1
|
The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning. PLoS Genet 2021; 17:e1009660. [PMID: 34270553 PMCID: PMC8318298 DOI: 10.1371/journal.pgen.1009660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/28/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.
Collapse
|
2
|
Jalal D, Chalissery J, Hassan AH. Irc20 Regulates the Yeast Endogenous 2-μm Plasmid Levels by Controlling Flp1. Front Mol Biosci 2020; 7:221. [PMID: 33330615 PMCID: PMC7710549 DOI: 10.3389/fmolb.2020.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022] Open
Abstract
The endogenous yeast 2-μm plasmid while innocuous to the host, needs to be properly regulated to avoid a toxic increase in copy number. The plasmid copy number control system is under the control of the plasmid encoded recombinase, Flp1. In case of a drop in 2-μm plasmid levels due to rare plasmid mis-segregation events, the Flp1 recombinase together with the cell’s homologous recombination machinery, produce multiple copies of the 2-μm plasmid that are spooled during DNA replication. The 2-μm plasmid copy number is tightly regulated by controlled expression of Flp1 as well as its ubiquitin and SUMO modification. Here, we identify a novel regulator of the 2-μm plasmid, the ATPase, ubiquitin ligase, Irc20. Irc20 was initially identified as a homologous recombination regulator, and here we uncover a new role for Irc20 in maintaining the 2-μm plasmid copy number and segregation through regulating Flp1 protein levels in the cell.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed H Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
3
|
McQuaid ME, Polvi EJ, Dobson MJ. DNA sequence elements required for partitioning competence of the Saccharomyces cerevisiae 2-micron plasmid STB locus. Nucleic Acids Res 2019; 47:716-728. [PMID: 30445476 PMCID: PMC6344848 DOI: 10.1093/nar/gky1150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
Equal partitioning of the multi-copy yeast 2-micron plasmid requires association of plasmid proteins Rep1 and Rep2 with tandem repeats at the plasmid STB locus. To identify sequence elements required for these associations we generated synthetic versions of a 63-bp section of STB, encompassing one repeat. A single copy of this sequence was sufficient for Rep protein association in vivo, while two directly arrayed copies provided partitioning function to a plasmid lacking all other 2-micron sequences. Partitioning efficiency increased with increasing repeat number, reaching that conferred by the native STB repeat array. By altering sequences in synthetic repeats, we identified the TGCA component of a TGCATTTTT motif as critical for Rep protein recognition, with a second TGCA sequence in each repeat also contributing to association. Mutation of TGCATTTTT to TGTATTTT, as found in variant 2-micron STB repeats, also allowed Rep protein association, while mutation to TGCATTAAT impaired inheritance without abolishing Rep protein recognition, suggesting an alternate role for the T-tract. Our identification of sequence motifs required for Rep protein recognition provides the basis for understanding higher-order Rep protein arrangements at STB that enable the yeast 2-micron plasmid to be efficiently partitioned during host cell division.
Collapse
Affiliation(s)
- Mary E McQuaid
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth J Polvi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Melanie J Dobson
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
4
|
Ma CH, Su BY, Maciaszek A, Fan HF, Guga P, Jayaram M. A Flp-SUMO hybrid recombinase reveals multi-layered copy number control of a selfish DNA element through post-translational modification. PLoS Genet 2019; 15:e1008193. [PMID: 31242181 PMCID: PMC6594588 DOI: 10.1371/journal.pgen.1008193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
Mechanisms for highly efficient chromosome-associated equal segregation, and for maintenance of steady state copy number, are at the heart of the evolutionary success of the 2-micron plasmid as a stable multi-copy extra-chromosomal selfish DNA element present in the yeast nucleus. The Flp site-specific recombination system housed by the plasmid, which is central to plasmid copy number maintenance, is regulated at multiple levels. Transcription of the FLP gene is fine-tuned by the repressor function of the plasmid-coded partitioning proteins Rep1 and Rep2 and their antagonist Raf1, which is also plasmid-coded. In addition, the Flp protein is regulated by the host's post-translational modification machinery. Utilizing a Flp-SUMO fusion protein, which functionally mimics naturally sumoylated Flp, we demonstrate that the modification signals ubiquitination of Flp, followed by its proteasome-mediated degradation. Furthermore, reduced binding affinity and cooperativity of the modified Flp decrease its association with the plasmid FRT (Flp recombination target) sites, and/or increase its dissociation from them. The resulting attenuation of strand cleavage and recombination events safeguards against runaway increase in plasmid copy number, which is deleterious to the host-and indirectly-to the plasmid. These results have broader relevance to potential mechanisms by which selfish genomes minimize fitness conflicts with host genomes by holding in check the extra genetic load they pose.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
| | - Bo-Yu Su
- Department of Life Sciences and Institute of Genome Sciences, Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei City, Taiwan
| | - Anna Maciaszek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Lodz, Poland
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei City, Taiwan
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Lodz, Poland
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
5
|
Insights into the DNA sequence elements required for partitioning and copy number control of the yeast 2-micron plasmid. Curr Genet 2019; 65:887-892. [PMID: 30915516 DOI: 10.1007/s00294-019-00958-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
Abstract
The yeast 2-micron plasmid is an almost perfect selfish DNA. The entire coding capacity of the plasmid is dedicated to ensuring its own inheritance, with no benefit to its host. Despite high copy number, the plasmid confers no phenotype. It manages this feat by possessing mechanisms for plasmid copy-number control and for partitioning. The former increases plasmid numbers when they fall, but is repressed at high copy number, while the latter ensures 2-micron copies are equally partitioned during host cell division. Although the plasmid amplification mechanism is well established, the partitioning system and the means by which the 2-micron plasmid partitioning proteins, Rep1 and Rep2, regulate plasmid copy number remain incompletely understood. This review focuses on recent efforts to determine the nature of Rep protein complexes formed at the plasmid stability locus (STB) and at plasmid gene promoters, the identity of DNA sequence elements required for Rep protein association, and the mechanism by which the Rep proteins manage their dual roles of plasmid partitioning and plasmid gene repression.
Collapse
|
6
|
McQuaid ME, Pinder JB, Arumuggam N, Lacoste JSC, Chew JSK, Dobson MJ. The yeast 2-μm plasmid Raf protein contributes to plasmid inheritance by stabilizing the Rep1 and Rep2 partitioning proteins. Nucleic Acids Res 2017; 45:10518-10533. [PMID: 29048592 PMCID: PMC5737570 DOI: 10.1093/nar/gkx703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022] Open
Abstract
The yeast 2-μm plasmid is a remarkable genetic parasite, managing efficient maintenance at high-copy number with minimal impact on the host. Equal partitioning of the plasmid upon host cell division requires plasmid proteins Rep1 and Rep2 and the plasmid STB locus. The Rep proteins and the plasmid-encoded Raf protein also regulate plasmid gene transcription. In this study, protein interaction assays, sequence analyses and mutational approaches were used to identify domains and residues in Rep2 and Raf required for association with Rep1 and Rep2 and to delineate the Rep2 DNA-binding domain. Rep2 and Raf displayed similarities in interactions with Rep1 and Rep2, in having Rep1 promote their STB association in vivo, and in stabilizing Rep protein levels. Rep2 mutants impaired for self-association were competent for transcriptional repression while those deficient for Rep1 association were not. Surprisingly, Rep2 mutants impaired for either Rep1 interaction or self-association were able to maintain efficient plasmid inheritance provided Raf was present and competent for Rep protein interaction. Our findings provide insight into the Rep protein complexes required for partitioning and transcriptional repression, and suggest that in addition to its transcriptional function, Raf stabilization of Rep partitioning proteins contributes to the remarkable persistence of the 2-μm plasmid.
