Department of Molecular Genetics, Hoffmann-La Roche Inc., Nutley, NJ 07110
| | | | | | | |
Collapse
|
12
|
Hilson P, Dewulf J, Delporte F, Installé P, Jacquemin JM, Jacobs M, Negrutiu I. Yeast RAS2 affects cell viability, mitotic division and transient gene expression in Nicotiana species. PLANT MOLECULAR BIOLOGY 1990; 14:669-85. [PMID: 2102848 DOI: 10.1007/bf00016500] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Overexpression of the budding yeast RAS2 gene in Nicotiana plumbaginifolia cells revealed that RAS2 acted as 'suicide' gene in freshly isolated protoplasts from leaves and blocked cell proliferation in cell suspension-derived protoplasts. Among a series of genes tested (such as npt II, CDC35, PDE2), RAS2 was the only one to block the expression of the cat gene, as measured in a transient gene expression assay. Another ras gene, v-Ha-ras, had similar effects. Furthermore, the RAS2 effect was species-specific and depended on the modulation of hormonal metabolism in the transfected cells, while no differences were noticed between the normal and the activated val19 gene. Transfected plant cells are shown to synthesize a RAS2 protein of the same electrophoretic mobility as the yeast RAS2 product. The results are discussed in the broader context of the evolutionarily conserved ras genes involved in vital cellular functions.
Collapse
Affiliation(s)
- P Hilson
- Unité de Biologie Moléculaire et de Physiologie Animale, Faculté des Sciences Agronomiques de l'Etat, Gembloux, Belgium
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Baker's yeast, a unicellular eukaryote, has been a model organism for biochemists, geneticists and most recently for molecular biologists. Pioneering biochemical studies were conducted on yeast, such as the study of glucose fermentation and amino acid metabolism. The powerful tools of yeast genetics have allowed a comprehensive study of important issues such as the cell cycle and meiosis. In recent years, it has been established that Saccharomyces cerevisiae, the most extensively characterized of the yeasts, shares key molecules and biochemical pathways with higher eukaryotes. For example, actin, tubulin, ubiquitin, calmodulin, GTP regulatory proteins, different protein kinases including protein tyrosine kinases, were all found to play central roles in yeast. Furthermore, structurally homologous proteins, as well as transcription regulating elements, of yeast and higher eukaryotes, including mammals, were shown to be structurally and functionally interchangeable. It has also been found that yeast can express human genes. Technically, yeasts are simple to handle, inexpensive to grow, complete a cell cycle within 90 min, and therefore can yield relatively quick results. These qualities are useful in biotechnological applications. Saccharomyces cerevisiae, can be genetically manipulated fairly easily, and has been tinkered with more than any other system. A cloned, in vitro mutated gene, can be transformed into wild type yeast and by homologous recombination, can replace the native gene and generate the desired mutant. Such manipulations, not possible yet in other eukaryotic cells, allow the precise definition of the role played by different genes and their domains. These unique features of Saccharomyces cerevisiae, together with rapidly evolving techniques of molecular biology, have made it a successful model organism for the study of numerous questions.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Engelberg
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
14
|
Affiliation(s)
- R W Storms
- Department of Microbiology, University of Texas, Austin 78712-1095
| | | |
Collapse
|
15
|
Vaccine Production by Recombinant DNA Technology. Anim Biotechnol 1989. [DOI: 10.1016/b978-0-08-034730-1.50009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Abstract
This paper has reviewed, in a broad sense, the potential involvement of the oncogenes and their progenitors, the protooncogenes, in signal transduction pathways. The membrane-associated oncogene products appear to be connected with the generation and/or regulation of secondary messengers, particularly those associated with Ca2+/phospholipid-dependent activation of the serine/threonine kinase protein kinase C. Activation of transmembrane receptors, either through binding their native ligand or through point mutations that lead to constitutive expression, results in the expression of their intrinsic tyrosine-specific protein kinases. In PDGF-stimulated cells, this results in the increased turnover of phosphatidylinositols and the subsequent release of IP3 (Habenicht et al., 1981; Berridge et al., 1984). This coincides with activation of a PI kinase activity (Kaplan et al., 1987). Likewise, the fms product, which is the receptor for CSF-1, induces a guanine nucleotide-dependent activation of phospholipase C (Jackowski et al., 1986). Receptor functions are potentially regulated through differential