1
|
Aggad D, Brouilly N, Omi S, Essmann CL, Dehapiot B, Savage-Dunn C, Richard F, Cazevieille C, Politi KA, Hall DH, Pujol R, Pujol N. Meisosomes, folded membrane microdomains between the apical extracellular matrix and epidermis. eLife 2023; 12:e75906. [PMID: 36913486 PMCID: PMC10010689 DOI: 10.7554/elife.75906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
Apical extracellular matrices (aECMs) form a physical barrier to the environment. In Caenorhabditis elegans, the epidermal aECM, the cuticle, is composed mainly of different types of collagen, associated in circumferential ridges separated by furrows. Here, we show that in mutants lacking furrows, the normal intimate connection between the epidermis and the cuticle is lost, specifically at the lateral epidermis, where, in contrast to the dorsal and ventral epidermis, there are no hemidesmosomes. At the ultrastructural level, there is a profound alteration of structures that we term 'meisosomes,' in reference to eisosomes in yeast. We show that meisosomes are composed of stacked parallel folds of the epidermal plasma membrane, alternately filled with cuticle. We propose that just as hemidesmosomes connect the dorsal and ventral epidermis, above the muscles, to the cuticle, meisosomes connect the lateral epidermis to it. Moreover, furrow mutants present marked modifications of the biomechanical properties of their skin and exhibit a constitutive damage response in the epidermis. As meisosomes co-localise to macrodomains enriched in phosphatidylinositol (4,5) bisphosphate, they could conceivably act, like eisosomes, as signalling platforms, to relay tensile information from the aECM to the underlying epidermis, as part of an integrated stress response to damage.
Collapse
Affiliation(s)
- Dina Aggad
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living SystemsMarseilleFrance
| | - Nicolas Brouilly
- Aix Marseille Université, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Shizue Omi
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living SystemsMarseilleFrance
| | - Clara Luise Essmann
- Department of Computer Science, University College LondonLondonUnited Kingdom
- Bio3/Bioinformatics and Molecular Genetics, Albert-Ludwigs-UniversityFreiburgGermany
| | - Benoit Dehapiot
- Aix Marseille Université, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Cathy Savage-Dunn
- Department of Biology, Queens College and the Graduate Center, CUNYFlushingUnited States
| | - Fabrice Richard
- Aix Marseille Université, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Chantal Cazevieille
- INM, Institut des Neurosciences de Montpellier, Plateau de microscopie électronique, INSERM, Université de MontpellierMontpellierFrance
| | - Kristin A Politi
- Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of MedicineNew YorkUnited States
| | - Remy Pujol
- INM, Institut des Neurosciences de Montpellier, Plateau de microscopie électronique, INSERM, Université de MontpellierMontpellierFrance
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living SystemsMarseilleFrance
| |
Collapse
|
2
|
Rodriguez Mendoza V, Chandler L, Liu Z, Buddendorff L, Al-Rajhi A, Choi T, Gibb G, Harvey J, Mihalik A, Moravec S, Pilcher W, Raju V, Choe KP. Extracellular proteins OSM-7 and OSM-8 are required for stress response gene regulation at all post-embryonic stages. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000688. [PMID: 36606078 PMCID: PMC9807463 DOI: 10.17912/micropub.biology.000688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
Nematode cuticles are extracellular matrices (ECMs) that function as structural support and permeability barriers. Genetic disruption of specific cuticle collagen structures or secreted epidermal proteins in C. elegans activates stress response genes in epithelial cells suggesting the presence of an extracellular damage signaling mechanism. Cuticles are replaced during development via molting but investigations of extracellular signaling to stress responses have focused on adults. In our current study, we measured cuticle phenotypes and stress response gene expression in all post-embryonic stages of mutant strains for a collagen and two secreted epidermal proteins to gain insights into developmental patterns.
Collapse
Affiliation(s)
| | - Luke Chandler
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL USA
| | - Zhexin Liu
- University of Florida, Gainesville, FL USA
| | | | | | - Thine Choi
- University of Florida, Gainesville, FL USA
| | | | | | | | | | | | | | - Keith Patrick Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|
3
|
Zhang X, Harding BW, Aggad D, Courtine D, Chen JX, Pujol N, Ewbank JJ. Antagonistic fungal enterotoxins intersect at multiple levels with host innate immune defences. PLoS Genet 2021; 17:e1009600. [PMID: 34166401 PMCID: PMC8263066 DOI: 10.1371/journal.pgen.1009600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/07/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.
