1
|
Sun Y, Saha LK, Saha S, Jo U, Pommier Y. Debulking of topoisomerase DNA-protein crosslinks (TOP-DPC) by the proteasome, non-proteasomal and non-proteolytic pathways. DNA Repair (Amst) 2020; 94:102926. [DOI: 10.1016/j.dnarep.2020.102926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
|
2
|
Travers A, Muskhelishvili G. Chromosomal Organization and Regulation of Genetic Function in Escherichia coli Integrates the DNA Analog and Digital Information. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0016-2019. [PMID: 32056535 PMCID: PMC11168577 DOI: 10.1128/ecosalplus.esp-0016-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/22/2022]
Abstract
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
Collapse
Affiliation(s)
- Andrew Travers
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
3
|
Witkin AE, Banerji J, Bullock PA. A model for the formation of the duplicated enhancers found in polyomavirus regulatory regions. Virology 2020; 543:27-33. [PMID: 32056844 DOI: 10.1016/j.virol.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
When purified from persistent infections, the genomes of most human polyomaviruses contain single enhancers. However, when isolated from productively infected cells from immunocompromised individuals, the genomes of several polyomaviruses contain duplicated enhancers that promote a number of polyoma-based diseases. The mechanism(s) that gives rise to the duplicated enhancers in the polyomaviruses is, however, not known. Herein we propose a model for the duplication of the enhancers that is based on recent advances in our understanding of; 1) the initiation of polyomavirus DNA replication, 2) the formation of long flaps via displacement synthesis and 3) the subsequent generation of duplicated enhancers via double stranded break repair. Finally, we discuss the possibility that the polyomavirus based replication dependent enhancer duplication model may be relevant to the enhancer-associated rearrangements detected in human genomes that are associated with various diseases, including cancers.
Collapse
Affiliation(s)
- Anna E Witkin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Julian Banerji
- Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
4
|
Huang SYN, Williams JS, Arana ME, Kunkel TA, Pommier Y. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J 2016; 36:361-373. [PMID: 27932446 DOI: 10.15252/embj.201592426] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023] Open
Abstract
Ribonuclease activity of topoisomerase I (Top1) causes DNA nicks bearing 2',3'-cyclic phosphates at ribonucleotide sites. Here, we provide genetic and biochemical evidence that DNA double-strand breaks (DSBs) can be directly generated by Top1 at sites of genomic ribonucleotides. We show that RNase H2-deficient yeast cells displayed elevated frequency of Rad52 foci, inactivation of RNase H2 and RAD52 led to synthetic lethality, and combined loss of RNase H2 and RAD51 induced slow growth and replication stress. Importantly, these phenotypes were rescued upon additional deletion of TOP1, implicating homologous recombination for the repair of Top1-induced damage at ribonuclelotide sites. We demonstrate biochemically that irreversible DSBs are generated by subsequent Top1 cleavage on the opposite strand from the Top1-induced DNA nicks at ribonucleotide sites. Analysis of Top1-linked DNA from pull-down experiments revealed that Top1 is covalently linked to the end of DNA in RNase H2-deficient yeast cells, supporting this model. Taken together, these results define Top1 as a source of DSBs and genome instability when ribonucleotides incorporated by the replicative polymerases are not removed by RNase H2.
Collapse
Affiliation(s)
- Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Mercedes E Arana
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Abstract
TDP1 and TDP2 were discovered and named based on the fact they process 3'- and 5'-DNA ends by excising irreversible protein tyrosyl-DNA complexes involving topoisomerases I and II, respectively. Yet, both enzymes have an extended spectrum of activities. TDP1 not only excises trapped topoisomerases I (Top1 in the nucleus and Top1mt in mitochondria), but also repairs oxidative damage-induced 3'-phosphoglycolates and alkylation damage-induced DNA breaks, and excises chain terminating anticancer and antiviral nucleosides in the nucleus and mitochondria. The repair function of TDP2 is devoted to the excision of topoisomerase II- and potentially topoisomerases III-DNA adducts. TDP2 is also essential for the life cycle of picornaviruses (important human and bovine pathogens) as it unlinks VPg proteins from the 5'-end of the viral RNA genome. Moreover, TDP2 has been involved in signal transduction (under the former names of TTRAP or EAPII). The DNA repair partners of TDP1 include PARP1, XRCC1, ligase III and PNKP from the base excision repair (BER) pathway. By contrast, TDP2 repair functions are coordinated with Ku and ligase IV in the non-homologous end joining pathway (NHEJ). This article summarizes and compares the biochemistry, functions, and post-translational regulation of TDP1 and TDP2, as well as the relevance of TDP1 and TDP2 as determinants of response to anticancer agents. We discuss the rationale for developing TDP inhibitors for combinations with topoisomerase inhibitors (topotecan, irinotecan, doxorubicin, etoposide, mitoxantrone) and DNA damaging agents (temozolomide, bleomycin, cytarabine, and ionizing radiation), and as novel antiviral agents.
Collapse
Affiliation(s)
- Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA.
| | - Shar-yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA
| | - Rui Gao
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA
| | - Benu Brata Das
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA; Laboratory of Molecular Biology, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA; Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku 606-8501, Japan
| | - Christophe Marchand
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Evaluation of two models for human topoisomerase I interaction with dsDNA and camptothecin derivatives. PLoS One 2011; 6:e24314. [PMID: 21912628 PMCID: PMC3166174 DOI: 10.1371/journal.pone.0024314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022] Open
Abstract
Human topoisomerase I (Top1) relaxes supercoiled DNA during cell division. Camptothecin stabilizes Top1/dsDNA covalent complexes which ultimately results in cell death, and this makes Top1 an anti-cancer target. There are two current models for how camptothecin and derivatives bind to Top1/dsDNA covalent complexes (Staker, et al., 2002, Proc Natl Acad Sci USA 99: 15387–15392; and Laco, et al., 2004, Bioorg Med Chem 12: 5225–5235). The interaction energies between bound camptothecin, and derivatives, and Top1/dsDNA in the two models were calculated. The published structure-activity-relationships for camptothecin and derivatives correlated with the interaction energies for camptothecin and derivatives in the Laco et al. model, however, this was not the case for several camptothecin derivatives in the Stacker et al. model. By defining the binding orientation of camptothecin and derivatives in the Top1/dsDNA active-site these results allow for the rational design of potentially more efficacious camptothecin derivatives.