Collapse
Affiliation(s)
- Mary E McQuaid
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jordan B Pinder
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Niroshaathevi Arumuggam
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jessica S C Lacoste
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Joyce S K Chew
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melanie J Dobson
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
7
|
A Rizvi SM, Prajapati HK, Nag P, Ghosh SK. The 2-μm plasmid encoded protein Raf1 regulates both stability and copy number of the plasmid by blocking the formation of the Rep1-Rep2 repressor complex. Nucleic Acids Res 2017; 45:7167-7179. [PMID: 28472368 PMCID: PMC5499539 DOI: 10.1093/nar/gkx316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
The 2-μm plasmid of the budding yeast Saccharomyces cerevisiae achieves a high chromosome-like stability with the help of four plasmid-encoded (Rep1, Rep2, Raf1 and Flp) and several host-encoded proteins. Rep1 and Rep2 and the DNA locus STB form the partitioning system ensuring equal segregation of the plasmid. The Flp recombinase and its target sites FRTs form the amplification system which is responsible for the steady state plasmid copy number. In this work we show that the absence of Raf1 can affect both the plasmid stability and the steady sate copy number. We also show that the Rep proteins do bind to the promoter regions of the 2-μm encoded genes, as predicted by earlier models and Raf1 indeed blocks the formation of the Rep1–Rep2 repressor complex not by blocking the transcription of the REP1 and REP2 genes but by physically associating with the Rep proteins and negating their interactions. This explains the role of Raf1 in both the partitioning and the amplification systems as the Rep1–Rep2 complex is believed to modulate both these systems. Based on this study, we have provided, from a systems biology perspective, a model for the mechanism of the 2-μm plasmid maintenance.
Collapse
Affiliation(s)
- Syed M A Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Hemant K Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Purba Nag
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane Queensland 4006, Australia
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
8
|
Rizvi SMA, Prajapati HK, Ghosh SK. The 2 micron plasmid: a selfish genetic element with an optimized survival strategy within Saccharomyces cerevisiae. Curr Genet 2017; 64:25-42. [PMID: 28597305 DOI: 10.1007/s00294-017-0719-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/27/2022]
Abstract
Since its discovery in the early 70s, the 2 micron plasmid of Saccharomyces cerevisiae continues to intrigue researchers with its high protein-coding capacity and a selfish nature yet high stability, earning it the title of a 'miniaturized selfish genetic element'. It codes for four proteins (Rep1, Rep2, Raf1, and Flp) vital for its own survival and recruits several host factors (RSC2, Cohesin, Cse4, Kip1, Bik1, Bim1, and microtubules) for its faithful segregation during cell division. The plasmid maintains a high-copy number with the help of Flp-mediated recombination. The plasmids organize in the form of clusters that hitch-hike the host chromosomes presumably with the help of the plasmid-encoded Rep proteins and host factors such as microtubules, Kip1 motor, and microtubule-associated proteins Bik1 and Bim1. Although there is no known yeast cell phenotype associated with the 2 micron plasmid, excessive copies of the plasmid are lethal for the cells, warranting a tight control over the plasmid copy number. This control is achieved through a combination of feedback loops involving the 2 micron encoded proteins. Thus, faithful segregation and a concomitant tightly controlled plasmid copy number ensure an optimized benign parasitism of the 2 micron plasmid within budding yeast.
Collapse
Affiliation(s)
- Syed Meraj Azhar Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Hemant Kumar Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
9
|
Liu YT, Chang KM, Ma CH, Jayaram M. Replication-dependent and independent mechanisms for the chromosome-coupled persistence of a selfish genome. Nucleic Acids Res 2016; 44:8302-23. [PMID: 27492289 PMCID: PMC5041486 DOI: 10.1093/nar/gkw694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts' fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates 'mother bias' (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Keng-Ming Chang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells. Microbiol Spectr 2016; 2. [PMID: 25541598 DOI: 10.1128/microbiolspec.plas-0003-2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.
Collapse
|
11
|
Sau S, Liu YT, Ma CH, Jayaram M. Stable persistence of the yeast plasmid by hitchhiking on chromosomes during vegetative and germ-line divisions of host cells. Mob Genet Elements 2015; 5:1-8. [PMID: 26442178 DOI: 10.1080/2159256x.2015.1031359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
The chromosome-like stability of the Saccharomyces cerevisiae plasmid 2 micron circle likely stems from its ability to tether to chromosomes and segregate by a hitchhiking mechanism. The plasmid partitioning system, responsible for chromosome-coupled segregation, is comprised of 2 plasmid coded proteins Rep1 and Rep2 and a partitioning locus STB. The evidence for the hitchhiking model for mitotic plasmid segregation, although compelling, is almost entirely circumstantial. Direct tests for plasmid-chromosome association are hampered by the limited resolving power of current cell biological tools for analyzing yeast chromosomes. Recent investigations, exploiting the improved resolution of yeast meiotic chromosomes, have revealed the plasmid's propensity to be present at or near chromosome tips. This localization is consistent with the rapid plasmid movements during meiosis I prophase, closely resembling telomere dynamics driven by a meiosis-specific nuclear envelope motor. Current evidence is consistent with the plasmid utilizing the motor as a platform for gaining access to telomeres. Episomes of viruses of the papilloma family and the gammaherpes subfamily persist in latently infected cells by tethering to chromosomes. Selfish genetic elements from fungi to mammals appear to have, by convergent evolution, arrived at the common strategy of chromosome association as a means for stable propagation.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Yen-Ting Liu
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| |
Collapse
|
12
|
Liu YT, Ma CH, Jayaram M. Co-segregation of yeast plasmid sisters under monopolin-directed mitosis suggests association of plasmid sisters with sister chromatids. Nucleic Acids Res 2013; 41:4144-58. [PMID: 23423352 PMCID: PMC3627588 DOI: 10.1093/nar/gkt096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/13/2022] Open
Abstract
The 2-micron plasmid, a high copy extrachromosomal element in Saccharomyces cerevisiae, propagates itself with nearly the same stability as the chromosomes of its host. Plasmid stability is conferred by a partitioning system consisting of the plasmid-coded proteins Rep1 and Rep2 and a cis-acting locus STB. Circumstantial evidence suggests that the partitioning system couples plasmid segregation to chromosome segregation during mitosis. However, the coupling mechanism has not been elucidated. In order to probe into this question more incisively, we have characterized the segregation of a single-copy STB reporter plasmid by manipulating mitosis to force sister chromatids to co-segregate either without mother-daughter bias or with a finite daughter bias. We find that the STB plasmid sisters are tightly correlated to sister chromatids in the extents of co-segregation as well as the bias in co-segregation under these conditions. Furthermore, this correlation is abolished by delaying spindle organization or preventing cohesin assembly during a cell cycle. Normal segregation of the 2-micron plasmid has been shown to require spindle integrity and the cohesin complex. Our results are accommodated by a model in which spindle- and cohesin-dependent association of plasmid sisters with sister chromatids promotes their segregation by a hitchhiking mechanism.