Collapse
Affiliation(s)
- Xing Zhang
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Benjamin W. Harding
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Dina Aggad
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Damien Courtine
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Jonathan J. Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
4
|
Sandhu A, Badal D, Sheokand R, Tyagi S, Singh V. Specific collagens maintain the cuticle permeability barrier in Caenorhabditis elegans. Genetics 2021; 217:iyaa047. [PMID: 33789349 PMCID: PMC8045729 DOI: 10.1093/genetics/iyaa047] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023] Open
Abstract
Collagen-enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode's genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens-DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10-led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs- levamisole and ivermectin. Upon exposure to PQ, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Divakar Badal
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Riya Sheokand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Shalini Tyagi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Lead contact
| |
Collapse
|
5
|
Mesbahi H, Pho KB, Tench AJ, Leon Guerrero VL, MacNeil LT. Cuticle Collagen Expression Is Regulated in Response to Environmental Stimuli by the GATA Transcription Factor ELT-3 in Caenorhabditis elegans. Genetics 2020; 215:483-495. [PMID: 32229533 PMCID: PMC7268988 DOI: 10.1534/genetics.120.303125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The nematode Caenorhabditis elegans is protected from the environment by the cuticle, an extracellular collagen-based matrix that encloses the animal. Over 170 cuticular collagens are predicted in the C. elegans genome, but the role of each individual collagen is unclear. Stage-specific specialization of the cuticle explains the need for some collagens; however, the large number of collagens suggests that specialization of the cuticle may also occur in response to other environmental triggers. Missense mutations in many collagen genes can disrupt cuticle morphology, producing a helically twisted body causing the animal to move in a stereotypical pattern described as rolling. We find that environmental factors, including diet, early developmental arrest, and population density can differentially influence the penetrance of rolling in these mutants. These effects are in part due to changes in collagen gene expression that are mediated by the GATA family transcription factor ELT-3 We propose a model by which ELT-3 regulates collagen gene expression in response to environmental stimuli to promote the assembly of a cuticle specialized to a given environment.
Collapse
Affiliation(s)
- Hiva Mesbahi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Kim B Pho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Andrea J Tench
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Victoria L Leon Guerrero
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- Farncombe Family Digestive Health Research Institute, McMaster University, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
6
|
Azzi C, Aeschimann F, Neagu A, Großhans H. A branched heterochronic pathway directs juvenile-to-adult transition through two LIN-29 isoforms. eLife 2020; 9:e53387. [PMID: 32223899 PMCID: PMC7105380 DOI: 10.7554/elife.53387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/10/2020] [Indexed: 01/23/2023] Open
Abstract
Robust organismal development relies on temporal coordination of disparate physiological processes. In Caenorhabditis elegans, the heterochronic pathway controls a timely juvenile-to-adult (J/A) transition. This regulatory cascade of conserved proteins and small RNAs culminates in accumulation of the transcription factor LIN-29, which triggers coordinated execution of transition events. We report that two LIN-29 isoforms fulfill distinct functions. Functional specialization is a consequence of distinct isoform expression patterns, not protein sequence, and we propose that distinct LIN-29 dose sensitivities of the individual J/A transition events help to ensure their temporal ordering. We demonstrate that unique isoform expression patterns are generated by the activities of LIN-41 for lin-29a, and of HBL-1 for lin-29b, whereas the RNA-binding protein LIN-28 coordinates LIN-29 isoform activity, in part by regulating both hbl-1 and lin-41. Our findings reveal that coordinated transition from juvenile to adult involves branching of a linear pathway to achieve timely control of multiple events.
Collapse
Affiliation(s)
- Chiara Azzi
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Florian Aeschimann
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Anca Neagu
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
7
|
Serrano-Saiz E, Vogt MC, Levy S, Wang Y, Kaczmarczyk KK, Mei X, Bai G, Singson A, Grant BD, Hobert O. SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes. Genetics 2020; 214:163-178. [PMID: 31776169 PMCID: PMC6944403 DOI: 10.1534/genetics.119.302855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/24/2019] [Indexed: 01/04/2023] Open
Abstract
