1
|
Liu LJ, Xie R, Hussain S, Lian JB, Rivera-Perez J, Jones SN, Stein JL, Stein GS, van Wijnen AJ. Functional coupling of transcription factor HiNF-P and histone H4 gene expression during pre- and post-natal mouse development. Gene 2011; 483:1-10. [PMID: 21605641 PMCID: PMC3164518 DOI: 10.1016/j.gene.2011.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 01/19/2023]
Abstract
Transcription factor Histone Nuclear Factor P (HiNF-P; gene symbol Hinfp) mediates cell cycle control of histone H4 gene expression to support the packaging of newly replicated DNA as chromatin. The HiNF-P/p220(NPAT) complex controls multiple H4 genes in established human cell lines and is critical for cell proliferation. The mouse Hinfp(LacZ) null allele causes early embryonic lethality due to a blastocyst defect. However, neither Hinfp function nor its temporal expression relative to histone H4 genes during fetal development has been explored. Here, we establish that expression of Hinfp is biologically coupled with expression of twelve functional mouse H4 genes during pre- and post-natal tissue-development. Both Hinfp and H4 genes are robustly expressed at multiple embryonic (E) days (from E5.5 to E15.5), coincident with ubiquitous LacZ staining driven by the Hinfp promoter. Five highly expressed mouse H4 genes (Hist1h4d, Histh4f, Hist1h4m and Hist2h4) account for >90% of total histone H4 mRNA throughout development. Post-natal expression of H4 genes in mice is most evident in lung, spleen, thymus and intestine, and with few exceptions (e.g., adult liver) correlates with Hinfp gene expression. Histone H4 gene expression decreases butHinfp levels remain constitutive upon cell growth inhibition in culture. The in vivo co-expression of Hinfp and histone H4 genes is consistent with the biological function of Hinfp as a principal transcriptional regulator of histone H4 gene expression during mouse development.
Collapse
Affiliation(s)
- Li-Jun Liu
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Ronglin Xie
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Sadiq Hussain
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Jane B. Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Jaime Rivera-Perez
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Stephen N. Jones
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Janet L. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Gary S. Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Andre J. van Wijnen
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| |
Collapse
|
2
|
Wintersberger E. Biochemical events controlling initiation and propagation of the S phase of the cell cycle. Rev Physiol Biochem Pharmacol 2005; 118:49-95. [PMID: 1754800 DOI: 10.1007/bfb0031481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E Wintersberger
- Institut für Molekularbiologie der Universität Wien, Austria
| |
Collapse
|
3
|
Lee MS, Son MY, Park JI, Park C, Lee YC, Son CB, Kim YS, Paik SG, Yoon WH, Park SK, Hwang BD, Lim K. Modification of octamer binding transcriptional factor is related to H2B histone gene repression during dimethyl sulfoxide-dependent differentiation of HL-60 cells. Cancer Lett 2001; 172:165-70. [PMID: 11566492 DOI: 10.1016/s0304-3835(01)00654-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcriptional regulation of H2B histone gene during dimethyl sulfoxide (DMSO)-dependent differentiation of HL-60 cells has been investigated using DNase I footprinting and DNA mobility shift assay. The level of histone H2B mRNA showed a slight decline at 2 days and hardly detectable at 4 days after DMSO treatment. H2B histone mRNA was repressed in proportion to the concentration of DMSO. In DNase I footprinting analysis, one nuclear factor (octamer binding transcription factor, OTF) bound at -42 bp (octamer motif, ATTTGCAT) in undifferentiated HL-60 cells. The binding pattern of OTF was unchanged during DMSO-dependent differentiation. One protein complex (OTF) was detected by DNA mobility shift assay in undifferentiated HL-60 cells. The mobility of OTF was partially retarded during DMSO-dependent differentiation and the retardant OTF was not newly synthesized protein. These results suggest that the posttranslational modification of OTF may be responsible for the repression of H2B histone gene during DMSO-dependent differentiation of HL-60 cells.