Collapse
|
7
|
Berger M, Farcas A, Geertz M, Zhelyazkova P, Brix K, Travers A, Muskhelishvili G. Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU. EMBO Rep 2009; 11:59-64. [PMID: 20010798 DOI: 10.1038/embor.2009.232] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/09/2009] [Accepted: 09/21/2009] [Indexed: 11/09/2022] Open
Abstract
The histone-like protein HU is a highly abundant DNA architectural protein that is involved in compacting the DNA of the bacterial nucleoid and in regulating the main DNA transactions, including gene transcription. However, the coordination of the genomic structure and function by HU is poorly understood. Here, we address this question by comparing transcript patterns and spatial distributions of RNA polymerase in Escherichia coli wild-type and hupA/B mutant cells. We demonstrate that, in mutant cells, upregulated genes are preferentially clustered in a large chromosomal domain comprising the ribosomal RNA operons organized on both sides of OriC. Furthermore, we show that, in parallel to this transcription asymmetry, mutant cells are also impaired in forming the transcription foci-spatially confined aggregations of RNA polymerase molecules transcribing strong ribosomal RNA operons. Our data thus implicate HU in coordinating the global genomic structure and function by regulating the spatial distribution of RNA polymerase in the nucleoid.
Collapse
Affiliation(s)
- Michael Berger
- School of Engineering and Science, Jacobs University, Campus Ring 1, D-28759 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Punchihewa C, Carver M, Yang D. DNA sequence selectivity of human topoisomerase I-mediated DNA cleavage induced by camptothecin. Protein Sci 2009; 18:1326-31. [PMID: 19472416 DOI: 10.1002/pro.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In probing the mechanism of inhibition of hypoxia inducible factor (HIF-1) by campothecins, we investigated the ability of human topoisomerase I to bind and cleave HIF-1 response element (HRE), which contains the known camptothecin-mediated topoisomerase I cleavage site 5'-TG. We observed that the selection of 5'-TG by human topoisomerase I and topotecan depends to a large extent on the specific flanking sequences, and that the presence of a G at the -2 position (where cleavage occurs between -1 and +1) prevents the HRE site from being a preferred site for such cleavage. Furthermore, the presence of -2 T/A can induce the cleavage at a less preferred TC or TA site. However, in the absence of a more preferred site, the HRE site is shown to be cleaved by human topoisomerase I in the presence of topotecan. Thus, it is implied that the -2 base has a significant influence on the selection of the camptothecin-mediated Topo I cleavage site, which can overcome the preference for +1G. While the cleavage site recognition has been known to be based on the concerted effect of several bases spanning the cleavage site, such a determining effect of an individual base has not been previously recognized. A possible base-specific interaction between DNA and topoisomerase I may be responsible for this sequence selectivity.
Collapse
|
9
|
Taricani L, Wang TS. Rad4TopBP1, a scaffold protein, plays separate roles in DNA damage and replication checkpoints and DNA replication. Mol Biol Cell 2006; 17:3456-68. [PMID: 16723501 PMCID: PMC1525248 DOI: 10.1091/mbc.e06-01-0056] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rad4TopBP1, a BRCT domain protein, is required for both DNA replication and checkpoint responses. Little is known about how the multiple roles of Rad4TopBP1 are coordinated in maintaining genome integrity. We show here that Rad4TopBP1 of fission yeast physically interacts with the checkpoint sensor proteins, the replicative DNA polymerases, and a WD-repeat protein, Crb3. We identified four novel mutants to investigate how Rad4TopBP1 could have multiple roles in maintaining genomic integrity. A novel mutation in the third BRCT domain of rad4+TopBP1 abolishes DNA damage checkpoint response, but not DNA replication, replication checkpoint, and cell cycle progression. This mutant protein is able to associate with all three replicative polymerases and checkpoint proteins Rad3ATR-Rad26ATRIP, Hus1, Rad9, and Rad17 but has a compromised association with Crb3. Furthermore, the damaged-induced Rad9 phosphorylation is significantly reduced in this rad4TopBP1 mutant. Genetic and biochemical analyses suggest that Crb3 has a role in the maintenance of DNA damage checkpoint and influences the Rad4TopBP1 damage checkpoint function. Taken together, our data suggest that Rad4TopBP1 provides a scaffold to a large complex containing checkpoint and replication proteins thereby separately enforcing checkpoint responses to DNA damage and replication perturbations during the cell cycle.
Collapse
Affiliation(s)
- Lorena Taricani
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324
| | - Teresa S.F. Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324
| |
Collapse
|
10
|
Bailly C. Homocamptothecins: potent topoisomerase I inhibitors and promising anticancer drugs. Crit Rev Oncol Hematol 2003; 45:91-108. [PMID: 12482574 DOI: 10.1016/s1040-8428(02)00090-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homocamptothecins (hCPTs) represent a new generation of antitumor agents targeting DNA topoisomerase I. The expanded seven-membered lactone E-ring that characterizes hCPTs enhances the plasma stability of the drug and reinforces the inhibition of topoisomerase I compared with conventional six-membered CPTs. hCPTs are more efficient than the CPTs at promoting cleavage at T/G sites and induce additional cleavage at C/G sites. Compound BN80765 and its difluoro analogue diflomotecan (DN80915) are potent cytotoxic agents and efficiently induce apoptosis in tumor cells. They display strong antiproliferative activities against specific tumor types. Diflomotecan is remarkably efficient at inhibiting the growth of human colon cancer cells in vivo and, administered orally, it also shows superior activities against human prostate cancers compared with the benchmark products topotecan (TPT) and irinotecan (IRT). Diflomotecan has entered phase I clinical testing and antitumor activity has been observed in patients. This 9,10-difluoro-hCPTs derivative is one of the most promising new members of the 'tecan' family. This review summarizes the recent discoveries in the topoisomerase I field and presents the different camptothecin (CPT) analogues currently evaluated as anticancer agents. The specific properties of hCPTs are highlighted.
