1
|
Gazda LD, Joóné Matúz K, Nagy T, Mótyán JA, Tőzsér J. Biochemical characterization of Ty1 retrotransposon protease. PLoS One 2020; 15:e0227062. [PMID: 31917798 PMCID: PMC6952103 DOI: 10.1371/journal.pone.0227062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023] Open
Abstract
Ty1 is one of the many transposons in the budding yeast Saccharomyces cerevisiae. The life-cycle of Ty1 shows numerous similarities with that of retroviruses, e.g. the initially synthesized polyprotein precursor undergoes proteolytic processing by the protease. The retroviral proteases have become important targets of current antiretroviral therapies due to the critical role of the limited proteolysis of Gag-Pol polyprotein in the replication cycle and they therefore belong to the most well-studied enzymes. Comparative analyses of retroviral and retroviral-like proteases can help to explore the key similarities and differences which may help understanding how resistance is developed against protease inhibitors, but the available information about the structural and biochemical characteristics of retroviral-like, and especially retrotransposon, proteases is limited. To investigate the main characteristics of Ty1 retrotransposon protease of Saccharomyces cerevisiae, untagged and His6-tagged forms of Ty1 protease were expressed in E. coli. After purification of the recombinant proteins, activity measurements were performed using synthetic oligopeptide and fluorescent recombinant protein substrates, which represented the wild-type and the modified forms of naturally occurring cleavage sites of the protease. We investigated the dependence of enzyme activity on different reaction conditions (pH, temperature, ionic strength, and urea concentration), and determined enzyme kinetic parameters for the studied substrates. Inhibitory potentials of 10 different protease inhibitors were also tested. Ty1 protease was not inhibited by the inhibitors which have been designed against human immunodeficiency virus type 1 protease and are approved as antiretroviral therapeutics. A quaternary structure of homodimeric Ty1 protease was proposed based on homology modeling, and this structure was used to support interpretation of experimental results and to correlate some structural and biochemical characteristics with that of other retroviral proteases.
Collapse
Affiliation(s)
- Lívia Diána Gazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Joóné Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (JAM); (JT)
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (JAM); (JT)
| |
Collapse
|
2
|
Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3. Viruses 2016; 8:v8070193. [PMID: 27428991 PMCID: PMC4974528 DOI: 10.3390/v8070193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation.
Collapse
|
3
|
The Ty1 Retrotransposon Restriction Factor p22 Targets Gag. PLoS Genet 2015; 11:e1005571. [PMID: 26451601 PMCID: PMC4599808 DOI: 10.1371/journal.pgen.1005571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
A novel form of copy number control (CNC) helps maintain a low number of Ty1 retrovirus-like transposons in the Saccharomyces genome. Ty1 produces an alternative transcript that encodes p22, a trans-dominant negative inhibitor of Ty1 retrotransposition whose sequence is identical to the C-terminal half of Gag. The level of p22 increases with copy number and inhibits normal Ty1 virus-like particle (VLP) assembly and maturation through interactions with full length Gag. A forward genetic screen for CNC-resistant (CNCR) mutations in Ty1 identified missense mutations in GAG that restore retrotransposition in the presence of p22. Some of these mutations map within a predicted UBN2 domain found throughout the Ty1/copia family of long terminal repeat retrotransposons, and others cluster within a central region of Gag that is referred to as the CNCR domain. We generated multiple alignments of yeast Ty1-like Gag proteins and found that some Gag proteins, including those of the related Ty2 elements, contain non-Ty1 residues at multiple CNCR sites. Interestingly, the Ty2-917 element is resistant to p22 and does not undergo a Ty1-like form of CNC. Substitutions conferring CNCR map within predicted helices in Ty1 Gag that overlap with conserved sequence in Ty1/copia, suggesting that p22 disturbs a central function of the capsid during VLP assembly. When hydrophobic residues within predicted helices in Gag are mutated, Gag level remains unaffected in most cases yet VLP assembly and maturation is abnormal. Gag CNCR mutations do not alter binding to p22 as determined by co-immunoprecipitation analyses, but instead, exclude p22 from Ty1 VLPs. These findings suggest that the CNCR alleles enhance retrotransposition in the presence of p22 by allowing productive Gag-Gag interactions during VLP assembly. Our work also expands the strategies used by retroviruses for developing resistance to Gag-like restriction factors to now include retrotransposons. The presence of transposable elements in the eukaryotic genome threatens genomic stability and normal gene function, thus various defense mechanisms exist to silence element expression and target integration to benign locations in the genome. Even though the budding yeast Saccharomyces lacks many of the defense systems present in other eukaryotes, including RNAi, DNA methylation, and APOBEC3 proteins, they maintain low numbers of mobile elements in their genome. In the case of the Saccharomyces retrotransposon Ty1, a system called copy number control (CNC) helps determine the number of elements in the genome. Recently, we demonstrated that the mechanism of CNC relies on a trans-acting protein inhibitor of Ty1 expressed from the element itself. This protein inhibitor, called p22, impacts the replication of Ty1 as its copy number increases. To identify a molecular target of p22, mutagenized Ty1 was subjected to a forward genetic screen for CNC-resistance. Mutations in specific domains of Gag, including the UBN2 Gag motif and a novel region we have named the CNCR domain, confer CNCR by preventing the incorporation of p22 into assembling virus-like particles (VLPs), which restores maturation and completion of the Ty1 life cycle. The mechanism of Ty1 inhibition by p22 is conceptually similar to Gag-like restriction factors in mammals since they inhibit normal particle function. In particular, resistance to p22 and the enJS56A1 restriction factor of sheep involves exclusion of the restriction factor during particle assembly, although Ty1 CNCR achieves this in a way that is distinct from the Jaagsiekte retrovirus escape mutants. Our work introduces an intriguing variation on resistance mechanisms to retroviral restriction factors.
