1
|
Fölsz O, Lin CC, Task D, Riabinina O, Potter CJ. The Q-system: A Versatile Repressible Binary Expression System. Methods Mol Biol 2022; 2540:35-78. [PMID: 35980572 DOI: 10.1007/978-1-0716-2541-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.
Collapse
Affiliation(s)
- Orsolya Fölsz
- Department of Biosciences, Durham University, Durham, UK
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Giesel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Darya Task
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Lalwani MA, Zhao EM, Wegner SA, Avalos JL. The Neurospora crassa Inducible Q System Enables Simultaneous Optogenetic Amplification and Inversion in Saccharomyces cerevisiae for Bidirectional Control of Gene Expression. ACS Synth Biol 2021; 10:2060-2075. [PMID: 34346207 DOI: 10.1021/acssynbio.1c00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bidirectional optogenetic control of yeast gene expression has great potential for biotechnological applications. Our group has developed optogenetic inverter circuits that activate transcription using darkness, as well as amplifier circuits that reach high expression levels under limited light. However, because both types of circuits harness Gal4p and Gal80p from the galactose (GAL) regulon they cannot be used simultaneously. Here, we apply the Q System, a transcriptional activator/inhibitor system from Neurospora crassa, to build circuits in Saccharomyces cerevisiae that are inducible using quinic acid, darkness, or blue light. We develop light-repressed OptoQ-INVRT circuits that initiate darkness-triggered transcription within an hour of induction, as well as light-activated OptoQ-AMP circuits that achieve up to 39-fold induction. The Q System does not exhibit crosstalk with the GAL regulon, allowing coutilization of OptoQ-AMP circuits with previously developed OptoINVRT circuits. As a demonstration of practical applications in metabolic engineering, we show how simultaneous use of these circuits can be used to dynamically control both growth and production to improve acetoin production, as well as enable light-tunable co-production of geraniol and linalool, two terpenoids implicated in the hoppy flavor of beer. OptoQ-AMP and OptoQ-INVRT circuits enable simultaneous optogenetic signal amplification and inversion, providing powerful additions to the yeast optogenetic toolkit.
Collapse
Affiliation(s)
- Makoto A. Lalwani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Evan M. Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Scott A. Wegner
- Department of Molecular Biology. Princeton University, Princeton, New Jersey 08544, United States
| | - José L. Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology. Princeton University, Princeton, New Jersey 08544, United States
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
MacDonald IC, Seamons TR, Emmons JC, Javdan SB, Deans TL. Enhanced regulation of prokaryotic gene expression by a eukaryotic transcriptional activator. Nat Commun 2021; 12:4109. [PMID: 34226549 PMCID: PMC8257575 DOI: 10.1038/s41467-021-24434-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Expanding the genetic toolbox for prokaryotic synthetic biology is a promising strategy for enhancing the dynamic range of gene expression and enabling new engineered applications for research and biomedicine. Here, we reverse the current trend of moving genetic parts from prokaryotes to eukaryotes and demonstrate that the activating eukaryotic transcription factor QF and its corresponding DNA-binding sequence can be moved to E. coli to introduce transcriptional activation, in addition to tight off states. We further demonstrate that the QF transcription factor can be used in genetic devices that respond to low input levels with robust and sustained output signals. Collectively, we show that eukaryotic gene regulator elements are functional in prokaryotes and establish a versatile and broadly applicable approach for constructing genetic circuits with complex functions. These genetic tools hold the potential to improve biotechnology applications for medical science and research. Expanded toolkits for prokaryotic synthetic biology can enhance the dynamic range of gene expression. Here the authors move the eukaryotic transcription factor QF into E. coli and integrate it into genetic devices.
Collapse
Affiliation(s)
- I Cody MacDonald
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Travis R Seamons
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jonathan C Emmons
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Shwan B Javdan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Reis RS, Litholdo CG, Bally J, Roberts TH, Waterhouse PM. A conditional silencing suppression system for transient expression. Sci Rep 2018; 8:9426. [PMID: 29930292 PMCID: PMC6013485 DOI: 10.1038/s41598-018-27778-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/25/2018] [Indexed: 11/08/2022] Open
Abstract
RNA silencing is a powerful tool deployed by plants against viral infection and abnormal gene expression. Plant viruses have evolved a suite of silencing suppressors for counter-defense, which are also widely used to boost transcript and protein accumulation in transient assays. However, only wild type silencing suppressor proteins have been reported to date. Here we demonstrate that P0 of Potato leafroll virus (PLRV), PLP0, can be split into two proteins that only show silencing suppression activity upon co-expression. We cloned each of these proteins in two different constructs and transiently co-infiltrated them in N. benthamiana leaves. We expressed a fluorescent protein from one of the vectors and observed that cells expressing both halves of PLP0 suppressed gene silencing. Further, we showed that Q system of Neurospora crassa, based on co-expression of a transcription activator and inhibitor, is functional in agroinfiltrated leaves of N. benthamiana. Q system combined with the split PLP0 system showed very tight co-expression of Q system's transcriptional activator and inhibitor. Altogether, our experiments demonstrate a functioning conditional silencing suppressor system and its potential as a powerful tool for transient expression in N. benthamiana leaves, as well as the application of the Q system in plants.
Collapse
Affiliation(s)
- Rodrigo Siqueira Reis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Celso G Litholdo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Citrus Biotechnology Lab, Centro de Citricultura, Instituto Agronômico de Campinas, Cordeirópolis, SP, 13490-000, Brazil
| | - Julia Bally
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Thomas H Roberts
- Plant Breeding Institute, Sydney Institute of Agriculture, University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter M Waterhouse
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
5
|
Improved and expanded Q-system reagents for genetic manipulations. Nat Methods 2015; 12:219-22, 5 p following 222. [PMID: 25581800 PMCID: PMC4344399 DOI: 10.1038/nmeth.3250] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/01/2014] [Indexed: 12/25/2022]
Abstract
The Q system is a repressible binary expression system for transgenic manipulations in living organisms. Through protein engineering and in vivo functional tests, we report here variants of the Q-system transcriptional activator, including QF2, for driving strong and ubiquitous expression in all Drosophila tissues. Our QF2, Gal4QF and LexAQF chimeric transcriptional activators substantially enrich the toolkit available for transgenic regulation in Drosophila melanogaster.
Collapse
|
6
|
del Valle Rodríguez A, Didiano D, Desplan C. Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 2011; 9:47-55. [PMID: 22205518 DOI: 10.1038/nmeth.1800] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The development of two-component expression systems in Drosophila melanogaster, one of the most powerful genetic models, has allowed the precise manipulation of gene function in specific cell populations. These expression systems, in combination with site-specific recombination approaches, have also led to the development of new methods for clonal lineage analysis. We present a hands-on user guide to the techniques and approaches that have greatly increased resolution of genetic analysis in the fly, with a special focus on their application for lineage analysis. Our intention is to provide guidance and suggestions regarding which genetic tools are most suitable for addressing different developmental questions.
Collapse
|
7
|
Abstract
In Drosophila, the GAL4/UAS/GAL80 repressible binary expression system is widely used to manipulate or mark tissues of interest. However, complex biological systems often require distinct transgenic manipulations of different cell populations. For this purpose, we recently developed the Q system, a second repressible binary expression system. We describe here the basic steps for performing a variety of Q system experiments in vivo. These include how to generate and use Q system reagents to express effector transgenes in tissues of interest, how to use the Q system in conjunction with the GAL4 system to generate intersectional expression patterns that precisely limit which tissues will be experimentally manipulated and how to use the Q system to perform mosaic analysis. The protocol described here can be adapted to a wide range of experimental designs.
