1
|
González‐Garrido C, Prado F. Novel insights into the roles of Cdc7 in response to replication stress. FEBS J 2022. [DOI: 10.1111/febs.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Cristina González‐Garrido
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER Consejo Superior de Investigaciones Científicas Universidad de Sevilla Universidad Pablo de Olavide Spain
| |
Collapse
|
2
|
Sasi NK, Bhutkar A, Lanning NJ, MacKeigan JP, Weinreich M. DDK Promotes Tumor Chemoresistance and Survival via Multiple Pathways. Neoplasia 2017; 19:439-450. [PMID: 28448802 PMCID: PMC5406526 DOI: 10.1016/j.neo.2017.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
DBF4-dependent kinase (DDK) is a two-subunit kinase required for initiating DNA replication at individual origins and is composed of CDC7 kinase and its regulatory subunit DBF4. Both subunits are highly expressed in many diverse tumor cell lines and primary tumors, and this is correlated with poor prognosis. Inhibiting DDK causes apoptosis of tumor cells, but not normal cells, through a largely unknown mechanism. Firstly, to understand why DDK is often overexpressed in tumors, we identified gene expression signatures that correlate with DDK high- and DDK low-expressing lung adenocarcinomas. We found that increased DDK expression is highly correlated with inactivation of RB1-E2F and p53 tumor suppressor pathways. Both CDC7 and DBF4 promoters bind E2F, suggesting that increased E2F activity in RB1 mutant cancers promotes increased DDK expression. Surprisingly, increased DDK expression levels are also correlated with both increased chemoresistance and genome-wide mutation frequencies. Our data further suggest that high DDK levels directly promote elevated mutation frequencies. Secondly, we performed an RNAi screen to investigate how DDK inhibition causes apoptosis of tumor cells. We identified 23 kinases and phosphatases required for apoptosis when DDK is inhibited. These hits include checkpoint genes, G2/M cell cycle regulators, and known tumor suppressors leading to the hypothesis that inhibiting mitotic progression can protect against DDKi-induced apoptosis. Characterization of one novel hit, the LATS2 tumor suppressor, suggests that it promotes apoptosis independently of the upstream MST1/2 kinases in the Hippo signaling pathway.
Collapse
Affiliation(s)
- Nanda Kumar Sasi
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503; Laboratory of Systems Biology, VARI; Graduate Program in Genetics, Michigan State University, East Lansing, MI 48824
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI 49503.
| |
Collapse
|
3
|
Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities. Genes (Basel) 2017; 8:genes8030105. [PMID: 28335524 PMCID: PMC5368709 DOI: 10.3390/genes8030105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022] Open
Abstract
Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism.
Collapse
|
4
|
Murai S, Katagiri Y, Yamashita S. Maturation-associatedDbf4expression is essential for mouse zygotic DNA replication. Dev Growth Differ 2014; 56:625-39. [DOI: 10.1111/dgd.12180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Shin Murai
- Department of Biochemistry; Toho University School of Medicine; 5-21-16 Omorinishi Otaku 143-8540 Tokyo Japan
| | - Yukiko Katagiri
- Department of Obstetrics and Gynecology Reproduction Center; Omori Medical Center; Toho University; 6-11-1, Omori-Nishi Ota-ku 143-8541 Tokyo Japan
| | - Shigeru Yamashita
- Department of Biochemistry; Toho University School of Medicine; 5-21-16 Omorinishi Otaku 143-8540 Tokyo Japan
| |
Collapse
|
5
|
Abstract
Hsk1 (homologue of Cdc7 kinase 1) of the fission yeast is a member of the conserved Cdc7 (cell division cycle 7) kinase family, and promotes initiation of chromosome replication by phosphorylating Mcm (minichromosome maintenance) subunits, essential components for the replicative helicase. Recent studies, however, indicate more diverse roles for Hsk1/Cdc7 in regulation of various chromosome dynamics, including initiation of meiotic recombination, meiotic chromosome segregation, DNA repair, replication checkpoints, centromeric heterochromatin formation and so forth. Hsk1/Cdc7, with its unique target specificity, can now be regarded as an important modulator of various chromosome transactions.
Collapse
|
6
|
Le AH, Mastro TL, Forsburg SL. The C-terminus of S. pombe DDK subunit Dfp1 is required for meiosis-specific transcription and cohesin cleavage. Biol Open 2013; 2:728-38. [PMID: 23862021 PMCID: PMC3711041 DOI: 10.1242/bio.20135173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/14/2013] [Indexed: 11/24/2022] Open
Abstract
The DDK complex is a conserved kinase complex, consisting of a catalytic subunit, Hsk1 (Cdc7), and its regulatory subunit Dfp1 (Dbf4). This kinase is essential for DNA replication. In this work, we show that dfp1-r35, which truncates the Dfp1 C-terminus zinc finger, causes severe meiotic defects, including reduced spore viability, reduced formation of programmed double strand breaks, altered expression of meiotic genes, and disrupted chromosome segregation. There is a high frequency of dyad formation. Mutants are also defective in the phosphorylation and degradation of the meiotic cohesion, Rec8, resulting in a failure to proceed through the MII division. These defects are more pronounced in a haploid meiosis model than in a normal diploid meiosis. Thus, several critical meiotic functions are linked specifically to the C-terminus of Dfp1, which may target specific substrates for phosphorylation by Hsk1.