Collapse
|
4
|
Nishida Y, Pachulska-Wieczorek K, Błaszczyk L, Saha A, Gumna J, Garfinkel DJ, Purzycka KJ. Ty1 retrovirus-like element Gag contains overlapping restriction factor and nucleic acid chaperone functions. Nucleic Acids Res 2015; 43:7414-31. [PMID: 26160887 PMCID: PMC4551931 DOI: 10.1093/nar/gkv695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
Ty1 Gag comprises the capsid of virus-like particles and provides nucleic acid chaperone (NAC) functions during retrotransposition in budding yeast. A subgenomic Ty1 mRNA encodes a truncated Gag protein (p22) that is cleaved by Ty1 protease to form p18. p22/p18 strongly inhibits transposition and can be considered an element-encoded restriction factor. Here, we show that only p22 and its short derivatives restrict Ty1 mobility whereas other regions of GAG inhibit mobility weakly if at all. Mutational analyses suggest that p22/p18 is synthesized from either of two closely spaced AUG codons. Interestingly, AUG1p18 and AUG2p18 proteins display different properties, even though both contain a region crucial for RNA binding and NAC activity. AUG1p18 shows highly reduced NAC activity but specific binding to Ty1 RNA, whereas AUG2p18 shows the converse behavior. p22/p18 affects RNA encapsidation and a mutant derivative defective for RNA binding inhibits the RNA chaperone activity of the C-terminal region (CTR) of Gag-p45. Moreover, affinity pulldowns show that p18 and the CTR interact. These results support the idea that one aspect of Ty1 restriction involves inhibition of Gag-p45 NAC functions by p22/p18-Gag interactions.
Collapse
Affiliation(s)
- Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julita Gumna
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
5
|
Krastanova O, Hadzhitodorov M, Pesheva M. Ty Elements of the YeastSaccharomyces Cerevisiae. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
6
|
Checkley MA, Mitchell JA, Eizenstat LD, Lockett SJ, Garfinkel DJ. Ty1 gag enhances the stability and nuclear export of Ty1 mRNA. Traffic 2013; 14:57-69. [PMID: 22998189 PMCID: PMC3548082 DOI: 10.1111/tra.12013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 11/28/2022]
Abstract
Retrotransposon and retroviral RNA delivery to particle assembly sites is essential for their replication. mRNA and Gag from the Ty1 retrotransposon colocalize in cytoplasmic foci, which are required for transposition and may be the sites for virus-like particle (VLP) assembly. To determine which Ty1 components are required to form mRNA/Gag foci, localization studies were performed in a Ty1-less strain expressing galactose-inducible Ty1 plasmids (pGTy1) containing mutations in GAG or POL. Ty1 mRNA/Gag foci remained unaltered in mutants defective in Ty1 protease (PR) or deleted for POL. However, Ty1 mRNA containing a frameshift mutation (Ty1fs) that prevents the synthesis of all proteins accumulated in the nucleus. Ty1fs RNA showed a decrease in stability that was mediated by the cytoplasmic exosome, nonsense-mediated decay (NMD) and the processing body. Localization of Ty1fs RNA remained unchanged in an nmd2Δ mutant. When Gag and Ty1fs mRNA were expressed independently, Gag provided in trans increased Ty1fs RNA level and restored localization of Ty1fs RNA in cytoplasmic foci. Endogenously expressed Gag also localized to the nuclear periphery independent of RNA export. These results suggest that Gag is required for Ty1 mRNA stability, efficient nuclear export and localization into cytoplasmic foci.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jessica A. Mitchell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Linda D. Eizenstat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | | | - David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
7
|
Wilhelm FX, Wilhelm M, Gabriel A. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 2005; 110:269-87. [PMID: 16093680 DOI: 10.1159/000084960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022] Open
Abstract
Integrase (IN) and reverse transcriptase (RT) play a central role in transposition of retroelements. The mechanism of integration by IN and the steps of the replication process mediated by RT are briefly described here. Recently, active recombinant forms of Ty1 IN and RT have been obtained. This has allowed a more detailed understanding of their biochemical and structural properties and has made possible combined in vitro and in vivo analyses of their functions. A focus of this review is to discuss some of the results obtained thus far with these two recombinant proteins and to propose future directions.