Collapse
Affiliation(s)
- Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
8
|
Potter CJ, Tasic B, Russler EV, Liang L, Luo L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 2010; 141:536-48. [PMID: 20434990 DOI: 10.1016/j.cell.2010.02.025] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 01/07/2010] [Accepted: 02/16/2010] [Indexed: 02/05/2023]
Abstract
We describe a new repressible binary expression system based on the regulatory genes from the Neurospora qa gene cluster. This "Q system" offers attractive features for transgene expression in Drosophila and mammalian cells: low basal expression in the absence of the transcriptional activator QF, high QF-induced expression, and QF repression by its repressor QS. Additionally, feeding flies quinic acid can relieve QS repression. The Q system offers many applications, including (1) intersectional "logic gates" with the GAL4 system for manipulating transgene expression patterns, (2) GAL4-independent MARCM analysis, and (3) coupled MARCM analysis to independently visualize and genetically manipulate siblings from any cell division. We demonstrate the utility of the Q system in determining cell division patterns of a neuronal lineage and gene function in cell growth and proliferation, and in dissecting neurons responsible for olfactory attraction. The Q system can be expanded to other uses in Drosophila and to any organism conducive to transgenesis.
Collapse
|
9
|
Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 2008; 36:e76. [PMID: 18539608 PMCID: PMC2475614 DOI: 10.1093/nar/gkn369] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Although frequently used as protein production host, there is only a limited set of promoters available to drive the expression of recombinant proteins in Pichia pastoris. Fine-tuning of gene expression is often needed to maximize product yield and quality. However, for efficient knowledge-based engineering, a better understanding of promoter function is indispensable. Consequently, we created a promoter library by deletion and duplication of putative transcription factor-binding sites within the AOX1 promoter (PAOX1) sequence. This first library initially spanned an activity range between ∼6% and >160% of the wild-type promoter activity. After characterization of the promoter library employing a green fluorescent protein (GFP) variant, the new regulatory toolbox was successfully utilized in a ‘real case’, i.e. the expression of industrial enzymes. Characterization of the library under repressing, derepressing and inducing conditions displayed at least 12 cis-acting elements involved in PAOX1-driven high-level expression. Based on this deletion analysis, novel short artificial promoter variants were constructed by combining cis-acting elements with basal promoter. In addition to improving yields and quality of heterologous protein production, the new PAOX1 synthetic promoter library constitutes a basic toolbox to fine-tune gene expression in metabolic engineering and sequential induction of protein expression in synthetic biology.
Collapse
Affiliation(s)
- Franz S Hartner
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 2006; 103:10352-10357. [PMID: 16801547 PMCID: PMC1482798 DOI: 10.1073/pnas.0601456103] [Citation(s) in RCA: 927] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The low rate of homologous recombination exhibited by wild-type strains of filamentous fungi has hindered development of high-throughput gene knockout procedures for this group of organisms. In this study, we describe a method for rapidly creating knockout mutants in which we make use of yeast recombinational cloning, Neurospora mutant strains deficient in nonhomologous end-joining DNA repair, custom-written software tools, and robotics. To illustrate our approach, we have created strains bearing deletions of 103 Neurospora genes encoding transcription factors. Characterization of strains during growth and both asexual and sexual development revealed phenotypes for 43% of the deletion mutants, with more than half of these strains possessing multiple defects. Overall, the methodology, which achieves high-throughput gene disruption at an efficiency >90% in this filamentous fungus, promises to be applicable to other eukaryotic organisms that have a low frequency of homologous recombination.
Collapse
Affiliation(s)
- Hildur V Colot
- *Department of Genetics, Dartmouth Medical School, HB7400, Hanover, NH 03755
| | - Gyungsoon Park
- Department of Plant Pathology, University of California, Riverside, CA 92521; and
| | - Gloria E Turner
- Department of Chemistry and Biochemistry, 405 Hilgard Avenue, University of California, Los Angeles, CA 90095
| | - Carol Ringelberg
- *Department of Genetics, Dartmouth Medical School, HB7400, Hanover, NH 03755
| | - Christopher M Crew
- Department of Plant Pathology, University of California, Riverside, CA 92521; and
| | - Liubov Litvinkova
- Department of Plant Pathology, University of California, Riverside, CA 92521; and
| | - Richard L Weiss
- Department of Chemistry and Biochemistry, 405 Hilgard Avenue, University of California, Los Angeles, CA 90095
| | | | - Jay C Dunlap
- *Department of Genetics, Dartmouth Medical School, HB7400, Hanover, NH 03755;
| |
Collapse
|
11
|
Rauscher R, Würleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttilä M, Mach RL. Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. EUKARYOTIC CELL 2006; 5:447-56. [PMID: 16524900 PMCID: PMC1398055 DOI: 10.1128/ec.5.3.447-456.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two major xylanases (XYN I and XYN II) of the filamentous fungus Hypocrea jecorina (Trichoderma reesei) are simultaneously expressed during growth on xylan but respond differently to low-molecular-weight inducers. In vivo footprinting analysis of the xylanase1 (xyn1) promoter revealed three different nucleotide sequences (5'-GGCTAAATGCGACATCTTAGCC-3' [an inverted repeat of GGCTAA spaced by 10 bp], 5'-CCAAT-3', and 5'-GGGGTCTAGACCCC-3' [equivalent to a double Cre1 site]) used to bind proteins. Binding to the Cre1 site is only observed under repressed conditions, whereas binding to the two other motifs is constitutive. Applying heterologously expressed components of the H. jecorina cellulase regulators Ace1 and Ace2 and the xylanase regulator Xyr1 suggests that Ace1 and Xyr1 but not Ace2 contact both GGCTAA motifs. H. jecorina transformants containing mutated versions of the xyn1 promoter, leading to elimination of protein binding to the left or the right GGCTAA box revealed either strongly reduced or completely eliminated induction of transcription. Elimination of Cre1 binding to its target released the basal transcriptional level from glucose repression but did not influence the inducibility of xyn1 expression. Mutation of the CCAAT box prevents binding of the Hap2/3/5 complex in vitro and is partially compensating for the loss of transcription caused by the mutation of the right GGCTAA box. Finally, evidence for a competition of Ace1 and Xyr1 for the right GGCTAA box is given. These data prompted us to hypothesize that xyn1 regulation is based on the interplay of Cre1 and Ace1 as a general and specific repressor with Xyr1 as transactivator.
Collapse
Affiliation(s)
- Roman Rauscher
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria, VTT Biotechnology, FIN-02044 VTT, Espoo, Finland
| | - Elisabeth Würleitner
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria, VTT Biotechnology, FIN-02044 VTT, Espoo, Finland
| | - Christian Wacenovsky
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria, VTT Biotechnology, FIN-02044 VTT, Espoo, Finland
| | - Nina Aro
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria, VTT Biotechnology, FIN-02044 VTT, Espoo, Finland
| | - Astrid R. Stricker
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria, VTT Biotechnology, FIN-02044 VTT, Espoo, Finland
| | - Susanne Zeilinger
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria, VTT Biotechnology, FIN-02044 VTT, Espoo, Finland
| | - Christian P. Kubicek
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria, VTT Biotechnology, FIN-02044 VTT, Espoo, Finland
| | - Merja Penttilä
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria, VTT Biotechnology, FIN-02044 VTT, Espoo, Finland
| | - Robert L. Mach
- Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria, VTT Biotechnology, FIN-02044 VTT, Espoo, Finland
- Corresponding author. Mailing address: Gene Technology, Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Wien, Getreidemarkt 9/166/5/2, A-1060 Wien, Austria. Phone: 43 1 58801 17251. Fax: 43 1 581 62 66. E-mail:
| |
Collapse
|
12
|
Liu TD, Marzluf GA. Characterization of pco-1, a newly identified gene which regulates purine catabolism in Neurospora. Curr Genet 2004; 46:213-27. [PMID: 15378267 DOI: 10.1007/s00294-004-0530-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 08/24/2004] [Accepted: 08/30/2004] [Indexed: 11/30/2022]
Abstract
A new gene of Neurospora crassa, designated pco-1, was characterized and shown to regulate the expression of several genes which encode enzymes required for the catabolism of purines. Unlike the wild type, a pco-1 mutant created by repeat-induced point mutation cannot utilize purines as a nitrogen source. The PCO1 protein contains a Zn(II)2Cys6 binuclear cluster motif near its N-terminus, followed by a putative coiled-coil motif. A chemical crosslinking experiment demonstrated that PCO1 forms homodimers. PCO1 binds to CGG-N6-CCG elements located in the upstream promoter region of four genes encoding purine catabolic enzymes. Northern blot analysis demonstrated that a functional PCO1 protein is required for induction of xdh, which encodes xanthine dehydrogenase. Moreover, PCO1 was required for induction of three different purine catabolic enzymes. Two glutamine-rich domains occur in the C-terminal region of PCO1 and at least one of the glutamine-rich regions is required for PCO1 function, suggesting that they might play a role in transcriptional activation. The PCO1 protein does not interact with the global-acting NIT2 protein or the negative-acting NMR protein that functions in nitrogen catabolite repression. Induction of the xdh gene and synthesis of xanthine dehydrogenase is completely dependent upon PCO1, but does not require the global-acting NIT2 protein, suggesting that it is controlled by a novel regulatory mechanism.