Collapse
Affiliation(s)
- Christian Bailly
- INSERM UR524, Institut de Recherches sur le Cancer, Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
11
|
Marchand C, Pourquier P, Laco GS, Jing N, Pommier Y. Interaction of human nuclear topoisomerase I with guanosine quartet-forming and guanosine-rich single-stranded DNA and RNA oligonucleotides. J Biol Chem 2002; 277:8906-11. [PMID: 11756434 DOI: 10.1074/jbc.m106372200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human nuclear DNA topoisomerase I (top1) plays a crucial role in DNA replication, transcription, and chromosome condensation. In this study, we show that intra- and intermolecular guanosine quartets (G-quartets) can inhibit top1-mediated DNA cleavage at a high affinity site. Top1-mediated DNA cleavage was also inhibited by a 16-mer single-stranded oligodeoxynucleotide (ODN) containing a G-rich sequence (G(2)T(2)G(5)TG(2)TG(3)) and by its RNA equivalent, neither of which form G-quartet structures. A comparison of various single-stranded ODN for their ability to inhibit top1-mediated DNA cleavage indicated that G-rich sequences containing repeats of 2 or 3 consecutive guanines interspaced with thymines specifically inhibited top1. We also found that both single-stranded and G-quartet-forming ODNs bind to top1 without being cleaved by the enzyme. These results demonstrate that either DNA or RNA G-rich single-stranded and G-quartet-forming oligonucleotides can bind to top1 and prevent cleavage of duplex DNA.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Based on the crystal structure of human topoisomerase I, we hypothesized that hydrogen bonding between the side chain of the highly conserved His(632) and one of the nonbridging oxygens of the scissile phosphate contributes to catalysis by stabilizing the transition state. This hypothesis has been tested by examining the effects of changing His(632) to glutamine, asparagine, alanine, and tryptophan. The change to glutamine reduced both the relaxation activity and single-turnover cleavage activity by approximately 100-fold, whereas the same change at three other conserved histidines (positions 222, 367, and 406) had no significant effect on the relaxation activity. The properties of the mutant protein containing asparagine instead of histidine at position 632 were similar to those of the glutamine mutant, whereas mutations to alanine or tryptophan reduced the activity by approximately 4 orders of magnitude. The reduction in activity for the mutants was not due to alterations in substrate binding affinities or changes in the cleavage specificities of the proteins. The above results for the glutamine mutation in conjunction with the similar effects of pH on the wild type and the H632Q mutant enzyme rule out the possibility that His(632) acts as a general acid to protonate the leaving 5'-oxygen during the cleavage reaction. Taken together, these data strongly support the hypothesis that the only role for His(632) is to stabilize the pentavalent transition state through hydrogen bonding to one of the nonbridging oxygens.
Collapse
Affiliation(s)
- Z Yang
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195-7242, USA
| | | |
Collapse
|
13
|
Pourquier P, Jensen AD, Gong SS, Pommier Y, Rogler CE. Human DNA topoisomerase I-mediated cleavage and recombination of duck hepatitis B virus DNA in vitro. Nucleic Acids Res 1999; 27:1919-25. [PMID: 10101202 PMCID: PMC148402 DOI: 10.1093/nar/27.8.1919] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we report that eukaryotic topoisomerase I (top1) can linearize the open circular DNA of duck hepatitis B virus (DHBV). Using synthetic oligonucleotides mimicking the three-strand flap DR1 region of the DHBV genome, we found that top1 cleaves the DNA plus strand in a suicidal manner, which mimics the linearization of the virion DNA. We also report that top1 can cleave the DNA minus strand at specific sites and can linearize the minus strand via a non-homologous recombination reaction. These results are consistent with the possibility that top1 can act as a DNA endo-nuclease and strand transferase and play a role in the circularization, linearization and possibly integration of viral replication intermediates.
Collapse
Affiliation(s)
- P Pourquier
- Laboratory of Molecular Pharmacology, Building 37, Room 5D02, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
14
|
Pommier Y, Pourquier P, Fan Y, Strumberg D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:83-105. [PMID: 9748515 DOI: 10.1016/s0167-4781(98)00129-8] [Citation(s) in RCA: 422] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA topoisomerase I is essential for cellular metabolism and survival. It is also the target of a novel class of anticancer drugs active against previously refractory solid tumors, the camptothecins. The present review describes the topoisomerase I catalytic mechanisms with particular emphasis on the cleavage complex that represents the enzyme's catalytic intermediate and the site of action for camptothecins. Roles of topoisomerase I in DNA replication, transcription and recombination are also reviewed. Because of the importance of topoisomerase I as a chemotherapeutic target, we review the mechanisms of action of camptothecins and the other topoisomerase I inhibitors identified to date.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892-4255, USA.
| | | | | | | |
Collapse
|
15
|
Champoux JJ. Domains of human topoisomerase I and associated functions. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:111-32. [PMID: 9594573 DOI: 10.1016/s0079-6603(08)60891-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human topoisomerase I can be divided into four domains based on homology alignments, physical properties, sensitivity to limited proteolysis, and fragment complementation studies. Roughly the first 197 amino acids represent the N-terminal domain that appears to be devoid of secondary structure and is likely important for targeting the enzyme to its sites of action within the nucleus of the cell. The core domain encompasses residues approximately 198 to approximately 651, is involved in catalysis, and is important for the preferential binding of the enzyme to supercoiled DNA. The C-terminal domain extends from residue approximately 697 to the end of the protein at residue 765 and contains the catalytically important active site tyrosine at position 723. The core and C-terminal domains are connected by a poorly conserved, protease-sensitive linker domain (residues approximately 652 to approximately 696) that has been implicated in DNA binding and may influence how long the enzyme remains in the nicked stated. Mutations that confer resistance to the topoisomerase I poison camptothecin are located in the core and C-terminal domains and presumably identify residues important for drug binding.