Collapse
Affiliation(s)
- F-X Wilhelm
- Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
8
|
Garfinkel DJ, Nyswaner K, Wang J, Cho JY. Post-transcriptional Cosuppression of Ty1 Retrotransposition. Genetics 2003; 165:83-99. [PMID: 14504219 PMCID: PMC1462740 DOI: 10.1093/genetics/165.1.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
To determine whether homology-dependent gene silencing or cosuppression mechanisms underlie copy number control (CNC) of Ty1 retrotransposition, we introduced an active Ty1 element into a naïve strain. Single Ty1 element retrotransposition was elevated in a Ty1-less background, but decreased dramatically when additional elements were present. Transcription from the suppressing Ty1 elements enhanced CNC but translation or reverse transcription was not required. Ty1 CNC occurred with a transcriptionally active Ty2 element, but not with Ty3 or Ty5 elements. CNC also occurred when the suppressing Ty1 elements were transcriptionally silenced, fused to the constitutive PGK1 promoter, or contained a minimal segment of mostly TYA1-gag sequence. Ty1 transcription of a multicopy element expressed from the GAL1 promoter abolished CNC, even when the suppressing element was defective for transposition. Although Ty1 RNA and TyA1-gag protein levels increased with the copy number of expressible elements, a given element's transcript level varied less than twofold regardless of whether the suppressing elements were transcriptionally active or repressed. Furthermore, a decrease in the synthesis of Ty1 cDNA is strongly associated with Ty1 CNC. Together our results suggest that Ty1 cosuppression can occur post-transcriptionally, either prior to or during reverse transcription.
Collapse
Affiliation(s)
- David J Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | | | | | |
Collapse
|
9
|
Feuerbach F, Lucas H. The protease and reverse transcriptase of the tobacco LTR retrotransposon Tnt1 are enzymatically active when expressed in Escherichia coli. PLANT MOLECULAR BIOLOGY 2001; 46:481-9. [PMID: 11485204 DOI: 10.1023/a:1010614918763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The open reading frame (ORF) of the tobacco retrotransposon Tnt1-94 was over-expressed in Escherichia coli to assay its protease and reverse transcriptase (RT) enzymatic activities. In E. coli, Tnt1-94 polyprotein is cleaved off by the element-encoded protease to release a Gag protein with an apparent molecular mass of 37 kDa that forms high-density aggregates. The catalytic site of Tnt1-94 protease (D-T-A) as determined by deletion analysis differs from that of retroviruses and of well-characterized retrotransposons (D-T/S-G). The cleaved or uncleaved ORF of Tnt1-94 displays an exogenous RT activity. Over-expression of plant retrotransposons ORFs in E. coli provides a very useful strategy to assay the enzymatic activities of their proteins and to determine their catalytic sites.
Collapse
Affiliation(s)
- F Feuerbach
- Institut National de la Recherche Agronomique, Laboratoire de Biologie Cellulaire, Versailles, France
| | | |
Collapse
|
10
|
Roth JF, Kingsman SM, Kingsman AJ, Martin-Rendon E. Possible regulatory function of the Saccharomyces cerevisiae Ty1 retrotransposon core protein. Yeast 2000; 16:921-32. [PMID: 10870103 DOI: 10.1002/1097-0061(200007)16:10<921::aid-yea588>3.0.co;2-#] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Ty1 retrotransposon encodes proteins and RNA that assemble into virus-like particles (VLPs) as part of the life cycle of the retro-element. The Tya protein, which is equivalent to the retroviral Gag, is the major structural component of these particles. In this work, we demonstrate that Tya proteins fulfil other functions apart from their structural role. We show that Tya interacts in vitro with the Ty1 RNA domain required for RNA packaging, suggesting that this RNA-protein interaction may direct the packaging process. Furthermore, the overexpression of both Tya proteins, i.e. p1, the primary translation product, and p2, the mature form, increases endogenous Ty1 RNA levels in trans without increasing translation significantly. These observations suggest that Tya may exert a regulatory function during transposition. Interestingly, however, only p2, the mature form of Tya, trans-activates transposition of a marked genomic Ty element. This confirms that processing is required for transposition.
Collapse
Affiliation(s)
- J F Roth
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
11
|
Abstract
Virus-like particle (VLP) assembly is a crucial step of the life cycle of retrotransposons. The S. cerevisiae Ty elements represent an interesting model for the analysis of these particles and thus have been studied extensively. Our current knowledge of the organisation and assembly of Ty1 and Ty3 VLPs is reviewed here. This includes the mechanism of assembly, the role of the Tya core protein during VLP formation and the RNA packaging process. The physical properties of Ty1 VLPs are also described and the latest three-dimensional Ty1 VLP reconstructions are shown. In addition, the relevance of these studies is discussed in the context of retro-element biology.