Collapse
Affiliation(s)
- M S Lee
- Department of Food & Nutrition, Chungnam National University, 305-764, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
van der Meijden CM, Vaughan PS, Staal A, Albig W, Doenecke D, Stein JL, Stein GS, van Wijnen AJ. Selective expression of specific histone H4 genes reflects distinctions in transcription factor interactions with divergent H4 promoter elements. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:82-100. [PMID: 9767124 DOI: 10.1016/s0167-4781(98)00147-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Expression of many histone H4 genes is stringently controlled during the cell cycle to maintain a functional coupling of histone biosynthesis with DNA replication. The histone H4 multigene family provides a paradigm for understanding cell cycle control of gene transcription. All functional histone H4 gene copies are highly conserved in the mRNA coding region. However, the putative promoter regions of these H4 genes are divergent. We analyzed three representative mouse H4 genes to assess whether variation in H4 promoter sequences has functional consequences for the relative level and temporal control of expression of distinct H4 genes. Using S1 nuclease protection assays with gene-specific probes and RNA from synchronized cells, we show that the mRNA level of each H4 gene is temporally coupled to DNA synthesis. However, there are differences in the relative mRNA levels of these three H4 gene copies in several cell types. Based on gel shift assays, nucleotide variations in the promoters of these H4 genes preclude or reduce binding of several histone gene transcription factors, including IRF2, HiNF-D, SP-1 and/or YY1. Therefore, differential regulation of H4 genes is directly attributable to evolutionary divergence in H4 promoter organization which dictates the potential for regulatory interactions with cognate H4 transcription factors. This regulatory flexibility in H4 promoter organization may maximize options for transcriptional control of histone H4 gene expression in response to the onset of DNA synthesis and cell cycle progression in a broad spectrum of cell types and developmental stages.
Collapse
Affiliation(s)
- C M van der Meijden
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Vaughan PS, van der Meijden CM, Aziz F, Harada H, Taniguchi T, van Wijnen AJ, Stein JL, Stein GS. Cell cycle regulation of histone H4 gene transcription requires the oncogenic factor IRF-2. J Biol Chem 1998; 273:194-9. [PMID: 9417064 DOI: 10.1074/jbc.273.1.194] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Histone genes display a peak in transcription in early S phase and are ideal models for cell cycle-regulated gene expression. We have previously shown that the transcription factor interferon regulatory factor 2 (IRF-2) can activate histone H4 gene expression. In this report we establish that a mouse histone H4 gene and its human homolog lose stringent cell cycle control in synchronized embryonic fibroblasts in which IRF-2 has been ablated. We also show that there are reduced mRNA levels of this endogenous mouse histone H4 gene in the IRF-2(-/-) cells. Strikingly, the overall mRNA level and cell cycle regulation of histone H4 transcription are restored when IRF-2 is reintroduced to these cells. IRF-2 is a negative regulator of the interferon response and has oncogenic potential, but little is known of the mechanism of these activities. Our results suggest that IRF-2 is an active player in E2F-independent cell cycle-regulated gene expression at the G1/S phase transition. IRF-2 was previously considered a passive antagonist to the tumor suppressor IRF-1 but can now join other oncogenic factors such as c-Myb and E2F1 that are predicted to mediate their transforming capabilities by actively regulating genes necessary for cell cycle progression.
Collapse
Affiliation(s)
- P S Vaughan
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kroeger PE, van Wijnen AJ, Pauli U, Wright KL, Stein GS, Stein JL. In vivo occupancy of histone gene proximal promoter elements reflects gene copy number-dependent titratable transactivation factors and cross-species compatibility of regulatory sequences. J Cell Biochem 1995; 57:191-207. [PMID: 7759557 DOI: 10.1002/jcb.240570204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To assess systematically the structural and functional aspects of histone gene transcription within a chromosomal context, we stably integrated an extensive set of human histone H4 gene constructs into mouse C127 cells. Levels of expression were determined by S1 nuclease protection assays for multiple mouse monoclonal cell lines containing these human H4 genes. For each cell line, we quantitated the number of integrated human H4 genes by Southern blot analysis. The results indicate that the expression of the human H4 gene is in part copy number dependent at low gene dosages. However, the level of expression varies among different cell lines containing similar numbers of copies of the same H4 gene construct. This result suggests that position-dependent chromosomal integration effects contribute to H4 gene transcription, consistent with the roles of long-range gene organization and nuclear architecture in gene regulation. At high copy number, the level of human H4 gene expression per copy decreased, and endogenous mouse H4 mRNA levels were also reduced. Furthermore, in vivo occupancy at the human H4 gene immediate 5' regulatory elements, as defined by genomic fingerprinting, showed copy number-dependent protein/DNA interactions. Hence, human and mouse H4 genes compete for titratable transcription factors in a cellular environment. Taken together, these results indicate cross-species compatibility and suggest limited representation in vivo of the factors involved in regulating histone H4 gene transcription.