Collapse
Affiliation(s)
| | | | - Makkuni Jayaram
- Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Ma CH, Cui H, Hajra S, Rowley PA, Fekete C, Sarkeshik A, Ghosh SK, Yates JR, Jayaram M. Temporal sequence and cell cycle cues in the assembly of host factors at the yeast 2 micron plasmid partitioning locus. Nucleic Acids Res 2012; 41:2340-53. [PMID: 23275556 PMCID: PMC3575823 DOI: 10.1093/nar/gks1338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae 2 micron plasmid exemplifies a benign but selfish genome, whose stability approaches that of the chromosomes of its host. The plasmid partitioning locus STB (stability locus) displays certain functional analogies with centromeres along with critical distinctions, a significant one being the absence of the kinetochore complex at STB. The remodels the structure of chromatin (RSC) chromatin remodeling complex, the nuclear motor Kip1, the histone H3 variant Cse4 and the cohesin complex associate with both loci. These factors appear to contribute to plasmid segregation either directly or indirectly through their roles in chromosome segregation. Assembly and disassembly of the plasmid-coded partitioning proteins Rep1 and Rep2 and host factors at STB follow a temporal hierarchy during the cell cycle. Assembly is initiated by STB association of [Rsc8-Rsc58], followed by [Rep1-Rep2-Kip1] and [Cse4-Rsc2-Sth1] recruitment, and culminates in cohesin assembly. Disassembly starts with dissociation of RSC components, is followed by cohesin disassembly and Cse4 exit during anaphase and late telophase, respectively. [Rep1-Rep2-Kip1] persists through G1 of the ensuing cell cycle. The de novo assembly of the 'partitioning complex' is cued by the innate cell cycle clock and is dependent on DNA replication. Shared functional attributes of STB and centromere (CEN) are consistent with a potential evolutionary link between them.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Section of Molecular Genetics & Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Reis VCB, Nicola AM, de Souza Oliveira Neto O, Batista VDF, de Moraes LMP, Torres FAG. Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production. J Ind Microbiol Biotechnol 2012; 39:1673-83. [PMID: 22892884 DOI: 10.1007/s10295-012-1170-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/10/2012] [Indexed: 02/08/2023]
Abstract
Used for millennia to produce beverages and food, Saccharomyces cerevisiae also became a workhorse in the production of biofuels, most notably bioethanol. Yeast strains have acquired distinct characteristics that are the result of evolutionary adaptation to the stresses of industrial ethanol production. JP1 is a dominant industrial S. cerevisiae strain isolated from a sugarcane mill and is becoming increasingly popular for bioethanol production in Brazil. In this work, we carried out the genetic characterization of this strain and developed a set of tools to permit its genetic manipulation. Using flow cytometry, mating type, and sporulation analysis, we verified that JP1 is diploid and homothallic. Vectors with dominant selective markers for G418, hygromycin B, zeocin, and ρ-fluoro-DL-phenylalanine were used to successfully transform JP1 cells. Also, an auxotrophic ura3 mutant strain of JP1 was created by gene disruption using integration cassettes with dominant markers flanked by loxP sites. Marker excision was accomplished by the Cre/loxP system. The resulting auxotrophic strain was successfully transformed with an episomal vector that allowed green fluorescent protein expression.
Collapse
Affiliation(s)
- Viviane Castelo Branco Reis
- Centro de Biotecnologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Histone H3-variant Cse4-induced positive DNA supercoiling in the yeast plasmid has implications for a plasmid origin of a chromosome centromere. Proc Natl Acad Sci U S A 2011; 108:13671-6. [PMID: 21807992 DOI: 10.1073/pnas.1101944108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae 2-μm plasmid is a multicopy selfish genome that resides in the nucleus. The genetic organization of the plasmid is optimized for stable, high-copy propagation in host-cell populations. The plasmid's partitioning system poaches host factors, including the centromere-specific histone H3-variant Cse4 and the cohesin complex, enabling replicated plasmid copies to segregate equally in a chromosome-coupled fashion. We have characterized the in vivo chromatin topology of the plasmid partitioning locus STB in its Cse4-associated and Cse4-nonassociated states. We find that the occupancy of Cse4 at STB induces positive DNA supercoiling, with a linking difference (ΔLk) contribution estimated between +1 and +2 units. One plausible explanation for this contrary topology is the presence of a specialized Cse4-containing nucleosome with a right-handed DNA writhe at a functional STB, contrasted by a standard histone H3-containing nucleosome with a left-handed DNA writhe at a nonfunctional STB. The similarities between STB and centromere in their nucleosome signature and DNA topology would be consistent with the potential origin of the unusual point centromere of budding yeast chromosomes from the partitioning locus of an ancestral plasmid.
Collapse
|
16
|
Huang CC, Hajra S, Ghosh SK, Jayaram M. Cse4 (CenH3) association with the Saccharomyces cerevisiae plasmid partitioning locus in its native and chromosomally integrated states: implications in centromere evolution. Mol Cell Biol 2011; 31:1030-40. [PMID: 21173161 PMCID: PMC3067819 DOI: 10.1128/mcb.01191-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/29/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022] Open
Abstract
The histone H3 variant Cse4 specifies centromere identity in Saccharomyces cerevisiae by its incorporation into a special nucleosome positioned at CEN DNA and promotes the assembly of the kinetochore complex, which is required for faithful chromosome segregation. Our previous work showed that Cse4 is also associated with the partitioning locus STB of the 2μm circle--a multicopy plasmid that resides in the yeast nucleus and propagates itself stably. Cse4 is essential for the functional assembly of the plasmid partitioning complex, including the recruitment of the yeast cohesin complex at STB. We have located Cse4 association strictly at the origin-proximal subregion of STB. Three of the five directly repeated tandem copies of a 62-bp consensus sequence element constituting this region are necessary and sufficient for the recruitment of Cse4. The association of Cse4 with STB is dependent on Scm3, the loading factor responsible for the incorporation of Cse4 into the CEN nucleosome. A chromosomally integrated copy of STB confers on the integration site the capacity for Cse4 association as well as cohesin assembly. The localization of Cse4 in chromatin digested by micrococcal nuclease is consistent with the potential assembly of one Cse4-containing nucleosome, but not more than two, at STB. The remarkable ability of STB to acquire a very specialized, and strictly regulated, chromosome segregation factor suggests its plausible evolutionary kinship with CEN.