Collapse
Affiliation(s)
- J F Roth
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
12
|
Cristofari G, Ficheux D, Darlix JL. The GAG-like protein of the yeast Ty1 retrotransposon contains a nucleic acid chaperone domain analogous to retroviral nucleocapsid proteins. J Biol Chem 2000; 275:19210-7. [PMID: 10766747 DOI: 10.1074/jbc.m001371200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reverse transcription process for retroviruses and retrotransposons takes place in a nucleocore structure in the virus or virus-like particle. In retroviruses the major protein of the nucleocore is the nucleocapsid protein (NC protein), which derives from the C-terminal region of GAG. Retroviral NC proteins are formed of either one or two CCHC zinc finger(s) flanked by basic residues and have nucleic acid chaperone and match-maker properties essential for virus replication. Interestingly, the GAG protein of a number of retroelements including Spumaviruses does not possess the hallmarks of retroviral GAGs and in particular lacks a canonical NC protein. In an attempt to search for a nucleic acid chaperone activity in this class of retroelements we used the yeast Ty1 retrotransposon as a model system. Results shows that the C-terminal region of Ty1 GAG contains a nucleic acid chaperone domain capable of promoting the annealing of primer tRNA(i)(Met) to the multipartite primer binding site, Ty1 RNA dimerization and initiation of reverse transcription. Moreover Ty1 RNA dimerization, in a manner similar to Ty3 but unlike retroviral RNAs, appears to be mediated by tRNA(i)(Met). These findings suggest that nucleic acid chaperone proteins probably are general co-factors for reverse transcriptases.
Collapse
Affiliation(s)
- G Cristofari
- LaboRetro, Unité de Virologie Humaine, INSERM (412), France
| | | | | |
Collapse
|
13
|
Rattray AJ, Shafer BK, Garfinkel DJ. The Saccharomyces cerevisiae DNA recombination and repair functions of the RAD52 epistasis group inhibit Ty1 transposition. Genetics 2000; 154:543-56. [PMID: 10655210 PMCID: PMC1460957 DOI: 10.1093/genetics/154.2.543] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA transcribed from the Saccharomyces cerevisiae retrotransposon Ty1 accumulates to a high level in mitotically growing haploid cells, yet transposition occurs at very low frequencies. The product of reverse transcription is a linear double-stranded DNA molecule that reenters the genome by either Ty1-integrase-mediated insertion or homologous recombination with one of the preexisting genomic Ty1 (or delta) elements. Here we examine the role of the cellular homologous recombination functions on Ty1 transposition. We find that transposition is elevated in cells mutated for genes in the RAD52 recombinational repair pathway, such as RAD50, RAD51, RAD52, RAD54, or RAD57, or in the DNA ligase I gene CDC9, but is not elevated in cells mutated in the DNA repair functions encoded by the RAD1, RAD2, or MSH2 genes. The increase in Ty1 transposition observed when genes in the RAD52 recombinational pathway are mutated is not associated with a significant increase in Ty1 RNA or proteins. However, unincorporated Ty1 cDNA levels are markedly elevated. These results suggest that members of the RAD52 recombinational repair pathway inhibit Ty1 post-translationally by influencing the fate of Ty1 cDNA.
Collapse
Affiliation(s)
- A J Rattray
- Gene Regulation and Chromosome Biology Laboratory, ABL-Basic Research Program, NCI-FCRDC, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
14
|
Hajek KL, Friesen PD. Proteolytic processing and assembly of gag and gag-pol proteins of TED, a baculovirus-associated retrotransposon of the gypsy family. J Virol 1998; 72:8718-24. [PMID: 9765414 PMCID: PMC110286 DOI: 10.1128/jvi.72.11.8718-8724.1998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TED (transposable element D) is an env-containing member of the gypsy family of retrotransposons that represents a possible retrovirus of invertebrates. This lepidopteran (moth) retroelement contains gag and pol genes that encode proteins capable of forming viruslike particles (VLP) with reverse transcriptase. Since VLP are likely intermediates in TED transposition, we investigated the roles of gag and pol in TED capsid assembly and maturation. By using constructed baculovirus vectors and TED Gag-specific antiserum, we show that the principal translation product of gag (Pr55(gag)) is cleaved to produce a single VLP structural protein, p37(gag). Replacement of Asp436 within the retrovirus-like active site of the pol-encoded protease (PR) abolished Pr55(gag) cleavage and demonstrated the requirement for PR in capsid processing. As shown by expression of an in-frame fusion of TED gag and pol, PR is derived from the Gag-Pol polyprotein Pr195(gag-pol). The PR cleavage site within Pr55(gag) was mapped to a position near the junction of a basic, nucleocapsid-like domain and a C-terminal acidic domain. Once released by cleavage, the C-terminal fragment was not detected. This acidic fragment was dispensable for VLP assembly, as demonstrated by the formation of VLP by C-terminal Pr55(gag) truncation proteins and replacement of the acidic domain with a heterologous protein. In contrast, C-terminal deletions that extended into the adjacent nucleocapsid-like domain of Pr55(gag) abolished VLP recovery and demonstrated that this central region contributes to VLP assembly or stability, or both. Collectively, these data suggest that the single TED protein p37(gag) provides both capsid and nucleocapsid functions. TED may therefore use a simple processing strategy for VLP assembly and genome packaging.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- DNA Primers/genetics