Collapse
Affiliation(s)
- Anh-Huy Le
- Program in Molecular and Computational Biology, University of Southern California , Los Angeles, CA 90089-2910 , USA
| | | | | |
Collapse
|
7
|
Matsumoto S, Hayano M, Kanoh Y, Masai H. Multiple pathways can bypass the essential role of fission yeast Hsk1 kinase in DNA replication initiation. ACTA ACUST UNITED AC 2011; 195:387-401. [PMID: 22024164 PMCID: PMC3206344 DOI: 10.1083/jcb.201107025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A number of different genetic backgrounds and growth conditions bypass DNA replication defects caused by the absence of yeast Hsk1 kinase, demonstrating the plasticity of the eukaryotic DNA replication program. Cdc7/Hsk1 is a conserved kinase required for initiation of DNA replication that potentially regulates timing and locations of replication origin firing. Here, we show that viability of fission yeast hsk1Δ cells can be restored by loss of mrc1, which is required for maintenance of replication fork integrity, by cds1Δ, or by a checkpoint-deficient mutant of mrc1. In these mutants, normally inactive origins are activated in the presence of hydroxyurea and binding of Cdc45 to MCM is stimulated. mrc1Δ bypasses hsk1Δ more efficiently because of its checkpoint-independent inhibitory functions. Unexpectedly, hsk1Δ is viable at 37°C. More DNA is synthesized, and some dormant origins fire in the presence of hydroxyurea at 37°C. Furthermore, hsk1Δ bypass strains grow poorly at 25°C compared with higher temperatures. Our results show that Hsk1 functions for DNA replication can be bypassed by different genetic backgrounds as well as under varied physiological conditions, providing additional evidence for plasticity of the replication program in eukaryotes.
Collapse
Affiliation(s)
- Seiji Matsumoto
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8613, Japan
| | | | | | | |
Collapse
|
8
|
Day TA, Palle K, Barkley LR, Kakusho N, Zou Y, Tateishi S, Verreault A, Masai H, Vaziri C. Phosphorylated Rad18 directs DNA polymerase η to sites of stalled replication. ACTA ACUST UNITED AC 2010; 191:953-66. [PMID: 21098111 PMCID: PMC2995173 DOI: 10.1083/jcb.201006043] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cdc7 phosphorylates Rad18 to integrate S phase progression with postreplication DNA repair, ensuring genome stability. The E3 ubiquitin ligase Rad18 guides DNA Polymerase eta (Polη) to sites of replication fork stalling and mono-ubiquitinates proliferating cell nuclear antigen (PCNA) to facilitate binding of Y family trans-lesion synthesis (TLS) DNA polymerases during TLS. However, it is unclear exactly how Rad18 is regulated in response to DNA damage and how Rad18 activity is coordinated with progression through different phases of the cell cycle. Here we identify Rad18 as a novel substrate of the essential protein kinase Cdc7 (also termed Dbf4/Drf1-dependent Cdc7 kinase [DDK]). A serine cluster in the Polη-binding motif of Rad18 is phosphorylated by DDK. Efficient association of Rad18 with Polη is dependent on DDK and is necessary for redistribution of Polη to sites of replication fork stalling. This is the first demonstration of Rad18 regulation by direct phosphorylation and provides a novel mechanism for integration of S phase progression with postreplication DNA repair to maintain genome stability.
Collapse
Affiliation(s)
- Tovah A Day
- Department of Genetics and Genomics and 2 Center for Human Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bonome T, Lee JY, Park DC, Radonovich M, Pise-Masison C, Brady J, Gardner GJ, Hao K, Wong WH, Barrett JC, Lu KH, Sood AK, Gershenson DM, Mok SC, Birrer MJ. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res 2005; 65:10602-12. [PMID: 16288054 DOI: 10.1158/0008-5472.can-05-2240] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Papillary serous low malignant potential (LMP) tumors are characterized by malignant features and metastatic potential yet display a benign clinical course. The role of LMP tumors in the development of invasive epithelial cancer of the ovary is not clearly defined. The aim of this study is to determine the relationships among LMP tumors and invasive ovarian cancers and identify genes contributing to their phenotypes. Affymetrix U133 Plus 2.0 microarrays (Santa Clara, CA) were used to interrogate 80 microdissected serous LMP tumors and invasive ovarian malignancies along with 10 ovarian surface epithelium (OSE) brushings. Gene expression profiles for each tumor class were used to complete unsupervised hierarchical clustering analyses and identify differentially expressed genes contributing to these associations. Unsupervised hierarchical clustering analysis revealed a distinct separation between clusters containing borderline and high-grade lesions. The majority of low-grade tumors clustered with LMP tumors. Comparing OSE with high-grade and LMP expression profiles revealed enhanced expression of genes linked to cell proliferation, chromosomal instability, and epigenetic silencing in high-grade cancers, whereas LMP tumors displayed activated p53 signaling. The expression profiles of LMP, low-grade, and high-grade papillary serous ovarian carcinomas suggest that LMP tumors are distinct from high-grade cancers; however, they are remarkably similar to low-grade cancers. Prominent expression of p53 pathway members may play an important role in the LMP tumor phenotype.