Members of the superfamily of solute carrier (SLC) transmembrane proteins transport diverse substrates across distinct cellular membranes. Three SLC protein families transport distinct neurotransmitters into synaptic vesicles to enable synaptic transmission in the nervous system. Among them is the SLC17A6/7/8 family of vesicular glutamate transporters, which endows specific neuronal cell types with the ability to use glutamate as a neurotransmitter. The genome of the nematode Caenorhabditis elegans encodes three SLC17A6/7/8 family members, one of which, eat-4/VGLUT, has been shown to be involved in glutamatergic neurotransmission. Here, we describe our analysis of the two remaining, previously uncharacterized SLC17A6/7/8 family members, vglu-2 and vglu-3 These two genes directly neighbor one another and are the result of a recent gene duplication event in C. elegans, but not in other Caenorhabditis species. Compared to EAT-4, the VGLU-2 and VGLU-3 protein sequences display a more distant similarity to canonical, vertebrate VGLUT proteins. We tagged both genomic loci with gfp and detected no expression of vglu-3 at any stage of development in any cell type of both C. elegans sexes. In contrast, vglu-2::gfp is dynamically expressed in a restricted set of distinct cell types. Within the nervous system, vglu-2::gfp is exclusively expressed in a single interneuron class, AIA, where it localizes to vesicular structures in the soma, but not along the axon, suggesting that VGLU-2 may not be involved in synaptic transport of glutamate. Nevertheless, vglu-2 mutants are partly defective in the function of the AIA neuron in olfactory behavior. Outside the nervous system, VGLU-2 is expressed in collagen secreting skin cells where VGLU-2 most prominently localizes to early endosomes, and to a lesser degree to apical clathrin-coated pits, the trans-Golgi network, and late endosomes. On early endosomes, VGLU-2 colocalizes most strongly with the recycling promoting factor SNX-1, a retromer component. Loss of vglu-2 affects the permeability of the collagen-containing cuticle of the worm, and based on the function of a vertebrate VGLUT1 protein in osteoclasts, we speculate that vglu-2 may have a role in collagen trafficking in the skin. We conclude that C. elegans SLC17A6/7/8 family members have diverse functions within and outside the nervous system.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
- Centro de Biologia Molecular Severo Ochoa/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Sagi Levy
- Rockefeller University, New York, New York 10065
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Karolina K Kaczmarczyk
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Xue Mei
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Andrew Singson
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| |
Collapse
|
8
|
Rahe DP, Hobert O. Restriction of Cellular Plasticity of Differentiated Cells Mediated by Chromatin Modifiers, Transcription Factors and Protein Kinases. G3 (BETHESDA, MD.) 2019; 9:2287-2302. [PMID: 31088904 PMCID: PMC6643894 DOI: 10.1534/g3.119.400328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/11/2019] [Indexed: 12/30/2022]
Abstract
Ectopic expression of master regulatory transcription factors can reprogram the identity of specific cell types. The effectiveness of such induced cellular reprogramming is generally greatly reduced if the cellular substrates are fully differentiated cells. For example, in the nematode C. elegans, the ectopic expression of a neuronal identity-inducing transcription factor, CHE-1, can effectively induce CHE-1 target genes in immature cells but not in fully mature non-neuronal cells. To understand the molecular basis of this progressive restriction of cellular plasticity, we screened for C. elegans mutants in which ectopically expressed CHE-1 is able to induce neuronal effector genes in epidermal cells. We identified a ubiquitin hydrolase, usp-48, that restricts cellular plasticity with a notable cellular specificity. Even though we find usp-48 to be very broadly expressed in all tissue types, usp-48 null mutants specifically make epidermal cells susceptible to CHE-1-mediated activation of neuronal target genes. We screened for additional genes that allow epidermal cells to be at least partially reprogrammed by ectopic che-1 expression and identified many additional proteins that restrict cellular plasticity of epidermal cells, including a chromatin-related factor (H3K79 methyltransferase, DOT-1.1), a transcription factor (nuclear hormone receptor NHR-48), two MAPK-type protein kinases (SEK-1 and PMK-1), a nuclear localized O-GlcNAc transferase (OGT-1) and a member of large family of nuclear proteins related to the Rb-associated LIN-8 chromatin factor. These findings provide novel insights into the control of cellular plasticity.
Collapse
Affiliation(s)
- Dylan P Rahe
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| |
Collapse
|
9
|
Chen F, Chisholm AD, Jin Y. Tissue-specific regulation of alternative polyadenylation represses expression of a neuronal ankyrin isoform in C. elegans epidermal development. Development 2017; 144:698-707. [PMID: 28087624 DOI: 10.1242/dev.146001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
Differential mRNA polyadenylation plays an important role in shaping the neuronal transcriptome. In C. elegans, several ankyrin isoforms are produced from the unc-44 locus through alternative polyadenylation. Here, we identify a key role for an intronic polyadenylation site (PAS) in temporal- and tissue-specific regulation of UNC-44/ankyrin isoforms. Removing an intronic PAS results in ectopic expression of the neuronal ankyrin isoform in non-neural tissues. This mis-expression underlies epidermal developmental defects in mutants of the conserved tumor suppressor death-associated protein kinase dapk-1 We have previously reported that the use of this intronic PAS depends on the nuclear polyadenylation factor SYDN-1, which inhibits the RNA polymerase II CTD phosphatase SSUP-72. Consistent with this, loss of sydn-1 blocks ectopic expression of neuronal ankyrin and suppresses epidermal morphology defects of dapk-1 These effects of sydn-1 are mediated by ssup-72 autonomously in the epidermis. We also show that a peptidyl-prolyl isomerase PINN-1 antagonizes SYDN-1 in the spatiotemporal control of neuronal ankyrin isoform. Moreover, the nuclear localization of PINN-1 is altered in dapk-1 mutants. Our data reveal that tissue and stage-specific expression of ankyrin isoforms relies on differential activity of positive and negative regulators of alternative polyadenylation.