- DNA, Viral/genetics
- Endogenous Retroviruses/genetics
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, pol/genetics
- Gene Products, pol/metabolism
- Genes, gag
- Genes, pol
- Kinetics
- Models, Biological
- Moths/genetics
- Moths/virology
- Mutation
- Nucleopolyhedroviruses/genetics
- Nucleopolyhedroviruses/metabolism
- Protein Processing, Post-Translational
- Retroelements
- Spodoptera
Collapse
Affiliation(s)
- K L Hajek
- Graduate Program in Cellular and Molecular Biology, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Lee BS, Lichtenstein CP, Faiola B, Rinckel LA, Wysock W, Curcio MJ, Garfinkel DJ. Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p. Genetics 1998; 148:1743-61. [PMID: 9560391 PMCID: PMC1460110 DOI: 10.1093/genetics/148.4.1743] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rtt4-1 (regulator of Ty transposition) is a cellular mutation that permits a high level of spontaneous Ty1 retrotransposition in Saccharomyces cerevisiae. The RTT4 gene is allelic with SSL2 (RAD25), which encodes a DNA helicase present in basal transcription (TFIIH) and nucleotide excision repair (NER) complexes. The ssl2-rtt (rtt4-1) mutation stimulates Ty1 retrotransposition, but does not alter Ty1 target site preferences, or increase cDNA or mitotic recombination. In addition to ssl2-rtt, the ssl2-dead and SSL2-1 mutations stimulate Ty1 transposition without altering the level of Ty1 RNA or proteins. However, the level of Ty1 cDNA markedly increases in the ssl2 mutants. Like SSL2, certain mutations in another NER/TFIIH DNA helicase encoded by RAD3 stimulate Ty1 transposition. Although Ssl2p and Rad3p are required for NER, inhibition of Ty1 transposition is independent of Ssl2p and Rad3p NER functions. Our work suggests that NER/TFIIH subunits antagonize Ty1 transposition posttranslationally by inhibiting reverse transcription or destabilizing Ty1 cDNA.
Collapse
Affiliation(s)
- B S Lee
- Gene Regulation and Chromosome Biology Laboratory, Advanced BioScience Laboratories-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Luschnig C, Bachmair A. RNA packaging of yeast retrotransposon Ty1 in the heterologous host, Escherichia coli. Biol Chem 1997; 378:39-46. [PMID: 9049063 DOI: 10.1515/bchm.1997.378.1.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Expression of components of the yeast retrotransposon Ty1 in E. coli was used to study early steps of retrotransposition. We find that polypeptides encompassing the capsid-forming component of Ty1 can assemble into particles in the heterologous host. Ty RNA can be detected in particle fractions. RNA packaging depends on features in the 5' part of Ty RNA, because deletion of 5' proximal sequences leads to decreased packaging efficiency. Protein domains required for the RNA packaging process reside between amino acids 146 and 394 of the capsid protein. The data presented also indicate that several early steps in the Ty1 life cycle can occur in a cellular environment which differs from yeast cytoplasm, supporting the notion that these steps are independent of host factors.
Collapse
Affiliation(s)
- C Luschnig
- Department of Cytology and Genetics, University of Vienna, Austria
| | | |
Collapse
|
17
|
Haoudi A, Kim MH, Champion S, Best-Belpomme M, Maisonhaute C. The Gag polypeptides of the Drosophila 1731 retrotransposon are associated to virus-like particles and to nuclei. FEBS Lett 1995; 377:67-72. [PMID: 8543022 DOI: 10.1016/0014-5793(95)01305-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1731 is a Drosophila melanogaster retrotransposon whose nucleotide sequence shows a proviral architecture with two long terminal repeats (LTRs) framing two internal Open Reading Frames (ORFs). The pol ORF2 of this mobile genetic element was demonstrated to code for an active Reverse Transcriptase (RT) and the ORF1 is expected to code for the structural Gag proteins of the virus-like particles (VLP). Using specific anti-Gag antibodies, we have characterized the 1731 Gag polypeptides expressed either in vitro or in Kc Drosophila melanogaster cultured cells. Together with the 1731 RT, the largest, likely post-translationaly-modified Gag polypeptides are gathered into cytoplasmic virus-like particles. Moreover and consistent with the nuclear localization signal present in the Gag sequence, we observed that a short 1731 Gag polypeptide is associated to the cell nuclei.
