1
|
Zieman AG, Coulombe PA. Pathophysiology of pachyonychia congenita-associated palmoplantar keratoderma: new insights into skin epithelial homeostasis and avenues for treatment. Br J Dermatol 2020; 182:564-573. [PMID: 31021398 PMCID: PMC6814456 DOI: 10.1111/bjd.18033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pachyonychia congenita (PC), a rare genodermatosis, primarily affects ectoderm-derived epithelial appendages and typically includes oral leukokeratosis, nail dystrophy and very painful palmoplantar keratoderma (PPK). PC dramatically impacts quality of life although it does not affect lifespan. PC can arise from mutations in any of the wound-repair-associated keratin genes KRT6A, KRT6B, KRT6C, KRT16 or KRT17. There is no cure for this condition, and current treatment options for PC symptoms are limited and palliative in nature. OBJECTIVES This review focuses on recent progress made towards understanding the pathophysiology of PPK lesions, the most prevalent and debilitating of all PC symptoms. METHODS We reviewed the relevant literature with a particular focus on the Krt16 null mouse, which spontaneously develops footpad lesions that mimic several aspects of PC-associated PPK. RESULTS There are three main stages of progression of PPK-like lesions in Krt16 null mice. Ahead of lesion onset, keratinocytes in the palmoplantar (footpad) skin exhibit specific defects in terminal differentiation, including loss of Krt9 expression. At the time of PPK onset, there is elevated oxidative stress and hypoactive Keap1-Nrf2 signalling. During active PPK, there is a profound defect in the ability of the epidermis to maintain or return to normal homeostasis. CONCLUSIONS The progress made suggests new avenues to explore for the treatment of PC-based PPK and deepens our understanding of the mechanisms controlling skin tissue homeostasis. What's already known about this topic? Pachyonychia congenita (PC) is a rare genodermatosis caused by mutations in KRT6A, KRT6B, KRT6C, KRT16 and KRT17, which are normally expressed in skin appendages and induced following injury. Individuals with PC present with multiple clinical symptoms that usually include thickened and dystrophic nails, palmoplantar keratoderma (PPK), glandular cysts and oral leukokeratosis. The study of PC pathophysiology is made challenging because of its low incidence and high complexity. There is no cure or effective treatment for PC. What does this study add? This text reviews recent progress made when studying the pathophysiology of PPK associated with PC. This recent progress points to new possibilities for devising effective therapeutics that may complement current palliative strategies.
Collapse
Affiliation(s)
- A. G. Zieman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - P. A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Breitenbach JS, Rinnerthaler M, Trost A, Weber M, Klausegger A, Gruber C, Bruckner D, Reitsamer HA, Bauer JW, Breitenbach M. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging. Aging (Albany NY) 2016; 7:389-411. [PMID: 26143532 PMCID: PMC4505166 DOI: 10.18632/aging.100755] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aging process of skin has been investigated recently with respect to mitochondrial function and oxidative stress. We have here observed striking phenotypic and clinical similarity between skin aging and recessive dystrophic Epidermolysis bullosa (RDEB), which is caused by recessive mutations in the gene coding for collagen VII, COL7A1. Ultrastructural changes, defects in wound healing, and inflammation markers are in part shared with aged skin. We have here compared the skin transcriptomes of young adults suffering from RDEB with that of sex‐ and age‐matched healthy probands. In parallel we have compared the skin transcriptome of healthy young adults with that of elderly healthy donors. Quite surprisingly, there was a large overlap of the two gene lists that concerned a limited number of functional protein families. Most prominent among the proteins found are a number of proteins of the cornified envelope or proteins mechanistically involved in cornification and other skin proteins. Further, the overlap list contains a large number of genes with a known role in inflammation. We are documenting some of the most prominent ultrastructural and protein changes by immunofluorescence analysis of skin sections from patients, old individuals, and healthy controls.