Collapse
Affiliation(s)
- T D Liu
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
13
|
Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 2004; 68:1-108. [PMID: 15007097 PMCID: PMC362109 DOI: 10.1128/mmbr.68.1.1-108.2004] [Citation(s) in RCA: 434] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.
Collapse
Affiliation(s)
- Katherine A Borkovich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA. Katherine/
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Todd RB, Andrianopoulos A, Davis MA, Hynes MJ. FacB, the Aspergillus nidulans activator of acetate utilization genes, binds dissimilar DNA sequences. EMBO J 1998; 17:2042-54. [PMID: 9524126 PMCID: PMC1170549 DOI: 10.1093/emboj/17.7.2042] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The facB gene is required for acetate induction of acetamidase (amdS) and the acetate utilization enzymes acetyl-CoA synthase (facA), isocitrate lyase (acuD) and malate synthase (acuE) in Aspergillus nidulans. The facB gene encodes a transcriptional activator with a GAL4-type Zn(II)2Cys6 zinc binuclear cluster DNA-binding domain which is shown to be required for DNA binding. In vitro DNA-binding sites for FacB in the 5' regions of the amdS, facA, acuD and acuE genes have been identified. Mutations in amdS FacB DNA-binding sites affected expression of an amdS-lacZ reporter in vivo and altered the affinity of in vitro DNA binding. This study shows that the FacB Zn(II)2Cys6 cluster binds to dissimilar sites which show similarity in form but not sequence with DNA-binding sites of other Zn(II)2Cys6 proteins. Sequences with homology to FacB sites are found in the 5' regions of genes regulated by the closely related yeast Zn(II)2Cys6 protein CAT8.
Collapse
Affiliation(s)
- R B Todd
- Department of Genetics, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
15
|
Schjerling P, Holmberg S. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Res 1996; 24:4599-607. [PMID: 8967907 PMCID: PMC146297 DOI: 10.1093/nar/24.23.4599] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The C6 zinc cluster family of fungal regulatory proteins shares as DNA-binding motif the C6 zinc cluster, also known as the Zn(II)2Cys6 binuclear cluster. This family includes transcriptional activators like Gal4p, Leu3p, Hap1p, Put3p and Cha4p from Saccharomyces cerevisiae, qutA and amdR from Aspergillus, nit4 from Neurospora and Ntf1 from Schizosaccharomyces pombe. Seventy-nine proteins were retrieved from databases by homology to the C6 zinc cluster. All were fungal and 56 were found in the entire genome sequence of S.cerevisiae. Sequence analysis suggests that 60 of the 79 proteins possess one or more coiled-coil dimerization regions succeeding the C6 zinc cluster. Previous comparisons of Gal4p and seven other C6 zinc cluster proteins identified an additional region with weak homology. This region, designated the middle homology region (MHR), was shown to be present in 50 of the 79 proteins. Although reported mutation and deletion analyses suggest a role of MHR in regulation of protein activity, no function has yet been assigned specifically to this region. We find that the family of MHR sequences is confined to C6 zinc cluster proteins and hypothesize that one MHR function is to assist the C6 zinc cluster in DNA target discrimination.
Collapse
Affiliation(s)
- P Schjerling
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Denmark
| | | |
Collapse
|
16
|
Lesage P, Yang X, Carlson M. Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol Cell Biol 1996; 16:1921-8. [PMID: 8628258 PMCID: PMC231179 DOI: 10.1128/mcb.16.5.1921] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The SNF1 protein kinase has been widely conserved in plants and mammals. In Saccharomyces cerevisiae, SNF1 is essential for expression of glucose-repressed genes in response to glucose deprivation. Previous studies supported a role for SNF1 in relieving transcriptional repression. Here, we report evidence that SNF1 modulates function of a transcriptional activator, SIP4, which was identified in a two-hybrid screen for interaction with SNF1. The N terminus of the predicted 96-kDa SIP4 protein is homologous to the DNA-binding domain of the GAL4 family of transcriptional activators, with a C6 zinc cluster adjacent to a coiled-coil motif The C terminus contains a leucine zipper motif and an acidic region. When bound to DNA, a LexA-SIP4 fusion activates transcription of a reporter gene. Transcriptional activation by SIP4 is regulated by glucose and depends on the SNF1 protein kinase. Moreover, SIP4 is differentially phosphorylated in response to glucose availability, and phosphorylation requires SNF1. These findings suggest that the SNF1 kinase interacts with a transcriptional activator to modulate its activity and provide the first direct evidence for a role of SNF1 in activating transcription in response to glucose limitation.
Collapse
Affiliation(s)
- P Lesage
- Department of Genetics and Development, Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
17
|
Punt PJ, Strauss J, Smit R, Kinghorn JR, van den Hondel CA, Scazzocchio C. The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA binding sites which act bidirectionally. Mol Cell Biol 1995; 15:5688-99. [PMID: 7565720 PMCID: PMC230819 DOI: 10.1128/mcb.15.10.5688] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The niaD and niiA genes of Aspergillus nidulans, which code, respectively, for nitrate and nitrite reductases, are divergently transcribed, and their ATGs are separated by 1,200 bp. The genes are under the control of the positively acting NirA transcription factor, which mediates nitrate induction. The DNA binding domain of NirA was expressed as a fusion protein with the glutathione S-transferase of Schistosoma japonicum. Gel shift and footprint experiments have shown that in the intergenic region there are four binding sites for the NirA transcription factor. These sites can be represented by the nonpalindromic consensus 5'CTCCGHGG3'. Making use of a bidirectional expression vector, we have analyzed the role of each of the sites in niaD and niiA expression. The sites were numbered from the niiA side. It appeared that site 1 is necessary for the inducibility of niiA only, while sites 2, 3, and to a lesser extent 4 (which is nearer to and strongly affects niaD) act bidirectionally. The results also suggest that of the 10 binding sites for the AreA protein, which mediates nitrogen metabolite repression, those which are centrally located are physiologically important. The insertion of an unrelated upstream activating sequence into the intergenic region strongly affected the expression of both genes, irrespective of the orientation in which the element was inserted.
Collapse
Affiliation(s)
- P J Punt
- Department of Molecular Genetics and Gene Technology, TNO Nutrition and Food Research Institute, Rijswijk, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Baum JA. TnpI recombinase: identification of sites within Tn5401 required for TnpI binding and site-specific recombination. J Bacteriol 1995; 177:4036-42. [PMID: 7608077 PMCID: PMC177134 DOI: 10.1128/jb.177.14.4036-4042.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Bacillus thuringiensis class II transposon Tn5401 encodes a recombinase protein, TnpI, that mediates the resolution of cointegrate molecules generated as intermediates during Tn5401 transposition by the TnpA transposase. This recombination event requires a specific target site, or internal resolution site, at which TnpI binds and catalyzes the exchange of DNA strands. Gel mobility shift assays and DNase I footprinting analyses were used to localize the TnpI binding region to the sequence extending from nucleotides 637 to 747 of Tn5401. Deletions within this region blocked TnpI-mediated recombination in vivo. The 12-bp sequence ATGTCC RCTAAY, present in four copies within the TnpI binding region, is proposed to be the recognition sequence for TnpI binding. TnpI also binds to a single copy of this sequence located within the 53-bp terminal inverted repeats of Tn5401. The unique juxtaposition of recombinase and transposase binding sites at the terminal inverted repeats of Tn5401 suggests that TnpI regulates the binding and/or catalytic activity of TnpA transposase.