Collapse
Affiliation(s)
- Tomas Bonome
- Cell and Cancer Biology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Guo B, Romero J, Kim BJ, Lee H. High levels of Cdc7 and Dbf4 proteins can arrest cell-cycle progression. Eur J Cell Biol 2005; 84:927-38. [PMID: 16325502 DOI: 10.1016/j.ejcb.2005.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 09/07/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022] Open
Abstract
Cdc7-Dbf4 serine/threonine kinase is essential for initiation of DNA replication. It was previously found that overexpression of certain replication proteins such as Cdc6 and Cdt1 in fission yeast resulted in multiple rounds of DNA replication in the absence of mitosis. Since this phenomenon is dependent upon the presence of wild-type Cdc7/Hsk1, we hypothesized that high levels of Cdc7 and/or Dbf4 could also cause multiple rounds of DNA replication, or could facilitate entry into S phase. To test this hypothesis, we transiently overexpressed hamster Cdc7, Dbf4 or both in CHO cells. Direct observations of individual cells by fluorescence microscopy and flow cytometric analysis on cell populations suggest that overexpression of Cdc7 and/or Dbf4 does not result in multiple rounds of DNA replication or facilitating entry into S phase. In contrast, moderately increased levels of Dbf4, but not Cdc7, cause cell-cycle arrest in G2/M. This G2/M arrest coincides with hyperphosphorylation of Cdc2/Cdk1 at Tyr-15, raising the possibility that high levels of Dbf4 may activate a G2/M cell-cycle checkpoint. Further increase in Cdc7 and/or Dbf4 by 2-4 fold can arrest cells in G1 and significantly slow down S-phase progression for the cells already in S phase.
Collapse
Affiliation(s)
- Baoqing Guo
- Department of Research, Northeastern Ontario Regional Cancer Centre, Sudbury, Canada
| | | | | | | |
Collapse
|
11
|
Abstract
Meiosis can be considered an elaboration of the cell division cycle in the sense that meiosis combines cell-cycle processes with programs specific to meiosis. Each phase of the cell division cycle is driven forward by cell-cycle kinases (Cdk) and coordinated with other phases of the cycle through checkpoint functions. Meiotic differentiation is also controlled by these two types of regulation; however, recent study in the budding yeast S. cerevisiae indicates that progression of meiosis is also controlled by a master regulator specific to meiosis, namely the Ime2p kinase. Below, I describe the overlapping roles of Ime2p and Cdk during meiosis in yeast and speculate on how these two kinases cooperate to drive the progression of meiosis.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA.
| |
Collapse
|
12
|
Affiliation(s)
- Randy Strich
- Program for Cell and Developmental Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
13
|
Sclafani RA, Tecklenburg M, Pierce A. The mcm5-bob1 bypass of Cdc7p/Dbf4p in DNA replication depends on both Cdk1-independent and Cdk1-dependent steps in Saccharomyces cerevisiae. Genetics 2002; 161:47-57. [PMID: 12019222 PMCID: PMC1462111 DOI: 10.1093/genetics/161.1.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The roles in DNA replication of two distinct protein kinases, Cdc7p/Dbf4p and Cdk1p/Clb (B-type cyclin), were studied. This was accomplished through a genetic and molecular analysis of the mechanism by which the mcm5-bob1 mutation bypasses the function of the Cdc7p/Dbf4p kinase. Genetic experiments revealed that loss of either Clb5p or Clb2p cyclins suppresses the mcm5-bob1 mutation and prevents bypass. These two cyclins have distinct roles in bypass and presumably in DNA replication as overexpression of one could not complement the loss of the other. Furthermore, the ectopic expression of CLB2 in G1 phase cannot substitute for CLB5 function in bypass of Cdc7p/Dbf4p by mcm5-bob1. Molecular experiments revealed that the mcm5-bob1 mutation allows for constitutive loading of Cdc45p at early origins in arrested G1 phase cells when both kinases are inactive. A model is proposed in which the Mcm5-bob1 protein assumes a unique molecular conformation without prior action by either kinase. This conformation allows for stable binding of Cdc45p to the origin. However, DNA replication still cannot occur without the combined action of Cdk1p/Clb5p and Cdk1p/Clb2p. Thus Cdc7p and Cdk1p kinases catalyze the initiation of DNA replication at several distinct steps, of which only a subset is bypassed by the mcm5-bob1 mutation.