Collapse
Affiliation(s)
- Chu-Chun Huang
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Sujata Hajra
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Santanu Kumar Ghosh
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
17
|
Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination. EMBO J 2009; 28:1745-56. [PMID: 19440204 DOI: 10.1038/emboj.2009.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/21/2009] [Indexed: 11/08/2022] Open
Abstract
Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3'-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns.
Collapse
|
18
|
Xiong L, Chen XL, Silver HR, Ahmed NT, Johnson ES. Deficient SUMO attachment to Flp recombinase leads to homologous recombination-dependent hyperamplification of the yeast 2 microm circle plasmid. Mol Biol Cell 2008; 20:1241-51. [PMID: 19109426 DOI: 10.1091/mbc.e08-06-0659] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many Saccharomyces cerevisiae mutants defective in the SUMO pathway accumulate elevated levels of the native 2 microm circle plasmid (2 microm). Here we show that accumulation of 2 microm in the SUMO pathway mutants siz1Delta siz2Delta, slx5Delta, and slx8Delta is associated with formation of an aberrant high-molecular-weight (HMW) form of 2 microm. Characterization of this species from siz1Delta siz2Delta showed that it contains tandem copies of the 2 mum sequence as well as single-stranded DNA. Accumulation of this species requires both the 2 microm-encoded Flp recombinase and the cellular homologous recombination repair (HRR) pathway. Importantly, reduced SUMO attachment to Flp is sufficient to induce formation of this species. Our data suggest a model in which Flp that cannot be sumoylated causes DNA damage, whose repair via HRR produces an intermediate that generates tandem copies of the 2 microm sequence. This intermediate may be a rolling circle formed via break-induced replication (BIR), because mutants defective in BIR contain reduced levels of the HMW form. This work also illustrates the importance of using cir(o) strains when studying mutants that affect the yeast SUMO pathway, to avoid confusing direct functions of the SUMO pathway with secondary effects of 2 microm amplification.
Collapse
Affiliation(s)
- Ling Xiong
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
19
|
Hajra S, Ghosh SK, Jayaram M. The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-microm circle partitioning locus and promotes equal plasmid segregation. J Cell Biol 2006; 174:779-90. [PMID: 16966420 PMCID: PMC2064333 DOI: 10.1083/jcb.200603042] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 08/04/2006] [Indexed: 01/19/2023] Open
Abstract
The centromere protein A homologue Cse4p is required for kinetochore assembly and faithful chromosome segregation in Saccharomyces cerevisiae. It has been regarded as the exquisite hallmark of centromeric chromatin. We demonstrate that Cse4 resides at the partitioning locus STB of the 2-microm plasmid. Cse4p-STB association is absolutely dependent on the plasmid partitioning proteins Rep1p and Rep2p and the integrity of the mitotic spindle. The kinetochore mutation ndc10-1 excludes Cse4p from centromeres without dislodging it from STB. Cse4p-STB association lasts from G1/S through late telophase during the cell cycle. The release of Cse4p from STB chromatin is likely mediated through spindle disassembly. A lack of functional Cse4p disrupts the remodeling of STB chromatin by the RSC2 complex, negates Rep2p binding and cohesin assembly at STB, and causes plasmid missegregation. Poaching of a specific histone variant by the plasmid to mark its partitioning locus with a centromere tag reveals yet another one of the molecular trickeries it performs for achieving chromosome- like fidelity in segregation.
Collapse
Affiliation(s)
- Sujata Hajra
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
20
|
Falcon AA, Rios N, Aris JP. 2-micron circle plasmids do not reduce yeast life span. FEMS Microbiol Lett 2006; 250:245-51. [PMID: 16085372 PMCID: PMC3586270 DOI: 10.1016/j.femsle.2005.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/22/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022] Open
Abstract
Extrachromosomal rDNA circles (ERCs) and recombinant origin-containing plasmids (ARS-plasmids) are thought to reduce replicative life span in the budding yeast Saccharomyces cerevisiae due to their accumulation in yeast cells by an asymmetric inheritance process known as mother cell bias. Most commonly used laboratory yeast strains contain the naturally occurring, high copy number 2-micron circle plasmid. 2-micron plasmids are known to exhibit stable mitotic inheritance, unlike ARS-plasmids and ERCs, but the fidelity of inheritance during replicative aging and cell senescence has not been studied. This raises the question: do 2-micron circles reduce replicative life span? To address this question we have used a convenient method to cure laboratory yeast strains of the 2-micron plasmid. We find no difference in the replicative life spans of otherwise isogenic cir+ and cir0 strains, with and without the 2-micron plasmid. Consistent with this, we find that 2-micron circles do not accumulate in old yeast cells. These findings indicate that naturally occurring levels of 2-micron plasmids do not adversely affect life span, and that accumulation due to asymmetric inheritance is required for reduction of replicative life span by DNA episomes.
Collapse
Affiliation(s)
- Alaric A Falcon
- Department of Anatomy and Cell Biology, Health Science Center, 1600 SW Archer Road, University of Florida, Gainesville, FL 32610-0235, USA.
| | | | | |
Collapse
|
21
|
Abstract
Attachment of the ubiquitin-like protein SUMO to other proteins is an essential process in Saccharomyces cerevisiae. However, yeast mutants lacking the SUMO ligases Siz1 and Siz2/Nfi1 are viable, even though they show dramatically reduced levels of SUMO conjugation. This siz1Delta siz2Delta double mutant is cold sensitive and has an unusual phenotype in that it forms irregularly shaped colonies that contain sectors of wild-type-appearing cells as well as sectors of enlarged cells that are arrested in G(2)/M. We have found that these phenotypes result from misregulation of the copy number of the endogenous yeast plasmid, the 2 microm circle. siz1Delta siz2Delta mutants have up to 40-fold-higher levels of 2 microm than do wild-type strains. Furthermore, 2 microm is responsible for the siz1Delta siz2Delta mutant's obvious growth defects, as siz1Delta siz2Delta [cir(0)] strains, which lack 2 microm, are no longer heterogeneous and show growth characteristics similar to those of the wild type. Possible mechanisms for SUMO's effect on 2 microm are suggested by the finding that both Flp1 recombinase and Rep2, two of the four proteins encoded by 2 microm, are covalently modified by SUMO. Our data suggest that SUMO attachment negatively regulates Flp1 levels, which may partially account for the increased 2 microm copy number in the siz1Delta siz2Delta strain.