Collapse
Affiliation(s)
- J A Baum
- Ecogen Inc., Langhorne, Pennsylvania 19047-3023, USA
| |
Collapse
|
19
|
Woloshuk CP, Foutz KR, Brewer JF, Bhatnagar D, Cleveland TE, Payne GA. Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 1994; 60:2408-14. [PMID: 8074521 PMCID: PMC201664 DOI: 10.1128/aem.60.7.2408-2414.1994] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aflatoxins belong to a family of decaketides that are produced as secondary metabolites by Aspergillus flavus and A. parasiticus. The aflatoxin biosynthetic pathway involves several enzymatic steps that appear to be regulated by the afl2 gene in A. flavus and the apa2 gene in A. parasiticus. Several lines of evidence indicate that these two genes are homologous. The DNA sequences of the two genes are highly similar, they both are involved in the regulation of aflatoxin biosynthesis, and apa2 can complement the afl2 mutation in A. flavus. Because of these similarities, we propose that these two genes are homologs, and because of the ability of these genes to regulate aflatoxin biosynthesis, we suggest that they be designated aflR. We report here the further characterization of aflR from A. flavus and show that aflR codes for a 2,078-bp transcript with an open reading frame of 1,311 nucleotides that codes for 437 amino acids and a putative protein of 46,679 daltons. Analysis of the predicted amino acid sequence indicated that the polypeptide contains a zinc cluster motif between amino acid positions 29 and 56. This region contains the consensus sequence Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-Cys-Xaa2-Cys-Xaa6+ ++-Cys. This motif has been found in several fungal transcriptional regulatory proteins. DNA hybridization of the aflR gene with genomic digests of seven polyketide-producing fungi revealed similar sequences in three other species related to A. flavus: A. parasiticus, A. oryzae, and A. sojae. Finally, we present evidence for an antisense transcript (aflRas) derived from the opposite strand of aflR, suggesting that the aflR locus involves some form of antisense regulation.
Collapse
Affiliation(s)
- C P Woloshuk
- Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | |
Collapse
|
20
|
Dhawale SS, Lane AC. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res 1993; 21:5537-46. [PMID: 8284197 PMCID: PMC310513 DOI: 10.1093/nar/21.24.5537] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- S S Dhawale
- Indiana University, Purdue University at Fort Wayne 46805
| | | |
Collapse
|
21
|
Zhang L, Bermingham-McDonogh O, Turcotte B, Guarente L. Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1. Proc Natl Acad Sci U S A 1993; 90:2851-5. [PMID: 8464899 PMCID: PMC46194 DOI: 10.1073/pnas.90.7.2851] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The yeast transcriptional activator HAP1 contains a DNA-binding domain homologous to the zinc finger of GAL4 and an adjacent regulatory domain that blocks DNA binding in the absence of the inducer heme. We show that short HAP1 fragments containing the zinc finger are unable to bind to DNA but can be rescued by antibody to the HAP1 zinc finger. These fragments are missing a coiled-coil sequence similar to that within the dimerization domain of GAL4 and dimerization domains of myosin heavy chain. We surmise that the antibody promotes DNA binding by bringing together two monomers. Interestingly, the antibody will also promote DNA binding of a larger HAP1 fragment containing the DNA-binding and the heme-regulatory domains. This suggests that the regulatory domain acts by preventing dimerization of HAP1 in the absence of heme. Consistent with this view is an in vivo assay that also reveals that heme promotes HAP1 dimerization in yeast cells.
Collapse
Affiliation(s)
- L Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
22
|
Identification of the promoter region involved in the autoregulation of the transcriptional activator ALCR in Aspergillus nidulans. Mol Cell Biol 1992. [PMID: 1569930 DOI: 10.1128/mcb.12.5.1932] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ALCR protein is the transcriptional activator of the ethanol utilization pathway in the filamentous fungus Aspergillus nidulans. This activator belongs to a family of fungal proteins having a conserved DNA-binding domain containing six cysteines (C6 class) with some striking features. At variance with other motifs of this class, the binding domain of ALCR is strongly asymmetrical in relation to the central cysteines and moreover was predicted to adopt a helix-turn-helix structure. This domain of ALCR was synthesized in Escherichia coli and purified as a glutathione-S-transferase fusion protein. Our results show that the transcriptional activator ALCR is a DNA-binding protein. The DNA-binding motif contains zinc that is necessary for the specific DNA binding. The ALCR peptide binds upstream of the coding region of alcR to two specific targets with different affinities that are characterized by a conserved 5-nucleotide core, 5'-CCGCA-3' (or its reverse). One site, the lower-affinity binding site, is a direct repeat, and the other, the higher-affinity binding site, is a palindromic sequence with dyad symmetry. Therefore, the ALCR binding protein is able to recognize one DNA sequence in two different configurations. An alcR mutant obtained by deletion of the two specific targets in the cis-acting region of the alcR gene is unable to grow on ethanol and does not express any alcohol dehydrogenase activity. These results demonstrate that the binding sites are in vivo functional targets (UASalc) for the ALCR protein in A. nidulans. They corroborate prior evidence that alcR is autoregulated.
Collapse
|
23
|
Kulmburg P, Sequeval D, Lenouvel F, Mathieu M, Felenbok B. Identification of the promoter region involved in the autoregulation of the transcriptional activator ALCR in Aspergillus nidulans. Mol Cell Biol 1992; 12:1932-9. [PMID: 1569930 PMCID: PMC364357 DOI: 10.1128/mcb.12.5.1932-1939.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ALCR protein is the transcriptional activator of the ethanol utilization pathway in the filamentous fungus Aspergillus nidulans. This activator belongs to a family of fungal proteins having a conserved DNA-binding domain containing six cysteines (C6 class) with some striking features. At variance with other motifs of this class, the binding domain of ALCR is strongly asymmetrical in relation to the central cysteines and moreover was predicted to adopt a helix-turn-helix structure. This domain of ALCR was synthesized in Escherichia coli and purified as a glutathione-S-transferase fusion protein. Our results show that the transcriptional activator ALCR is a DNA-binding protein. The DNA-binding motif contains zinc that is necessary for the specific DNA binding. The ALCR peptide binds upstream of the coding region of alcR to two specific targets with different affinities that are characterized by a conserved 5-nucleotide core, 5'-CCGCA-3' (or its reverse). One site, the lower-affinity binding site, is a direct repeat, and the other, the higher-affinity binding site, is a palindromic sequence with dyad symmetry. Therefore, the ALCR binding protein is able to recognize one DNA sequence in two different configurations. An alcR mutant obtained by deletion of the two specific targets in the cis-acting region of the alcR gene is unable to grow on ethanol and does not express any alcohol dehydrogenase activity. These results demonstrate that the binding sites are in vivo functional targets (UASalc) for the ALCR protein in A. nidulans. They corroborate prior evidence that alcR is autoregulated.
Collapse
Affiliation(s)
- P Kulmburg
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
24
|
Molecular characterization of the lam locus and sequences involved in regulation by the AmdR protein of Aspergillus nidulans. Mol Cell Biol 1992. [PMID: 1729609 DOI: 10.1128/mcb.12.1.337] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lam locus of Aspergillus nidulans consists of two divergently transcribed genes, lamA and lamB, involved in the utilization of lactams such as 2-pyrrolidinone. Both genes are under the control of the positive regulatory gene amdR and are subject to carbon and nitrogen metabolite repression. The lamB gene and the region between the two genes have been sequenced, and the start points of transcription have been determined. Within the lam locus are two sequences with homology to elements, required for AmdR regulation, found in the 5' regions of the coregulated genes amdS and gatA. In vitro and in vivo assays were used to investigate the lam and gatA regulatory elements. One of the three gatA elements and one of the two lam elements were shown to bind AmdR protein in vivo and activate transcription. With a gel shift mobility assay, in vitro binding of AmdR protein to the functional gatA element was detected. Both the functional gatA and lam boxes contain within them a CAAT sequence. In vitro binding analysis indicates that a CCAAT-specific factor(s) binds at these sequences, adjacent to or overlapping the AmdR protein-binding site.