Collapse
Affiliation(s)
- Robert A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
14
|
Masai H, Arai KI. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 2002; 190:287-96. [PMID: 11857444 DOI: 10.1002/jcp.10070] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication results from the action of a staged set of highly regulated processes. Among the stages of DNA replication, initiation is the key point at which all the G1 regulatory signals culminate. Cdc7 kinase is the critical regulator for the ultimate firing of the origins of initiation. Cdc7, originally identified in budding yeast and later in higher eukaryotes, forms a complex with a Dbf4-related regulatory subunit to generate an active kinase. Genetic evidence in mammals demonstrates essential roles for Cdc7 in mammalian DNA replication. Mini-chromosome maintenance protein (MCM) is the major physiological target of Cdc7. Genetic studies in yeasts indicate additional roles of Cdc7 in meiosis, checkpoint responses, maintenance of chromosome structures, and repair. The interplay between Cdc7 and Cdk, another kinase essential for the S phase, is also discussed.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| | | |
Collapse
|
15
|
Khalfan W, Ivanovska I, Rose MD. Functional interaction between the PKC1 pathway and CDC31 network of SPB duplication genes. Genetics 2000; 155:1543-59. [PMID: 10924456 PMCID: PMC1461188 DOI: 10.1093/genetics/155.4.1543] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The earliest known step in yeast spindle pole body (SPB) duplication requires Cdc31p and Kar1p, two physically interacting SPB components, and Dsk2p and Rad23p, a pair of ubiquitin-like proteins. Components of the PKC1 pathway were found to interact with these SPB duplication genes in two independent genetic screens. Initially, SLG1 and PKC1 were obtained as high-copy suppressors of dsk2Delta rad23Delta and a mutation in MPK1 was synthetically lethal with kar1-Delta17. Subsequently, we demonstrated extensive genetic interactions between the PKC1 pathway and the SPB duplication mutants that affect Cdc31p function. The genetic interactions are unlikely to be related to the cell-wall integrity function of the PKC1 pathway because the SPB mutants did not exhibit cell-wall defects. Overexpression of multiple PKC1 pathway components suppressed the G2/M arrest of the SPB duplication mutants and mutations in MPK1 exacerbated the cell cycle arrest of kar1-Delta17, suggesting a role for the PKC1 pathway in SPB duplication. We also found that mutations in SPC110, which encodes a major SPB component, showed genetic interactions with both CDC31 and the PKC1 pathway. In support of the model that the PKC1 pathway regulates SPB duplication, one of the phosphorylated forms of Spc110p was absent in pkc1 and mpk1Delta mutants.
Collapse
Affiliation(s)
- W Khalfan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
16
|
Abstract
Great insight into the molecular details of cell cycle regulation has been obtained in the past decade. However, most of the progress has been in defining the regulation of the family of cyclin-dependent kinases (CDKs). Recent studies of a myriad of eukaryotic organisms have defined both the regulation and substrates of Cdc7p kinase, which forms a CDK-cyclin-like complex with Dbf4p, is necessary for the initiation of DNA replication and has been conserved in evolution. This kinase is also required for the induction of mutations after DNA damage and for commitment to recombination in the meiotic cell cycle. However, less is known about the role of the kinase in these processes. In a manner similar to CDKs, Cdc7p is activated by a regulatory subunit, Dbf4, the levels of which fluctuate during the cell cycle. One or more subunits of the conserved MCM helicase complex at chromosomal origins of DNA replication are substrates for the kinase during S phase. Phosphorylation of the MCM complex by Cdc7p-Dbf4p might activate DNA replication by unwinding DNA. Therefore, activation of Cdc7p is required for DNA replication. Given that Cdc7p-Dbf4 kinase is overexpressed in many neoplastic cells and tumors, it might be an important early biomarker during cancer progression.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
17
|
James SW, Bullock KA, Gygax SE, Kraynack BA, Matura RA, MacLeod JA, McNeal KK, Prasauckas KA, Scacheri PC, Shenefiel HL, Tobin HM, Wade SD. nimO, an Aspergillus gene related to budding yeast Dbf4, is required for DNA synthesis and mitotic checkpoint control. J Cell Sci 1999; 112 ( Pt 9):1313-24. [PMID: 10194410 DOI: 10.1242/jcs.112.9.1313] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nimO predicted protein of Aspergillus nidulans is related structurally and functionally to Dbf4p, the regulatory subunit of Cdc7p kinase in budding yeast. nimOp and Dbf4p are most similar in their C-termini, which contain a PEST motif and a novel, short-looped Cys2-His2 zinc finger-like motif. DNA labelling and reciprocal shift assays using ts-lethal nimO18 mutants showed that nimO is required for initiation of DNA synthesis and for efficient progression through S phase. nimO18 mutants abrogated a cell cycle checkpoint linking S and M phases by segregating their unreplicated chromatin. This checkpoint defect did not interfere with other checkpoints monitoring spindle assembly and DNA damage (dimer lesions), but did prevent activation of a DNA replication checkpoint. The division of unreplicated chromatin was accelerated in cells lacking a component of the anaphase-promoting complex (bimEAPC1), consistent with the involvement of nimO and APC/C in separate checkpoint pathways. A nimO deletion conferred DNA synthesis and checkpoint defects similar to nimO18. Inducible nimO alleles lacking as many as 244 C-terminal amino acids supported hyphal growth, but not asexual development, when overexpressed in a ts-lethal nimO18 strain. However, the truncated alleles could not rescue a nimO deletion, indicating that the C terminus is essential and suggesting some type of interaction among nimO polypeptides.