Collapse
Affiliation(s)
- A Haoudi
- Laboratoire de Genetique Cellulaire et Moleculaire, UA 1135 CNRS, Université Pierre and Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
18
|
Farabaugh PJ. Post-transcriptional regulation of transposition by Ty retrotransposons of Saccharomyces cerevisiae. J Biol Chem 1995; 270:10361-4. [PMID: 7737964 DOI: 10.1074/jbc.270.18.10361] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA
| |
Collapse
|
19
|
Luschnig C, Hess M, Pusch O, Brookman J, Bachmair A. The gag homologue of retrotransposon Ty1 assembles into spherical particles in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:739-44. [PMID: 7737172 DOI: 10.1111/j.1432-1033.1995.0739m.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Expression of TyA (reading frame A) of the yeast retrotransposon Ty1 in Escherichia coli is possible by using efficient transcriptional and translational initiation signals. When expressed in E. coli, the gag homologue of Ty1 assembles into spherical particles similar, but not identical to virus-like particles in the natural host of Ty1, Saccharomyces cerevisiae. Deletion analysis reveals a domain in the C-terminus of TyA that is essential for the assembly process. These findings indicate that an early step of the retroelement life cycle, assembly of the gag homologue into spherical particles, does not depend on specific host factors. The experiments also demonstrate that Ty1 Gag fusion proteins, potential tools for immunization, can be produced in E. coli, an organism that lacks endogenous retrotransposons.
Collapse
Affiliation(s)
- C Luschnig
- Department of Cytology and Genetics, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
20
|
Kervinen J, Törmäkangas K, Runeberg-Roos P, Guruprasad K, Blundell T, Teeri TH. Structure and possible function of aspartic proteinases in barley and other plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 362:241-54. [PMID: 8540324 DOI: 10.1007/978-1-4615-1871-6_28] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J Kervinen
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
21
|
Labrador M, Fontdevila A. High transposition rates of Osvaldo, a new Drosophila buzzatii retrotransposon. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:661-74. [PMID: 7545973 DOI: 10.1007/bf00297273] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transposition of a new Drosophila retrotransposon was investigated. Total genomic Southern analysis and polytene in situ hybridizations in D. buzzatii strains and other related species using a 6 kb D. buzzatii clone (cDb314) showed a dispersed, repetitive DNA pattern, suggesting that this clone contains a transposable element (TE). We have sequenced the cDb314 clone and demonstrated that it contains all the conserved protein sequences and motifs typical of retrovirus-related sequences. Although cDb314 does not include the complete TE, the protein sequence alignment demonstrates that it includes a defective copy of a new long terminal repeat (LTR) retrotransposon, related to the gypsy family, which we have named Osvaldo. Using a D. buzzatii inbred line in which all insertion sites are known, we have measured Osvaldo transposition rates in hybrids between this D. buzzatii line and its sibling species D. koepferae. The results show that Osvaldo transposes in bursts at high rate, both in the D. buzzatii inbred line and in species hybrids.
Collapse
Affiliation(s)
- M Labrador
- Departament de Genètica i de Microbiología, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
22
|
Curcio MJ, Garfinkel DJ. Heterogeneous functional Ty1 elements are abundant in the Saccharomyces cerevisiae genome. Genetics 1994; 136:1245-59. [PMID: 8013902 PMCID: PMC1205905 DOI: 10.1093/genetics/136.4.1245] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Despite the abundance of Ty1 RNA in Saccharomyces cerevisiae, Ty1 retrotransposition is a rare event. To determine whether transpositional dormancy is the result of defective Ty1 elements, functional and defective alleles of the retrotransposon in the yeast genome were quantitated. Genomic Ty1 elements were isolated by gap repair-mediated recombination of pGTy1-H3(delta 475-3944) HIS3, a multicopy plasmid containing a GAL1/Ty1-H3 fusion element lacking most of the gag domain (TYA) and the protease (PR) and integrase (IN) domains. Of 39 independent gap repaired pGTyHIS3 elements isolated, 29 (74%) transposed at high levels following galactose induction. The presence of restriction site polymorphisms within the gap repaired region of the 29 functional pGTyHIS3 elements indicated that they were derived from at least eight different genomic Ty1 elements and one Ty2 element. Of the 10 defective pGTyHIS3 elements, one was a partial gap repair event while the other nine were derived from at least six different genomic Ty1 elements. These results suggest that most genomic Ty1 elements encode functional TYA, PR and IN proteins. To understand how functional Ty1 elements are regulated, we tested the hypothesis that a TYB protein associates preferentially in cis with the RNA template that encodes it, thereby promoting transposition of its own element. A genomic Ty1 mhis3AI element containing either an in-frame insertion in PR or a deletion in TYB transposed at the same rate as a wild-type Ty1mhis3AI allele, indicating that TYB proteins act efficiently in trans. This result suggests in principle that defective genomic Ty1 elements could encode trans-acting repressors of transposition; however, expression of only one of the nine defective pGTy1 isolates had a negative effect on genomic Ty1 mhis3AI element transposition in trans, and this effect was modest. Therefore, the few defective Ty1 elements in the genome are not responsible for transpositional dormancy.