Collapse
|
25
|
Richardson IB, Katz ME, Hynes MJ. Molecular characterization of the lam locus and sequences involved in regulation by the AmdR protein of Aspergillus nidulans. Mol Cell Biol 1992; 12:337-46. [PMID: 1729609 PMCID: PMC364115 DOI: 10.1128/mcb.12.1.337-346.1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The lam locus of Aspergillus nidulans consists of two divergently transcribed genes, lamA and lamB, involved in the utilization of lactams such as 2-pyrrolidinone. Both genes are under the control of the positive regulatory gene amdR and are subject to carbon and nitrogen metabolite repression. The lamB gene and the region between the two genes have been sequenced, and the start points of transcription have been determined. Within the lam locus are two sequences with homology to elements, required for AmdR regulation, found in the 5' regions of the coregulated genes amdS and gatA. In vitro and in vivo assays were used to investigate the lam and gatA regulatory elements. One of the three gatA elements and one of the two lam elements were shown to bind AmdR protein in vivo and activate transcription. With a gel shift mobility assay, in vitro binding of AmdR protein to the functional gatA element was detected. Both the functional gatA and lam boxes contain within them a CAAT sequence. In vitro binding analysis indicates that a CCAAT-specific factor(s) binds at these sequences, adjacent to or overlapping the AmdR protein-binding site.
Collapse
Affiliation(s)
- I B Richardson
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
26
|
Kelly R, Kwon-Chung KJ. A zinc finger protein from Candida albicans is involved in sucrose utilization. J Bacteriol 1992; 174:222-32. [PMID: 1729210 PMCID: PMC205699 DOI: 10.1128/jb.174.1.222-232.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A sucrose-inducible alpha-glucosidase activity that hydrolyzes sucrose in Candida albicans has been demonstrated previously. The enzyme is assayable in whole cells and was inhibited by both sucrose and maltose. A C. albicans gene (CASUC1) that affects sucrose utilization and alpha-glucosidase activity was cloned by expression in a Saccharomyces cerevisiae suc2 mutant (2102) devoid of invertase genes. CASUC1 enabled the S. cerevisiae mutant to utilize both sucrose and maltose. DNA sequence analysis revealed that CASUC1 encodes a putative zinc finger-containing protein with 28% identity to a maltose-regulatory gene (MAL63) of S. cerevisiae. The gene products of CASUC1 and MAL63 are approximately the same size (501 and 470 amino acids, respectively), and each contains a single zinc finger located at the N terminus. The zinc fingers of CASUC1 and MAL63 comprise six conserved cysteines (C6 zinc finger) and are of the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaavariable-Cys-Xaa2-Cys-+ ++Xaa6-Cys (where Xaan indicates a stretch of the indicated number of any amino acids). Both contain five amino acids in the variable region. CASUC1 also complemented the maltose utilization defect of an S. cerevisiae mutant (TCY-137) containing a defined mutation in a maltose-regulatory gene. The sucrose utilization defect of type II Candida stellatoidea, a sucrase-negative mutant of C. albicans, was corrected by CASUC1. Determinations of alpha-glucosidase activity in whole cells revealed that activity was restored in transformants cultivated on either sucrose or maltose. To our knowledge, this is the first zinc finger-encoding gene, as well as the first putative regulatory gene, to be identified in C. albicans.
Collapse
Affiliation(s)
- R Kelly
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
27
|
Asch DK, Orejas M, Geever RF, Case ME. Comparative studies of the quinic acid (qa) cluster in several Neurospora species with special emphasis on the qa-x-qa-2 intergenic region. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:337-44. [PMID: 1685010 DOI: 10.1007/bf00280289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The organization of the quinic acid (qa) genes in Neurospora crassa has been compared to that in several other Neurospora species. This gene cluster was found to be highly conserved in all species examined. However, there are numberous restriction fragment length polymorphisms that distinguish the heterothallic and homothallic species. Catabolic dehydroquinase assays indicated that qa-2 gene expression in the homothallic species is subject to induction by quinic acid, as is the case in N. crassa. The qa-x-qa-2 intergenic region of the homothallic species N. africana was cloned and sequenced. Conserved qa activator (qa-1F) binding sites have been identified in this region. When the qa-x-qa-2 intergenic region of N. crassa was replaced with its N. africana counterpart, qa-2 gene expression was reduced; however repression by glucose appeared normal. Furthermore, the N. africana start site for qa-2 transcription (which differs from the N. crassa start site) was utilized in the transformant. The overall evidence suggests that a weakening of the -120 activator binding site in the qa-x-qa-2 intergenic region may be responsible for these differences.
Collapse
Affiliation(s)
- D K Asch
- Department of Genetics, University of Georgia, Athens 30602
| | | | | | | |
Collapse
|
28
|
nit-4, a pathway-specific regulatory gene of Neurospora crassa, encodes a protein with a putative binuclear zinc DNA-binding domain. Mol Cell Biol 1991. [PMID: 1840634 DOI: 10.1128/mcb.11.11.5735] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
nit-4, a pathway-specific regulatory gene in the nitrogen circuit of Neurospora crassa, is required for the expression of nit-3 and nit-6, the structural genes which encode nitrate and nitrite reductase, respectively. The complete nucleotide sequence of the nit-4 gene has been determined. The predicted NIT4 protein contains 1,090 amino acids and appears to possess a single Zn(II)2Cys6 binuclear-type zinc finger, which may mediate DNA binding. Site-directed mutagenesis studies demonstrated that cysteine and other conserved amino acid residues in this possible DNA-binding domain are necessary for nit-4 function. A stretch of 27 glutamines, encoded by a CAGCAA repeating sequence, occurs in the C terminus of the NIT4 protein, and a second glutamine-rich domain occurs further upstream. A NIT4 protein deleted for the polyglutamine region was still functional in vivo. However, nit-4 function was abolished when both the polyglutamine region and the glutamine-rich domain were deleted, suggesting that the glutamine-rich domain might function in transcriptional activation. The homologous regulatory gene from Aspergillus nidulans, nirA, encodes a protein whose amino-terminal half has approximately 60% amino acid identity with NIT4 but whose carboxy terminus is completely different. A hybrid nit-4-nirA gene was constructed and found to function in N. crassa.
Collapse
|
29
|
Yuan GF, Fu YH, Marzluf GA. nit-4, a pathway-specific regulatory gene of Neurospora crassa, encodes a protein with a putative binuclear zinc DNA-binding domain. Mol Cell Biol 1991; 11:5735-45. [PMID: 1840634 PMCID: PMC361945 DOI: 10.1128/mcb.11.11.5735-5745.1991] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
nit-4, a pathway-specific regulatory gene in the nitrogen circuit of Neurospora crassa, is required for the expression of nit-3 and nit-6, the structural genes which encode nitrate and nitrite reductase, respectively. The complete nucleotide sequence of the nit-4 gene has been determined. The predicted NIT4 protein contains 1,090 amino acids and appears to possess a single Zn(II)2Cys6 binuclear-type zinc finger, which may mediate DNA binding. Site-directed mutagenesis studies demonstrated that cysteine and other conserved amino acid residues in this possible DNA-binding domain are necessary for nit-4 function. A stretch of 27 glutamines, encoded by a CAGCAA repeating sequence, occurs in the C terminus of the NIT4 protein, and a second glutamine-rich domain occurs further upstream. A NIT4 protein deleted for the polyglutamine region was still functional in vivo. However, nit-4 function was abolished when both the polyglutamine region and the glutamine-rich domain were deleted, suggesting that the glutamine-rich domain might function in transcriptional activation. The homologous regulatory gene from Aspergillus nidulans, nirA, encodes a protein whose amino-terminal half has approximately 60% amino acid identity with NIT4 but whose carboxy terminus is completely different. A hybrid nit-4-nirA gene was constructed and found to function in N. crassa.