Collapse
Affiliation(s)
- Fei Chen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA .,Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Gill HK, Cohen JD, Ayala-Figueroa J, Forman-Rubinsky R, Poggioli C, Bickard K, Parry JM, Pu P, Hall DH, Sundaram MV. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix. PLoS Genet 2016; 12:e1006205. [PMID: 27482894 PMCID: PMC4970718 DOI: 10.1371/journal.pgen.1006205] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for this matrix component in supporting lumen integrity within narrow bore tubes such as those found in the mammalian microvasculature, and reveal functional importance of the evolutionarily conserved ZP domain in this tube protecting activity. Most organs in the body are made up of networks of tubes that transport fluids or gases. These tubes come in many different sizes and shapes, with some narrow capillaries being only one cell in diameter. As tubes develop and take their final shapes, they secrete various glycoproteins into their hollow interior or lumen. The functions of these luminal proteins are not well understood, but there is increasing evidence that they are important for lumen shaping and that their loss can contribute to diseases such as cardiovascular disease and chronic kidney disease. Through studies of the nematode C. elegans, we identified a luminal glycoprotein, LET-653, that is transiently expressed in multiple developing tube types but is particularly critical to maintain integrity of the narrowest, unicellular tubes. We identified protein domains that direct LET-653 to specific apical matrix compartments and mediate its oscillatory pattern of lumen localization. Furthermore, we showed that the LET-653 tube-protecting activity depends on a Zona Pellucida (ZP) domain similar to that found in the mammalian egg-coat and in many other luminal or sensory matrix proteins involved in human disease.
Collapse
Affiliation(s)
- Hasreet K. Gill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jennifer D. Cohen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesus Ayala-Figueroa
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rachel Forman-Rubinsky
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Corey Poggioli
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin Bickard
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jean M. Parry
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Georgian Court University, Lakewood, New Jersey, United States of America
| | - Pu Pu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Meera V. Sundaram
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development. G3-GENES GENOMES GENETICS 2014; 4:733-47. [PMID: 24569038 PMCID: PMC4059243 DOI: 10.1534/g3.113.009522] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.
Collapse
|
12
|
Synapse location during growth depends on glia location. Cell 2013; 154:337-50. [PMID: 23870123 DOI: 10.1016/j.cell.2013.06.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 04/09/2013] [Accepted: 06/19/2013] [Indexed: 11/22/2022]
Abstract
Synaptic contacts are largely established during embryogenesis and are then maintained during growth. To identify molecules involved in this process, we conducted a forward genetic screen in C. elegans and identified cima-1. In cima-1 mutants, synaptic contacts are correctly established during embryogenesis, but ectopic synapses emerge during postdevelopmental growth. cima-1 encodes a solute carrier in the SLC17 family of transporters that includes sialin, a protein that when mutated in humans results in neurological disorders. cima-1 does not function in neurons but rather functions in the nearby epidermal cells to correctly position glia during postlarval growth. Our findings indicate that CIMA-1 antagonizes the FGF receptor (FGFR), and does so most likely by inhibiting FGFR's role in epidermal-glia adhesion rather than signaling. Our data suggest that epidermal-glia crosstalk, in this case mediated by a transporter and the FGF receptor, is vital to preserve embryonically derived circuit architecture during postdevelopmental growth.
Collapse
|
13
|
Shin H, Lee H, Fejes AP, Baillie DL, Koo HS, Jones SJ. Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing. BMC Res Notes 2011; 4:34. [PMID: 21303547 PMCID: PMC3045954 DOI: 10.1186/1756-0500-4-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 02/08/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the C. elegans homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an intracellular fuel sensor that regulates cellular energy homeostasis and functions in stress resistance and lifespan extension. FINDINGS Here, we investigated global transcriptional responses of aak-2 mutants to oxidative stress and in turn identified potential downstream targets of AAK-2 involved in stress resistance in C. elegans. We employed massively parallel Illumina sequencing technology and performed comprehensive comparative transcriptome analysis. Specifically, we compared the transcriptomes of aak-2 and wild type animals under normal conditions and conditions of induced oxidative stress. This research has presented a snapshot of genome-wide transcriptional activities that take place in C. elegans in response to oxidative stress both in the presence and absence of AAK-2. CONCLUSIONS The analysis presented in this study has enabled us to identify potential genes involved in stress resistance that may be either directly or indirectly under the control of AAK-2. Furthermore, we have extended our current knowledge of general defense responses of C. elegans against oxidative stress supporting the function for AAK-2 in inhibition of biosynthetic processes, especially lipid synthesis, under oxidative stress and transcriptional regulation of genes involved in reproductive processes.
Collapse
Affiliation(s)
- Heesun Shin
- Genome Sciences Centre, BC Cancer Agency, Suite 100 570 West 7th Avenue, Vancouver, British Columbia, Canada V5Z 4S6.
| | | | | | | | | | | |
Collapse
|
14
|
Zhang H, Fire AZ. Cell autonomous specification of temporal identity by Caenorhabditis elegans microRNA lin-4. Dev Biol 2010; 344:603-10. [PMID: 20493184 DOI: 10.1016/j.ydbio.2010.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 05/12/2010] [Indexed: 11/19/2022]
Abstract
MicroRNAs provide developing systems with substantial flexibility in posttranscriptional gene regulation. Despite advances made in understanding microRNA structure and function, the relationships between their site-of-synthesis and site-of-action ("autonomy" versus "non-autonomy") remain an open question. Given the well-defined role of microRNA lin-4 in a reproducible series of time-specific developmental switches, lin-4 is an excellent candidate for understanding whether microRNAs and the resulting heterochronic regulatory pathway have the potential to act cell autonomously. By monitoring temporal development and reporter activity in animals where lin-4 is modulated, we have demonstrated that lin-4 acts cell autonomously to specify temporal identity. This work (i) provides an example of cell autonomy in microRNA functions, and (ii) reveals a cell autonomous component of temporal regulation in C. elegans.