Collapse
Affiliation(s)
- M J Curcio
- Molecular Genetics Program, Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201-0509
| | | |
Collapse
|
23
|
Braiterman LT, Monokian GM, Eichinger DJ, Merbs SL, Gabriel A, Boeke JD. In-frame linker insertion mutagenesis of yeast transposon Ty1: phenotypic analysis. Gene 1994; 139:19-26. [PMID: 8112584 DOI: 10.1016/0378-1119(94)90518-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A plasmid bearing a transpositionally functional GAL1::Ty1 fusion was mutagenized by insertion of four or five codons semirandomly throughout the plasmid. This collection of mutant plasmids was introduced into yeast cells and studied with regard to the properties of the mutant Ty1-encoded proteins and the transposition phenotypes observed. All of the transposition-inactivating mutations were previously found to be recessive with the exception of a single mutation in TYA. In this mutant, TYA protein of normal abundance is produced, but the virus-like particles containing this protein are unstable and have aberrant behavior. The effects of mutations in noncoding regions, as well as the capsid protein coding region TYA, and the regions encoding the protease, integrase and reverse transcriptase proteins are described. Effects on gene expression, types of proteins produced, proteolysis of precursor proteins, virus-like particle structure, and biochemical activities of the encoded proteins are summarized. In addition, we show that one of the mutations in the 3' LTR represents a new nonessential site into which foreign marker DNA can be inserted without compromising transposition.
Collapse
Affiliation(s)
- L T Braiterman
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | |
Collapse
|
24
|
Kawakami K, Pande S, Faiola B, Moore DP, Boeke JD, Farabaugh PJ, Strathern JN, Nakamura Y, Garfinkel DJ. A rare tRNA-Arg(CCU) that regulates Ty1 element ribosomal frameshifting is essential for Ty1 retrotransposition in Saccharomyces cerevisiae. Genetics 1993; 135:309-20. [PMID: 8243996 PMCID: PMC1205637 DOI: 10.1093/genetics/135.2.309] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Translation of the yeast retrotransposon Ty1 TYA1(gag)-TYB1(pol) gene occurs by a +1 ribosomal frameshifting event at the sequence CUU AGG C. Because overexpression of a low abundance tRNA-Arg(CCU) encoded by the HSX1 gene resulted in a reduction in Ty1 frameshifting, it was suggested that a translational pause at the AGG-Arg codon is required for optimum frameshifting. The present work shows that the absence of tRNA-Arg(CCU) affects Ty1 transposition, translational frameshifting, and accumulation of mature TYB1 proteins. Transposition of genetically tagged Ty1 elements decreases at least 50-fold and translational frameshifting increases 3-17-fold in cells lacking tRNA-Arg(CCU). Accumulation of Ty1-integrase and Ty1-reverse transcriptase/ribonuclease H is defective in an hsx1 mutant. The defect in Ty1 transposition is complemented by the wild-type HSX1 gene or a mutant tRNA-Arg(UCU) gene containing a C for T substitution in the first position of the anticodon. Overexpression of TYA1 stimulates Ty1 transposition 50-fold above wild-type levels when the level of transposition is compared in isogenic hsx1 and HSX1 strains. Thus, the HSX1 gene determines the ratio of the TYA1 to TYA1-TYB1 precursors required for protein processing or stability, and keeps expression of TYB1 a rate-limiting step in the retrotransposition cycle.
Collapse
Affiliation(s)
- K Kawakami
- Department of Tumor Biology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
In the decade since Ty elements were discovered, advocates have argued they could be used as a genetic entrée to elusive host-type functions required by retroviruses. However, the advent of the polymerase chain reaction, coupled with a boom in funding for human immunodeficiency virus research have moved retroviral research apace, raising questions as to whether novel contributions would be realized. The past year, with the implication of the cell cycle and specific host proteins, such as the debranching enzyme and transcription initiation factors, in Ty retrotransposition has provided a positive answer and raised new questions.
Collapse
Affiliation(s)
- S B Sandmeyer
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| |
Collapse
|
26
|
Janetzky B, Lehle L. Ty4, a new retrotransposon from Saccharomyces cerevisiae, flanked by tau-elements. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88624-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Wilke CM, Maimer E, Adams J. The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae. Genetica 1992; 86:155-73. [PMID: 1334907 DOI: 10.1007/bf00133718] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The basic structure and properties of Ty elements are considered with special reference to their role as agents of evolutionary change. Ty elements may generate genetic variation for fitness by their action as mutagens, as well as by providing regions of portable homology for recombination. The mutational spectra generated by Ty1 transposition events may, due to their target specificity and gene regulatory capabilities, possess a higher frequency of adaptively favorable mutations than spectra resulting from other types of mutational processes. Laboratory strains contain between 25-35 elements, and in both these and industrial strains the insertions appear quite stable. In contrast, a wide variation in Ty number is seen in wild isolates, with a lower average number/genome. Factors which may determine Ty copy number in populations include transposition rates (dependent on Ty copy number and mating type), and stabilization of Ty elements in the genome as well as selection for and against Ty insertions in the genome. Although the average effect of Ty transpositions are deleterious, populations initiated with a single clone containing a single Ty element steadily accumulated Ty elements over 1,000 generations. Direct evidence that Ty transposition events can be selectively favored is provided by experiments in which populations containing large amounts of variability for Ty1 copy number were maintained for approximately 100 generations in a homogeneous environment. At their termination, the frequency of clones containing 0 Ty elements had decreased to approximately 0.0, and the populations had became dominated by a small number of clones containing > 0 Ty elements. No such reduction in variability was observed in populations maintained in a structured environment, though changes in Ty number were observed. The implications of genetic (mating type and ploidy) changes and environmental fluctuations for the long-term persistence of Ty elements within the S. cerevisiae species group are discussed.