Collapse
Affiliation(s)
- G F Yuan
- Department of Biochemistry and Molecular Genetics, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
30
|
Bysani N, Daugherty JR, Cooper TG. Saturation mutagenesis of the UASNTR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J Bacteriol 1991; 173:4977-82. [PMID: 1860815 PMCID: PMC208186 DOI: 10.1128/jb.173.16.4977-4982.1991] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Saturation mutagenesis of the UASNTR element responsible for GLN3-dependent, nitrogen catabolite repression-sensitive transcriptional activation of allantoin pathway genes in yeast cells identified the dodecanucleotide sequence 5'-TTNCTGATAAGG-3' as the minimum required for UAS activity. There was significant flexibility in mutant sequences capable of supporting UAS activity, which correlates well with the high variation in UASNTR homologous sequences reported to be upstream of the DAL and DUR genes. Three of nine UASNTR-like sequences 5' of the DAL5 gene supported high-level transcriptional activation. The others, which contained nonpermissive substitutions, were not active.
Collapse
Affiliation(s)
- N Bysani
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
31
|
Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol Cell Biol 1991. [PMID: 2017167 DOI: 10.1128/mcb.11.5.2609] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae PUT3 gene encodes a transcriptional activator that binds to DNA sequences in the promoters of the proline utilization genes and is required for the basal and induced expression of the enzymes of this pathway. The sequence of the wild-type PUT3 gene revealed the presence of one large open reading frame capable of encoding a 979-amino-acid protein. The protein contains amino-terminal basic and cysteine-rich domains homologous to the DNA-binding motifs of other yeast transcriptional activators. Adjacent to these domains is an acidic domain with a net charge of -17. A second acidic domain with a net charge of -29 is located at the carboxy terminus. The midsection of the PUT3 protein has homology to other activators including GAL4, LAC9, PPR1, and PDR1. Mutations in PUT3 causing aberrant (either constitutive or noninducible) expression of target genes in this system have been analyzed. One activator-defective and seven activator-constitutive PUT3 alleles have been retrieved from the genome and sequenced to determine the nucleotide changes responsible for the altered function of the protein. The activator-defective mutation is a single nucleotide change within codon 409, replacing glycine with aspartic acid. One activator-constitutive mutation is a nucleotide change at codon 683, substituting phenylalanine for serine. The remaining constitutive mutations resulted in amino acid substitutions or truncations of the protein within the carboxy-terminal 76 codons. Mechanisms for regulating the activation function of the PUT3 protein are discussed.
Collapse
|
32
|
Marczak JE, Brandriss MC. Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol Cell Biol 1991; 11:2609-19. [PMID: 2017167 PMCID: PMC360030 DOI: 10.1128/mcb.11.5.2609-2619.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Saccharomyces cerevisiae PUT3 gene encodes a transcriptional activator that binds to DNA sequences in the promoters of the proline utilization genes and is required for the basal and induced expression of the enzymes of this pathway. The sequence of the wild-type PUT3 gene revealed the presence of one large open reading frame capable of encoding a 979-amino-acid protein. The protein contains amino-terminal basic and cysteine-rich domains homologous to the DNA-binding motifs of other yeast transcriptional activators. Adjacent to these domains is an acidic domain with a net charge of -17. A second acidic domain with a net charge of -29 is located at the carboxy terminus. The midsection of the PUT3 protein has homology to other activators including GAL4, LAC9, PPR1, and PDR1. Mutations in PUT3 causing aberrant (either constitutive or noninducible) expression of target genes in this system have been analyzed. One activator-defective and seven activator-constitutive PUT3 alleles have been retrieved from the genome and sequenced to determine the nucleotide changes responsible for the altered function of the protein. The activator-defective mutation is a single nucleotide change within codon 409, replacing glycine with aspartic acid. One activator-constitutive mutation is a nucleotide change at codon 683, substituting phenylalanine for serine. The remaining constitutive mutations resulted in amino acid substitutions or truncations of the protein within the carboxy-terminal 76 codons. Mechanisms for regulating the activation function of the PUT3 protein are discussed.
Collapse
Affiliation(s)
- J E Marczak
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-Graduate School of Biomedical Sciences, Newark 07103
| | | |
Collapse
|
33
|
Olive MG, Daugherty JR, Cooper TG. DAL82, a second gene required for induction of allantoin system gene transcription in Saccharomyces cerevisiae. J Bacteriol 1991; 173:255-61. [PMID: 1898922 PMCID: PMC207182 DOI: 10.1128/jb.173.1.255-261.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Several highly inducible enzyme activities are required for the degradation of allantoin in Saccharomyces cerevisiae. Induction of these pathway enzymes has been shown to be regulated at transcription, and response to inducer is lost in dal81 and dal82/durM mutants. The similar phenotypes generated by dal81 and dal82 mutations prompted the question of whether they were allelic. We demonstrated that the DAL81 and DAL82 loci are distinct, unlinked genes situated on chromosomes IX and XIV. DAL82 gene expression did not respond to induction by the allantoin pathway inducer or to nitrogen catabolite repression. Expression was also not significantly affected by mutation of the dal80 locus. From the nucleotide sequence of the DAL82 gene, we deduced that it encodes a protein with a mass of 29,079 Da that may possess the structural motifs expected of a regulatory protein. This protein was shown to be required for the function mediated by the cis-acting upstream induction sequence situated in the 5'-flanking regions of the inducible allantoin pathway genes.
Collapse
Affiliation(s)
- M G Olive
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
34
|
The C6 zinc finger and adjacent amino acids determine DNA-binding specificity and affinity in the yeast activator proteins LAC9 and PPR1. Mol Cell Biol 1990. [PMID: 2118990 DOI: 10.1128/mcb.10.10.5128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.
Collapse
|
35
|
Witte MM, Dickson RC. The C6 zinc finger and adjacent amino acids determine DNA-binding specificity and affinity in the yeast activator proteins LAC9 and PPR1. Mol Cell Biol 1990; 10:5128-37. [PMID: 2118990 PMCID: PMC361184 DOI: 10.1128/mcb.10.10.5128-5137.1990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.
Collapse
Affiliation(s)
- M M Witte
- Department of Biochemistry, University of Kentucky, Lexington 40536-0084
| | | |
Collapse
|
36
|
Frederick GD, Kinsey JA. Distant upstream regulatory sequences control the level of expression of the am (GDH) locus of Neurospora crassa. Curr Genet 1990; 18:53-8. [PMID: 2147126 DOI: 10.1007/bf00321115] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have constructed deletions in the 5' noncoding sequences of the cloned Neurospora crassa am gene. Vectors with a truncated fragment of the am gene were used in transformation experiments to introduce the deletions into the chromosome by homologous recombination. Analysis of glutamate dehydrogenase (GDH) expression by enzyme assay and immunoblots, as well as Northern and dot blots of poly (A)+ RNA, in the deletion strains indicates that there are two upstream regulatory sequences that control the level of gene expression. The closer of these two elements (URSam alpha) is at approximately 1.4 kb upstream of the transcriptional start site. The second elements (URSam beta) is located between 2.1 and 3.2 kb upstream of the transcription start site. Deletion of either of these two elements reduces am expression to about 50% of the wild-type level. Deletion of both elements reduce am expression to from 5-16% of the wild-type level. Deletion of 1.1 kb of sequence just downstream of URSam alpha, which brings this element to within 300 bp of the transcription start site, had no effect on am expression. Likewise, deletion of 3.5 kb of sequence upstream of URSam beta had no effect on expression. None of these deletions had any effect on the expression of usg-1, a gene of unknown function that is transcribed in the same direction as the am gene, and which terminates about 3.5 kb upstream of the URSam beta element.