Collapse
Affiliation(s)
- P E Kroeger
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | |
Collapse
|
7
|
Zahradka P, Elliot T, Hovland K, Larson DE, Saward L. Repression of histone gene transcription in quiescent 3T6 fibroblasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:683-90. [PMID: 8223612 DOI: 10.1111/j.1432-1033.1993.tb18294.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maintaining murine 3T6 fibroblasts in serum-depleted medium for a period of three days results in a resting cell population that does not synthesize DNA. Histone mRNA levels, closely tied to the cell-proliferation rate, are low due to a reduced rate of synthesis. A comparison of histone gene transcription in vitro by nuclear extracts of quiescent or proliferative 3T6 cells showed that a 200-bp segment of the promoter was responsible for repressing gene activity when cells were in a G0 state. In the absence of the distal promoter region (-200 to -400), gene transcription remained high in quiescent cells, indicating the proximal promoter region (+1 to -200) was responsible for basal gene activity. Alterations in protein binding to the distal promoter region correlated with histone H4 gene activity, suggesting that repression of histone gene transcription is linked to the attachment of a specific nuclear protein. During G1, the histone H4 gene was efficiently transcribed in vitro, but an inability to process the histone pre-mRNA limited the cellular content of mature histone mRNA. This distinction between transcriptional (in G0) and post-transcriptional (in G1) mechanisms for modulating histone mRNA levels suggests that gene-regulatory factors are specifically activated in quiescent cells to reduce expression of non-essential genes.
Collapse
Affiliation(s)
- P Zahradka
- St. Boniface General Hospital Research Centre, Department of Physiology, University of Manitoba, Canada
| | | | | | | | | |
Collapse
|
8
|
Gerbaulet SP, van Wijnen AJ, Aronin N, Tassinari MS, Lian JB, Stein JL, Stein GS. Downregulation of histone H4 gene transcription during postnatal development in transgenic mice and at the onset of differentiation in transgenically derived calvarial osteoblast cultures. J Cell Biochem 1992; 49:137-47. [PMID: 1400621 DOI: 10.1002/jcb.240490206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In vivo regulation of cell cycle dependent human histone gene expression was examined in transgenic mice using a fusion construct containing 6.5 kB of a human H4 promoter linked to the chloramphenicol acetyltransferase (CAT) reporter gene. Transcriptional control of histone gene expression, as a function of proliferative activity, was determined. We established the relationship between DNA replication dependent H4 mRNA levels (Northern blot analysis) and H4 promoter activity (CAT assay) during postnatal development in a broad spectrum of tissues. In most tissues sampled in adult animals, the cellular representation of H4 gene transcripts declined in parallel with promoter activity. This result is consistent with transcriptional control of H4 gene expression at the cessation of proliferation. Interestingly, while H4 mRNA was detectable at very low levels post-proliferatively in brain, promoter activity persisted in adult brain, where most of the cells are terminally differentiated. This dissociation between histone gene promoter activity and histone mRNA accumulation points to the possibility of post-transcriptional regulation of histone gene expression in brain. Cultures of osteoblasts were prepared from calvaria of transgenic mice carrying the H4 promoter/CAT reporter construct. In contrast to the brain, in these bone-derived cells, we established by immunohistochemistry that the transition to the quiescent, differentiated state is associated with a transcriptionally mediated downregulation of histone gene expression at the single cell level.
Collapse
Affiliation(s)
- S P Gerbaulet
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | | | | | |
Collapse
|
9
|
van Wijnen AJ, Lian JB, Stein JL, Stein GS. Protein/DNA interactions involving ATF/AP1-, CCAAT-, and HiNF-D-related factors in the human H3-ST519 histone promoter: cross-competition with transcription regulatory sites in cell cycle controlled H4 and H1 histone genes. J Cell Biochem 1991; 47:337-51. [PMID: 1795016 DOI: 10.1002/jcb.240470408] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein/DNA interactions of the H3-ST519 histone gene promoter were analyzed in vitro. Using several assays for sequence specificity, we established binding sites for ATF/AP1-, CCAAT-, and HiNF-D related DNA binding proteins. These binding sites correlate with two genomic protein/DNA interaction domains previously established for this gene. We show that each of these protein/DNA interactions has a counterpart in other histone genes: H3-ST519 and H4-F0108 histone genes interact with ATF- and HiNF-D related binding activities, whereas H3-ST519 and H1-FNC16 histone genes interact with the same CCAAT-box binding activity. These factors may function in regulatory coupling of the expression of different histone gene classes. We discuss these results within the context of established and putative protein/DNA interaction sites in mammalian histone genes. This model suggests that heterogeneous permutations of protein/DNA interaction elements, which involve both general and cell cycle regulated DNA binding proteins, may govern the cellular competency to express and coordinately control multiple distinct histone genes.