Collapse
Affiliation(s)
- Jenny S Breitenbach
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg, Austria
| | - Mark Rinnerthaler
- Fachbereich Zellbiologie der Universität Salzburg, Salzburg, Austria
| | - Andrea Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Manuela Weber
- Fachbereich Zellbiologie der Universität Salzburg, Salzburg, Austria
| | - Alfred Klausegger
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg, Austria
| | - Christina Gruber
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg, Austria
| | - Daniela Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Herbert A Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology and EB House Austria, Paracelsus Medical University, Salzburg, Austria
| | | |
Collapse
|
3
|
Gandolfi B, Alhaddad H, Joslin SEK, Khan R, Filler S, Brem G, Lyons LA. A splice variant in KRT71 is associated with curly coat phenotype of Selkirk Rex cats. Sci Rep 2013; 3:2000. [PMID: 23770706 PMCID: PMC3683669 DOI: 10.1038/srep02000] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/22/2013] [Indexed: 11/09/2022] Open
Abstract
One of the salient features of the domestic cat is the aesthetics of its fur. The Selkirk Rex breed is defined by an autosomal dominant woolly rexoid hair (ADWH) abnormality that is characterized by tightly curled hair shafts. A genome-wide case - control association study was conducted using 9 curly coated Selkirk Rex and 29 controls, including straight-coated Selkirk Rex, British Shorthair and Persian, to localize the Selkirk autosomal dominant rexoid locus (SADRE). Although the control cats were from different breed lineages, they share recent breeding histories and were validated as controls by Bayesian clustering, multi-dimensional scaling and genomic inflation. A significant association was found on cat chromosome B4 (Praw = 2.87 × 10(-11)), and a unique haplotype spanning ~600 Kb was found in all the curly coated cats. Direct sequencing of four candidate genes revealed a splice site variant within the KRT71 gene associated with the hair abnormality in Selkirk Rex.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
4
|
Host regulatory network response to infection with highly pathogenic H5N1 avian influenza virus. J Virol 2011; 85:10955-67. [PMID: 21865398 DOI: 10.1128/jvi.05792-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During the last decade, more than half of humans infected with highly pathogenic avian influenza (HPAI) H5N1 viruses have died, yet virus-induced host signaling has yet to be clearly elucidated. Airway epithelia are known to produce inflammatory mediators that contribute to HPAI H5N1-mediated pathogenicity, but a comprehensive analysis of the host response in this cell type is lacking. Here, we leveraged a system approach to identify and statistically validate signaling subnetworks that define the dynamic transcriptional response of human bronchial epithelial cells after infection with influenza A/Vietnam/1203/2004 (H5N1, VN1203). Importantly, we validated a subset of transcripts from one subnetwork in both Calu-3 cells and mice. A more detailed examination of two subnetworks involved in the immune response and keratinization processes revealed potential novel mediators of HPAI H5N1 pathogenesis and host response signaling. Finally, we show how these results compare to those for a less virulent strain of influenza virus. Using emergent network properties, we provide fresh insight into the host response to HPAI H5N1 virus infection and identify novel avenues for perturbation studies and potential therapeutic interventions for fatal HPAI H5N1 disease.