Collapse
Affiliation(s)
- J J Champoux
- Department of Microbiology School of Medicine, University of Washington, Seattle 98195, USA
| |
Collapse
|
16
|
Laskus T, Radkowski M, Nowicki M, Wang LF, Vargas H, Rakela J. Association between hepatitis B virus core promoter rearrangements and hepatocellular carcinoma. Biochem Biophys Res Commun 1998; 244:812-4. [PMID: 9535748 DOI: 10.1006/bbrc.1998.8249] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatitis B virus (HBV) is the major etiological agent of hepatocellular carcinoma (HCC). Whether any particular viral variants are associated with HCC is unknown. We studied 53 Gambian patients with HCC and 33 HBsAg positive controls. A functional part of HBV core promoter and whole precore region were sequenced directly and/or after cloning. HBV DNA was amplified from sera from 27 HCC patients and in all controls. Fourteen (52%) patients and 12 (36%) controls (NS) were found to harbor an HBV strain with G to A transition mutation at position 1896 leading to HBeAg negative phenotype. Nine (33%) HCC patients and 2 (6%) controls (p < 0.01) harbored a mixture of wild type and HBV strains with deletions/insertions; strong consensus sequences for topoisomerase I breakage were located in the vicinity of these changes. In Africa, HCC is associated with HBV strains that have deletions/insertions in the HBV core promoter region.
Collapse
Affiliation(s)
- T Laskus
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
17
|
Simmons DT, Trowbridge PW, Roy R. Topoisomerase I stimulates SV40 T antigen-mediated DNA replication and inhibits T antigen's ability to unwind DNA at nonorigin sites. Virology 1998; 242:435-43. [PMID: 9514975 DOI: 10.1006/viro.1997.9024] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously found that purified SV40 T antigen and topoisomerase I (topo I) bind to one another in vitro. In this report, we determined the effects of human topo I on T antigen-mediated DNA replication and investigated whether it altered T antigen's biochemical activities. Topo I stimulates DNA replication and especially increases the amounts of finished circular molecules. This protein had no effect on T antigen's ability to bind, distort, or unwind the origin of replication. However, unwinding of DNA by T antigen was strongly inhibited by topo I when it was initiated at sites other than the origin. We demonstrate that the presence of T antigen binding sites in DNA interfere with inhibition of unwinding by topo I. These results indicate that topo I may increase the specificity of unwinding by inhibiting the reaction at non-origin sites. Fragments of T antigen that bind to topo I abrogate topo I's inhibition of non-origin-dependent unwinding, indicating that topo I inhibits unwinding through a direct interaction with T antigen. We propose a model whereby T antigen and topo I function together at the origin to specifically unwind it and initiate DNA replication.
Collapse
Affiliation(s)
- D T Simmons
- Department of Biological Sciences, University of Delaware, Newark 19716-2590, USA.
| | | | | |
Collapse
|
18
|
Borde V, Duguet M. The mapping of DNA topoisomerase sites in vivo: a tool to enlight the functions of topoisomerases. Biochimie 1998; 80:223-33. [PMID: 9615862 DOI: 10.1016/s0300-9084(98)80005-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possibility to record a trace of the precise sites of topoisomerase action has been exploited for almost 12 years in many laboratories. The large majority of the studies were performed in vitro, giving a good picture of sequence specificities of topoisomerases, and of the preference of various drugs for some sequences. Only a relatively small number of reports concern in vivo studies. Their main conclusions are the following: i) topoisomerase II sites are often found near replication origins and termini, where they are supposed to play a role in the decatenation of daughter DNA molecules, and possibly in the initiation of replication; ii) topoisomerase II sites are found in the promoter region of many genes, but they seem related to the condensation state of chromatin in this region, rather than to transcription per se; iii) some topoisomerase II sites, resistant to high salt, are found in or near matrix associated regions (MARs), suggesting a role in loop anchorage or (and) in the control of topology of individual chromatin loops; iv) topoisomerase I sites appear less localized, acting all along the transcription units, where they seem directly involved in transcription; and v) topoisomerase I sites are possibly connected with replication fork progression and (or) with the termination of replication. Despite these advances, the precise role of topoisomerases in vivo is still poorly understood, especially in recombination and chromatin condensation and decondensation during the cell cycle. Future attempts should take into account the possible specialization of the multiple topoisomerases found in a given cell, and the use of highly synchronized systems.
Collapse
Affiliation(s)
- V Borde
- Laboratoire d'Enzymologie des Acides Nucléiques, URA 2225 CNRS, Université de Paris Sud, Centre d'Orsay, France
| | | |
Collapse
|
19
|
Abstract
The present review first describes the different type I topoisomerases found in eukaryotic cells: nuclear topoisomerase I (top1), topoisomerase 3 (top3), mitochondrial topoisomerase I and viral topoisomerases I. The second part of the review provides extensive information on the topoisomerase I inhibitors identified to date. These drugs can be grouped in two categories: top1 poisons and top1 suppressors. Both inhibit enzyme catalytic activity but top1 poisons trap the top1 catalytic intermediates ('cleavage complexes') while top1 suppressors prevent or reverse top1 cleavage complexes. The molecular interactions of camptothecin with the top1 cleavage complexes are discussed as well as the mechanisms of selective killing of cancer cells.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892-4255, USA
| |
Collapse
|
20
|
Fukasawa K, Komatani H, Hara Y, Suda H, Okura A, Nishimura S, Yoshinari T. Sequence-selective DNA cleavage by a topoisomerase I poison, NB-506. Int J Cancer 1998; 75:145-50. [PMID: 9426703 DOI: 10.1002/(sici)1097-0215(19980105)75:1<145::aid-ijc22>3.0.co;2-e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An indolocarbazole compound, NB-506, inhibits the activity of topoisomerase I by stabilizing the DNA-topoisomerase I complex (cleavable complex). NB-506 inhibited the religation step of topoisomerase I activity more potently than camptothecin or its derivative, topotecan. A cleavage assay using an end-labeled fragment of DNA revealed that the pattern of cleavage induced by NB-506 was different from that induced by camptothecin. The preferred cleavage sites of NB-506 were found to be not only T but also A or C at the 3'-terminus of the cleaved DNA (position -1), while the DNA cleavage sites of camptothecin always had T at position -1. At the 5'-terminus of the cleaved DNA (position +1), NB-506 showed a preference for G, which is a feature shared in common with camptothecin. Therefore, the difference in cleavage patterns was most likely due mainly to the preferred base at position -1. Moreover, the re-ligation rate was significantly slower at NB-506-selective sites, which had C at position-1, than at camptothecin-selective sites or at sites cleaved by both NB-506 and camptothecin. Our data suggest that NB-506 is an unique topoisomerase I poison and that its potent inhibition of topoisomerase I is partly dependent on retardation of re-ligation at sites selectively induced by NB-506.