Collapse
Affiliation(s)
- Xiaole L Chen
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 South 10th St., BLSB 231, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
22
|
Dobson MJ, Pickett AJ, Velmurugan S, Pinder JB, Barrett LA, Jayaram M, Chew JSK. The 2 microm plasmid causes cell death in Saccharomyces cerevisiae with a mutation in Ulp1 protease. Mol Cell Biol 2005; 25:4299-310. [PMID: 15870298 PMCID: PMC1087720 DOI: 10.1128/mcb.25.10.4299-4310.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 11/20/2004] [Accepted: 02/13/2005] [Indexed: 11/20/2022] Open
Abstract
The 2 microm circle plasmid confers no phenotype in wild-type Saccharomyces cerevisiae but in a nib1 mutant, an elevated plasmid copy number is associated with cell death. Complementation was used to identify nib1 as a mutant allele of the ULP1 gene that encodes a protease required for removal of a ubiquitin-like protein, Smt3/SUMO, from protein substrates. The nib1 mutation replaces conserved tryptophan 490 with leucine in the protease domain of Ulp1. Complete deletion of ULP1 is lethal, even in a strain that lacks the 2 microm circle. Partial deletion of ULP1, like the nib1 mutation, results in clonal variations in plasmid copy number. In addition, a subset of these mutant cells produces lineages in which all cells have reduced proliferative capacity, and this phenotype is dependent upon the presence of the 2 microm circle. Segregation of the 2 microm circle requires two plasmid-encoded proteins, Rep1 and Rep2, which were found to colocalize with Ulp1 protein in the nucleus and interact with Smt3 in a two-hybrid assay. These associations and the observation of missegregation of a fluorescently tagged 2 microm circle reporter plasmid in a subset of ulp1 mutant cells suggest that Smt3 modification plays a role in both plasmid copy number control and segregation.
Collapse
Affiliation(s)
- Melanie J Dobson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, Canada B3H 1X5.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhao X, Wu CY, Blobel G. Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. ACTA ACUST UNITED AC 2005; 167:605-11. [PMID: 15557117 PMCID: PMC2172573 DOI: 10.1083/jcb.200405168] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin-like proteins 1 and 2 (Mlp1 and Mlp2) form filaments attached to the nucleoplasmic side of the nuclear pore complexes via interaction with the nucleoporin Nup60. Here, we show that Mlps and Nup60, but not several other nucleoporins, are required to localize and stabilize a desumoylating enzyme Ulp1. Moreover, like Mlps, Ulp1 exhibits a unique asymmetric distribution on the nuclear envelope. Consistent with a role in regulating Ulp1, removal of either or both MLPs affects the SUMO conjugate pattern. We also show that deleting MLPs or the localization domains of Ulp1 results in DNA damage sensitivity and clonal lethality, the latter of which is caused by increased levels of 2-micron circle DNA. Epistatic and dosage suppression analyses further demonstrate that Mlps function upstream of Ulp1 in 2-micron circle maintenance and the damage response. Together, our results reveal that Mlps play important roles in regulating Ulp1 and subsequently affect sumoylation stasis, growth, and DNA repair.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Laboratory of Cell Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
24
|
Yang XM, Mehta S, Uzri D, Jayaram M, Velmurugan S. Mutations in a partitioning protein and altered chromatin structure at the partitioning locus prevent cohesin recruitment by the Saccharomyces cerevisiae plasmid and cause plasmid missegregation. Mol Cell Biol 2004; 24:5290-303. [PMID: 15169893 PMCID: PMC419871 DOI: 10.1128/mcb.24.12.5290-5303.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 12/19/2003] [Accepted: 03/18/2004] [Indexed: 11/20/2022] Open
Abstract
The 2 microm circle is a highly persistent "selfish" DNA element resident in the Saccharomyces cerevisiae nucleus whose stability approaches that of the chromosomes. The plasmid partitioning system, consisting of two plasmid-encoded proteins, Rep1p and Rep2p, and a cis-acting locus, STB, apparently feeds into the chromosome segregation pathway. The Rep proteins assist the recruitment of the yeast cohesin complex to STB during the S phase, presumably to apportion the replicated plasmid molecules equally to daughter cells. The DNA-protein and protein-protein interactions of the partitioning system, as well as the chromatin organization at STB, are important for cohesin recruitment. Rep1p variants that are incompetent in binding to Rep2p, STB, or both fail to assist the assembly of the cohesin complex at STB and are nonfunctional in plasmid maintenance. Preventing the cohesin-STB association without impeding Rep1p-Rep2p-STB interactions also causes plasmid missegregation. During the yeast cell cycle, the Rep1p and Rep2p proteins are expelled from STB during a short interval between the late G(1) and early S phases. This dissociation and reassociation event ensures that cohesin loading at STB is replication dependent and is coordinated with chromosomal cohesin recruitment. In an rsc2 Delta yeast strain lacking a specific chromatin remodeling complex and exhibiting a high degree of plasmid loss, neither Rep1p nor the cohesin complex can be recruited to STB. The phenotypes of the Rep1p mutations and of the rsc2 Delta mutant are consistent with the role of cohesin in plasmid partitioning being analogous to that in chromosome partitioning.
Collapse
Affiliation(s)
- Xian-Mei Yang
- Molecular Genetics and Microbiology, University of Texas at Austin, 78712, USA
| | | | | | | | | |
Collapse
|
25
|
Mehta S, Yang XM, Chan CS, Dobson MJ, Jayaram M, Velmurugan S. The 2 micron plasmid purloins the yeast cohesin complex: a mechanism for coupling plasmid partitioning and chromosome segregation? J Cell Biol 2002; 158:625-37. [PMID: 12177044 PMCID: PMC2174020 DOI: 10.1083/jcb.200204136] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2002] [Revised: 06/24/2002] [Accepted: 07/09/2002] [Indexed: 11/22/2022] Open
Abstract
The yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled. The Rep proteins, acting in concert, recruit the yeast cohesin complex to the STB locus. The periodicity of cohesin association and dissociation is nearly identical for the plasmid and the chromosomes. The timely disassembly of cohesin is a prerequisite for plasmid segregation. Cohesin-mediated pairing and unpairing likely provides a counting mechanism for evenly partitioning plasmids either in association with or independently of the chromosomes.
Collapse
Affiliation(s)
- Shwetal Mehta
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wong MCVL, Scott-Drew SRS, Hayes MJ, Howard PJ, Murray JAH. RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 microm plasmid maintenance in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:4218-29. [PMID: 12024034 PMCID: PMC133863 DOI: 10.1128/mcb.22.12.4218-4229.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stable maintenance of the 2 microm circle plasmid depends on its ability to overcome intrinsic maternal inheritance bias, which in yeast normally results in the failure to transmit DNA molecules efficiently to daughter cells. In addition to the plasmid proteins Rep1 and Rep2 acting on the plasmid DNA locus STB, it is likely that other chromosomally encoded yeast proteins are required. We have isolated mutants of yeast unable to maintain 2 microm and found that RSC2 is essential for 2 microm to overcome maternal inheritance bias. Rsc2 is part of a multisubunit RSC chromatin remodeling complex, and we show that in the absence of Rsc2 the chromatin structure of the STB region is significantly altered and the Rep1 protein loses its normal localization to subnuclear foci. Rsc1, a closely related homolog of Rsc2 present in an alternative form of the RSC complex, is not required for 2 microm maintenance and does not replace the requirement for Rsc2 when overexpressed. This represents the first specific role for Rsc2 that has been related to a change in chromatin structure, as well as the first direct evidence linking chromatin structure to 2 microm segregation.