Collapse
|
5
|
Gandolfi B, Outerbridge CA, Beresford LG, Myers JA, Pimentel M, Alhaddad H, Grahn JC, Grahn RA, Lyons LA. The naked truth: Sphynx and Devon Rex cat breed mutations in KRT71. Mamm Genome 2010; 21:509-15. [PMID: 20953787 PMCID: PMC2974189 DOI: 10.1007/s00335-010-9290-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/13/2010] [Indexed: 01/25/2023]
Abstract
Hair is a unique structure, characteristic of mammals, controlling body homeostasis, as well as cell and tissue integration. Previous studies in dog, mouse, and rat have identified polymorphisms in Keratin 71 (KRT71) as responsible for the curly/wavy phenotypes. The coding sequence and the 3′ UTR of KRT71 were directly sequenced in randomly bred and pedigreed domestic cats with different pelage mutations, including hairless varieties. A SNP altering a splice site was identified in the Sphynx breed and suggested to be the hairless (hr) allele, and a complex sequence alteration, also causing a splice variation, was identified in the Devon Rex breed and suggested to be the curly (re) allele. The polymorphisms were genotyped in approximately 200 cats. All the Devon Rex were homozygous for the complex alterations and most of the Sphynx were either homozygous for the hr allele or compound heterozygotes with the Devon-associated re allele, suggesting that the phenotypes are a result of the identified SNPs. Two Sphynx carrying the proposed hr mutation did not carry the Devon-associated alteration. No other causative mutations for eight different rexoid and hairless cat phenotypes were identified. The allelic series KRT71+ > KRT71hr > KRT71re is suggested.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Catherine A. Outerbridge
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California—Davis, Davis, CA 95616 USA
| | - Leslie G. Beresford
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Jeffrey A. Myers
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Monica Pimentel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Hasan Alhaddad
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Jennifer C. Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Robert A. Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, 1114 Tupper Hall, Davis, CA 95616 USA
| |
Collapse
|
6
|
Fuchs E. Keith R. Porter Lecture, 1996. Of mice and men: genetic disorders of the cytoskeleton. Mol Biol Cell 1997; 8:189-203. [PMID: 9190201 PMCID: PMC276073 DOI: 10.1091/mbc.8.2.189] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Since the time when I was a postdoctoral fellow under the supervision of Dr. Howard Green, then at the Massachusetts Institute of Technology, I have been interested in understanding the molecular mechanisms underlying growth, differentiation, and development in the mammalian ectoderm. The ectoderm gives rise to epidermal keratinocytes and to neurons, which are the only two cell types of the body that devote most of their protein-synthesizing machinery to developing an elaborate cytoskeletal architecture composed of 10-nm intermediate filaments (IFs). Our interest is in understanding the architecture of the cytoskeleton in keratinocytes and in neurons, and in elucidating how perturbations in this architecture can lead to degenerative diseases of the skin and the nervous system. I will concentrate on the intermediate filament network of the skin and its associated genetic disorders, since this has been a long-standing interest of my laboratory at the University of Chicago.
Collapse
Affiliation(s)
- E Fuchs
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, University of Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Paladini RD, Takahashi K, Bravo NS, Coulombe PA. Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J Cell Biol 1996; 132:381-97. [PMID: 8636216 PMCID: PMC2120730 DOI: 10.1083/jcb.132.3.381] [Citation(s) in RCA: 332] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Injury to stratified epithelia causes a strong induction of keratins 6 (K6) and 16 (K16) in post-mitotic keratinocytes located at the wound edge. We show that induction of K6 and K16 occurs within 6 h after injury to human epidermis. Their subsequent accumulation in keratinocytes correlates with the profound reorganization of keratin filaments from a pan-cytoplasmic distribution to one in which filaments are aggregated in a juxtanuclear location, opposite to the direction of cell migration. This filament reorganization coincides with additional cytoarchitectural changes and the onset of re-epithelialization after 18 h post-injury. By following the assembly of K6 and K16 in vitro and in cultured cells, we find that relative to K5 and K14, a well-characterized keratin pair that is constitutively expressed in epidermis, K6 and K16 polymerize into short 10-nm filaments that accumulate near the nucleus, a property arising from K16. Forced expression of human K16 in skin keratinocytes of transgenic mice causes a retraction of keratin filaments from the cell periphery, often in a polarized fashion. These results imply that K16 may not have a primary structural function akin to epidermal keratins. Rather, they suggest that in the context of epidermal wound healing, the function of K16 could be to promote a reorganization of the cytoplasmic array of keratin filaments, an event that precedes the onset of keratinocyte migration into the wound site.