Collapse
Affiliation(s)
- Huibin Zhang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
15
|
Drace K, McLaughlin S, Darby C. Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle. PLoS One 2009; 4:e6741. [PMID: 19707590 PMCID: PMC2727005 DOI: 10.1371/journal.pone.0006741] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/22/2009] [Indexed: 11/24/2022] Open
Abstract
The cuticle of Caenorhabditis elegans, a complex, multi-layered extracellular matrix, is a major interface between the animal and its environment. Biofilms produced by the bacterial genus Yersinia attach to the cuticle of the worm, providing an assay for surface characteristics. A C. elegans gene required for biofilm attachment, bah-1, encodes a protein containing the domain of unknown function DUF23. The DUF23 domain is found in 61 predicted proteins in C. elegans, which can be divided into three distinct phylogenetic clades. bah-1 is expressed in seam cells, which are among the hypodermal cells that synthesize the cuticle, and is regulated by a TGF-β signaling pathway.
Collapse
Affiliation(s)
- Kevin Drace
- Department of Cell and Tissue Biology, Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
16
|
Hong L, Elbl T, Ward J, Franzini-Armstrong C, Rybicka KK, Gatewood BK, Baillie DL, Bucher EA. MUP-4 is a novel transmembrane protein with functions in epithelial cell adhesion in Caenorhabditis elegans. J Cell Biol 2001; 154:403-14. [PMID: 11470827 PMCID: PMC2150763 DOI: 10.1083/jcb.200007075] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2000] [Revised: 06/08/2001] [Accepted: 06/14/2001] [Indexed: 01/20/2023] Open
Abstract
Tissue functions and mechanical coupling of cells must be integrated throughout development. A striking example of this coupling is the interactions of body wall muscle and hypodermal cells in Caenorhabditis elegans. These tissues are intimately associated in development and their interactions generate structures that provide a continuous mechanical link to transmit muscle forces across the hypodermis to the cuticle. Previously, we established that mup-4 is essential in embryonic epithelial (hypodermal) morphogenesis and maintenance of muscle position. Here, we report that mup-4 encodes a novel transmembrane protein that is required for attachments between the apical epithelial surface and the cuticular matrix. Its extracellular domain includes epidermal growth factor-like repeats, a von Willebrand factor A domain, and two sea urchin enterokinase modules. Its intracellular domain is homologous to filaggrin, an intermediate filament (IF)-associated protein that regulates IF compaction and that has not previously been reported as part of a junctional complex. MUP-4 colocalizes with epithelial hemidesmosomes overlying body wall muscles, beginning at the time of embryonic cuticle maturation, as well as with other sites of mechanical coupling. These findings support that MUP-4 is a junctional protein that functions in IF tethering, cell-matrix adherence, and mechanical coupling of tissues.
Collapse
Affiliation(s)
- L Hong
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gilleard JS, Barry JD, Johnstone IL. cis regulatory requirements for hypodermal cell-specific expression of the Caenorhabditis elegans cuticle collagen gene dpy-7. Mol Cell Biol 1997; 17:2301-11. [PMID: 9121480 PMCID: PMC232079 DOI: 10.1128/mcb.17.4.2301] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Caenorhabditis elegans cuticle collagens are encoded by a multigene family of between 50 and 100 members and are the major component of the nematode cuticular exoskeleton. They are synthesized in the hypodermis prior to secretion and incorporation into the cuticle and exhibit complex patterns of spatial and temporal expression. We have investigated the cis regulatory requirements for tissue- and stage-specific expression of the cuticle collagen gene dpy-7 and have identified a compact regulatory element which is sufficient to specify hypodermal cell reporter gene expression. This element appears to be a true tissue-specific promoter element, since it encompasses the dpy-7 transcription initiation sites and functions in an orientation-dependent manner. We have also shown, by interspecies transformation experiments, that the dpy-7 cis regulatory elements are functionally conserved between C. elegans and C. briggsae, and comparative sequence analysis supports the importance of the regulatory sequence that we have identified by reporter gene analysis. All of our data suggest that the spatial expression of the dpy-7 cuticle collagen gene is established essentially by a small tissue-specific promoter element and does not require upstream activator or repressor elements. In addition, we have found the DPY-7 polypeptide is very highly conserved between the two species and that the C. briggsae polypeptide can function appropriately within the C. elegans cuticle. This finding suggests a remarkably high level of conservation of individual cuticle components, and their interactions, between these two nematode species.