Collapse
Affiliation(s)
- Michael C V L Wong
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Sengupta A, Blomqvist K, Pickett AJ, Zhang Y, Chew JS, Dobson MJ. Functional domains of yeast plasmid-encoded Rep proteins. J Bacteriol 2001; 183:2306-15. [PMID: 11244071 PMCID: PMC95138 DOI: 10.1128/jb.183.7.2306-2315.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both of the Saccharomyces cerevisiae 2 microm circle-encoded Rep1 and Rep2 proteins are required for efficient distribution of the plasmid to daughter cells during cellular division. In this study two-hybrid and in vitro protein interaction assays demonstrate that the first 129 amino acids of Rep1 are sufficient for self-association and for interaction with Rep2. Deletion of the first 76 amino acids of Rep1 abolished the Rep1-Rep2 interaction but still allowed some self-association, suggesting that different but overlapping domains specify these interactions. Amino- or carboxy-terminally truncated Rep1 fusion proteins were unable to complement defective segregation of a 2 microm-based stability vector with rep1 deleted, supporting the idea of the requirement of Rep protein interaction for plasmid segregation but indicating a separate required function for the carboxy-terminal portion of Rep1. The results of in vitro baiting assays suggest that Rep2 contains two nonoverlapping domains, both of which are capable of mediating Rep2 self-association. The amino-terminal domain interacts with Rep1, while the carboxy-terminal domain was shown by Southwestern analysis to have DNA-binding activity. The overlapping Rep1 and Rep2 interaction domains in Rep1, and the ability of Rep2 to interact with Rep1, Rep2, and DNA, suggest a model in which the Rep proteins polymerize along the 2 microm circle plasmid stability locus, forming a structure that mediates plasmid segregation. In this model, competition between Rep1 and Rep2 for association with Rep1 determines the formation or disassembly of the segregation complex.
Collapse
Affiliation(s)
- A Sengupta
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | | | | | |
Collapse
|
28
|
Velmurugan S, Yang XM, Chan CSM, Dobson M, Jayaram M. Partitioning of the 2-microm circle plasmid of Saccharomyces cerevisiae. Functional coordination with chromosome segregation and plasmid-encoded rep protein distribution. J Cell Biol 2000; 149:553-66. [PMID: 10791970 PMCID: PMC2174858 DOI: 10.1083/jcb.149.3.553] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The efficient partitioning of the 2-microm plasmid of Saccharomyces cerevisiae at cell division is dependent on two plasmid-encoded proteins (Rep1p and Rep2p), together with the cis-acting locus REP3 (STB). In addition, host encoded factors are likely to contribute to plasmid segregation. Direct observation of a 2-microm-derived plasmid in live yeast cells indicates that the multiple plasmid copies are located in the nucleus, predominantly in clusters with characteristic shapes. Comparison to a single-tagged chromosome or to a yeast centromeric plasmid shows that the segregation kinetics of the 2-microm plasmid and the chromosome are quite similar during the yeast cell cycle. Immunofluorescence analysis reveals that the plasmid is colocalized with the Rep1 and Rep2 proteins within the yeast nucleus. Furthermore, the Rep proteins (and therefore the plasmid) tend to concentrate near the poles of the yeast mitotic spindle. Depolymerization of the spindle results in partial dispersion of the Rep proteins in the nucleus concomitant with a loosening in the association between plasmid molecules. In an ipl1-2 yeast strain, shifted to the nonpermissive temperature, the chromosomes and plasmid almost always missegregate in tandem. Our results suggest that, after DNA replication, plasmid distribution to the daughter cells occurs in the form of specific DNA-protein aggregates. They further indicate that the plasmid partitioning mechanism may exploit at least some of the components of the cellular machinery required for chromosomal segregation.
Collapse
Affiliation(s)
- Soundarapandian Velmurugan
- Section of Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Xian-Mei Yang
- Section of Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Clarence S.-M. Chan
- Section of Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Melanie Dobson
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | - Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
29
|
Abstract
In yeast, the constant length of telomeric DNA results from a negative regulation of telomerase by the telomere itself. Here we follow the return to equilibrium of an abnormally shortened telomere. We observe that telomere elongation is restricted to a few base pairs per generation and that its rate decreases progressively with increasing telomere length. In contrast, in the absence of telomerase or in the presence of an over-elongated telomere, the degradation rate linked to the succession of generations appears to be constant, i.e. independent of telomere length. Together, these results indicate that telomerase is gradually inhibited at its site of action by the elongating telomere. The implications of this finding for the dynamics of telomere length regulation are discussed in this study.
Collapse
Affiliation(s)
- S Marcand
- Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure de Lyon, UMR8510 CNRS/ENSL, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
30
|
Velmurugan S, Ahn YT, Yang XM, Wu XL, Jayaram M. The 2 micrometer plasmid stability system: analyses of the interactions among plasmid- and host-encoded components. Mol Cell Biol 1998; 18:7466-77. [PMID: 9819432 PMCID: PMC109327 DOI: 10.1128/mcb.18.12.7466] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stable inheritance of the 2 micrometer plasmid in a growing population of Saccharomyces cerevisiae is dependent on two plasmid-encoded proteins (Rep1p and Rep2p), together with the cis-acting locus REP3 (STB). In this study we demonstrate that short carboxy-terminal deletions of Rep1p and Rep2p severely diminish their normal capacity to localize to the yeast nucleus. The nuclear targeting, as well as their functional role in plasmid partitioning, can be restored by the addition of a nuclear localization sequence to the amino or the carboxy terminus of the shortened Rep proteins. Analyses of deletion derivatives of the Rep proteins by using the in vivo dihybrid genetic test in yeast, as well as by glutathione S-transferase fusion trapping assays in vitro demonstrate that the amino-terminal portion of Rep1p (ca. 150 amino acids long) is responsible for its interactions with Rep2p. In a monohybrid in vivo assay, we have identified Rep1p, Rep2p, and a host-encoded protein, Shf1p, as being capable of interacting with the STB locus. The Shf1 protein expressed in Escherichia coli can bind with high specificity to the STB sequence in vitro. In a yeast strain deleted for the SHF1 locus, a 2 micrometer circle-derived plasmid shows relatively poor stability.
Collapse
Affiliation(s)
- S Velmurugan
- Department of Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
31
|
Zhu XD, Sadowski PD. Selection of novel, specific single-stranded DNA sequences by Flp, a duplex-specific DNA binding protein. Nucleic Acids Res 1998; 26:1329-36. [PMID: 9469845 PMCID: PMC147392 DOI: 10.1093/nar/26.5.1329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Flp is a member of the integrase family of site-specific recombinases. Flp is known to be a double-stranded (ds)DNA binding protein that binds sequence specifically to the 13 bp binding elements in the FRT site (Flprecognitiontarget). We subjected a random pool of oligonucleotides to the in vitro binding site selection method and have unexpectedly recovered a series of single-stranded oligonucleotides to which Flp binds with high affinity. These single-stranded oligonucleotides differ in sequence from the duplex FRT site. The minimal length of the oligonucleotides which is active is 29 nt. This single strand-specific DNA binding activity is located in the same C-terminal 32 kDa domain of Flp in which the site-specific dsDNA binding activity resides. Competition studies suggest that the apparent affinity of Flp for single-stranded oligonucleotide is somewhat less than for a complete duplex FRT site but greater than for a single duplex 13 bp binding element. We have also shown that Cre, another member of the integrase family of site-specific recombinases, also exhibits single-stranded DNA binding similar to that of Flp.