Collapse
Affiliation(s)
- R D Paladini
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
8
|
Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E, Fuchs E. The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J Cell Biol 1995; 129:1329-44. [PMID: 7539810 PMCID: PMC2120471 DOI: 10.1083/jcb.129.5.1329] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Keratin 5 and keratin 14 have been touted as the hallmarks of the basal keratin networks of all stratified squamous epithelia. Absence of K14 gives rise to epidermolysis bullosa simplex, a human blistering skin disorder involving cytolysis in the basal layer of epidermis. To address the puzzling question of why this disease is primarily manifested in skin rather than other stratified squamous epithelia, we ablated the K14 gene in mice and examined various tissues expressing this gene. We show that a key factor is the presence of another keratin, K15, which was hitherto unappreciated as a basal cell component. We show that the levels of K15 relative to K14 vary dramatically among stratified squamous epithelial tissues, and with neonatal development. In the absence of K14, K15 makes a bona fide, but ultrastructurally distinct, keratin filament network with K5. In the epidermis of neonatal mutant mice, K15 levels are low and do not compensate for the loss of K14. In contrast, the esophagus is unaffected in the neonatal mutant mice, but does appear to be fragile in the adult. Parallel to this phenomenon is that esophageal K14 is expressed at extremely low levels in the neonate, but rises in postnatal development. Finally, despite previous conclusions that the formation of suprabasal keratin filaments might depend upon K5/K14, we find that a wide variety of suprabasal networks composed of different keratins can form in the absence of K14 in the basal layer.
Collapse
Affiliation(s)
- C Lloyd
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Takahashi K, Folmer J, Coulombe PA. Increased expression of keratin 16 causes anomalies in cytoarchitecture and keratinization in transgenic mouse skin. J Cell Biol 1994; 127:505-20. [PMID: 7523421 PMCID: PMC2120213 DOI: 10.1083/jcb.127.2.505] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Injury to epidermis and other stratified epithelia triggers profound but transient changes in the pattern of keratin expression. In postmitotic cells located at the wound edge, a strong induction of K6, K16, and K17 synthesis occurs at the expense of the keratins produced under the normal situation. The functional significance of these alterations in keratin expression is not known. Here, we report that overexpression of a wild-type human K16 gene in a tissue-specific fashion in transgenic mice causes aberrant keratinization of the hair follicle outer root sheath and proximal epidermis, and it leads to hyperproliferation and increased thickness of the living layers (acanthosis), as well as cornified layers (hyperkeratosis). The pathogenesis of lesions in transgenic mouse skin begins with a reorganization of keratin filaments in postmitotic keratinocytes, and it progresses in a transgene level-dependent fashion to include disruption of keratinocyte cytoarchitecture and structural alterations in desmosomes at the cell surface. No evidence of cell lysis could be found at the ultrastructural level. These results demonstrate that the disruption of the normal keratin profile caused by increased K16 expression interferes with the program of terminal differentiation in outer root sheath and epidermis. They further suggest that when present at sufficiently high intracellular levels, K16, along with K6 and K17, appear capable of inducing a reorganization of keratin filaments in the cytoplasm of skin epithelial cells.
Collapse
Affiliation(s)
- K Takahashi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
10
|
Chan YM, Yu QC, Fine JD, Fuchs E. The genetic basis of Weber-Cockayne epidermolysis bullosa simplex. Proc Natl Acad Sci U S A 1993; 90:7414-8. [PMID: 7688477 PMCID: PMC47148 DOI: 10.1073/pnas.90.15.7414] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a group of autosomal dominant skin diseases characterized by blistering, due to mechanical-stress-induced degeneration of basal epidermal cells. Recently, it was discovered that the more severe types, Dowling-Meara and Koebner, are genetic disorders of the basal epidermal keratins, keratin 5 (K5) and keratin 14 (K14). Here, we show that the mildest type of EBS, Weber-Cockayne, is also a disorder of these keratins. Affected members of two unrelated families with Weber-Cockayne EBS had a T-->G point mutation in the second base position of codon 161 of one of two K5 alleles, leading to an Ile-->Ser mutation. This mutation was not present in unaffected members or in 156 alleles from normal individuals. Linkage analyses mapped the defect to the type II keratin gene cluster on chromosome 12q11-q13 (peak logarithm of odds score at theta = 0 of 3.0), providing strong additional evidence that this mutation is responsible for the Weber-Cockayne EBS phenotype. Conserved among type II keratins, Ile-161 is in the nonhelical head domain of K5, a region previously shown to be important for 10-nm filament assembly. The mutation generates a potential substrate site for protein kinase C, which could influence intermediate filament architecture, perhaps leading to the intrafilament association seen ultrastructurally in patients with the mutation.