Collapse
Affiliation(s)
- G D Frederick
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical School, Kansas City 66103
| | | |
Collapse
|
37
|
Sequence and functional analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol 1990. [PMID: 2188110 DOI: 10.1128/mcb.10.6.3194] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of five structural genes involved in the catabolism of certain amides (amdS), omega amino acids (gatA and gabA), and lactams (lamA and lamB) in the presence of omega amino acid inducers. Analysis of the amdR gene showed that it contains three small introns, heterogeneous 5' and 3' transcription sites, and multiple AUG codons prior to the major AUG initiator. The predicted amdR protein sequence has a cysteine-rich "zinc finger" DNA-binding motif at the amino-terminal end, four putative acidic transcription activation motifs in the carboxyl-terminal half, and two sequences homologous to the simian virus 40 large T antigen nuclear localization motif. These nuclear localization sequences overlap the cysteine-rich DNA-binding motif. A series of 5', 3', and internal deletions were examined in vivo for transcription activator function and showed that the amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator regions may function independently, but both are required for wild-type levels of transcription activation. A number of the amdR deletion products were found to compete with the wild-type amdR product in vivo. Development of a rapid method for the localization of amdR mutations is presented, and using this technique, we localized and sequenced the mutation in the semiconstitutive amdR6c allele. The amdR6c missense mutation occurs in the middle of the gene, and it is suggested that it results in an altered protein which activates gene expression efficiently in the absence of an inducer.
Collapse
|
38
|
Andrianopoulos A, Hynes MJ. Sequence and functional analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol 1990; 10:3194-203. [PMID: 2188110 PMCID: PMC360684 DOI: 10.1128/mcb.10.6.3194-3203.1990] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of five structural genes involved in the catabolism of certain amides (amdS), omega amino acids (gatA and gabA), and lactams (lamA and lamB) in the presence of omega amino acid inducers. Analysis of the amdR gene showed that it contains three small introns, heterogeneous 5' and 3' transcription sites, and multiple AUG codons prior to the major AUG initiator. The predicted amdR protein sequence has a cysteine-rich "zinc finger" DNA-binding motif at the amino-terminal end, four putative acidic transcription activation motifs in the carboxyl-terminal half, and two sequences homologous to the simian virus 40 large T antigen nuclear localization motif. These nuclear localization sequences overlap the cysteine-rich DNA-binding motif. A series of 5', 3', and internal deletions were examined in vivo for transcription activator function and showed that the amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator regions may function independently, but both are required for wild-type levels of transcription activation. A number of the amdR deletion products were found to compete with the wild-type amdR product in vivo. Development of a rapid method for the localization of amdR mutations is presented, and using this technique, we localized and sequenced the mutation in the semiconstitutive amdR6c allele. The amdR6c missense mutation occurs in the middle of the gene, and it is suggested that it results in an altered protein which activates gene expression efficiently in the absence of an inducer.
Collapse
Affiliation(s)
- A Andrianopoulos
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
39
|
Tunnacliffe A. DNase I-defined chromatin configuration of the human CD3 gene cluster. Nucleic Acids Res 1990; 18:459-64. [PMID: 2137910 PMCID: PMC333448 DOI: 10.1093/nar/18.3.459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The three CD3 genes on human chromosome 11q23 encode proteins (gamma, delta and epsilon) which form part of the antigen receptor on T lymphocytes. All three genes are clustered within 50 kb and are activated approximately contemporaneously during the early stages of T cell ontogeny. In order to pinpoint potential regulatory sequences important for locus activation and tissue-specific gene expression, the chromatin structure of almost 90 kb of this region has been probed in five cell lines using the endonuclease pancreatic DNase I. A set of DNase I hypersensitive (HS) sites has been defined in T cell chromatin, five of which were strong and not found in non-T cells, with the exception of the erythroleukaemia cell line K562, in which three sites were weakly expressed, correlating with a low level of delta mRNA. The subset of five HS sites map close to the CD3 genes and lie in regions which contain elements of defined function: the gamma promoter; the delta promoter and its 3' enhancer; and the epsilon promoter and its 3' enhancer. Since no further major T cell-restricted HS sites lie within the 90kb of the CD3 locus analysed, these five regions may contain all the sequences important for CD3 gene expression.
Collapse
|
40
|
André B. The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount. MOLECULAR & GENERAL GENETICS : MGG 1990; 220:269-76. [PMID: 2109179 DOI: 10.1007/bf00260493] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The UGA3 gene of Saccharomyces cerevisiae is required for 4-aminobutyric acid (GABA)-dependent induction of the UGA1, UGA2 and UGA4 genes which encode the two GABA catabolic enzymes and a GABA-specific permease, respectively. Measurements of UGA1-specific transcripts show that induction of UGA1 correlates with accumulation of its RNA and requires a functional UGA3 gene. A 2 kb DNA fragment complementing the uga3 mutation was isolated and shown to contain the UGA3 gene. The primary structure of the UGA3 encoded protein was deduced from the DNA sequence, and contains an N-terminal, cysteine-rich motif similar in sequence to regions found in other fungal regulatory proteins and which are supposed to form zinc finger structures involved in DNA binding. Mutations were identified in the UGA3 genes isolated from uninducible and constitutive uga3 alleles. One case of intragenic complementation between two uninducible uga3 mutants is reported, indicating a possible oligomeric structure for UGAe. The role of UGA3 is discussed in relation to its genetic properties and its predicted structure.
Collapse
Affiliation(s)
- B André
- Laboratoire de Microbiologie, Faculté des Sciences, Université Libre de Bruxelles, Belgium
| |
Collapse
|
41
|
Richardson IB, Hurley SK, Hynes MJ. Cloning and molecular characterisation of the amdR controlled gatA gene of Aspergillus nidulans. MOLECULAR & GENERAL GENETICS : MGG 1989; 217:118-25. [PMID: 2505051 DOI: 10.1007/bf00330950] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gamma-amino-n-butyrate transaminase gene (gatA) of Aspergillus nidulans is one of several genes under positive control by the regulatory gene amdR (also called intA). The gatA gene has been cloned from a cosmid library by complementation of a gatA mutation. The sequence of a 2.6 kb genomic fragment containing gatA has been determined. An open reading frame of 1497 bp within this sequence is interrupted by three putative introns and predicts a protein of 55 kDa. Northern analysis confirms control of gatA RNA levels by amdR and also indicates that gatA is not strongly regulated by areA-mediated nitrogen metabolite repression. A. nidulans transformants containing multiple copies of a plasmid carrying an 88 bp fragment from the 5' untranscribed region of gatA grew poorly on substrates whose utilisation is dependent on genes controlled by amdR. This indicated titration of limiting amounts of the amdR gene product by this 88 bp fragment. Comparison of this sequence with the 5' region of the coregulated gene, amdS, reveals probable sites of action for the amdR protein.
Collapse
MESH Headings
- 4-Aminobutyrate Transaminase/biosynthesis
- 4-Aminobutyrate Transaminase/genetics
- Amino Acid Sequence
- Aspergillus nidulans/genetics
- Base Composition
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Cosmids
- DNA, Fungal
- Escherichia coli/genetics
- Genes, Fungal
- Genes, Regulator
- Genetic Complementation Test
- Molecular Sequence Data
- Plasmids
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Regulatory Sequences, Nucleic Acid
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Transformation, Genetic
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- I B Richardson
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
42
|
Fraser MJ. Expression of eukaryotic genes in insect cultures. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:225-35. [PMID: 2647707 DOI: 10.1007/bf02628459] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M J Fraser
- Department of Biological Sciences, University of Notre Dame, Indiana 46615
| |
Collapse
|
43
|
Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol 1989. [PMID: 3062382 DOI: 10.1128/mcb.8.8.3532] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of four unlinked structural genes involved in acetamide (amdS), omega amino acid (gatA and gabA), and lactam (lamA) catabolism. By the use of DNA-mediated transformation of A. nidulans, the amdR regulatory gene was cloned from a genomic cosmid library. Southern blot analysis of DNA from various loss-of-function amdR mutants revealed the presence of four detectable DNA rearrangements, including a deletion, an insertion, and a translocation. No detectable DNA rearrangements were found in several constitutive amdRc mutants. Analysis of the fate of amdR-bearing plasmids in transformants showed that 10 to 20% of the transformation events were homologous integrations or gene conversions, and this phenomenon was exploited in developing a strategy by which amdRc and amdR- alleles can be readily cloned and analyzed. Examination of the transcription of amdR by Northern blot (RNA blot) analysis revealed the presence of two mRNAs (2.7 and 1.8 kilobases) which were constitutively synthesized at a very low level. In addition, amdR transcription did not appear to depend on the presence of a functional amdR product nor was it altered in amdRc mutants. The dosage effects of multiple copies of amdR in transformants were examined, and it was shown that such transformants exhibited stronger growth than did the wild type on acetamide and pyrrolidinone media, indicating increased expression of the amdS and lamA genes, respectively. These results were used to formulate a model for amdR-mediated regulation of gene expression in which the low constitutive level of amdR product sets the upper limits of basal and induced transcription of the structural genes. Multiple copies of 5' sequences from the amdS gene can result in reduced growth on substrates whose utilization is dependent on amdR-controlled genes. This has been attributed to titration of limiting amdR gene product. Strong support for this proposal was obtained by showing that multiple copies of the amdR gene can reverse this phenomenon (antititration).