Collapse
Affiliation(s)
- J S Gilleard
- Wellcome Unit of Molecular Parasitology, Anderson College, University of Glasgow, United Kingdom.
| | | | | |
Collapse
|
18
|
Barbazuk WB, Johnsen RC, Baillie DL. The generation and genetic analysis of suppressors of lethal mutations in the Caenorhabditis elegans rol-3(V) gene. Genetics 1994; 136:129-43. [PMID: 8138151 PMCID: PMC1205765 DOI: 10.1093/genetics/136.1.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Caenorhabditis elegans rol-3(e754) mutation is a member of a general class of mutations affecting gross morphology, presumably through disruption of the nematode cuticle. Adult worms homozygous for rol-3(e754) exhibit rotation about their long axis associated with a left-hand twisted cuticle, musculature, gut and ventral nerve cord. Our laboratory previously isolated 12 recessive lethal alleles of rol-3. All these lethal alleles cause an arrest in development at either early or mid-larval stages, suggesting that the rol-3 gene product performs an essential developmental function. Furthermore, through the use of the heterochronic mutants lin-14 and lin-29, we have established that the expression of rol-3(e754)'s adult specific visible function is not dependent on the presence of an adult cuticle. In an attempt to understand rol-3's developmental role we sought to identify other genes whose products interact with that of rol-3. Toward this end, we generated eight EMS induced and two gamma irradiation-induced recessive suppressors of the temperature sensitive (ts) mid-larval lethal phenotype of rol-3(s1040ts). These suppressors define two complementation groups srl-1 II and srl-2 III; and, while they suppress the rol-3(s1040) lethality, they do not suppress the adult specific visible rolling phenotype. Furthermore, there is a complex genetic interaction between srl-2 and srl-1 such that srl-2(s2506) fails to complement all srl alleles tested. These results suggest that srl-1 and srl-2 may share a common function and, thus, possibly constitute members of the same gene family. Mutations in both srl-1 and srl-2 produce no obvious hermaphrodite phenotypes in the absence of rol-3(s1040ts); however, males homozygous for either srl-1 or srl-2 display aberrant tail morphology. We present evidence suggesting that the members of srl-2 are not allele specific with respect to their suppression of rol-3 lethality, and that rol-3 may act in some way to influence proper posterior morphogenesis. Finally, based on our genetic analysis of rol-3 and the srl mutations, we present a model whereby the wild-type products of the srl loci act in a concerted manner to negatively regulate the rol-3 gene.
Collapse
Affiliation(s)
- W B Barbazuk
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
19
|
Hemmer RM, Donkin SG, Chin KJ, Grenache DG, Bhatt H, Politz SM. Altered expression of an L1-specific, O-linked cuticle surface glycoprotein in mutants of the nematode Caenorhabditis elegans. J Biophys Biochem Cytol 1991; 115:1237-47. [PMID: 1955471 PMCID: PMC2289243 DOI: 10.1083/jcb.115.5.1237] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mouse mAb M38 was used in indirect immunofluorescence experiments to detect a stage-specific antigen on the surface of the first larval stage (L1) of the free-living nematode Caenorhabditis elegans, and to detect alterations in the apparent expression of this antigen in two distinct classes of C. elegans mutants. In previously described srf-2 and srf-3 mutants (Politz S. M., M. T. Philipp, M. Estevez, P.J. O'Brien, and K. J. Chin. 1990. Proc. Natl. Acad. Sci. USA. 87:2901-2905), the antigen is not detected on the surface of any stage. Conversely, in srf-(yj43) and other similar mutants, the antigen is expressed on the surface of the first through the fourth (L4) larval stages. To understand the molecular basis of these alterations, the antigen was characterized in gel immunoblotting experiments. After SDS-PAGE separation and transfer to nitrocellulose, M38 detected a protein antigen in extracts of wild-type L1 populations. The antigen was sensitive to digestion by Pronase and O-glycanase (endo-alpha-N-acetylgalactosaminidase), suggesting that it is an O-linked glycoprotein. This antigen was not detected in corresponding extracts of wild-type L4s or srf-2 or srf-3 L1s, but was detected in extracts of srf-(yj43) L4s. The antigen-defective phenotype of srf-3 was epistatic to the heterochronic mutant phenotype of srf-(yj43) in immunofluorescence tests of the srf-3 srf-(yj43) double mutant, suggesting that srf-(yj43) causes incorrect regulation of a pathway of antigen formation that requires wild-type srf-3 activity.
Collapse
Affiliation(s)
- R M Hemmer
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Massachusetts 01609
| | | | | | | | | | | |
Collapse
|
20
|
Papp A, Rougvie AE, Ambros V. Molecular cloning of lin-29, a heterochronic gene required for the differentiation of hypodermal cells and the cessation of molting in C.elegans. Nucleic Acids Res 1991; 19:623-30. [PMID: 1672752 PMCID: PMC333658 DOI: 10.1093/nar/19.3.623] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The lin-29 gene product of C.elegans activates a temporal developmental switch for hypodermal cells. Loss-of-function lin-29 mutations result in worms that fail to execute a stage-specific pattern of hypodermal differentiation that includes exist from the cell cycle, repression of larval cuticle genes, activation of adult cuticle genes, and the cessation of molting. Combined genetic and physical mapping of restriction fragment length polymorphisms (RFLPs) was used to identify the lin-29 locus. A probe from the insertion site of a Tc1 (maP1), closely linked and to the left of lin-29 on the genetic map, was used to identify a large set of overlapping cosmid, lambda and yeast artificial chromosome (YAC) clones assembled as part of the C.elegans physical mapping project. Radiolabeled DNA from one YAC clone identified two distinct allele-specific alterations that cosegregated with the lin-29 mutant phenotype in lin-29 intragenic recombinants. lin-29 sequences were severely under-represented in all cosmid and lambda libraries tested, but were readily cloned in a YAC vector, suggesting that the lin-29 region contains sequences incompatible with standard prokaryotic cloning techniques.