Collapse
Affiliation(s)
- K Fukasawa
- Banyu Tsukuba Research Institute (in collaboration with Merck Research Laboratories), Tsukuba, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Desai SD, Liu LF, Vazquez-Abad D, D'Arpa P. Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin. J Biol Chem 1997; 272:24159-64. [PMID: 9305865 DOI: 10.1074/jbc.272.39.24159] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Topoisomerase I (TOP1) relaxes superhelical DNA through a breakage/rejoining reaction in which the active site tyrosine links covalently to a 3' phosphate at the break site as a transient intermediate. The antitumor drug camptothecin (CPT) and its analogs inhibit the rejoining step of the breakage/rejoining reaction, which traps the enzyme in covalent linkage with DNA (the cleavable complex). Little is known about the fate of cellular TOP1 trapped in the cleavable complex. We have analyzed TOP1 in mammalian cell lines treated with CPT. When CPT-treated cells were lysed with either SDS or alkali and analyzed by Western blotting, greater than 90% of the TOP1 was linked to DNA. Nuclease treatment of the cell lysate to remove the covalently linked DNA from TOP1 revealed a distinct ladder of higher molecular weight bands having properties indicative of multi-ubiquitin (Ub) conjugates of TOP1. Approximately 5-10% of TOP1 was present as these conjugates within minutes of CPT treatment. Consistent with ubiquitination, TOP1 was not modified in ts85 cells at the restrictive temperature for its thermolabile ubiquitin-activating enzyme (E1). Because conjugation with ubiquitin can mark proteins for destruction by the 26S proteasome, we analyzed TOP1 protein levels during prolonged CPT treatment. TOP1 protein levels were reduced to about 25% during CPT treatments of 2-4 h resulting from increased destruction, with the half-life dropping from 10-16 h down to 1-2 h. The destruction of TOP1, like the formation of Ub-TOP1 conjugates, was not observed in ts85 cells at the restrictive temperature. The destruction of TOP1 was also prevented in cells treated with MG-132 and lactacystin, specific inhibitors of the 26S proteasome. Finally, the multi-Ub conjugates of TOP1 were observed whether or not aphidicolin was included in cotreatment with CPT, indicating that replication fork activity was not involved in making TOP1 a substrate for ubiquitination. These results demonstrate that independent of DNA replication, the TOP1 cleavable complex is ubiquitinated and destroyed in cells treated with antitumor drugs that block the religation step of the TOP1 reaction.
Collapse
Affiliation(s)
- S D Desai
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | | | |
Collapse
|
23
|
Stewart L, Ireton GC, Champoux JJ. Reconstitution of human topoisomerase I by fragment complementation. J Mol Biol 1997; 269:355-72. [PMID: 9199405 DOI: 10.1006/jmbi.1997.1056] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human topoisomerase I (topo I, 91 kDa) is composed of four major domains; the unconserved and highly charged "N-terminal" domain (24 kDa), the conserved "core" domain (54 kDa), a poorly conserved and positively charged "linker" region (5 kDa), and the highly conserved "C-terminal" domain (8 kDa) which contains the active site tyrosine at position 723. Here we demonstrate that human topo I activity can be reconstituted by mixing a 58 kDa recombinant core domain (residues Lys175 to Ala659) with any one of a series of recombinant C-terminal fragments that range in size from 12 kDa (linker and C-terminal domains, residues Leu658 to Phe765) to 6.3 kDa (C-terminal domain residues Gln713 to Phe765). The C-terminal fragments bind tightly to the core domain, forming a 1:1 complex that is stable irrespective of ionic strength (0.01 to 1 M). The reconstituted enzymes are active only over a relatively narrow range of salt concentrations (25 to 200 mM KCl) as compared to the intact topo70 enzyme (missing the N-terminal domain). Under physiological conditions (150 mM KCl and 10 mM Mg2+) they are much more distributive in their mode of action than topo70. The reconstituted enzyme binds DNA with an affinity that is approximately 20-fold lower than that of the intact topo70. In addition, the cleavage/religation equilibrium of the reconstituted enzyme appears to be biased towards religation relative to that of the intact enzyme. Despite differences in the cleavage/religation equilibrium and affinity for DNA, the reconstituted and intact enzymes have identical sequence specificities for the cleavage of duplex DNA or suicide cleavage of oligonucleotide substrates.