Collapse
Affiliation(s)
- Y M Chan
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637
| | | | | | | |
Collapse
|
11
|
McKenna KE, Hughes AE, Bingham EA, Nevin NC. Linkage of epidermolysis bullosa simplex to keratin gene loci. J Med Genet 1992; 29:568-70. [PMID: 1381443 PMCID: PMC1016064 DOI: 10.1136/jmg.29.8.568] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epidermolysis bullosa simplex (EBS) is an autosomal dominant disorder characterised by intraepidermal blistering of the skin. Two families with Weber-Cockayne EBS have been analysed for linkage to keratin gene loci. In the first family, linkage was found to chromosome 17 markers flanking the keratin 14 gene (D17S74: Zmax = +2.45, theta = 0.10; COL1A1: Zmax = +0.97, theta = 0.00) and markers near the keratin 5 gene on chromosome 12 were excluded (D12S17: Z less than -2.0, theta = 0.08; COL2A1: Z less than -2.0, theta = 0.13). In contrast, the second family showed linkage to the region containing the keratin 5 gene (D12S17: Zmax = +1.37, theta = 0.08; COL2A1: Zmax = +0.33, theta = 0.15) and was not linked to the keratin 14 gene (D17S74: Z less than -2.0, theta = 0.14). The Weber-Cockayne form of EBS is genetically heterogeneous with linkage to different keratin gene loci.
Collapse
Affiliation(s)
- K E McKenna
- Department of Dermatology, Royal Victoria Hospital, Belfast, Northern Ireland
| | | | | | | |
Collapse
|
12
|
Affiliation(s)
- A M Buchberg
- Jefferson Cancer Institute, Department of Microbiology and Immunology, Philadelphia, PA 19107-5541
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
14
|
Choi Y, Fuchs E. TGF-beta and retinoic acid: regulators of growth and modifiers of differentiation in human epidermal cells. CELL REGULATION 1990; 1:791-809. [PMID: 1708287 PMCID: PMC361689 DOI: 10.1091/mbc.1.11.791] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the epidermis of skin, a fine balance exists between proliferating progenitor cells and terminally differentiating cells. We examined the effects of TGF-beta s and retinoic acid (RA) on controlling this balance in normal and malignant human epidermal keratinocytes cultured under conditions where most morphological and biochemical features of epidermis in vivo are retained. Our results revealed marked and pleiotropic effects of both TGF-beta and RA on keratinocytes. In contrast to retinoids, TGF-beta s acted on mitotically active basal cells to retard cell proliferation. Although withdrawal from the cell cycle is a necessary prerequisite for commitment to terminal differentiation, TGF-beta s inhibited normal keratinization in suprabasal cells and promoted the type of differentiation commonly associated with wound-healing and epidermal hyperproliferation. The actions of TGF-beta s and RA on normal keratinization were synergistic, whereas those on abnormal differentiation associated with hyperproliferation were antagonistic. These observations underscore the notion that environmental changes can act separately on proliferating and differentiating cells within the population. Under the conditions used here, the action of TGF-beta s on human keratinocytes was dominant over RA, and TGF-beta s did not seem to be induced as a consequence of RA treatment. This finding is consistent with the fact that RA accelerated, rather than inhibited, proliferation in raft cultures. Collectively, our data suggest that the effects of both factors on epidermal growth and differentiation are multifaceted and the extent to which their action is coupled in keratinocytes may vary under different conditions and/or in different species.