Collapse
Affiliation(s)
- A Papp
- Department of Cellular and Developmental Biology, Harvard University Biological Laboratories, Cambridge, MA 02138
| | | | | |
Collapse
|
21
|
The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol 1990. [PMID: 1970117 DOI: 10.1128/mcb.10.5.2081] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rol-6 gene is one of the more than 40 loci in Caenorhabditis elegans that primarily affect organismal morphology. Certain mutations in the rol-6 gene produce animals that have the right roller phenotype, i.e., they are twisted into a right-handed helix. The rol-6 gene interacts with another gene that affects morphology, sqt-1; a left roller allele of sqt-1 acts as a dominant suppressor of a right roller allele of rol-6. The sqt-1 gene has previously been shown to encode a collagen. We isolated and sequenced the rol-6 gene and found that it also encodes a collagen. The rol-6 gene was identified by physical mapping of overlapping chromosomal deficiencies that cover the gene and by identification of an allele-specific restriction site alteration. The amino acid sequence of the collagen encoded by rol-6 is more similar to that of the sqt-1 collagen than to any of the other ten C. elegans cuticle collagen sequences compared. The locations of cysteine residues flanking the Gly-X-Y repeat regions of rol-6 and sqt-1 are identical, but differ from those in the other collagens. The sequence similarities between rol-6 and sqt-1 indicate that they represent a new collagen subfamily in C. elegans. These findings suggest that these two collagens physically interact, possibly explaining the genetic interaction seen between the rol-6 and sqt-1 genes.
Collapse
|
22
|
Kramer JM, French RP, Park EC, Johnson JJ. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol 1990; 10:2081-9. [PMID: 1970117 PMCID: PMC360555 DOI: 10.1128/mcb.10.5.2081-2089.1990] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The rol-6 gene is one of the more than 40 loci in Caenorhabditis elegans that primarily affect organismal morphology. Certain mutations in the rol-6 gene produce animals that have the right roller phenotype, i.e., they are twisted into a right-handed helix. The rol-6 gene interacts with another gene that affects morphology, sqt-1; a left roller allele of sqt-1 acts as a dominant suppressor of a right roller allele of rol-6. The sqt-1 gene has previously been shown to encode a collagen. We isolated and sequenced the rol-6 gene and found that it also encodes a collagen. The rol-6 gene was identified by physical mapping of overlapping chromosomal deficiencies that cover the gene and by identification of an allele-specific restriction site alteration. The amino acid sequence of the collagen encoded by rol-6 is more similar to that of the sqt-1 collagen than to any of the other ten C. elegans cuticle collagen sequences compared. The locations of cysteine residues flanking the Gly-X-Y repeat regions of rol-6 and sqt-1 are identical, but differ from those in the other collagens. The sequence similarities between rol-6 and sqt-1 indicate that they represent a new collagen subfamily in C. elegans. These findings suggest that these two collagens physically interact, possibly explaining the genetic interaction seen between the rol-6 and sqt-1 genes.
Collapse
Affiliation(s)
- J M Kramer
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | | | |
Collapse
|
23
|
Fields C. Domain organization and intron positions in Caenorhabditis elegans collagen genes: the 54-bp module hypothesis revisited. J Mol Evol 1988; 28:55-63. [PMID: 3148742 DOI: 10.1007/bf02143497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The amino acid (aa) sequences of the polypeptides encoded by five collagen genes of the nematode Caenorhabditis elegans, col-6, col-7 (partial), col-8, col-14, and col-19, were determined. These collagen polypeptides, as well as those encoded by the previously sequenced C. elegans collagen genes col-1 and col-2, share a common organization into five domains: an amino-terminal leader, a short (30-33 aa) (Gly-X-Y)n domain, a non(Gly-X-Y) spacer, a long (127-132 aa) (Gly-X-Y)n domain, and a short carboxyl-terminal domain. The domain organizations and intron positions of these polypeptides were compared with those of the polypeptides encoded by Drosophila and Strongylocentrotus type IV, and vertebrate types I, II, III, IV, and IX collagen genes; the C. elegans collagen polypeptides are most similar to the vertebrate type IX collagens. It is suggested that the collagen gene family comprises two divergent subfamilies, one of which includes the vertebrate interstitial collagen genes, and the other of which includes the invertebrate collagen genes and the vertebrate type IV and type IX collagen genes. Only the vertebrate interstitial collagen genes display clear evidence of evolution via the tandem duplication of a 54-bp exon.