Collapse
Affiliation(s)
- L Stewart
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195-7242, USA
| | | | | |
Collapse
|
24
|
Tang Q, Lundholm-Beauchamp U, Ginsberg HS. Spontaneous occurrence of early region 1A reiteration mutants of type 5 adenovirus in persistently infected human T-lymphocytes. Virology 1997; 230:281-91. [PMID: 9143284 DOI: 10.1006/viro.1997.8482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutants of type 5 adenovirus (Ad5) with reiterated DNA sequences in the E1a region appeared in a human T-lymphocyte cell line, Molt-4, persistently infected with H5sub304, a deletion/substitution mutant that has a wild-type phenotype in viral replication. Endonuclease analyses and DNA sequencing revealed DNA reiteration in each mutant. In the four representative mutants investigated, the DNA reiterations all started within a six-base-pair consensus sequence, G(or C)CTGTG, located in the second exon of the E1a region (at nt 1333, 1367, or 1419). There was not any DNA homology between the breakpoints in the second exon and the inserting sequences (starting at nt 532, 710, or 792). Northern analyses suggested that the reiterated splicing sites of the representative mutants were all used in RNA splicing, and the closest donor and recipient joints were used most frequently. These observations imply that during persistent infection Ad5 underwent spontaneous mutations by sequence-specific breakage and nonhomologous end-end joining recombination events. These E1a reiteration mutants could be propagated in HeLa, A549, and KB cells; they were genetically stable; and they killed CREF cells at a strikingly high frequency. Preliminary observations tend to correlate this CREF cell killing with the accumulation of the early viral proteins and/or viral DNA in the infected cells. This degree of cell damage was not observed in Ad5wt or H5sub304 infection of CREF cells. The observed E1a reiterations provide a model to gain insight into understanding the evolutionary events of some, if not all, adenovirus types during many years of symbiotic, persistent relationship in human tonsils and adenoids and possibly other lymphoid organs.
Collapse
Affiliation(s)
- Q Tang
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
25
|
Wang Z, Zimmer C, Lown JW, Knippers R. Effects of bifunctional netropsin-related minor groove-binding ligands on mammalian type I DNA topoisomerase. Biochem Pharmacol 1997; 53:309-16. [PMID: 9065734 DOI: 10.1016/s0006-2952(96)00690-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated the effects of compounds with two covalently linked netropsin moieties (bis-netropsin) on the function of mammalian type I DNA topoisomerase (topo I) in vitro. We initiated these studies because earlier studies had shown that certain bis-netropsins possess a several-fold higher antitumor and antiviral activity than netropsin. We confirmed that the parent compound netropsin, but not its bifunctional derivatives, induce supercoils in closed DNA. We determined that bis-netropsins inhibit the binding of topo I to DNA more efficiently than netropsin and that bis-netropsins but not netropsin induce specific DNA strand cleavage in the presence of topo I. We discuss a model explaining the different effects of netropsin and bis-netropsins on topo I.
Collapse
Affiliation(s)
- Z Wang
- Division of Biology, University of Konstanz, Germany
| | | | | | | |
Collapse
|
26
|
Stewart L, Ireton GC, Parker LH, Madden KR, Champoux JJ. Biochemical and biophysical analyses of recombinant forms of human topoisomerase I. J Biol Chem 1996; 271:7593-601. [PMID: 8631793 DOI: 10.1074/jbc.271.13.7593] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Amino acid sequence comparisons of human topoisomerase I (Topo I) with seven other cellular Topo I enzymes reveal that the enzyme can be divided into four major domains: the unconserved NH2-terminal domain (24 kDa), the conserved core domain (54 kDa), a poorly conserved linker region (5 kDa), and the highly conserved COOH-terminal domain (8 kDa), which contains the active site tyrosine. To investigate this predicted domain organization, recombinant baculoviruses were engineered to express the 91-kDa full-length enzyme, a 70-kDa NH2-terminally truncated enzyme that is missing the first 174 residues, and a 58-kDa NH2- and COOH-terminally truncated core fragment encompassing residues 175-659. The specific activity of the full-length and Topo70 enzymes are indistinguishable from the native human Topo I purified from HeLa cells. Each protein is inhibited by camptothecin, topotecan, and 9-aminocamptothecin, but not by ATP. Activity is stimulated by Mg2+, Ba2+, Ca2+, Mn2+, spermine, and spermidine. The magnitude of the stimulatory effect of Mg2+ is inversely proportional to the salt concentration. Furthermore, at KCl concentrations of 300 mM or greater, the addition of Mg2+ is inhibitory. The effects of Mg2+ and the polycations spermine and spermidine are partially additive, an indication that the stimulatory mechanisms of the two substances are different. Activity was strongly inhibited or abolished by Ni2+, Zn2+, Cu2+, Cd2+, and Co2+. An examination of the hydrodynamic properties of full-length Topo I, Topo70, and Topo58 demonstrates that the core, linker, and COOH-terminal domains fold into a globular structure, while the NH2-terminal domain is highly extended. A comparison of the circular dichroism spectra of full-length Topo I and Topo70 demonstrates that residues 1-174 (approximately 21 kDa) of Topo I are largely if not completely unfolded. This observation is consistent with the fact that the NH2-terminal domain is dispensable for activity.
Collapse
Affiliation(s)
- L Stewart
- Department of Microbiology, School of Medicine, University of Washington, Seattle, 98195-7242, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Using limited proteolysis, we show that the domain boundaries of human topoisomerase I closely parallel those predicted from sequence comparisons with other cellular Topo I enzymes. The enzyme is comprised of (i) an NH2-terminal domain (approximately 24 kDa), which is known to be dispensable for activity, (ii) the core domain (approximately 54 kDa), (iii) a linker region (approximately 3 kDa), and (iv) the COOH-terminal domain (approximately 10 kDa), which contains the active site tyrosine. The highly conserved core and COOH-terminal domains are resistant to proteolysis, while the unconserved NH2-terminal and linker domains are sensitive. Noncovalent binding of Topo I to plasmid DNA or to short duplex oligonucleotides decreases the sensitivity of the linker to proteolysis by approximately a factor of 10 but has no effect on proteolysis of the NH2-terminal domain. When the enzyme is covalently complexed to an 18 base pair single-stranded oligonucleotide, the linker region is sensitive to proteolysis whether or not duplex DNA is present. The net positive charge of the linker domain suggests that at a certain point in catalysis the linker may bind directly to DNA. Further, we show that limited subtilisin cleavage can generate a mixture of 60-kDa core and approximately 10-kDa COOH-terminal fragments, which retain a level of topoisomerase activity that is nearly equal to undigested control samples, presumably because the two fragments remain associated after proteolytic cleavage. Thus, despite its potential role in DNA binding, the linker domain (in addition to the NH2-terminal domain) appears to be dispensable for topoisomerase activity. Finally, the limited proteolysis pattern of the human enzyme differs substantially from the limited proteolysis pattern of the vaccinia viral Topo I, indicating that the two enzymes belong to separate eukaryotic topoisomerase I subfamilies.