Collapse
Affiliation(s)
- Y Choi
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
15
|
Moll R, Schiller DL, Franke WW. Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J Cell Biol 1990; 111:567-80. [PMID: 1696264 PMCID: PMC2116178 DOI: 10.1083/jcb.111.2.567] [Citation(s) in RCA: 284] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major cytoskeletal polypeptide (Mr approximately 46,000; protein IT) of human intestinal epithelium was characterized by biochemical and immunological methods. The polypeptide, which was identified as a specific and genuine mRNA product by translation in vitro, reacted, in immunoblotting after SDS-PAGE, only with one of numerous cytokeratin (CK) antisera tested but with none of many monoclonal CK antibodies. In vitro, it formed heterotypic complexes with the type II CK 8, as shown by blot binding assays and gel electrophoresis in 4 M urea, and these complexes assembled into intermediate filaments (IFs) under appropriate conditions. A chymotrypsin-resistant Mr approximately 38,000 core fragment of protein IT could be obtained from cytoskeletal IFs, indicating its inclusion in a coiled coil. Antibodies raised against protein IT decorated typical CK fibril arrays in normal and transformed intestinal cells. Four proteolytic peptide fragments obtained from purified polypeptide IT exhibited significant amino acid sequence homology with corresponding regions of coils I and II of the rod domain of several other type I CKs. Immunocytochemically, the protein was specifically detected as a prominent component of intestinal and gastric foveolar epithelium, urothelial umbrella cells, and Merkel cells of epidermis. Sparse positive epithelial cells were noted in the thymus, bronchus, gall bladder, and prostate gland. The expression of protein IT was generally maintained in primary and metastatic colorectal carcinomas as well as in cell cultures derived therefrom. A corresponding protein was also found in several other mammalian species. We conclude that polypeptide IT is an integral IF component which is related, though somewhat distantly, to type I CKs, and, therefore, we propose to add it to the human CK catalogue as CK 20.
Collapse
Affiliation(s)
- R Moll
- Institute of Pathology, University of Mainz Medical School, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA. Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci U S A 1989; 86:9193-7. [PMID: 2687875 PMCID: PMC298460 DOI: 10.1073/pnas.86.23.9193] [Citation(s) in RCA: 516] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A related DNA fragment distinct from the epidermal growth factor receptor and ERBB2 genes was detected by reduced stringency hybridization of v-erbB to normal genomic human DNA. Characterization of the cloned DNA fragment mapped the region of v-erbB homology to three exons with closest identity of 64% and 67% to a contiguous region within the tyrosine kinase domains of the epidermal growth factor receptor and ERBB2 proteins, respectively. cDNA cloning revealed a predicted 148-kDa transmembrane polypeptide with structural features identifying it as a member of the ERBB gene family, prompting us to designate the gene as ERBB3. It was mapped to human chromosome 12q13 and was shown to be expressed as a 6.2-kilobase transcript in a variety of normal tissues of epithelial origin. Markedly elevated ERBB3 mRNA levels were demonstrated in certain human mammary tumor cell lines. These findings suggest that increased ERBB3 expression, as in the case of epidermal growth factor receptor and ERBB2, may play a role in some human malignancies.
Collapse
Affiliation(s)
- M H Kraus
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
17
|
Isolation, sequence, and expression of a human keratin K5 gene: transcriptional regulation of keratins and insights into pairwise control. Mol Cell Biol 1989. [PMID: 2476664 DOI: 10.1128/mcb.9.9.3685] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitotically active basal layers of most stratified squamous epithelia express 10 to 30% of their total protein as keratin. The two keratins specifically expressed in these cells are the type II keratin K5 (58 kilodaltons) and its corresponding partner, type I keratin K14 (50 kilodaltons), both of which are essential for the formation of 8-nm filaments. Dissecting the molecular mechanisms underlying the coordinate regulation of the two keratins is an important first step in understanding epidermal differentiation and in designing promoters that will enable delivery and expression of foreign gene products in stratified squamous epithelia, e.g., skin. Previously, we reported the sequence of the gene encoding human K14 (D. Marchuk, S. McCrohon, and E. Fuchs, Cell 39:491-498, 1984; Marchuk et al., Proc. Natl. Acad. Sci. USA 82:1609-1613, 1985). We have now isolated and characterized the gene encoding human K5. The sequence of the coding portion of this gene matched perfectly with that of a partial K5 cDNA sequence obtained from a cultured human epidermal library (R. Lersch and E. Fuchs, Mol. Cell. Biol. 8:486-493, 1988), and gene transfection studies indicated that the gene is functional. Nuclear runoff experiments demonstrated that the K5 and K14 genes were both transcribed at dramatically higher levels in cultured human epidermal cells than in fibroblasts, indicating that at least part of the regulation of the expression of this keratin pair is at the transcriptional level. When the K5 gene was transfected transiently into NIH 3T3 fibroblasts, foreign expression of the gene caused the appearance of endogenous mouse K14 and the subsequent formation of a keratin filament array in the cells. In this case, transcriptional changes did not appear to be involved in the regulation, suggesting that there may be multiple control mechanisms underlying the pairwise expression of keratins.