Collapse
Affiliation(s)
- S W James
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shellman YG, Svee E, Sclafani RA, Langan TA. Identification and characterization of individual cyclin-dependent kinase complexes from Saccharomyces cerevisiae. Yeast 1999; 15:295-309. [PMID: 10206189 DOI: 10.1002/(sici)1097-0061(19990315)15:4<295::aid-yea377>3.0.co;2-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In S. cerevisiae, regulation of cell cycle progression is known to be carried out by a single cyclin-dependent kinase homologue, Cdc28p, acting at different stages of the cell cycle in association with various cyclins and other regulatory subunits. However, a still unsolved problem is the identification of the physiologically relevant substrates of the different Cdc28p kinase complexes which participate in this regulation. Purification and characterization of the subunit composition and enzymological properties of these Cdc28p complexes would therefore contribute substantially to our understanding of the molecular mechanisms controlling the cell cycle. We have used a combination of ammonium sulphate fractionation, nickel nitrilotriacetate affinity purification, ATP Sepharose affinity chromatography and Resource Q ion exchange chromatography to purify two different Cdc28p kinase complexes. Using specific clb deletion mutants and plasmid or genomic HA epitope-tagged CLBs, we show that one of these complexes is composed almost exclusively (93% or greater) of Clb2p-Cdc28p, whereas the other is mainly (75% or greater) Clb3p-Cdc28p. These procedures provide the basis for the analysis of regulatory, enzymatic and functional properties of individual Cdc28p kinase complexes.
Collapse
Affiliation(s)
- Y G Shellman
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Science Center, Denver 80262, USA
| | | | | | | |
Collapse
|
19
|
Dohrmann PR, Oshiro G, Tecklenburg M, Sclafani RA. RAD53 regulates DBF4 independently of checkpoint function in Saccharomyces cerevisiae. Genetics 1999; 151:965-77. [PMID: 10049915 PMCID: PMC1460535 DOI: 10.1093/genetics/151.3.965] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 complementation group contained a new allele of RAD53, which was designated rad53-31. RAD53 encodes an essential protein kinase that is required for the activation of DNA damage and DNA replication checkpoint pathways, and that is implicated as a positive regulator of S phase. Unlike other RAD53 alleles, we demonstrate that the rad53-31 allele retains an intact checkpoint function. Thus, the checkpoint function and the DNA replication function of RAD53 can be functionally separated. The activation of DNA replication through RAD53 most likely occurs through DBF4. Two-hybrid analysis indicates that the Rad53p protein binds to Dbf4p. Furthermore, the steady-state level of DBF4 message and Dbf4p protein is reduced in several rad53 mutant strains, indicating that RAD53 positively regulates DBF4. These results suggest that two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53.
Collapse
Affiliation(s)
- P R Dohrmann
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
20
|
Shama S, Lai CY, Antoniazzi JM, Jiang JC, Jazwinski SM. Heat stress-induced life span extension in yeast. Exp Cell Res 1998; 245:379-88. [PMID: 9851879 DOI: 10.1006/excr.1998.4279] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast Saccharomyces cerevisiae has a limited life span that can be measured by the number of times individual cells divide. Several genetic manipulations have been shown to prolong the yeast life span. However, environmental effects that extend longevity have been largely ignored. We have found that mild, nonlethal heat stress extended yeast life span when it was administered transiently early in life. The increased longevity was due to a reduction in the mortality rate that persisted over many cell divisions (generations) but was not permanent. The genes RAS1 and RAS2 were necessary to observe this effect of heat stress. The RAS2 gene is consistently required for maintenance of life span when heat stress is chronic or in its extension when heat stress is transient or absent altogether. RAS1, on the other hand, appears to have a role in signaling life extension induced by transient, mild heat stress, which is distinct from its life-span-curtailing effect in the absence of stress and its lack of involvement in the response to chronic heat stress. This distinction between the RAS genes may be partially related to their different effects on growth-promoting genes and stress-responsive genes. The ras2 mutation clearly hindered resumption of growth and recovery from stress, while the ras1 mutation did not. The HSP104 gene, which is largely responsible for induced thermotolerance in yeast, was necessary for life extension induced by transient heat stress. An interaction between mitochondrial petite mutations and heat stress was found, suggesting that mitochondria may be necessary for life extension by transient heat stress. The results raise the possibility that the RAS genes and mitochondria may play a role in the epigenetic inheritance of reduced mortality rate afforded by transient, mild heat stress.