Collapse
|
44
|
O'Hara PJ, Horowitz H, Eichinger G, Young ET. The yeast ADR6 gene encodes homopolymeric amino acid sequences and a potential metal-binding domain. Nucleic Acids Res 1988; 16:10153-69. [PMID: 3143101 PMCID: PMC338843 DOI: 10.1093/nar/16.21.10153] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ADR6 gene of Saccharomyces cerevisiae has an open reading frame which could encode a polypeptide of 1314 amino acids. The predicted mRNA encodes a protein with homopolymeric stretches of asparagine and threonine, particularly near its amino terminus and contains additional sequences consisting of polyglutamine repeats. The predicted protein also contains a potential metal binding (Cys)4-type finger near its carboxy-terminus. An ADR6/beta-galactosidase fusion protein was predominantly nuclear in location, consistent with its role as an activator of ADH2 transcription.
Collapse
|
45
|
Identification of the sites of action for regulatory genes controlling the amdS gene of Aspergillus nidulans. Mol Cell Biol 1988. [PMID: 3043184 DOI: 10.1128/mcb.8.6.2589] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amdS gene of Aspergillus nidulans, which encodes an acetamidase enzyme, is positively regulated by the trans-acting genes amdR, facB, amdA, and areA. Sequence changes in several cis-acting mutations in the 5' region of the gene which specifically affect amdS regulation were determined. The amdI9 mutation, which results in increased facB-dependent acetate induction, is due to a single-base change at base pair -210 relative to the start point of translation. The amdI93 mutation, which abolishes amdR-dependent omega-amino acid induction, is a deletion of base pairs -181 to -151. The amdI66 mutation, which causes increased gene activation in strains carrying amdA regulatory gene mutations, is a duplication of base pairs -107 to -90. Transformation of A. nidulans can generate transformants containing multiple integrated copies of plasmid sequences. When these plasmids carry a potential binding site for a regulatory gene product, growth on substrates whose catabolism requires genes activated by that regulatory gene can be reduced, apparently because of titration of the regulatory gene product. Introduction of 5' amdS sequences via cotransformation into strains of various genotypes was used to localize sequences apparently involved in binding of the products of the amdR, amdA, and facB genes. The position of these sequences is in agreement with the positions of the specific cis-acting mutations. Consistent with these results, a transformant of A. nidulans derived from a plasmid deleted for sequences upstream from -111 was found to have lost amdR- and facB-mediated control but was still regulated by the amdA gene. In addition, amdS expression in this transformant was still dependent on the areA gene.
Collapse
|
46
|
Andrianopoulos A, Hynes MJ. Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol 1988; 8:3532-41. [PMID: 3062382 PMCID: PMC363591 DOI: 10.1128/mcb.8.8.3532-3541.1988] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of four unlinked structural genes involved in acetamide (amdS), omega amino acid (gatA and gabA), and lactam (lamA) catabolism. By the use of DNA-mediated transformation of A. nidulans, the amdR regulatory gene was cloned from a genomic cosmid library. Southern blot analysis of DNA from various loss-of-function amdR mutants revealed the presence of four detectable DNA rearrangements, including a deletion, an insertion, and a translocation. No detectable DNA rearrangements were found in several constitutive amdRc mutants. Analysis of the fate of amdR-bearing plasmids in transformants showed that 10 to 20% of the transformation events were homologous integrations or gene conversions, and this phenomenon was exploited in developing a strategy by which amdRc and amdR- alleles can be readily cloned and analyzed. Examination of the transcription of amdR by Northern blot (RNA blot) analysis revealed the presence of two mRNAs (2.7 and 1.8 kilobases) which were constitutively synthesized at a very low level. In addition, amdR transcription did not appear to depend on the presence of a functional amdR product nor was it altered in amdRc mutants. The dosage effects of multiple copies of amdR in transformants were examined, and it was shown that such transformants exhibited stronger growth than did the wild type on acetamide and pyrrolidinone media, indicating increased expression of the amdS and lamA genes, respectively. These results were used to formulate a model for amdR-mediated regulation of gene expression in which the low constitutive level of amdR product sets the upper limits of basal and induced transcription of the structural genes. Multiple copies of 5' sequences from the amdS gene can result in reduced growth on substrates whose utilization is dependent on amdR-controlled genes. This has been attributed to titration of limiting amdR gene product. Strong support for this proposal was obtained by showing that multiple copies of the amdR gene can reverse this phenomenon (antititration).
Collapse
Affiliation(s)
- A Andrianopoulos
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
47
|
Hynes MJ, Corrick CM, Kelly JM, Littlejohn TG. Identification of the sites of action for regulatory genes controlling the amdS gene of Aspergillus nidulans. Mol Cell Biol 1988; 8:2589-96. [PMID: 3043184 PMCID: PMC363460 DOI: 10.1128/mcb.8.6.2589-2596.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The amdS gene of Aspergillus nidulans, which encodes an acetamidase enzyme, is positively regulated by the trans-acting genes amdR, facB, amdA, and areA. Sequence changes in several cis-acting mutations in the 5' region of the gene which specifically affect amdS regulation were determined. The amdI9 mutation, which results in increased facB-dependent acetate induction, is due to a single-base change at base pair -210 relative to the start point of translation. The amdI93 mutation, which abolishes amdR-dependent omega-amino acid induction, is a deletion of base pairs -181 to -151. The amdI66 mutation, which causes increased gene activation in strains carrying amdA regulatory gene mutations, is a duplication of base pairs -107 to -90. Transformation of A. nidulans can generate transformants containing multiple integrated copies of plasmid sequences. When these plasmids carry a potential binding site for a regulatory gene product, growth on substrates whose catabolism requires genes activated by that regulatory gene can be reduced, apparently because of titration of the regulatory gene product. Introduction of 5' amdS sequences via cotransformation into strains of various genotypes was used to localize sequences apparently involved in binding of the products of the amdR, amdA, and facB genes. The position of these sequences is in agreement with the positions of the specific cis-acting mutations. Consistent with these results, a transformant of A. nidulans derived from a plasmid deleted for sequences upstream from -111 was found to have lost amdR- and facB-mediated control but was still regulated by the amdA gene. In addition, amdS expression in this transformant was still dependent on the areA gene.
Collapse
Affiliation(s)
- M J Hynes
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- E Wingender
- Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, FRG
| |
Collapse
|
49
|
|
50
|
Beri RK, Whittington H, Roberts CF, Hawkins AR. Isolation and characterization of the positively acting regulatory gene QUTA from Aspergillus nidulans. Nucleic Acids Res 1987; 15:7991-8001. [PMID: 3313276 PMCID: PMC306322 DOI: 10.1093/nar/15.19.7991] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The positively acting regulator gene QUTA from Aspergillus nidulans has been identified and located within a cluster of quinic acid utilisation (QUT) genes isolated within a recombinant phage lambda (lambda Q1). The DNA sequence of the QUTA gene reveals a single uninterrupted reading frame coding for a protein of mw 90.416 Kd. The QUTA protein sequence has a protein motif in the form of a putative "DNA finger" that shows strong homology to other such motifs in the GAL4, PPR1, ARGRII, LAC9 and QA1F regulatory gene products of S. cerevisiae, K. lactis and N. crassa. The data presented confirm the view deduced by genetical analysis that the QUTA gene of A. nidulans encodes a protein capable of interacting with QUT specific DNA sequences.
Collapse
Affiliation(s)
- R K Beri
- Department of Genetics, University of Leicester, UK
| | | | | | | |
Collapse
|