Collapse
|
18
|
Lersch R, Stellmach V, Stocks C, Giudice G, Fuchs E. Isolation, sequence, and expression of a human keratin K5 gene: transcriptional regulation of keratins and insights into pairwise control. Mol Cell Biol 1989; 9:3685-97. [PMID: 2476664 PMCID: PMC362429 DOI: 10.1128/mcb.9.9.3685-3697.1989] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mitotically active basal layers of most stratified squamous epithelia express 10 to 30% of their total protein as keratin. The two keratins specifically expressed in these cells are the type II keratin K5 (58 kilodaltons) and its corresponding partner, type I keratin K14 (50 kilodaltons), both of which are essential for the formation of 8-nm filaments. Dissecting the molecular mechanisms underlying the coordinate regulation of the two keratins is an important first step in understanding epidermal differentiation and in designing promoters that will enable delivery and expression of foreign gene products in stratified squamous epithelia, e.g., skin. Previously, we reported the sequence of the gene encoding human K14 (D. Marchuk, S. McCrohon, and E. Fuchs, Cell 39:491-498, 1984; Marchuk et al., Proc. Natl. Acad. Sci. USA 82:1609-1613, 1985). We have now isolated and characterized the gene encoding human K5. The sequence of the coding portion of this gene matched perfectly with that of a partial K5 cDNA sequence obtained from a cultured human epidermal library (R. Lersch and E. Fuchs, Mol. Cell. Biol. 8:486-493, 1988), and gene transfection studies indicated that the gene is functional. Nuclear runoff experiments demonstrated that the K5 and K14 genes were both transcribed at dramatically higher levels in cultured human epidermal cells than in fibroblasts, indicating that at least part of the regulation of the expression of this keratin pair is at the transcriptional level. When the K5 gene was transfected transiently into NIH 3T3 fibroblasts, foreign expression of the gene caused the appearance of endogenous mouse K14 and the subsequent formation of a keratin filament array in the cells. In this case, transcriptional changes did not appear to be involved in the regulation, suggesting that there may be multiple control mechanisms underlying the pairwise expression of keratins.
Collapse
Affiliation(s)
- R Lersch
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, University of Chicago, Illinois 60637
| | | | | | | | | |
Collapse
|
19
|
Sparrow LG, Robinson CP, McMahon DT, Rubira MR. The amino acid sequence of component 7c, a type II intermediate-filament protein from wool. Biochem J 1989; 261:1015-22. [PMID: 2803231 PMCID: PMC1138930 DOI: 10.1042/bj2611015] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Component 7c is one of the four homologous type II intermediate-filament proteins that, by association with the complementary type I proteins, form the microfibrils or intermediate filaments in wool. Component 7c was isolated as the S-carboxymethyl derivative from Merino wool and its amino acid sequence was determined by manual and automatic sequencing of peptides produced by chemical and enzymic cleavage reactions. It is an N-terminally blocked molecule of 491 residues and Mr (not including the blocking group) of 55,600; the nature of the blocking group has not been determined. The predicted secondary structure shows that component 7c conforms to the now accepted pattern for intermediate-filament proteins in having a central rod-like region of approximately 310 residues of coiled-coil alpha-helix flanked by non-helical N-and C-terminal regions. The central region is divided by three non-coiled-coil linking segments into four helical segments 1A, 1B, 2A and 2B. The N-and C-terminal non-helical segments are 109 and 71 residues respectively and are rich in cysteine. Details of procedures use in determining the sequence of component 7c have been deposited as a Supplementary Publication SUP 50152 (65 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1989) 257,5. The information comprises: (1) details of chemical and enzymic methods used for cleavage of component 7c, peptides CN1, CN2 and CN3, and various other peptides, (2) details of the procedures used for the fractionation and purification of peptides from (1), including Figures showing the elution profiles from the chromatographic steps used, (3) details of methods used to determine the C-terminal sequence of peptide CN3, and (4) detailed evidence to justify a number of corrections to the previously published sequence.