Collapse
Affiliation(s)
- C M Wilke
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
28
|
Abstract
Overexpression of dominant-negative mutants of various viral proteins can result in 'intracellular immunization'. Here we describe a new approach to interfering with viral replication in which a nuclease is fused to a capsid component so that the nuclease is encapsidated inside the virion where it can inactivate viral nucleic acid. We used Ty1, a yeast retrotransposon whose transposition closely parallels retroviral replication mechanisms and serves as an easily manipulated model for the retroviral infection process. We constructed fusion genes consisting of the region encoding the N-terminal portion of the TYA/TYB open reading frames of retrotransposon Ty1 and either of two different nuclease genes. Ty1-nuclease fusion proteins are targeted to Ty1 virus-like particles, and are active in degrading nucleic acids. A Ty1-barnase fusion protein causes 98-99% reduction in the efficiency of Ty1 transposition in vivo, presumably by degrading encapsidated Ty1 RNA. This strategy, referred to as capsid-targeted viral inactivation, may be useful for interfering with the replication of retroviruses and other viruses.
Collapse
Affiliation(s)
- G Natsoulis
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
29
|
Abstract
Retrotransposons are a widely distributed group of eukaryotic mobile genetic elements that transpose through an RNA intermediate. The element Ty (Transposon yeast), found in the yeast Saccharomyces cerevisiae, is a model system for the study of retrotransposons because of the experimental tools that exist to manipulate and detect transposition. Ty transposition can be elevated to levels exceeding one transposition event per cell when an element is expressed from an inducible yeast promoter. In addition, individual genomic Ty elements can be tagged with a retrotransposition indicator gene that allows transposition events occurring at a rate of 10(-5) to 10(-7) per element per cell division to be detected phenotypically. These systems are being used to elucidate the mechanism of Ty transposition and clarify how Ty transposition is controlled.
Collapse
Affiliation(s)
- M J Curcio
- NCI-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Maryland 21702-1201
| | | |
Collapse
|
30
|
Wilke CM, Heidler SH, Brown N, Liebman SW. Analysis of yeast retrotransposon Ty insertions at the CAN1 locus. Genetics 1989; 123:655-65. [PMID: 2558956 PMCID: PMC1203878 DOI: 10.1093/genetics/123.4.655] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The target site distribution for 55 independent Ty insertions that inactivate the function of the Saccharomyces cerevisiae CAN1 gene is reported. Under some selection conditions Ty elements inserted preferentially into the promoter and exhibited an orientation bias. In contrast, under other conditions no insertions were detected in the promoter region and transposition appeared to occur randomly throughout the CAN1 coding sequence. These results show that the target site distribution for Ty insertions may be a function of the selection conditions.
Collapse
Affiliation(s)
- C M Wilke
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | | | |
Collapse
|
31
|
Gorelova TV, Resnick NL, Schuppe NG. Retrotransposon transposition intermediates are encapsidated into virus-like particles. FEBS Lett 1989; 244:307-10. [PMID: 2465922 DOI: 10.1016/0014-5793(89)80551-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Virus-like particles (VLPs) possessing reverse transcriptase activity are persistently present in Drosophila melanogaster cultured cells and are formed in yeast induced for transposition. Different retrotransposon transposition intermediates consistent with those expected from the model of reverse transcription pathway of retrotransposon transposition have been detected during the analysis of nucleic acids isolated from VLPs. These data indicate that the act of reverse transcription takes place in VLPs which may be considered as functional intermediates of transposition.
Collapse
Affiliation(s)
- T V Gorelova
- N.I. Vavilov Institute of General Genetics, Moscow, USSR
| | | | | |
Collapse
|
32
|
Eichinger DJ, Boeke JD. The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition. Cell 1988; 54:955-66. [PMID: 2843295 DOI: 10.1016/0092-8674(88)90110-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Yeast Ty1 elements are retrotransposons that transpose via an RNA intermediate found in a virus-like particle (Ty-VLP). A Ty-encoded reverse transcriptase activity found inside the particles is capable of giving rise to full-length reverse transcripts. The predominant form of these reverse transcripts is a full-length linear duplex DNA. We have developed a cell-free system for transposition of Ty1 DNA molecules into a bacteriophage lambda target. Purified Ty-VLPs and target DNA are the only macromolecular components required for the transposition reaction. A TYB-encoded protein, p90-TYB, contains amino acid sequences that are similar to those of retroviral integrase proteins. Mutations in the integrase coding region abolish transposition both in vivo and in vitro.
Collapse
Affiliation(s)
- D J Eichinger
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|