Collapse
Affiliation(s)
- X D Zhu
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
32
|
Ahn YT, Wu XL, Biswal S, Velmurugan S, Volkert FC, Jayaram M. The 2microm-plasmid-encoded Rep1 and Rep2 proteins interact with each other and colocalize to the Saccharomyces cerevisiae nucleus. J Bacteriol 1997; 179:7497-506. [PMID: 9393716 PMCID: PMC179702 DOI: 10.1128/jb.179.23.7497-7506.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The efficient partitioning of the 2microm plasmid of Saccharomyces cerevisiae at cell division requires two plasmid-encoded proteins (Rep1p and Rep2p) and a cis-acting locus, REP3 (STB). By using protein hybrids containing fusions of the Rep proteins to green fluorescent protein (GFP), we show here that fluorescence from GFP-Rep1p or GFP-Rep2p is almost exclusively localized in the nucleus in a cir+ strain. Nuclear localization of GFP-Rep1p and GFP-Rep2p, though discernible, is less efficient in a cir(0) host. GFP-Rep2p or GFP-Rep1p is able to promote the stability of a 2microm circle-derived plasmid harboring REP1 or REP2, respectively, in a cir(0) background. Under these conditions, fluorescence from GFP-Rep2p or GFP-Rep1p is concentrated within the nucleus, as is the case in cir+ cells. This characteristic nuclear accumulation is not dependent on the expression of the FLP or RAF1 gene of the 2microm circle. Nuclear colocalization of Rep1p and Rep2p is consistent with the hypothesis that the two proteins directly or indirectly interact to form a functional bipartite or high-order protein complex. Immunoprecipitation experiments as well as baiting assays using GST-Rep hybrid proteins suggest a direct interaction between Rep1p and Rep2p which, in principle, may be modulated by other yeast proteins. Furthermore, these assays provide evidence for Rep1p-Rep1p and Rep2p-Rep2p associations as well. The sum of these interactions may be important in controlling the effective cellular concentration of the Rep1p-Rep2p complex.
Collapse
Affiliation(s)
- Y T Ahn
- Department of Microbiology, University of Texas at Austin, 78712, USA
| | | | | | | | | | | |
Collapse
|
33
|
Hosford EA, Sone H, Tanaka J. Enhanced stability of YEp plasmids in lager brewing yeasts is related to lager brewing yeast 2-microns DNA. Curr Genet 1992; 22:357-61. [PMID: 1423723 DOI: 10.1007/bf00352436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
YEp plasmid stability in the presence of either Saccharomyces cerevisiae laboratory strain 2-microns DNA, or lager brewing yeast 2-microns DNA in the same genetic background, was compared under non-selective culture conditions. It was found that YEp plasmids were more stably maintained in the presence of lager 2-microns DNA under these conditions. By construction of laboratory-lager 2-microns DNA hybrid plasmids, an 867 bp StuI fragment of lager 2-microns DNA was shown to be responsible for the enhanced stability of the YEp plasmid. Nucleotide substitutions at two sites were found by sequencing this region. It was also confirmed that increasing cell ploidy enhanced YEp stability under non-selective conditions.
Collapse
Affiliation(s)
- E A Hosford
- Central Laboratories for Key Technology, Kirin Brewery Co. Ltd., Kanagawa, Japan
| | | | | |
Collapse
|
34
|
Burmester A, Wöstemeyer A, Arnau J, Wöstemeyer J. The SEG1 element: a new DNA region promoting stable mitotic segregation of plasmids in the zygomycete Absidia glauca. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:166-72. [PMID: 1465090 DOI: 10.1007/bf00279357] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of new vectors for the model zygomycete Absidia glauca was constructed on the basis of the structural neomycin resistance (Neor) gene controlled by the promoter of the gene for elongation factor 1 (TEF). In order to select for transformed colonies with a stable Neor phenotype, spores from primary transformants were pooled and grown for two sporulation cycles under non-selective conditions. Southern blot analysis of DNA from single spore isolates originating from independent transformant pools allowed the identification of two autonomously replicating plasmids. Retransformation of Escherichia coli and restriction analysis of the two plasmids provided evidence for spontaneous in vivo insertion of a new DNA element (SEG1) from the A. glauca genome. The inserted regions in both plasmids are essentially identical and do not represent repetitive DNA. Compared with other autonomously replicating vectors, these SEG1-containing plasmids are mitotically extremely stable and are passed on to the vegetative spore progeny of a retransformed A. glauca strain. We assume that SEG1 contains structural elements involved in partitioning and stable segregation of plasmids. For the construction of stable transformants of A. glauca, the SEG1 element may be regarded as a major breakthrough, because stabilization of transformed genetic traits by integration is difficult to achieve in all mucoraceous fungi and all known replicating plasmids are mitotically unstable.
Collapse
Affiliation(s)
- A Burmester
- Institut für Genbiologische Forschung Berlin GmbH, FRG
| | | | | | | |
Collapse
|
35
|
Chen JW, Evans BR, Yang SH, Teplow DB, Jayaram M. Domain of a yeast site-specific recombinase (Flp) that recognizes its target site. Proc Natl Acad Sci U S A 1991; 88:5944-8. [PMID: 2068070 PMCID: PMC51998 DOI: 10.1073/pnas.88.14.5944] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Binding of a partial proteolytic digest by V8 enzyme of the yeast site-specific recombinase Flp to its target site gives rise to DNA-protein complexes that are smaller than those produced by the full-sized protein. The smallest of these complexes (occupancy of one peptide monomer per site) contains either one of two polypeptides (32 and 28 kDa) of the V8 digestion mixture. The amino termini of both polypeptides map to Ser-129 of Flp, corresponding to V8 cleavage at Glu-128. The relative mobilities of the complexes formed by the V8 peptides indicate that they lack the sharp substrate bend that is characteristic of Flp-derived complexes. A hybrid protein consisting of the amino-terminal one-third of the R recombinase (from Zygosaccharomyces rouxii) and the carboxyl-terminal two-thirds of Flp recognizes the Flp target site.
Collapse
Affiliation(s)
- J W Chen
- Department of Microbiology, University of Texas, Austin 78712
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Synthesis of an enzymatically active FLP recombinase in vitro: search for a DNA-binding domain. Mol Cell Biol 1989. [PMID: 2664465 DOI: 10.1128/mcb.9.5.1987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used an in vitro transcription and translation system to synthesize an enzymatically active FLP protein. The FLP mRNA synthesized in vitro by SP6 polymerase is translated efficiently in a rabbit reticulocyte lysate to produce enzymatically active FLP. Using this system, we assessed the effect of deletions and tetrapeptide insertions on the ability of the respective variant proteins synthesized in vitro to bind to the FLP recognition target site and to carry out excisive recombination. Deletions of as few as six amino acids from either the carboxy- or amino-terminal region of FLP resulted in loss of binding activity. Likewise, insertions at amino acid positions 79, 203, and 286 abolished DNA-binding activity. On the other hand, a protein with an insertion at amino acid 364 retained significant DNA-binding activity but had no detectable recombination activity. Also, an insertion at amino acid 115 had no measurable effect on DNA binding, but recombination was reduced by 95%. In addition, an insertion at amino acid 411 had no effect on DNA binding and recombination. On the basis of these results, we conclude that this approach fails to define a discrete DNA-binding domain. The possible reasons for this result are discussed.