Collapse
Affiliation(s)
- L G Sparrow
- C.S.I.R.O. Division of Wool Technology, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
20
|
Kopan R, Fuchs E. The use of retinoic acid to probe the relation between hyperproliferation-associated keratins and cell proliferation in normal and malignant epidermal cells. J Cell Biol 1989; 109:295-307. [PMID: 2473080 PMCID: PMC2115483 DOI: 10.1083/jcb.109.1.295] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
When cells from normal human epidermis and from the human squamous cell carcinoma line SCC-13 were seeded on floating rafts of collagen and fibroblasts, they stratified and underwent terminal differentiation. Although the program of differentiation in SCC-13 cells was morphologically abnormal, the cultures resembled normal epidermal raft cultures by expressing the terminal differentiation-specific keratins, K1/K10, and by restricting their proliferative capacity to the basal-like cells of the population. In addition, the differentiating cells of both normal and SCC-13 raft cultures expressed keratins K6 and K16, which are not normally expressed in epidermis, but are synthesized suprabasally during wound-healing and in various epidermal diseases associated with hyperproliferation. While the behavior of normal and SCC-13 rafts was quite similar when they were cultured over normal medium, significant biochemical differences began to emerge when the cultures were exposed to retinoic acid. Most notably, while the SCC-13 cultures still stratified extensively, they showed a marked inhibition of both abnormal (K6/K16) and normal (K1/K10) differentiation-associated keratins, concomitantly with an overall disappearance of differentiated phenotype. Surprisingly, the reduction in K6/K16 in retinoid-treated SCC-13 cultures was not accompanied by a decrease in cell proliferation. Using immunohistochemistry combined with [3H]thymidine labeling, we demonstrate that while the expression of K6 and K16 are often associated with hyperproliferation, these keratins are only produced in the nondividing, differentiating populations of proliferating cultures. Moreover, since their expression can be suppressed without a corresponding decrease in proliferation, the expression of these keratins cannot be essential to the nature of the hyperproliferative epidermal cell.
Collapse
Affiliation(s)
- R Kopan
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
21
|
Stoler A, Kopan R, Duvic M, Fuchs E. Use of monospecific antisera and cRNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation. J Cell Biol 1988; 107:427-46. [PMID: 2458356 PMCID: PMC2115222 DOI: 10.1083/jcb.107.2.427] [Citation(s) in RCA: 296] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report here the isolation and characterization of three antisera, each of which is specific for a single keratin from one of the three different pairs (K1/K10, K14/K5, K16/K6) that are differentially expressed in normal human epidermis and in epidermal diseases of hyperproliferation. We have used these antisera in conjunction with monospecific cRNA probes for epidermal keratin mRNAs to investigate pathways of differentiation in human epidermis and epidermal diseases in vivo and in epidermal cells cultured from normal skin and from squamous cell carcinomas in vitro. Specifically, our results suggest that: (a) the basal-specific keratin mRNAs are down-regulated upon commitment to terminal differentiation, but their encoded proteins are stable, and can be detected throughout the spinous layers; (b) the hyperproliferation-associated keratin mRNAs are expressed at a low level throughout normal epidermis when their encoded proteins are not expressed, but are synthesized at high levels in the suprabasal layers of hyperproliferating epidermis, coincident with the induced expression of the hyperproliferation-associated keratins in these cells; and (c) concomitantly with the induction of the hyperproliferation-associated keratins in the suprabasal layers of the epidermis is the down-regulation of the expression of the terminal differentiation-specific keratins. These data have important implications for our understanding of normal epidermal differentiation and the deviations from this process in the course of epidermal diseases of hyperproliferation.
Collapse
Affiliation(s)
- A Stoler
- Department of Molecular Genetics, University of Chicago, Illinois 60637
| | | | | | | |
Collapse
|