Collapse
Affiliation(s)
- C Fields
- Computing Research Laboratory, New Mexico State University, Las Cruces 88003-0001
| |
Collapse
|
24
|
Abstract
While determining the 5' ends of C. elegans actin mRNAs, we have discovered a 22 nucleotide spliced leader sequence. The leader sequence is found on mRNA from three of the four nematode actin genes. The leader also appears to be present on some, but not all, nonactin mRNAs. The actin mRNA leader sequence is identical to the first 22 nucleotides of a novel 100 nucleotide RNA transcribed adjacent, and in the opposite orientation, to the 5S ribosomal gene. The evidence suggests that the actin mRNA leader sequence is acquired from this novel nucleotide transcript by an intermolecular trans-splicing mechanism.
Collapse
|
25
|
Jefferson RA, Burgess SM, Hirsh D. beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A 1986; 83:8447-51. [PMID: 3534890 PMCID: PMC386947 DOI: 10.1073/pnas.83.22.8447] [Citation(s) in RCA: 608] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have developed a gene-fusion system based on the Escherichia coli beta-glucuronidase gene (uidA). The uidA gene has been cloned from E. coli K-12 and its entire nucleotide sequence has been determined. beta-Glucuronidase has been purified to homogeneity and characterized. The enzyme has a subunit molecular weight of 68,200, is very stable, and is easily and sensitively assayed using commercially available substrates. We have constructed gene fusions of the E. coli lacZ promoter and coding region with the coding region of the uidA gene that show beta-glucuronidase activity under lac control. Plasmid vectors have been constructed to facilitate the transfer of the beta-glucuronidase coding region to heterologous control regions, using many different restriction endonuclease cleavage sites. There are several biological systems in which uidA-encoded beta-glucuronidase may be an attractive alternative or complement to previously described gene-fusion markers such as beta-galactosidase or chloramphenicol acetyltransferase.
Collapse
|
26
|
Davis AH, Blanton R, Rottman F, Maurer R, Mahmoud A. Isolation of cDNA clones for differentially expressed genes of the human parasite Schistosoma mansoni. Proc Natl Acad Sci U S A 1986; 83:5534-8. [PMID: 3461448 PMCID: PMC386322 DOI: 10.1073/pnas.83.15.5534] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Little is known about the mechanisms that control transformations during the life cycle of Schistosoma mansoni. To enable isolation of DNA sequences encoding developmentally regulated antigens a cDNA expression library in the vector lambda gt11 amp3 was constructed from adult mRNA and immunologically screened with sera from infected individuals. We report here on the properties of three recombinant clones that derive from developmentally regulated genes. Clone 10-3 encoded a beta-galactosidase fusion protein present in high abundance in infected Escherichia coli. Clones 7-2 and 8-2 also produced immunologically recognized proteins; however, the peptides did not appear to be beta-galactosidase fusion proteins. The expression of mRNAs hybridizing to these cDNAs was examined in the different stages of the parasite life cycle. Messenger RNA corresponding to clone 10-3, approximately equal to 1000 bases in length, was present in higher abundance in male worms than in females but was not detected in schistosome eggs. A 900-base mRNA hybridizing to clone 7-2 was observed in adult worms and eggs. Both clone 10-3 and clone 7-2 hybridized to smaller mRNAs in cercariae and freshly transformed schistosomula than in adult worms. Clone 8-2 contained tandem cDNA inserts. One cDNA hybridized to a 1700-base mRNA present in all stages, while the second hybridized to an 800-base mRNA specific to adult female worms.
Collapse
|
27
|
Venkatesan M, de Pablo F, Vogeli G, Simpson RT. Structure and developmentally regulated expression of a Strongylocentrotus purpuratus collagen gene. Proc Natl Acad Sci U S A 1986; 83:3351-5. [PMID: 3458186 PMCID: PMC323511 DOI: 10.1073/pnas.83.10.3351] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have isolated and partially characterized an ca. 20-kilobase-pair Strongylocentrotus purpuratus genomic clone, using a mouse alpha 1 (type IV) collagen cDNA probe. A 1-kilobase-pair HindIII fragment of the clone hybridizes strongly to the probe; this has been subcloned and sequenced. It contains 212 base pairs of sequence coding for (Gly-Xaa-Yaa)n (where Xaa and Yaa are different unspecified amino acids), characteristic of all known collagen genes. There is a single point of discontinuity within the repeating pattern in this exon, similar to the genomic structure of mouse type IV collagen. The (Gly-Xaa-Yaa)n-encoding element is flanked by consensus splicing sequences, and the intervening sequences on either side of it have multiple in-phase termination codons. Electron microscopy of R loops between the phage lambda recombinant clone and poly(A)+ RNA reveals multiple short exons, a feature also seen in vertebrate collagen genes. The (Gly-Xaa-Yaa)n protein-encoding sequence hybridizes to a developmentally regulated 9-kilobase mRNA; the message appears during the morula stage, rises sharply in abundance at the blastula stage, and decreases in proportion to total RNA later in development.
Collapse
|