Collapse
Affiliation(s)
- S Shama
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, Louisiana, 70112, USA
| | | | | | | | | |
Collapse
|
21
|
Kim JM, Sato N, Yamada M, Arai K, Masai H. Growth regulation of the expression of mouse cDNA and gene encoding a serine/threonine kinase related to Saccharomyces cerevisiae CDC7 essential for G1/S transition. Structure, chromosomal localization, and expression of mouse gene for s. cerevisiae Cdc7-related kinase. J Biol Chem 1998; 273:23248-57. [PMID: 9722556 DOI: 10.1074/jbc.273.36.23248] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae CDC7 encodes a serine/threonine kinase required for G1/S transition of the yeast cells. We previously reported human and Xenopus cDNAs encoding CDC7-related kinases and suggested the possibility that chromosomal replication of higher eukaryotes may be regulated through conserved mechanisms involving Cdc7-related kinases. Here we report a murine cDNA and gene (muCdc7) encoding a serine/threonine kinase related to CDC7. The predicted coding frame for the longest cDNA for muCdc7 consists of 564 amino acids, which shares 46, 77, and 93% identity, respectively, with those of budding yeast, Xenopus, and human in kinase conserved domains. The chromosomal gene for muCdc7, located at the band 5E5 on the mouse chromosome 5, consists of 12 exons, and its exon/intron organization shares some similarity with that of other protein kinases including Cdk and cAMP-dependent kinase. Transcription of muCdc7, initiated at multiple sites over the 370-base pair promoter region, is repressed in the resting state and is induced at the G1/S boundary after growth factor stimulation in a growth factor-dependent cell line. Transient transfection assays indicated that a 231-base pair segment of the muCdc7 promoter containing three putative E2F binding sites and one Sp1 site but lacking TATA sequence is sufficient for response to growth stimulation.
Collapse
Affiliation(s)
- J M Kim
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
22
|
Hess GF, Drong RF, Weiland KL, Slightom JL, Sclafani RA, Hollingsworth RE. A human homolog of the yeast CDC7 gene is overexpressed in some tumors and transformed cell lines. Gene 1998; 211:133-40. [PMID: 9573348 DOI: 10.1016/s0378-1119(98)00094-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Cdc7 protein kinase of Saccharomyces cerevisiae is a critical regulator of several aspects of DNA metabolism and cell cycle progression. We describe the isolation of a human gene encoding a Cdc7 homolog. The Cdc7Hs protein sequence is 27% identical to that of the yeast protein, includes features unique to yeast Cdc7, and contains all conserved catalytic residues of protein kinases. The human sequence also shows significant similarity to the cyclin-dependent kinases, in accordance with evidence that yeast Cdc7 is related to the cdks. CDC7Hs is expressed in many normal tissues, but overexpressed in certain tumor types and all transformed cell lines examined. In some of the tumors tested, CDC7Hs expression correlates with expression of a proliferation marker, the histone H3 gene. In other cases, no such correlation was observed. This suggests that CDC7Hs expression may be associated hyperproliferation in some tumors and neoplastic transformation in others.
Collapse
Affiliation(s)
- G F Hess
- Cancer Research, Pharmacia, Upjohn, Inc., 301 Henrietta Street, Kalamazoo, MI 49001, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The Saccharomyces cerevisiae CDC7 gene encodes a protein kinase that functions in three aspects of DNA metabolism: replication, repair, and meiotic recombination. It is likely that these functions overlap and share common elements. The cell cycle dependence of Cdc7 associated DNA repair was examined by UV irradiating a wild type and hypomutable cdc7-7 strain throughout the cell cycle. Both the wild type strain and the cdc7-7 mutant stain delay entry into S phase by 40-60 min when exposed to UV mutagenesis. Cells in G1 are the most sensitive to lethal UV damage while cells in S phase sustain fewer lethal hits. The yield of mutants is greatest for the CDC7 wild type strain when S phase cells are mutagenized. This peak of induced mutagenesis is absent in the cdc7-7 strain. Cdc7 protein may be required for error-prone DNA repair or for translesion error-prone DNA replication and not for the checkpoints in G1 phase. Because Cdc28 protein kinase and Dbf4 protein, a Cdc7 kinase regulator, are also important for induced mutagenesis and the CDC7 promoter is not induced in response to DNA damage, Cdc7 protein kinase may be regulated post-translationally following DNA damage, in the same manner as it is regulated during the cell cycle.
Collapse
Affiliation(s)
- R M Ostroff
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
24
|
Rempel RE, Sleight SB, Maller JL. Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J Biol Chem 1995; 270:6843-55. [PMID: 7896832 DOI: 10.1074/jbc.270.12.6843] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Earlier work demonstrated that cyclins A1, B1, and B2 are not associated with Cdk2 from unfertilized Xenopus eggs. As a potential Cdk2 partner during meiosis, a cyclin E homolog was cloned from a Xenopus oocyte cDNA library and found to be 60% identical at the amino acid level to human cyclin E. Cyclin E1 protein was detected in resting oocytes, and the level increased severalfold in meiosis II, concomitant with the appearance of forms with decreased electrophoretic mobility. During oocyte maturation, the patterns of cyclin E1-associated kinase activity and Cdk2 activity were identical, with activity low until after germinal vesicle breakdown, peaking during meiosis II. Cyclin E1 complexes immunoprecipitated from unfertilized Xenopus eggs contained Cdk2 but not Cdc2. In cycling egg extracts Cdk2-cyclin E1-associated kinase activity oscillated, but the level of cyclin E1 protein and its association with Cdk2 did not vary appreciably; complex activity appeared to be regulated neither by the synthesis and destruction of the cyclin subunit nor by association/disassociation of the two subunits. During the early cleavage divisions in embryos, cyclin E1 and Cdk2 remained associated. The data indicate that the Cdk2-cyclin E complex functions during meiotic and embryonic cell cycles in addition to performing its established role during G1 in somatic cells.