Collapse
Affiliation(s)
- A J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
10
|
van Wijnen AJ, Ramsey-Ewing AL, Bortell R, Owen TA, Lian JB, Stein JL, Stein GS. Transcriptional element H4-site II of cell cycle regulated human H4 histone genes is a multipartite protein/DNA interaction site for factors HiNF-D, HiNF-M, and HiNF-P: involvement of phosphorylation. J Cell Biochem 1991; 46:174-89. [PMID: 1655821 DOI: 10.1002/jcb.240460211] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell cycle regulated gene expression was studied by analyzing protein/DNA interactions occurring at the H4-Site II transcriptional element of H4 histone genes using several approaches. We show that this key proximal promoter element interacts with at least three distinct sequence-specific DNA binding activities, designated HiNF-D, HiNF-M, and HiNF-P. HiNF-D binds to an extended series of nucleotides, whereas HiNF-M and HiNF-P recognize sequences internal to the HiNF-D binding domain. Gel retardation assays show that HiNF-D and HiNF-M each are represented by two distinct protein/DNA complexes involving the same DNA binding activity. These results suggest that these factors are subject to post-translational modifications. Dephosphorylation experiments in vitro suggest that both electrophoretic mobility and DNA binding activities of HiNF-D and HiNF-M are sensitive to phosphatase activity. We deduce that these factors may require a basal level of phosphorylation for sequence specific binding to H4-Site II and may represent phosphoproteins occurring in putative hyper- and hypo-phosphorylated forms. Based on dramatic fluctuations in the ratio of the two distinct HiNF-D species both during hepatic development and the cell cycle in normal diploid cells, we postulate that this modification of HiNF-D is related to the cell cycle. However, in several tumor-derived and transformed cell types the putative hyperphosphorylated form of HiNF-D is constitutively present. These data suggest that deregulation of a phosphatase-sensitive post-translational modification required for HiNF-D binding is a molecular event that reflects abrogation of a mechanism controlling cell proliferation. Thus, phosphorylation and dephosphorylation of histone promoter factors may provide a basis for modulation of protein/DNA interactions and H4 histone gene transcription during the cell cycle and at the onset of quiescence and differentiation.
Collapse
Affiliation(s)
- A J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | | | | | | | |
Collapse
|
11
|
Bhatia K, Kang VH, Stein GS, Bustin M, Cherney BW, Notario V, Haque SJ, Huppi K, Smulson ME. Cell cycle regulation of an exogenous human poly(ADP-ribose) polymerase cDNA introduced into murine cells. J Cell Physiol 1990; 144:345-53. [PMID: 1696275 DOI: 10.1002/jcp.1041440221] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have evaluated the regulation of expression of the poly(ADP-ribose) polymerase gene during cell growth and replication. In a synchronized population of HeLa cells or in serum-stimulated WI-38 cells, steady-state levels of the polymerase mRNA were highest at late S and S-G2 phases and negligible in early S phase. Transcription did not solely account for the significant increase in the mRNA levels observed in late S phase by Northern analysis. The stability of the mRNA was dependent upon the percent proliferating cells in the culture. Accordingly, polymerase mRNA from cells in early exponential phase was significantly more stable than from cells in stationary phase of asynchronous growth. To clarify these observations, we utilized a novel heterologous expression system that involved murine 3T3 cells transfected with a human poly(ADP-ribose) polymerase cDNA under the control of a non-cell cycle-specific promoter. Cells were synchronized, and a comparison was made of the endogenous (murine) and exogenous (human) polymerase mRNA levels. Both the endogenous and the exogenous mRNA were specifically stabilized by the same mechanisms and only during late S phase; therefore, we concluded that mRNA pools for the polymerase are regulated at the post-transcriptional level. The heterologous expression system confirmed that the post-transcriptional regulation system in the mouse cells can recognize and faithfully regulate the human cDNA in response to the murine cell cycle signals. More importantly, the presence of extra copies (human) of the polymerase gene did not provide an increased amount of the total polymerase mRNA or protein and, in fact, the sum of the endogenous and exogenous mRNA in the transfected cells was approximately the same as the level of endogenous transcript in the control cells. This suggested that there might be a limit to the amount of polymerase protein accumulating in the cellular pool and thus levels of poly(ADP-ribose) polymerase may be autoregulated.
Collapse
Affiliation(s)
- K Bhatia
- Department of Biochemistry, Georgetown University, Washington, DC 20007
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The pattern of dihydrofolate reductase expression through the cell cycle in rodent and human cultured cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47102-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
|
14
|
Chaubet N, Chaboute ME, Philipps G, Gigot C. Histone genes in higher plants: Organization and expression. ACTA ACUST UNITED AC 1987. [DOI: 10.1002/dvg.1020080512] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|