binding of ligands (as proposed with PDGF), through interactions with other receptors, and through the "feedback" regulation mediated by protein kinase C. PDGF stimulation leads to modulation of the EGF receptor through protein kinase C (Bowen-Pope et al., 1983; Collins et al., 1983; Davis and Czech, 1985). Similarly, the neu product becomes phosphorylated on tyrosine residues following treatment of cells with EGF, although the neu protein does not bind EGF itself (King et al., 1988; Stern and Kamps, 1988). The tyrosine kinases of the src family are not receptors themselves, although they may mediate specific receptor-generated signals. The clck product is physically and functionally associated with the T-cell receptors CD4 and CD8, and becomes active upon specific stimulation of cells expressing those markers (Veillette et al., 1988a,b). The precise physiological role of the src family products has not been established, but their kinase activity is intrinsic to that function. The v- and c-src products are hyperphosphorylated during mitosis (Chackalaparampil and Shalloway, 1988), which correlates with periods of reduced cell-to-cell adhesion and communication (Warren and Nelson, 1987; Azarnia et al., 1988). Furthermore, pp60c-src is associated with a PI kinase activity when complexed with MTAg of polyoma virus, suggesting a function in stimulating increased turnover of the phosphatidylinositols (Heber and Courtneidge, 1987; Kaplan et al., 1987).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R W Storms
- Department of Microbiology, University of Texas, Austin 78712
| | | |
Collapse
|
17
|
Affiliation(s)
- F Tamanoi
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| |
Collapse
|
18
|
Tamanoi F, Hsueh EC, Goodman LE, Cobitz AR, Detrick RJ, Brown WR, Fujiyama A. Posttranslational modification of ras proteins: detection of a modification prior to fatty acid acylation and cloning of a gene responsible for the modification. J Cell Biochem 1988; 36:261-73. [PMID: 3288644 DOI: 10.1002/jcb.240360307] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Products of ras genes are synthesized as precursors in the cytosol and transported to the plasma membrane by a process which involves posttraslational modification by fatty acid. In this paper, we present evidence for the occurrence in the cytosol of an intermediate modification of ras proteins prior to the fatty acid acylation. The modification is detected by a slight shift in the mobility of the protein on SDS polyacrylamide gel. The fatty acid acylation does not contribute to this mobility shift. This modification is affected by the dprl mutation which has recently been shown to affect the processing of yeast RAS proteins. To further characterize the nature of the modification event, we have cloned DPR1 gene from the DNA of Saccharomyces cerevisiae. The gene is actively transcribed in yeast cells producing mRNA of approximately 1.6 kb. Genes related to the DRP1 appear to be present in a distantly related yeast, Schizosaccharomyces pombe as well as in guinea pig and human cells.
Collapse
Affiliation(s)
- F Tamanoi
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637
| | | | | | | | | | | | | |
Collapse
|
19
|
Kingsman S, Kingsman A, Mellor J. The production of mammalian proteins in Saccharomyces cerevisiae. Trends Biotechnol 1987. [DOI: 10.1016/0167-7799(87)90038-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Kingsman AJ, Stanway C, Kingsman SM. The expression of homologous and heterologous genes in yeast. Antonie Van Leeuwenhoek 1987; 53:325-33. [PMID: 3318689 DOI: 10.1007/bf00400556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Ostertag W, Stocking C, Johnson GR, Kluge N, Kollek R, Franz T, Hess N. Transforming genes and target cells of murine spleen focus-forming viruses. Adv Cancer Res 1987; 48:193-355. [PMID: 3039810 DOI: 10.1016/s0065-230x(08)60693-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Powers S, Michaelis S, Broek D, Santa Anna S, Field J, Herskowitz I, Wigler M. RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor. Cell 1986; 47:413-22. [PMID: 3533274 DOI: 10.1016/0092-8674(86)90598-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have identified a gene (SUPH) of S. cerevisiae that is required for both RAS function and mating by cells of a mating type. supH is allelic to ste16, a gene required for the production of the mating pheromone a-factor. Both RAS and a-factor coding sequences terminate with the potential acyltransferase recognition sequence Cys-A-A-X, where A is an aliphatic amino acid. Mutations in SUPH-STE16 prevent the membrane localization and maturation of RAS protein, as well as the fatty acid acylation of it and other membrane proteins. We propose the designation RAM (RAS protein and a-factor maturation function) for SUPH and STE16. RAM may encode an enzyme responsible for the modification and membrane localization of proteins with this C-terminal sequence.
Collapse
|
23
|
|