Collapse
Affiliation(s)
- R E Rempel
- Howard Hughes Medical Institute, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
25
|
Poch O, Schwob E, de Fraipont F, Camasses A, Bordonné R, Martin RP. RPK1, an essential yeast protein kinase involved in the regulation of the onset of mitosis, shows homology to mammalian dual-specificity kinases. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:641-53. [PMID: 8028580 DOI: 10.1007/bf00279573] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report here the sequence of RPK1 (for Regulatory cell Proliferation Kinase), a new Saccharomyces cerevisiae gene coding for a protein with sequence similarities to serine/threonine protein kinases. The protein sequence of 764 amino acids includes an amino-terminal domain (residues 1-410), which may be involved in regulation of the kinase domain (residues 411-764). The catalytic domain of Rpk1 is not closely related to other known yeast protein kinases but exhibits strong homology to a newly discovered group of mammalian kinases (PYT, TTK, esk) with serine/threonine/tyrosine kinase activity. Null alleles of RPK1 are lethal and thus this gene belongs to the small group of yeast protein kinase genes that are essential for cell growth. In addition, eliminating the expression of RPK1 gives rise to the accumulation of non-viable cells with less than a 1 N DNA content suggesting that cells proceed into mitosis without completion of DNA synthesis. Therefore, the Rpk1 kinase may function in a checkpoint control which couples DNA replication to mitosis. The level of the RPK1 transcript is extremely low and constant throughout the mitotic cycle. However it is regulated during cellular differentiation, being decreased in alpha-factor-treated a cells and increased late in meiosis in a/alpha diploids. Taken together, our results suggest that Rpk1 is involved in a pathway that coordinates cell proliferation and differentiation.
Collapse
Affiliation(s)
- O Poch
- Institut de Biologie Moléculaire et Cellulaire du C.N.R.S., Strasbourg, France
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The Cdc7 protein kinase is the product of an essential cell cycle gene, and is involved in three aspects of DNA metabolism: mitotic DNA replication, meiotic DNA recombination, and replication-dependent DNA repair. The mechanism by which Cdc7 regulates each of its cellular functions is an issue of considerable interest. Recently, much of the research regarding the regulation of cell cycle progression has focused on the regulatory action of cyclins on their catalytic counterparts. We propose that the function of Cdc7 in cell cycle progression is mediated in a similar manner, in that Dbf4, a protein whose transcript level is known to fluctuate in the cell cycle, is essential for Cdc7 kinase activity. The periodic association of Dbf4 with Cdc7 may account for the regulation of Cdc7 kinase function and progression through the cell cycle.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80206
| | | |
Collapse
|
27
|
Abstract
Meiosis can be viewed both as a process of cell differentiation and as a modification of the mitotic cell cycle. Here we describe recent progress in defining a variety of regulatory mechanisms that govern the meiotic divisions. Studies in the yeast Saccharomyces cerevisiae and in higher organisms have led to complementary insights into these controls.
Collapse
Affiliation(s)
- S M Honigberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | | | |
Collapse
|
28
|
Abstract
The yeast Saccharomyces cerevisiae possesses a finite life span similar in many attributes and implications to that of higher eukaryotes. Here, the measure of the life span is the number of generations or divisions the yeast cell has undergone. The yeast cell is the organism, simplifying many aspects of aging research. Most importantly, the genetics of yeast is highly-developed and readily applicable to the dissection of longevity. Two candidate longevity genes have already been identified and are being characterized. Others will follow through the utilization of both the primary phenotype and the secondary phenotypes associated with aging in yeast. An ontogenetic theory of longevity that follows from the evolutionary biology of aging is put forward in this article. This theory has at its foundation the asymmetric reproduction of cells and organisms, and it makes specific predictions regarding the genetics, molecular mechanisms, and phenotypic features of longevity and senescence, including these: GTP-binding proteins will frequently be involved in determining longevity, asymmetric cell division will be often encountered during embryogenesis while binary fission will be more characteristic of somatic cell division, tumor cells of somatic origin will not be totipotent, and organisms that reproduce symmetrically will not have intrinsic limits to their longevity.
Collapse
Affiliation(s)
- S M Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112
| |
Collapse
|
29
|
Hollingsworth RE, Ostroff RM, Klein MB, Niswander LA, Sclafani RA. Molecular genetic studies of the Cdc7 protein kinase and induced mutagenesis in yeast. Genetics 1992; 132:53-62. [PMID: 1398063 PMCID: PMC1205129 DOI: 10.1093/genetics/132.1.53] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Saccharomyces cerevisiae CDC7 gene encodes a protein kinase that functions in DNA replication, repair, and meiotic recombination. The sequence of several temperature-sensitive (ts) cdc7 mutations was determined and correlated with protein kinase consensus domain structure. The positions of these ts alleles suggests some general principles for predicting ts protein kinase mutations. Pedigree segregation lag analysis demonstrated that all of the mutant proteins are less active or less stable than wild-type Cdc7p. Two new mutations were constructed, one by site-directed and the other by insertional mutagenesis. All of the cdc7 mutants were assayed for induced mutagenesis in response to mutagenic agents at the permissive temperature. Some cdc7 mutants were found to be hypomutable, while others are hypermutable. The differences in mutability are observed most clearly when log phase cells are used. Both hypo- and hypermutability are recessive to wild type. Cdc7p may participate in DNA repair by phosphorylating repair enzymes or by altering chromatin structure to allow accessibility to DNA lesions.