Collapse
Affiliation(s)
- L Stewart
- Department of Microbiology, School of Medicine, University of Washington, Seattle, 98195-7242, USA
| | | | | |
Collapse
|
28
|
Malkas LH, Hickey RJ. Expression, purification, and characterization of DNA polymerases involved in papovavirus replication. Methods Enzymol 1996; 275:133-67. [PMID: 9026636 DOI: 10.1016/s0076-6879(96)75011-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In recent years, work from a large number of laboratories has greatly expanded our knowledge of the biochemical characteristics and the genetic structure of the DNA polymerases used during papovavirus DNA replication. The development of in vitro DNA replication systems for both SV40 and polyoma virus has been paramount in facilitating the development of the current models describing how DNA polymerase alpha and delta function to replicate the genomes of these two viruses. Our studies have demonstrated that the proteins recognized to be essential for both in vitro SV40 and polyoma viral origin-dependent DNA synthesis can be isolated from cells as an intact complex. We have shown that the human cell MRC closely resembles the murine cell MRC, in both its protein composition and its fractionation and chromatographic profile. In addition, our data regarding both the human and the murine MRC support the dipolymerase model proposed from in vitro DNA replication studies using reconstituted assay systems. In addition, analysis of the nucleotide sequence of the genes encoding DNA polymerase alpha and delta has revealed that the amino acids encoded by several regions of these two genes have been rigorously maintained across evolutionary lines. This information has permitted the identification of protein domains which mediate the complex series of protein-protein interactions that direct the DNA polymerases to the cell nucleus, specify complete or partial exonuclease active sites, and participate in the interaction of each DNA polymerase with the DNA template. Expression studies examining each of the genes encoding DNA polymerase alpha and delta clearly indicate that both DNA polymerases are cell cycle regulated and undergo a dramatic induction in their expression when quiescent cells are stimulated to enter the cell cycle. This is in contrast to the two- to three-fold upregulation in the level of expression of these two genes when cycling cells cross the G1/S boundary. In addition, both proteins are phosphorylated in a cell cycle-dependent manner, and phosphorylation appears to be mediated through the action of a cdc2-dependent protein kinase. Despite all of this new information, much remains to be learned about how papovavirus DNA replication is regulated and how these two DNA polymerases act in vivo to faithfully copy the viral genomes. Studies have yet to be performed which identify all of the cellular factors which potentially mediate papovavirus DNA replication. The reconstituted replication systems have yielded a minimum number of proteins which are required to replicate SV40 and polyoma viral genomes in vitro. However, further studies are needed to identify additional factors which may participate in each step of the initiation, elongation, and termination phases of viral genome replication. As an example, models describing the potential role of cellular helicases, which are components of the MRC isolated from murine and human cells, have yet to be described. It is also conceivable that there are a number of other proteins which serve to attach the MRC to the nuclear matrix, stimulate viral DNA replication, and potentially regulate various aspects of the activity of the MRC throughout viral DNA replication. We are currently working toward characterizing the biochemical composition of the MRC from both murine and human cells. Our goals are to identify all of the structural components of the MRC and to define the role of these components in regulating papovavirus and cellular DNA replication. We have also begun studies to visualize the spatial organization of these protein components within the MRC, examine the regulatory processes controlling the activity of the various components of the MRC, and then develop this information into a coherent picture of the higher order structure of the MRC within the cell nucleus. We believe that this information will enable us to develop an accurate view of the detailed processes mediating both pa
Collapse
Affiliation(s)
- L H Malkas
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
29
|
Applegren N, Hickey RJ, Kleinschmidt AM, Zhou Q, Coll J, Wills P, Swaby R, Wei Y, Quan JY, Lee MY. Further characterization of the human cell multiprotein DNA replication complex. J Cell Biochem 1995; 59:91-107. [PMID: 8530540 DOI: 10.1002/jcb.240590111] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Evidence for multiprotein complexes playing a role in DNA replication has been growing over the years. We have previously reported on a replication-competent multiprotein form of DNA polymerase isolated from human (HeLa) cell extracts. The proteins that were found at that time to co-purify with the human cell multiprotein form of DNA polymerase included: DNA polymerase alpha, DNA primase, topoisomerase I, RNase H, PCNA, and a DNA-dependent ATPase. The multiprotein form of the human cell DNA polymerase was further purified by Q-Sepharose chromatography followed by glycerol gradient sedimentation and was shown to be fully competent to support origin-specific and large T-antigen dependent simian virus 40 (SV40) DNA replication in vitro [Malkas et al. (1990b): Biochemistry 29:6362-6374]. In this report we describe the further characterization of the human cell replication-competent multiprotein form of DNA polymerase designated MRC. Several additional DNA replication proteins that co-purify with the MRC have been identified. These proteins include: DNA polymerase delta, RF-C, topoisomerase II, DNA ligase I, DNA helicase, and RP-A. The replication requirements, replication initiation kinetics, and the ability of the MRC to utilize minichromosome structures for DNA synthesis have been determined. We also report on the results of experiments to determine whether nucleotide metabolism enzymes co-purify with the human cell MRC. We recently proposed a model to represent the MRC that was isolated from murine cells [Wu et al. (1994): J Cell Biochem 54:32-46]. We can now extend this model to include the human cell MRC based on the fractionation, chromatographic and sedimentation behavior of the human cell DNA replication proteins. A full description of the model is discussed. Our experimental results provide further evidence to suggest that DNA synthesis is mediated by a multiprotein complex in mammalian cells.