Collapse
|
38
|
Amin AA, Sadowski PD. Synthesis of an enzymatically active FLP recombinase in vitro: search for a DNA-binding domain. Mol Cell Biol 1989; 9:1987-95. [PMID: 2664465 PMCID: PMC362991 DOI: 10.1128/mcb.9.5.1987-1995.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have used an in vitro transcription and translation system to synthesize an enzymatically active FLP protein. The FLP mRNA synthesized in vitro by SP6 polymerase is translated efficiently in a rabbit reticulocyte lysate to produce enzymatically active FLP. Using this system, we assessed the effect of deletions and tetrapeptide insertions on the ability of the respective variant proteins synthesized in vitro to bind to the FLP recognition target site and to carry out excisive recombination. Deletions of as few as six amino acids from either the carboxy- or amino-terminal region of FLP resulted in loss of binding activity. Likewise, insertions at amino acid positions 79, 203, and 286 abolished DNA-binding activity. On the other hand, a protein with an insertion at amino acid 364 retained significant DNA-binding activity but had no detectable recombination activity. Also, an insertion at amino acid 115 had no measurable effect on DNA binding, but recombination was reduced by 95%. In addition, an insertion at amino acid 411 had no effect on DNA binding and recombination. On the basis of these results, we conclude that this approach fails to define a discrete DNA-binding domain. The possible reasons for this result are discussed.
Collapse
Affiliation(s)
- A A Amin
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Copy number and partition of the Saccharomyces cerevisiae 2 micron plasmid controlled by transcription regulators. Mol Cell Biol 1989. [PMID: 3062375 DOI: 10.1128/mcb.8.11.4949] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2 micron plasmid of Saccharomyces cerevisiae is maintained by the action of plasmid-encoded gene products that control copy number and promote equipartition of plasmid copies at cell division. We show that the REP1 and REP2 plasmid-encoded gene products are master regulators that act in concert to autoregulate the level of their own transcripts and to regulate transcript levels of the FLP gene that promotes plasmid copy amplification. REP1 and REP2 are also shown to repress transcription at REP3, the cis-acting site essential for plasmid equipartitioning. We propose a model in which REP3 acts by dislodging transcription apparatuses that otherwise cause plasmid molecules to adhere to the mother nucleus and segregate asymmetrically. On the basis of their ability to generate specific chromatin structures, we also propose that the REP1 and REP2 gene products interact with different specific sequences found iterated in the 2 micron plasmid.
Collapse
|
40
|
Veit BE, Fangman WL. Copy number and partition of the Saccharomyces cerevisiae 2 micron plasmid controlled by transcription regulators. Mol Cell Biol 1988; 8:4949-57. [PMID: 3062375 PMCID: PMC365588 DOI: 10.1128/mcb.8.11.4949-4957.1988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The 2 micron plasmid of Saccharomyces cerevisiae is maintained by the action of plasmid-encoded gene products that control copy number and promote equipartition of plasmid copies at cell division. We show that the REP1 and REP2 plasmid-encoded gene products are master regulators that act in concert to autoregulate the level of their own transcripts and to regulate transcript levels of the FLP gene that promotes plasmid copy amplification. REP1 and REP2 are also shown to repress transcription at REP3, the cis-acting site essential for plasmid equipartitioning. We propose a model in which REP3 acts by dislodging transcription apparatuses that otherwise cause plasmid molecules to adhere to the mother nucleus and segregate asymmetrically. On the basis of their ability to generate specific chromatin structures, we also propose that the REP1 and REP2 gene products interact with different specific sequences found iterated in the 2 micron plasmid.
Collapse
Affiliation(s)
- B E Veit
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
41
|
Dobson MJ, Yull FE, Molina M, Kingsman SM, Kingsman AJ. Reconstruction of the yeast 2 micron plasmid partitioning mechanism. Nucleic Acids Res 1988; 16:7103-17. [PMID: 3043377 PMCID: PMC338354 DOI: 10.1093/nar/16.14.7103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The effect of the yeast 2 micron circle encoded REP1 and REP2 gene products on plasmid partitioning and copy number control was analyzed by removing the open reading frames from their normal sequence context and transcriptional control regions and directing their expression using heterologous promoters in [cir0] host strains. Both the REP1 and REP2 gene products are directly required at appropriate levels of expression to reconstitute the 2 microns circle partitioning system in conjunction with REP3 and the origin of replication. The level of expression of REP2 appears to be critical to re-establishing proper partitioning and may also play a role in monitoring and thereby regulating the plasmid copy number. Constitutive expression of the REP1 and REP2 open reading frames using heterologous expression signals can be used to reconstruct efficient plasmid partitioning even in the absence of FLP-mediated plasmid amplification and a functional D open reading frame.
Collapse
Affiliation(s)
- M J Dobson
- Department of Botany, University of Nottingham, University Park, UK
| | | | | | | | | |
Collapse
|
42
|
Ahern KG, Howard PK, Firtel RA. Identification of regions essential for extrachromosomal replication and maintenance of an endogenous plasmid in Dictyostelium. Nucleic Acids Res 1988; 16:6825-37. [PMID: 3405751 PMCID: PMC338336 DOI: 10.1093/nar/16.14.6825] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Initial experiments with the endogenous 12.3 kb Dictyostelium discoideum plasmid Ddp1 led to the generation of a large shuttle vector, Ddp1-20. In addition to Ddp1, this vector contains pBR322 and a gene fusion that confers G418 resistance in Dictyostelium cells. We have shown that Ddp1-20 replicates extrachromosomally in Dictyostelium cells and can be grown in Escherichia coli cells (1). We have now examined deletions within this vector to identify the elements essential for extrachromosomal replication and stable maintenance of the plasmid. We find that a 2.2 kb fragment is sufficient to confer stable, extrachromosomal replication with a reduction in copy number from about 40 to approximately 10-15 copies per cell. Vectors containing additional Ddp1 sequences have a higher copy number. The 2.2 kb region contains none of the complete, previously identified transcription units on Ddp1 expressed during vegetative growth or development. These results suggest that gene products expressed by Ddp1 are not essential for replication, stability, or partitioning of the plasmid between daughter cells. Vectors carrying only the 2.2 kb fragment plus the gene fusion conferring G418 resistance transform Dictyostelium cells with high efficiency using either calcium phosphate mediated transformation or electroporation. Finally, we have examined the relative levels of expression of actin promoters driving neoR genes when in extrachromosomal or integrating vectors.
Collapse
Affiliation(s)
- K G Ahern
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|