Collapse
Affiliation(s)
- R E Hollingsworth
- University of Colorado Health Sciences Center, Department of Biochemistry, Biophysics and Genetics, Denver 80262
| | | | | | | | | |
Collapse
|
30
|
Kitada K, Johnston LH, Sugino T, Sugino A. Temperature-sensitive cdc7 mutations of Saccharomyces cerevisiae are suppressed by the DBF4 gene, which is required for the G1/S cell cycle transition. Genetics 1992; 131:21-9. [PMID: 1592236 PMCID: PMC1204955 DOI: 10.1093/genetics/131.1.21] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
When present on a multicopy plasmid, a gene from a Saccharomyces cerevisiae genomic library suppresses the temperature-sensitive cdc7-1 mutation. The gene was identified as DBF4, which was previously isolated by complementation in dbf4-1 mutant cells and is required for the G1----S phase progression of the cell cycle. DBF4 has an open reading frame encoding 695 amino acid residues and the predicted molecular mass of the gene product is 80 kD. The suppression is allele-specific because a CDC7 deletion is not suppressed by DBF4. Suppression is mitosis-specific and the sporulation defect of cdc7 mutations is not suppressed by DBF4. Conversely, CDC7 on a multicopy plasmid suppresses the dbf4-1, -2, -3 and -4 mutations but not dbf4-5 and DBF4 deletion mutations. Furthermore, cdc7 mutations are incompatible with the temperature-sensitive dbf4 mutations. These results suggest that the CDC7 and DBF4 polypeptides interact directly or indirectly to permit initiation of yeast chromosome replication.
Collapse
Affiliation(s)
- K Kitada
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | | | | | | |
Collapse
|
31
|
Buck V, White A, Rosamond J. CDC7 protein kinase activity is required for mitosis and meiosis in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:452-7. [PMID: 1865880 DOI: 10.1007/bf00273937] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The product of the CDC7 gene of Saccharomyces cerevisiae has multiple cellular functions, being needed for the initiation of DNA synthesis during mitosis as well as for synaptonemal complex formation and commitment to recombination during meiosis. The CDC7 protein has protein kinase activity and contains the conserved residues characteristic of the protein kinase catalytic domain. To determine which of the cellular functions of CDC7 require this protein kinase activity, we have mutated some of the conserved residues within the CDC7 catalytic domain and have examined the ability of the mutant proteins to support mitosis and meiosis. The results indicate that the protein kinase activity of the CDC7 gene product is essential for its function in both mitosis and meiosis and that this activity is potentially regulated by phosphorylation of the CDC7 protein.
Collapse
Affiliation(s)
- V Buck
- Department of Biochemistry and Molecular Biology, University of Manchester, UK
| | | | | |
Collapse
|
32
|
Schiestl RH, Prakash S, Prakash L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 1990; 124:817-31. [PMID: 2182387 PMCID: PMC1203974 DOI: 10.1093/genetics/124.4.817] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.
Collapse
Affiliation(s)
- R H Schiestl
- Department of Biology, University of Rochester, New York 14627
| | | | | |
Collapse
|
33
|
Egilmez NK, Chen JB, Jazwinski SM. Specific Alterations in Transcript Prevalence During the Yeast Life Span. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71679-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Larimer FW, Perry JR, Hardigree AA. The REV1 gene of Saccharomyces cerevisiae: isolation, sequence, and functional analysis. J Bacteriol 1989; 171:230-7. [PMID: 2492497 PMCID: PMC209577 DOI: 10.1128/jb.171.1.230-237.1989] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The REV1 gene of Saccharomyces cerevisiae is required for normal induction of mutations by physical and chemical agents. We have determined the sequence of a 3,485-base-pair segment of DNA that complements the rev1-1 mutant. Gene disruption was used to confirm that this DNA contained the REV1 gene. The sequenced segment contains a single long open reading frame, which can encode a polypeptide of 985 amino acid residues. The REV1 transcript is 3.1 kilobase pairs in length. Frameshift mutations introduced into the open reading frame yielded a Rev-phenotype. A base substitution, encoding Gly-193 to Arg-193, was found in this open reading frame in rev1-1. Deletion mutants, lacking segments of the 5' region of REV1, had intermediate mutability relative to REV1 and rev1-1; a complete deletion exhibited lower mutability than rev1-1. REV1 is not an essential gene. An in-frame fusion of the 5' end of the REV1 open reading frame to the lacZ gene produced beta-galactosidase activity constitutively. The predicted REV1 protein is hydrophilic, with a predicted pI of 9.82. No homologies to RAD1, RAD2, RAD3, RAD7, or RAD10 proteins were noted. A 152-residue internal segment displayed 25% identity with UMUC protein.
Collapse
Affiliation(s)
- F W Larimer
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831
| | | | | |
Collapse
|