Collapse
Affiliation(s)
- N Applegren
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gupta M, Fujimori A, Pommier Y. Eukaryotic DNA topoisomerases I. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1262:1-14. [PMID: 7772596 DOI: 10.1016/0167-4781(95)00029-g] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Gupta
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
31
|
Champoux JJ. Mechanism of catalysis by eukaryotic DNA topoisomerase I. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:71-82. [PMID: 7826865 DOI: 10.1016/s1054-3589(08)60540-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The elucidation of the chemistry of the topo I reaction has provided the first example of how a phosphodiester bond in DNA can be temporarily broken and the energy for reclosure stored in a covalent linkage between the end of the broken strand and the enzyme (Champoux, 1977a, 1981). This type of reaction offers several advantages to the cell. First, unnecessary exposure of DNA ends to nucleolytic attack is prevented. Second, breakage and reclosure of DNA strands can occur without an expenditure of ATP energy. Third, the combined breakage and rejoining reactions can be both spatially and temporally coordinated with other cellular activities by regulating the activity of a single protein molecule. This general mechanism has not only been extended to type II topoisomerases (see Chapters 3 and 5), but also to the specialized single-stranded phage replication proteins (e.g., phi X174 gene A protein) (Ikeda et al., 1976; Eisenberg et al., 1977) and to site-specific recombinases such as the bacteriophage lambda integrase (Craig and Nash, 1983), the delta gamma and Tn3 resolvases (Reed, 1981; Reed and Grindley, 1981; Krasnow and Cozzarelli, 1983; Hatfull and Grindley, 1986), and the yeast 2-microns circle FLP recombinase (Andrews et al., 1985; Gronostajski and Sadowski, 1985). Since the site-specific recombinases attach the broken strand to a different terminus rather than simply restoring the original phosphodiester bond as conventional topoisomerases do, they have been referred to as DNA strand transferases. It is conceivable that a similar mechanism applies to the rearrangement of immunoglobulin genes (Schatz et al., 1990) and to other specific genomic rearrangements that might occur during development (Matsuoka et al., 1991).
Collapse
Affiliation(s)
- J J Champoux
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195
| |
Collapse
|
32
|
Pommier Y, Tanizawa A, Kohn KW. Mechanisms of topoisomerase I inhibition by anticancer drugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29B:73-92. [PMID: 8996602 DOI: 10.1016/s1054-3589(08)61132-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Y Pommier
- National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
33
|
Christiansen K, Svejstrup A, Andersen A, Westergaard O. Eukaryotic topoisomerase I-mediated cleavage requires bipartite DNA interaction. Cleavage of DNA substrates containing strand interruptions implicates a role for topoisomerase I in illegitimate recombination. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98404-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Affiliation(s)
- G Capranico
- Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | |
Collapse
|
35
|
Jaxel C, Capranico G, Kerrigan D, Kohn K, Pommier Y. Effect of local DNA sequence on topoisomerase I cleavage in the presence or absence of camptothecin. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54939-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Thömmes P, Hübscher U. Eukaryotic DNA replication. Enzymes and proteins acting at the fork. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:699-712. [PMID: 2269294 DOI: 10.1111/j.1432-1033.1990.tb19460.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A complex network of interacting proteins and enzymes is required for DNA replication. Much of our present understanding is derived from studies of the bacterium Escherichia coli and its bacteriophages T4 and T7. These results served as a guideline for the search and the purification of analogous proteins in eukaryotes. model systems for replication, such as the simian virus 40 DNA, lead the way. Generally, DNA replication follows a multistep enzymatic pathway. Separation of the double-helical DNA is performed by DNA helicases. Synthesis of the two daughter strands is conducted by two different DNA polymerases: the leading strand is replicated continuously by DNA polymerase delta and the lagging strand discontinuously in small pieces by DNA polymerase alpha. The latter is complexed to DNA primase, an enzyme in charge of frequent RNA primer syntheses on the lagging strand. Both DNA polymerases require several auxiliary proteins. They appear to make the DNA polymerases processive and to coordinate their functional tasks at the replication fork. 3'----5'-exonuclease, mostly part of the DNA polymerase delta polypeptide, can perform proof-reading by excising incorrectly base-paired nucleotides. The short DNA pieces of the lagging strand, called Okazaki fragments, are processed to a long DNA chain by the combined action of RNase H and 5'----3'-exonuclease, removing the RNA primers, DNA polymerase alpha or beta, filling the gap, and DNA ligase, sealing DNA pieces by phosphodiester bond formation. Torsional stress during DNA replication is released by DNA topoisomerases. In contrast to prokaryotes, DNA replication in eukaryotes not only has to create two identical daughter strands but also must conserve higher-order structures like chromatin.
Collapse
Affiliation(s)
- P Thömmes
- Department of Pharmacology and Biochemistry, University Zürich-Irchel, Switzerland
| | | |
Collapse
|
37
|
Shin CG, Snapka RM. Patterns of strongly protein-associated simian virus 40 DNA replication intermediates resulting from exposures to specific topoisomerase poisons. Biochemistry 1990; 29:10934-9. [PMID: 2176889 DOI: 10.1021/bi00501a011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exposure of infected CV-1 cells to specific type I and type II topoisomerase poisons caused strong protein association with distinct subsets of simian virus 40 (SV40) DNA replication intermediates. On the basis of the known specificity and mechanisms of action of these drugs, the proteins involved are assumed to be the respective topoisomerases. Camptothecin, a topoisomerase I poison, caused strong protein association with form II (relaxed circular) and form III (linear) viral genomes and replication intermediates having broken DNA replication forks but not with form I (superhelical) viral DNA or normal late replication intermediates which were present. In contrast, type II topoisomerase poisons caused completely replicated forms and late viral replication forms to be tightly bound to protein--some to a greater extent than others. Different type II topoisomerase inhibitors caused distinctive patterns of protein association with the replication intermediates present. Both intercalating and nonintercalating type II topoisomerase poisons caused a small amount of form I (superhelical) SV40 DNA to be protein-associated in vivo. The protein complex with form I viral DNA was entirely drug-dependent and strong, but apparently noncovalent. The protein associated with form I DNA may represent a drug-stabilized "topological complex" between type II topoisomerase and SV40 DNA.
Collapse
Affiliation(s)
- C G Shin
- Department of Radiology, Ohio State University, Columbus 43210-1214
| | | |
Collapse
|
38
|
Shuman S, Prescott J. Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38238-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|